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Abstract—LoRaWAN networks can involve large numbers of
wireless devices relying on batteries to sense the environment
and send data to gateways. A critical trade-off for transmission
performance (packet delivery ratio) versus energy conservation
(and hence, the device lifespan) appears when deciding the
transmission parameters, in particular, the Spreading Factor (SF)
to be used by each node.

In this paper, we use lightweight reinforcement learning
techniques, namely multi-armed bandits, for each node to select
an appropriate SF, based on preferences regarding that trade-off.
Unlike previous works on that topic, we relax some assumptions
to aim at a realistic implementation: our solution does not assume
immediate rewards, or that each device communicates with only
one gateway. Additionally, we build explicit MAC commands for
the method to work in practice and implement it in the ns-3
simulator using a state-of-the-art LoRaWAN module. We share
the source code of our implementation and our simulation results.
Those simulations show that when energy conservation is critical
for IoT nodes, such lightweight learning algorithms outperform
LoRaWAN’s legacy Adaptive Data Rate algorithm, both in single-
and multi-gateway scenarios.

Index Terms—LoRaWAN, reinforcement learning, energy con-
sumption, bandits, Adaptive Data Rate, ADR, Spreading Factor
selection, IoT

I. INTRODUCTION

Low Power Wide Area Network (LPWAN) technologies are
among the enablers of Internet-of-Things (IoT) devices and
services. They allow low-cost and energy-efficient transmis-
sions to interconnect thousands of geographically dispersed
end devices running on batteries. The interconnection between
these devices is made possible by different technologies such
as Long Range Wide Area Network (LoRaWAN), SIGFOX,
and NB-IoT. Particularly, LoRaWAN is the most widely
adopted due to its simplicity, openness, and cost-effectiveness.

LoRa is a network physical layer owned by Semtech. It
uses the Chirp Spread Spectrum (CSS) technology and is
designed as an energy-efficient, long-range, and low-power
wireless platform. LoRaWAN [1], [2] is a Media Access
Control (MAC) layer that runs atop the LoRa physical layer.

LoRaWAN deploys a simple star-of-stars network topology
architecture for simplicity and cost-effectiveness. As shown in
Figure 1, end devices connect to centralized gateways which
forward messages to and from a remote Network Server (NS).
In particular, LoRaWAN end devices are energy-efficient sen-

sors and actuators featuring low data rates, ranging from 0.3 to
50 Kbps [3], with long-life batteries intended to last up to 10
years [1]. LoRaWAN already counts several hundred known
use cases for smart cities, homes and buildings, communities,
metering, supply chain and logistics, agriculture, and more.

Fig. 1. LoRaWAN architecture

LoRaWAN operates in the Industrial, Scientific, and Medi-
cal (ISM) free band, with duty cycle limitations, and possibly
additional limitations from network providers. Optimizing
the parameters of wireless LoRaWan devices under those
constraints is crucial for their proper functioning as well as
for their operational longevity, but can be a complex and
tricky process. Indeed, the choice of a Spreading Factor (SF),
notably, affects the battery depletion speed, as well as the
transmission rate, which in turn has an impact on competing
communications.

In this paper, we specifically focus on the SF selection,
which is currently managed through the Adaptive Data Rate
(ADR) [4] algorithm, which aims to improve the Packet De-
livery Ratio (PDR). For static nodes and stable radio channel
environments, the NS manages the ADR depending on the
history of the uplink (UL) packets received. Based on the
reception quality of a given number of packets originating
from a LoRaWan device, ADR calculates a new SF, to
maintain a satisfying reception level while limiting energy
consumption. However, reception quality does not only depend
on channel conditions but also on the competing devices,
whose behavior may vary [5]. To address such an issue,
solving a global optimization problem has been envisioned [6],
[7], but the heuristics proposed can present instabilities with
non-controllable convergence times. The inherent limitations
of centralized approaches have led to an interest in distributedISBN 978-3-903176-57-7© 2023 IFIP
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strategies (i.e., node-centric). The standard itself proposes a
terminal-based heuristic for the configuration of its parameters
based on an incremental exploration of the different con-
figurations [8], unfortunately without guarantees in terms of
stability or even efficiency. A particularly interesting direction,
that we also follow in this paper, is the use of reinforcement
learning techniques to be applied by the nodes. While some
methods like Q-learning can use significant resources [9],
others like multi-armed bandits [10] require very limited
computing power and memory–what we want for battery-
powered nodes–and can be effective even in non-stationary
conditions [11].

This paper further develops the idea of applying bandit-
like algorithms to LoRaWAN nodes, by relaxing several key
assumptions generally made in the literature in order to get
closer to real-life implementable solutions. Specifically,
(i) we do not assume nodes get immediate feedback after
sending a frame (which would mean a downlink message for
each uplink one, something saturating the scarce downlink
radio spectrum). Instead, a node has to specifically ask for
batched (aggregated) feedback for a number of sent uplink
frames;
(ii) we do not assume each node’s uplink frames reach only
one gateway, but design a reinforcement learning approach
compatible with the multi-gateway case;
(iii) we apply lightweight reinforcement learning techniques
that are compatible with the “no immediate feedback” situ-
ation, namely delayed-feedback bandits, in particular, some
reflecting the node energy consumption;
(iv) we design new LoRaWAN MAC commands for those
techniques to be implemented in real LoRaWAN networks, and
implement our proposal on a realistic (ns-3-based) LoRaWAN
network simulator;
(v) we consider not only communication performance (Packet
Delivery Ratio), but also energy consumption; in that sense
this paper can be associated with the recent trend in research
work focusing on power allocation and energy consumption
for IoT (and especially LoRaWAN [12], [13]), in contrast to
the (still mainstream) focus on PDR [14]. More specifically,
we discuss performance metrics for LoRaWAN, in particular
those reflecting the energy/success rate trade-off, that we use
to compare our proposals to ADR.

The remainder of this paper is structured as follows. Sec-
tion II introduces the main background concepts and related
work. Our proposal is presented in Section III, while Sec-
tion IV describes our simulator and provides performance
results. Finally, Section V discusses the paper’s contributions
and suggests directions for future work.

II. STATE OF THE ART: MULTI-ARMED BANDITS AND
APPLICATIONS IN IOT

This section first describes bandit problems and their
delayed-feedback versions, then summarizes the existing liter-
ature on the application of such methods to IoT networks.

A. Background: The Basic Bandit problem

Multi-Armed Bandit (MAB) problems refer to situations
where a decision maker has to repeatedly select one option
(called an arm) in a finite set and then obtains some reward
that depends on the arm choice. The vocabulary stems from
gambling situations with coin slot machines (called one-armed
bandits), as the situation is similar to that of a gambler having
to maximize their gain by choosing among several machines.
A specificity of bandit problems is that the decision maker
only observes the reward for the selected (played) arm and
not the other ones. This leads to a well-known trade-off
in reinforcement learning, between exploration (playing each
arm sufficiently to estimate its performance) and exploitation
(playing the best arms to maximize gains).

When rewards are independently drawn from unknown arm-
specific distributions (we then talk of stochastic bandits), some
well-known algorithms managing the exploration-exploitation
dilemma include UCB–which selects the arm with the highest
upper bound of the confidence interval estimating the mean–
and Thompson Sampling (TS) [15]–that uses beliefs to select
the arm to play and updates those beliefs.

A metric often used for arm selection algorithms perfor-
mance evaluation is the regret, which compares the cumulative
reward from an algorithm to the cumulative reward given by
the best arm. The goal is generally to keep that regret as
low as possible over time; Thompson Sampling is optimal
in that sense [16], [17], and UCB also offers near-optimal
performance [18].

B. Delayed feedback bandits

Delayed feedback refers to the decision maker not imme-
diately observing the reward after pulling an arm; depending
on the type and amplitude of the delay, the algorithms need
to be adapted, and their performance is affected. That type of
problem is particularly adapted for our LoRaWAN setting, in
which an objective is to minimize the number of downlink
transmissions, and thus it is not reasonable to assume that
a node obtains some feedback (acknowledgment) after each
frame emission.

The seminal work of Chapelle and Li [16] empirically
validates TS in several bandit settings, including delayed
feedback. The authors conclude that TS is very effective for
handling the exploration-exploitation trade-off in all settings
and is easy to implement (not requiring any parameter setting
in its simplest form).

For delayed-feedback bandits, P. Joulani et al. [19], [20]
study the case of non-constant and unbounded (but finite)
delay, and propose a black-box approach to solve the delayed
MAB problem using unmodified non-delayed MAB algo-
rithms, through a meta-algorithm. The derived upper-bound
guarantees for the stochastic and adversarial (a more general
case than stochastic) settings suggest the price of delay is a
multiplicative regret increase for adversarial problems and an
additive increase in stochastic problems. Also, they provide
UCB-based algorithms (non-back-box) for the MAB prob-
lem with delayed feedback, with similar performance (from



simulations). Desautels et al. [21] study how to improve the
exploration-exploitation trade-off in the delayed reward set-
ting; they propose two UCB-based algorithms that can select
batches of experiments (i.e., arms selections) and can be run
in parallel (i.e., independently of getting the results/rewards of
the other batch).

Mandel et al. [22] build upon the black-box approach
of [19], aiming to improve the exploration part through a
queuing-based heuristic that adds (synthetic) exploration to the
black-box algorithm, without having to pull/interact with the
real environment. They show that some heuristics can improve
performance while maintaining regret bounds close to the best-
known. Using TS as the black box and choosing a heuristic
algorithm based on its empirical performance [16] and its
theoretical proof of optimal regret bounds [17] yields good
results, while UCB-based variants perform worse, particularly
for the cases with few rewards/samples available.

Vernade et al. [23] further explore the stochastic delayed
bandit setting, using queuing and UCB-based approaches for
the case where some feedback delay can be “censored” (e.g.,
not observable, infinite, lost).

For our problem, we will limit ourselves to implementing
the original TS algorithm, with the only difference being that
some feedback is delayed. Unlike some deterministic algo-
rithms like UCB, the randomness inherent to TS still allows
pulling different arms (exploration) even without receiving
new feedback information, while deterministic approaches
would result in always the same arm being pulled between
two batches of feedback.

C. Bandits for wireless IoT networks

The literature contains several propositions for applying
reinforcement learning in wireless communications, especially
bandit algorithms because of their being lightweight and
having performance guarantees.

In 2014, Avner and Mannor [24] consider a cognitive radio
setting, where nodes have to choose a channel (an arm) to
send data while avoiding collisions; they suggest a greedy
bandit learning method for which performance guarantees are
derived. Key assumptions include the reward distribution over
arms being the same for all nodes, which is unrealistic for
IoT LoRa networks, where nodes can experience very different
radio conditions. For a similar setting, Rosenski, Shamir, and
Szlak [25] improve the performance guarantee bounds, but
with the additional assumption that the number of nodes is
smaller than the number of arms, another constraint we cannot
satisfy in IoT networks.

Closer to the present work, the authors of [26] implement
several classical bandit methods for nodes to select their SF
(and possibly emission power), in a LoRa simulator. However,
that contribution focuses on the single-GW scenario, with
only one node implementing learning while our approach
is compatible with the multi-GW setting, and we have all
nodes apply learning methods. More importantly, the learning
algorithms compared in [26] assume immediate feedback after

each uplink emission and ignore the half-duplex constraint of
gateways.

Having several nodes learn simultaneously using bandits in
IoT is the focus of [27]–[29], all authored by the same team.
In [27], some nodes learn which channel to use while others
maintain a constant choice, creating collisions. Note that the
simulations consider perfect orthogonality among channels,
and collisions are the only cause of packet loss. In this paper,
we consider nodes spread over a geographic region (i.e., with
different radio conditions), non-perfect orthogonality among
arms (here, SFs, as quantified experimentally in [30]), and
several possible reasons for packet loss. But we follow a
similar approach, in applying stochastic bandit solutions to
situations that do not perfectly fit the mathematical model they
were designed for. More recently, the same team implements
bandit algorithms in a real LoRaWAN network [28], [29],
focusing on frequency selection, and not on SF as we do here.
The main drawback of that approach is that each uplink frame
requests an immediate downlink acknowledgment, causing a
significant communication overhead that may be costly in
realistic settings, and even possibly forbidden due to duty cycle
constraints of the GW, and the half-duplex limitation.

In contrast with those contributions, which exhibited
promising results under strong assumptions, in this paper,
we aim at getting closer to realistic settings, by addressing
multi-gateway scenarios, with a large number of nodes having
node-specific radio conditions and learning based on delayed
feedback information (imposed to limit the communication
overhead). The solution we propose conforms with the Lo-
RaWAN specifications and relies on the definition of two new
LoRaWAN MAC messages; we implement it on the state-of-
the-art simulator for LoRa networks, namely the LoRaWAN
ns-3 module [31].

III. PROPOSAL: DELAYED-FEEDBACK BANDITS ON
LORAWAN

In this section, we describe the technical solution we pro-
pose for nodes to select their SF. The following subsection
provides an overview of our proposal, while the two next
subsections detail the feedback request mechanism, and finally,
Subsection III-D explains and motivates the bandit reward
function we choose to apply.

A. Overview

Our proposal consists of a Bandit Agent at the node,
learning about k different LoRa PHY configurations (arms).

In this paper, we instantiate a Thompson Sampling (TS)
Bandit without black-box adaptation, and we define six PHY
configurations (k = 6 arms) that correspond to LoRa’s SFs
from 12 to 7. The TX power is fixed to 14dBm, and the PHY
central frequency is chosen randomly and uniformly in {868.1
MHz, 868.3 MHz, 868.5 MHz}, i.e., not subject to learning.

In our proposal, the feedback or reward needs to be actively
requested by the Bandit Agent (hence batched and delayed
feedbacks) and involves a two-message protocol between the
node and the Network Server (NS). That feedback is then



appended to the node’s feedback information in order to select
the SFs of the next emissions.

B. Feedback request: triggering strategy

The frequency or strategy used for triggering feedback
requests will impact greatly the overall network performance.
Our feedback request strategy consists of:

1) An initial phase of b application messages with no
feedback request. In our simulations, we take b = 15.

2) A long-term strategy to request feedback. A possibility
that minimizes the risk of collisions, which we imple-
ment in our simulations, is for each application message
to trigger a feedback request with probability p = 1/20
(∼Bernoulli).

Fig. 2 illustrates the proposal from a single node’s point of
view, with an emphasis on the feedback request strategy.

The choice of b and p: Both parameters can be adapted
according to the particularities of the use case. Here, we
describe design recommendations and lessons learned.
About b: The parameter b is proportional to the number of
bandit’s arms (k) and the average number of trials/samples (n̂)
per arm we want to start the long-term strategy with (i.e., when
a feedback request is asked, each arm will have–on average–n̂
rewards’ information); in our case k = 6, and we wanted at
least two trials per arm. To approximate “at least two” we
increased the average by 25% (n̂ = 2.5 ; b = k.n̂ = 15). This
initial phase guarantees a uniform exploration of the arms,
and this kind of exploration is useful if (we consider that)
the current system state is not representative of the long-term
state (i.e., we avoid potential early–unrepresentative–bias). In
our simulations, the early system state is not stable—as all
the nodes on the network are in the early learning phase.
Empirically, we tried b = {10, 15, 20} with no substantial
differences. Otherwise, if we deploy a learning agent on a
“stable” system, we could set b = 0. *
About p: The parameter p depends on the number of nodes, the
uplink traffic periodicity, and the regional ISM bands spectrum
restrictions (e.g., in EU the LoRaWAN GWs downlink duty-
cycle is very limited–1%-10%– and is shared among all the
nodes). For example, in The Things Network’s (TTN’s) public
community network a Fair Use Policy applies which limits
the downlink messages to 10 messages per day per node. For
a private network, the allowed downlink messages per day
will depend on the total number of nodes attached to a GW
and the time-on-air used for the downlinks. Moreover, current
Semtech-based GWs are half-duplex (i.e., RX is not possible
while TX) and, while RX supports parallel demodulation of all
SFs, TX/downlink supports only one SF at a time. Downlink
traffic greatly impacts the overall network performance
and should be minimized. Thus, we adhere to TTN’s fair use
policy and suggest setting p to request at most 10 downlink
messages per 24 hours. In our simulations, we have an uplink
packet frequency of 3 per hour (72 messages per day per node)
and with p = 1/20 we have on average 3.6 (= 72 · 1/20)
downlink messages per day per node. In our simulations, aside
from the chosen 1

20 we tried p = { 1
15 ,

1
10}. While in the

NSNode (Bandit)
FCnt=1

FCnt=15

BanditRewardReq

BanditRewardAns (delayed feedback)

Fig. 2. Overview of our proposal, with emphasis on feedback requests. At
the top, the initial phase of b = 15 messages without feedback requests.
Then, the long-term strategy, in which every uplink message can trigger a
feedback request with a probability p = 1/20. In solid lines, an example of
a successful feedback request and response.

Single-GW scenario both yield improvements of ≈ +3% on
the main metric for a given optimization goal, in the Multi-
GW scenario the results were worse; thus, we set p = 1/20 as
a conservative choice. In future work, it would be interesting
to use variable values for p (e.g., higher values in the early
learning phase, and progressively decreasing its value), i.e.,
adaptive strategies.

For node-mobility scenarios, past learned experience
should be neglected and new one prioritized. For example,
if mobility is detected, p should be increased. The previous
learning experience can be discarded (as is no longer valid) and
the learning agent may transition to an initial learning phase of
b messages—where uniformly random arm-pull is prioritized.
We designed and instantiated our solution to achieve
reasonable results for 6-armed Bandits in the order of 100
uplink messages. A lower number of arms will yield a faster
convergence, so in high-mobility scenarios one may use, for
example, 3-armed Bandits (e.g., learning on SF ∈ {8, 10, 12})
and increase p. However, if the node’s movement is too fast1,
for example, if every 10 uplink messages the node drastically
changed position/environment, MAB (rather, reinforcement
learning in general) may not provide a viable solution.

C. Feedback request: command format

To implement the delayed-feedback Bandit on a LoRaWAN
network, we define two additional MAC commands, that
comply with the LoRaWAN L2 1.0.4 Specification (note
that both commands are smaller than 15 Bytes and can be
piggybacked with application data):
• BanditRewardReq (UL): transmitted by a node to request
reward statistics (Size: 4 Bytes). That command, whose syntax
is given in Table I, triggers feedback/statistics for messages

1fast is relative to (a) the stability of the environment and (b) the conver-
gence rate achievable for a given MAB.



with a frame counter (FCnt) number between [Max FCnt −
Delta , Max FCnt], hence regarding Delta+1 frames.

TABLE I
MAC COMMAND: BANDITREWARDREQ (4 BYTES)

Payload Size (Bytes)
CID (0xBB) 1
Max FCnt 2
Delta 1

• BanditRewardAns (DL): transmitted by a Network
Server to send reward statistics (Size: 7 Bytes). Table II details
the command’s syntax: in response to a BanditRewardReq
(i.e., respecting the FCnt range), the command will answer
with the number of packets received by the NS discriminated
per SF ∈ {7, 8, 9, 10, 11, 12}—which corresponds to 6 arms
of the Bandit.

TABLE II
MAC COMMAND: BANDITREWARDANS (7 BYTES)

Payload Size (Bytes)
CID (0xBB) 1
#Pkt_RCV SF12 (DR0) 1
#Pkt_RCV SF11 (DR1) 1
#Pkt_RCV SF10 (DR2) 1
#Pkt_RCV SF9 (DR3) 1
#Pkt_RCV SF8 (DR4) 1
#Pkt_RCV SF7 (DR5) 1

As an illustrative example, consider the following exchange
of MAC commands:

• ED→NS: [0xBB, 0x08 0x00, 0x03]

• NS→ED: [0xBB, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02]]

The first message (1) is a BanditRewardReq with
(Max FCnt2 = 8, Delta = 3) and is requesting feed-
back statistics for Frame #5 to Frame #8. The message (2)
is the BanditRewardAns with (#Pkt_RCV SF9 = 1,
#Pkt_RCV SF7 = 2, 0 for other fields) answering that the
NS received 1 packet in SF9, 2 packets in SF7, and 0 in other
SFs. Upon receiving that BanditRewardAns message, the
node can deduce that one among Frames #5 to #8 was lost.
Note that only the node (not the GW) can know what SF was
used for that lost frame.

D. Bandit rewards: Energy-aware approach

The reward definition synthesizes the optimization objective
of each node. Our generic reward definition, given in (1)
below, is defined per packet, since a pull of the bandit’s arm
≡ a LoRa-PHY packet sent. For a pull of arm i ∈ {1, ..., 6},
i.e., a packet sent with SF 13− i, we consider a reward

reward =

{
ri if the packet is received (See Table III)
0 otherwise.

(1)
In this paper, We explore two reward definitions, leading to

two SF selection strategies named as follows:

2The over-the-air byte order for all multi-byte fields is Little Endian.

• PDR focuses on packet delivery ratio (PDR) optimization,
hence ri = 1 for each arm i.
• Energy-PDR is based on PDR with energy-efficiency con-
siderations, more specifically each arm reward is inversely
proportional to the energy used by the LoRa-PHY layer,
hence ri = 2i−1, since the time-on-air (and thus, the energy)
approximately doubles when increasing the SF. Note that over
several emissions with the same SF and empirical PDR p, the
average reward is p 2i−1, which is proportional to the amount
of information successfully received per unit of energy spent
on emissions.

In Table III, we summarize these reward definitions.

TABLE III
BANDITS: PACKET RECEIVED REWARD ri DEFINITION

Optimization
Objective

Packet Received Reward ri per arm i
r1

(SF12)
r2

(SF11)
r3

(SF10)
r4

(SF9)
r5

(SF8)
r6

(SF7)
PDR 1 1 1 1 1 1
Energy-PDR 1 2 4 8 16 32

The delayed feedback message is then used to compute the
rewards of the node (e.g., PDR for a mains-powered node,
or Energy-PDR for a battery-powered one). Concretely, the
reward calculation and input are done as follows:

1) The BanditRewardAns feedback message contains
the number of packets RXi received per arm i.

2) The ED keeps track of the number of packets sent per
arm, and can then calculate the number of packets RXi

lost per arm i.
3) Then, for every arm i ∈ {1, ..., 6} and each sent packet,

its associated reward–as defined in Eq. (1)–is computed.
Those rewards are fed to an unmodified Thompson

Sampling (TS) Bandit. Note that for each SF, the order
in which sent packets are lost is not contained in the
BanditRewardAns message, but that information is not
used by TS.

E. Performance metrics for LoRaWAN networks

In this subsection, we present performance metrics used
in LoRaWAN networks to evaluate ADR proposals. We also
suggest a new metric that will be relevant for our setting.

The 2020 survey article by Kufanesu et al. [14] identifies 22
ADR optimization proposals, we summarize the metrics used
by those proposals in Table IV.

The Data Extraction Rate (DER) metric [2], is defined as
the ratio of received messages to transmitted messages over a
period of time and is equivalent to the Packet Delivery Ratio
(PDR) which is one of the most used metrics in the literature.
Another metric of interest is the Network Energy Consump-
tion (NEC), defined as the energy spent by the network to
successfully extract a message, however, it is not clear whether
it accounts for energy spent on lost packets. Metrics focusing
on errors/losses like the Packet Error Rate (PER) [32], [33] or
the Packet Loss Rate (PLR) [34] investigated the correlation
between the number of end nodes and PLR in the LoRa
network using one gateway.



TABLE IV
PERFORMANCE METRICS USED ON LORAWAN’S ADR

(OUR SYNTHESIS FROM REFERENCES ON [14])

Metric Name Definition
NS
wide

Per
SF

Per
Frq

Per
GW

Per
Node

Data Extraction Rate (DER) [2]
The ratio of received messages to transmitted messages
over a period of time ✓ ✗‡ ✗‡ ✗‡ ✓

Network Energy Consumption (NEC) [2]
Energy spent by the network to successfully extract a
message, but does not count energy spent on lost packets ✓ ✓ ✓ ✗ ✗

Ubiquitous NEC (proposed here)
Energy spent by the network to successfully extract a
message, counts energy spent on lost packets† ✓ ✓ ✓ ✗ ✓

Packet Delivery Ratio (PDR) —equivalent to DER metric—
Packet Error Ratio (PER) #packets crc error

#sent packets ✓ ✓ ✓ ✓ ✓

Packet Loss Ratio (PLR) #lost packets
#sent packets (See§ ) ✓ ✗‡ ✗‡ ✗‡ ✓

Jain’s Fairness index [6]
(
∑n

i=1 xi)
2

n
∑n

i=1
x2
i

(See¶) ✓ ✓ ✓ ✓ ✗

‡ Not applicable in a real deployment, because a lost packet can not be –easily– attributed to a ‘PHY-link’. But applicable in a simulated environment.
† Not easily applicable in a real deployment, but applicable in a simulated environment.
§ In the bibliography, PLR is used as 1-PDR: Does not discriminate CRC errors.
¶ NB1: xi denotes the normalized throughput of each device and n the total number of active devices in each “slice”. NB2: Index varies between 0

and 1, with 1 being perfectly fair.

Finally, we introduce a metric based on the Network Energy
Consumption (NEC) [2], which we name “ubiquitous NEC”
(uNEC). The uNEC metric measures the average energy used
by the network to successfully transmit a message and counts
the energy spent for lost packets. In other words, the uNEC
metric measures the average energy consumption of nodes
per uplink packet, divided by the PDR. In a real-world
network, a LoRAWAN NS does not immediately have the PHY
information of lost packets and, hence, the uNEC will not be
easy to calculate. In that case, the NEC could be applied,
but the reader must be aware that the NEC does not include a
ponderation of the PDR of the network. The uNEC metric will
be used in Section IV to compare the solutions from an energy
point of view, a crucial aspect for battery-powered nodes.

IV. EVALUATION

In this section, we evaluate our proposal in the context
of single- and multi-GW scenarios. We compare delayed-
feedback bandits using PDR and Energy-PDR rewards, and
the default LoRaWAN’s ADR mechanism.

A. Implementation

The source code for our implementation of LoRaWAN
Bandits is at https://github.com/renzoe/LoRaWAN-Bandits
[35]. Our proposal is based on the ns-33 discrete-event net-
work simulator and the LoRaWAN ns-3 module4 [31]. For
the Reinforcement Learning aspects, we use the AIToolbox5

C++ library [36]. Most of our code is in the folder
/ns-3/src/lorawan/model/bandits, but we also
modified the base lorawan/model. Notably, we extended
Class A nodes to add the delayed-feedback Bandit function-
ality, defined the delayed feedback MAC commands described
before, and extended the NS capabilities to keep track of the
required statistics. We also added .pcap tracing capabilities.

3https://www.nsnam.org/
4https://github.com/signetlabdei/lorawan
5https://github.com/Svalorzen/AI-Toolbox

B. Single-Gateway and Multi-Gateway scenarios

Our simulations consider both a single-gateway (single-
GW) and a multi-gateway (multi-GW) case, described below.

Single-GW. A unique LoRaWAN’s GW is located at the
center of a 6400 meters-radius disc, in which 1000 nodes are
uniformly distributed.

Multi-GW. This setup tries to reproduce a city-like scenario.
Seven GWs are present, each one at the center of a hexagonal
“cell”, and separated by 2000 meters from contiguous GWs.
2000 EDs are uniformly distributed within a square area of
4400 meters per 4400 meters with one GW at the center.
For this scenario, we included buildings simulation from
LoRaWAN’s module (around 1400 buildings) which adds
attenuation.

C. Set up

The simulation parameters are given in Table V; each
scenario is run three times, each time with a different ADR
strategy implemented by nodes: (a) Legacy ADR, (b) Bandit
PDR reward, (c) Bandit Energy-PDR reward.

TABLE V
COMMON CONFIGURATION PARAMETERS FOR ALL EXPERIMENTS

Parameter Value

PHY: End Device mobility No mobility (static)
PHY: Propagation Loss Model LogDistancePropagationLossModel (default)
LoRa-PHY: TX power 14 dBm (Except LoRaWAN ADR)
LoRa-PHY: Bandwith 125 kHz
LoRa-PHY: Frequency Carrier U ∈ {868.1, 868.3, 868.5} MHz (EU868)
LoRa-PHY: Interference Matrix Croce et al. [30]
APP: Application Packet Size 32 Bytes (45B@LoRA-PHY)
APP: Time Between Packets 20 min, w/initial delay = U [0, 20] min
Simulated Number of EDs 1000 (single-GW) / 2000 (multi-GW)
Simulated Events/Time 100 packets per ED ∼ 33h20m

Note that we use the Interference Matrix from Croce et
al. [30] to simulate transmission failures, instead of the Lo-
RaWAN module’s default one which tends to underestimate
inter-SF interference. Also, the application payload is 32B,

https://github.com/renzoe/LoRaWAN-Bandits
https://github.com/renzoe/LoRaWAN-Bandits/tree/main/ns-3/src/lorawan/model/bandits
https://www.nsnam.org/
https://github.com/signetlabdei/lorawan
https://github.com/Svalorzen/AI-Toolbox
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Fig. 3. Single-GW scenario packet performance results for (a) LoRaWAN
ADR, (b) Bandit w/PDR rewards, and (c) Bandit w/Energy-PDR rewards,
with the reasons for failure.

TABLE VI
RESULTS SINGLE-GW SCENARIO:

METRICS FOR THE LAST 10 PERIODS (1000 PACKETS PER PERIOD)

Metrics (See Table IV)

ADR Strategy Total
Energy [J] PDR Ubiquitous

NEC [mJ]
mean σ mean σ mean σ

LoRaWAN ADR 28.18 0.06 81.8% 0.7% 34.47 0.34
Bandit PDR 21.95 0.63 63.2% 1.4% 34.76 1.20
Bandit Energy-PDR 10.06 0.21 48.9% 1.3% 20.63 0.66

which allows for the delayed feedback MAC commands to be
piggybacked.

Bandit Bootstrapping. The AIToolbox’s TS implementa-
tion needs at least two samples/rewards per arm (to have a
mean and a variance). We manually set two rewards of 0
and 1, inducing a mean reward of 0.5, to all arms. Thus,
in the node’s bootstrapping phase–before the first feedback
request (See Sec. III-B)–arms are chosen following a uniform
distribution. We tried other bandit bootstrapping strategies
(e.g., to prioritize low-energy arms), but the chosen strategy
worked consistently well in diverse scenarios.

D. Single-GW Results

Fig. 3 shows the system packet statistics over time, i.e.,
whether frames are received or not, with the reason for no-
reception:

• “Interfered”: inter- and intra-SF interference, with prob-
abilities taken from [30]);

• “Under sensitivity”: received power below LoRa PHY
sensitivity threshold;

• “Lost because TX”: UL frame overlapping with DL
transmission).

Fig. 4 represents the spatial distribution of the nodes and their
SF for periods #11, #50, and #100. Finally, Table VI focuses
on three system-wide (NS-wide) metrics, giving their mean
and standard deviation over the last 10 simulated periods (i.e.,
#91 to #100).
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Fig. 4. Single-GW scenario, the spatial distribution of nodes, and Spreading
Factor at periods #11, #50, and #100 for LoRaWAN ADR, Bandit with PDR
rewards, and Bandit with Energy-PDR rewards.

1) PDR-centric Discussion: (a) LoRaWAN ADR achieves
the highest system’s PDR value of 81.8%, a stable value as
indicated by its low standard deviation. Fig. 3 shows that the
system “converges” (within 1.5%) to that PDR value around
period #35 (i.e., fast). LoRaWAN ADR’s periods #1 to #10
are marked with high interference due to all ED’s using SF12,
which has the largest time-on-air; in contrast periods #11 to
around #35 are marked with heavy downlink traffic (“Lost
because TX”) as the NS is aggressively/actively trying to set
the appropriate SF for each ED; in a real-world network–where
not every node bootstraps at the same time–this will not be
an issue.

(b) The Bandit PDR strategy, which aims at optimizing
PDR, achieves a mean value of 63.2% for the last 10 periods.
However, the value has not converged: the standard deviation
over the last 10 periods is 0.014, and Fig. 3 shows a slight
growing trend that is not over. We corroborated this trend with
an ad-hoc simulation of 1000 periods, for which the PDR
kept increasing (at a seemingly logarithmic growth), reaching
a value of 78.4%. Note also that there are fewer “Lost Because
TX” and “Interfered” packets than with LoRaWAN ADR.

(c) The Bandit Energy-PDR strategy reaches a value of
48.9%, with a decreasing trend. As seen in Fig. 4, the SF
distribution resembles that of LoRaWAN ADR but with more
weight towards the lower SFs. The energy-centric discussion
will complement and help to understand this behavior; but is
not surprising, as this bandit algorithm does not maximize
PDR, but instead the quantity of information successfully
transmitted per unit of energy consumed, hence the predomi-
nance of lower SFs. To understand the long-term behavior of
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Fig. 5. Multi-GW scenario, the spatial distribution of ED’s, and Spreading
Factor at period #100 for LoRaWAN ADR, Bandit with PDR rewards, and
Bandit with Energy-PDR rewards.

the PDR, we ran an ad-hoc simulation of 3000 periods: from
an initial PDR value of 54.2% (σ = 1.4%) the PDR kept
slowly decreasing until around period #400 (PDR=47.9%),
where the trend reverses and there is a slight upper trend; the
average PDR is 56.3% (σ = 1.2%) for periods #991-1000, and
58.5% (σ = 0.9%) for periods #2991-3000. Our macroscopic
analysis is that, in this setting, the Bandit Energy-PDR strategy
has a first phase that aggressively converges to low SFs (≈
period #400), and a second, stable, phase that starts to improve
the PDR of each SF “region”, by slowly increasing some SF
choices at the frontiers of the concentric regions.

2) Energy-centric Discussion: We discuss here the energy-
related metrics, to complement the pure-PDR analysis. Regard-
ing total system energy consumption, the Bandit Energy-PDR
has a value of 10.06Joules, which is half of the Bandit PDR
at 21.95J, and almost one-third of LoRaWAN ADR at 28.18J.
However, raw energy consumption is not that relevant, as it
needs to take into consideration the PDR of the system. The
ubiquitous NEC (uNEC) gives us this perspective; rephrasing
its definition, uNEC is equivalent to the average energy spent
per message divided by the average PDR, approximating the
average amount of energy spent to successfully sent a packet.
We want this value to be as low as possible (ideally, the lowest
energy per message and PDR=1). As seen in Table VI, the
uNEC values are for Bandit Energy-PDR 20.6mJ, while Bandit
PDR and LoRAWAN ADR have similar values of 34.8mJ and
34.5mJ, respectively. If good PDR performance pondered by
energy consumption (i.e., uNEC) is a concern of the global
IoT system, the Bandit Energy-PDR offers a significant
advantage over the other strategies, with a 40% reduction
of the average energy consumption per delivered packet.
In terms of total energy spent, the advantage is even greater
(≥ 50%), which can be relevant if the use case/IoT application
does not need high PDR/reliability but instead crucially values
battery life.

E. Multi-GW Results

Fig. 5 represents the spatial distribution of the EDs and
their SF for period #100. In Table VII, we calculate three
system-wide (NS-wide) metrics taking into account the last
10 simulated periods (i.e., #91 to #100).

1) PDR-centric Discussion: In contrast with the single-GW
scenario where PDRs could differ by as much as 30 percentage

TABLE VII
RESULTS MULTI-GW SCENARIO:

METRICS FOR THE LAST 10 PERIODS (2000 PACKETS PER PERIOD)

Metrics (See Table IV)
SF selection

strategy
Total

Energy [J] PDR Ubiquitous
NEC [mJ]

mean σ mean σ mean σ
LoRaWAN ADR 30.03 0.09 80.7% 0.5% 18.61 0.14
Bandit PDR 35.34 0.75 75.3% 0.4% 23.46 0.42
Bandit Energy-PDR 12.77 0.36 70.2% 0.5% 9.09 0.25

points, here all strategies achieve closer values for the PDR, all
above 70%. This can be because, even with attenuation from
buildings, any node is at most 2 km away from the closest
GW. On top of that, we focused on a square area around a
central GW and do not include “peripheral” areas. Otherwise
stated, we are simulating and evaluating the downtown area of
a LoRaWAN-well-covered city, while the single-GW scenario
is more representative of a rural region.

2) Energy-centric Discussion: As seen in Table VII, the
Bandit Energy-PDR achieves the best results for energy-aware
metrics. The Bandit PDR is the worst performer in terms of
Total Energy and uNEC values, with the LoRaWAN ADR
having slightly lower values. Concretely, the Bandit Energy-
PDR achieves a uNEC of 9.1mJ, while LoRaWAN ADR and
Bandit PDR at least double this value with 18.6mJ and 23.5mJ,
respectively.

V. CONCLUSIONS

This paper focuses on proving the usability of bandits on
LoRAWAN networks in a realistic setting. For that, we relaxed
several (unrealistic) assumptions made in the prior literature,
regarding the management of several gateways and the limited
number of downlink messages (that prevents having immediate
feedback). We propose specific LoRaWAN MAC commands
to obtain the necessary feedback to use reinforcement learning
and implement our proposals on a realistic simulator (based
on ns-3); with nodes adjusting their Spreading Factor either
to maximize their Packet Delivery Ratio or to optimize their
energy use (through a “transmitted frames per Joule” measure).
We also share the source code of our implementation [35].

Our results show that the simple and lightweight bandit
method used (Thompson Sampling with delayed feedback)
offers good performance, in particular in terms of energy-
related metrics, which are to be favored when dealing with
battery-powered nodes. In particular, the energy consump-
tion (number of Joules per successfully transmitted frame)
is improved by at least 40% with respect to the currently
implemented LoRAWAN’s ADR algorithm.

The paper also opens several directions for future work.
At first, one would be to consider not only the Spreading
Factor as a transmission decision made by nodes, but also
the channel (i.e., frequency) to use, the transmission power,
and the coding rate. However, the number of configurations
subject to reinforcement learning (i.e., bandit’s arms) should
be kept low to avoid a “slow” convergence of the learning



mechanisms, penalizing the real-world usability of the solu-
tion. Another direction of interest could be to investigate nodes
having different decision mechanisms, like a proportion
of nodes implementing legacy ADR while the others use
(possibly different) reinforcement learning methods. One can
also imagine nodes changing objectives–hence the bandit
algorithm–over time (e.g., when the remaining battery energy
gets below some threshold) but still benefit from the learning
experience. Finally, our paper only considers static nodes, a
situation with mobile nodes would impose adding time con-
siderations when making decisions, as learned information
will be only ephemeral.
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