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This study examined the young children’s abilities to switch from rhythm production, with
short inter-tap intervals (ITIs), to temporal interval production, with long ITI (>1 s), in a
sensorimotor synchronization task. Children aged 3- and 5-year-olds were given six sessions
of synchronization. In a control group, they had to synchronize their ITI to an inter-stimulus
interval (ISI) of 4 s. In the experimental group, they must progressively increase their ITI
for one session to the next (from 0.4 to 4.0-s ISI). Our results showed that the 5-year-
olds produced longer ITI that the 3-year-olds in synchronization. However, the value of
ITI in the 5-year-olds never exceeded 1.5 s, with more variable ITI in the control than in
the experimental group. In addition, at 5 years, boys had more difficulties than girls in
changing their tapping rhythm. These results suggest a temporal window in sensorimotor
synchronization, beyond which the rhythm is lost and the synchronization becomes difficult.
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INTRODUCTION
During childhood, one of the most important abilities is to effi-
ciently coordinate actions with external events. This coordination
requires timing abilities, i.e., estimating both event duration and
the interval between two events, in order to produce actions at the
right time, neither too late nor too early. The abilities involved in
coordination of actions to external rhythms have been extensively
studied in adults using a sensorimotor synchronization task (Repp,
2005; Repp and Su, 2013). The procedure used with children
involves three phases (Drake et al., 2000; Provasi and Bobin-Bègue,
2003; Bobin-Bègue et al., 2006; McAuley et al., 2006; Bobin-Bègue
and Provasi, 2008; Provasi et al., 2014). In the first phase [spon-
taneous motor tempo (SMT) phase], the participants are asked
to tap with their finger on a button at their preferred rate, i.e.,
the most comfortable tapping rate. In the second phase (sensori-
motor synchronization), they are asked to tap in synchrony with
sounds displayed at a fixed inter-stimulus interval (ISI), generally
shorter than 800 ms. Then, in a third phase (continuation phase),
the auditory stimulus is removed and the participants are sup-
posed to continue to tap at the same tempo. There are very few
studies in young children using this sensorimotor synchroniza-
tion task. However, some studies have found that the inter-tap
interval (ITI) spontaneously produced by young children aged
from 2 to 7 years of age lies between 400 and 500 ms but slows
down during childhood to ∼600 ms in early adulthood (Drake
et al., 2000; Provasi and Bobin-Bègue, 2003; McAuley et al., 2006;
Bobin-Bègue and Provasi, 2008). More importantly, the variabil-
ity (SD) of SMT decreases with age. During the sensorimotor
synchronization phase, the variability in ITI is also greater in chil-
dren than in adults (Repp, 2005). In addition, adults anticipate the
auditory stimulus, thus showing a negative asynchrony between
their finger tap and the beat of the metronome of about 10 ms

(Miyake et al., 2004). However, this negative asynchrony is rarely
found in young children. In fact, in the synchronization phase,
very young children, aged from 1- to 3-years-olds, are able to
synchronize their taps to an external auditory tempo, but only
when it is close to their own SMT. Furthermore, in the contin-
uation phase, they rapidly return to their initial SMT when the
external auditory tempo is farther away from their SMT (Provasi
and Bobin-Bègue, 2003; Bobin-Bègue and Provasi, 2008). These
findings suggest that young children are able to synchronize their
taps with external tempi but only when these are close to their
SMT, i.e., to what Jones and Boltz (1989) call the referent period.
Unlike children, adults succeed in producing longer ITI that their
referent tempo up until a value of 1800 ms (Repp, 2005; Repp
and Su, 2013). In sum, young children have a limited capacity for
producing motor tempo outside their referent periods. This con-
tributes to explain why adults adapt their rhythmic activities when
interacting with infants (e.g., speaking more slowly; Gratier, 2003;
Gratier and Trevarthen, 2008). However, it is possible that for chil-
dren, tap synchronization with a dis-preferred tempo requires a
lengthy learning period. It might thus be observable only with a
greater number of trials and sessions than those used in previous
studies. Consequently, the aim of the present study was to exam-
ine young children’s abilities to progressively learn to synchronize
their motor tempo to external auditory tempi with longer ITI than
their SMT.

According to Wing and Kristofferson (1973a,b) model, the
total variance in sensorimotor synchronization results from addi-
tion of two sources of variance: a temporal variance related to
central temporal processes (a central timekeeper) and a motor
variance related to production of motor responses. The central
timekeeper (clock) estimates the temporal interval between stim-
uli in a rhythmic sequence and determines when to initiate the
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response. The motor component is involved in the implemen-
tation of the motor response. Some authors (Keele et al., 1985;
Ivry and Hazeltine, 1995) suggest that the temporal component
involved in rhythmic activities with ITI in the 100 ms range is
similar to that involved in the production of temporal intervals
in the few seconds range. They thus posit the existence of a cen-
tral timekeeper (clock) common to production of all temporal
intervals regardless of their lengths. Whether there is a common
clock system for the processing of short and long durations, we
may predict that children can learn, over several training sessions,
to produce longer ITI lasting several seconds in a sensorimotor
synchronization task. Indeed, the motor component of synchro-
nization, that is an easy task for young children, remains similar
irrespective of different ISI (short/long). However, in the case
of long ISI, we would describe their behavior as temporal inter-
val production rather than sensorimotor synchronization because
there is a duration limit beyond which sensorimotor synchro-
nization no longer occurs. This limit is around 1800 ms (Fraisse,
1948; Repp, 2006). Beyond this limit, auditory events are per-
ceived as being independent. When trying to synchronize taps to
intervals longer than 1800 ms, adults tap after the onset of the
target sound, in reaction to them rather than anticipating them.
In other words, our study was aimed to examine children’s abilities
to shift from rhythmic production, with short ITI, to interval pro-
duction with long ITI (>1.5 s) in a sensorimotor synchronization
task.

The existence of a common clock system for processing dif-
ferent temporal intervals is further supported by evidence on the
temporal scalar property of estimations (Gibbon, 1977; Gibbon
et al., 1984). Indeed, scalar timing is indexed by the increase in
variability (SD) of temporal estimates as the duration of intervals
(D) increases while the coefficient of variation of the temporal
estimates (SD/D) remains constant for the different intervals val-
ues, as predicted by Weber’s law. However, an increasing number
of studies suggest that the mechanisms underlying the processing
of short intervals in the sub-second range are different from those
underlying the processing of longer intervals. Neuroimaging stud-
ies for instance show that cerebral areas involved in the processing
of short durations (<1 s) are different from those involved in the
processing of long durations (Lewis and Miall, 2003; Grimm et al.,
2004; Meck, 2005). In addition, several cases of violation of the
temporal scalar property have been found when comparing short
and longer durations in temporal reproduction tasks (Lejeune
and Wearden, 2009). For instance, Bangert et al. (2011) showed
a violation of the assumption of a single scalar timekeeper across
millisecond and second timescales using a reproduction task with
intervals from 300 to 1700 ms. Their results indeed suggest a shift
in the region of 1 s for temporal reproduction. For tasks involv-
ing temporal production or reproduction, both Fraisse (1984) and
Pöppel (1997) distinguish the perception of time for the process-
ing of durations shorter than 1 s and time estimation for durations
greater than 3 s, the latter requiring greater attention and different
memory encoding. The present, according to Fraisse (1984) exists
between both these two types of intervals. If there is a common
mechanism for the production of short and long durations, we
expect children to succeed in learning to synchronize their taps to
longer ISI (>1700 ms). We thus hypothesize that children are able

to switch from rhythm production to temporal interval produc-
tion. Additionally, we expect children’s performance to improve
with age as developmental studies have demonstrated an improve-
ment with age in time sensitivity (for a review see, Droit-Volet,
2013; Vicario, 2013). However, if the mechanisms for short and
long intervals are different, we expect that children would never
succeed in producing long ITI in a temporal synchronization task
despite the training sessions and regardless of their ages. Their
motor rhythm would remain closed to their preferred tempo at
both ages. Obviously, this does not mean that children are unable
to produce or discriminate short durations (Zélanti and Droit-
Volet, 2011), but that the production of ITI in the sensorimotor
synchronization task involves timing processes specific to this task
related to the production of temporal rhythm.

The aim of this study was thus to examine whether 3- and
5-year-old children with similar SMT can learn to increase the
length of their ITI in a synchronization task. The children were
asked to tap in synchrony with a 200 ms auditory sound. The
ISI value progressively increased from session to session from
400 ms, close to children’s referent period, to longer periods:
630, 1000, 1600, 2500, and 4000 ms. The motor tempo produced
by the children without the auditory stimuli was also assessed
before and after this synchronization phase (respectively called
pre-synchronization phase and post-synchronization phase). In
each synchronization phase, the children received reinforcement
when their taps occurred during the auditory stimulus or just
before (15% of the ISI duration before). In addition, a group of
control children were given the synchronization task with longer
durations of 4 s for all sessions, in other to examine whether chil-
dren directly succeed in learning to produce long ITI, without
a period of learning based on the gradual modification of their
initial SMT.

MATERIALS AND METHODS
PARTICIPANTS
Forty children took part in this experiment: twenty 3-year-olds
(10 girls and 10 boys; mean age = 3.33, SD = 0.02) and twenty
5-year-olds (10 girls and 10 boys; mean age = 5.42, SD = 0.02).
These children were recruited in a nursery school in Paris, France.
The parents, the school director and the representative of the gov-
ernment of the French National Education signed a consent form
for the participation of children in this experiment following the
ethical principles of the Declaration of Helsinki. Only children
who were volunteers participated in this experiment.

APPARATUS
Children were tested individually in a quiet room in their school.
They were seated in front of an inclined 14-inch computer mon-
itor covered by a transparent Plexiglas plate. Children were asked
to produce taps on this plate with their preferred hand. A com-
puter recorded each tap via a high sensitive pressure transducer
placed between the plate and the monitor. Each tap was recorded
by the computer with a temporal precision of 1 ms. The pressure
transducer sensitivity was very low in order to record both slight
fingertip taps and strong taps. The auditory stimulus was an ani-
mal squeal produced by the computer speaker. The duration of the
squeal was 200 ms. There were twelve different squeals (dog, cat,
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sparrow, duck, frog, monkey, bee, bear, hen, seal, pigeon, pup), all
recorded with the same intensity. When the ITI was “correct,” it
was followed by a feedback presented in the center of the computer
screen, in the form of the picture (10 cm × 15 cm) of the animal
corresponding to the heard squeal. The animal squeal changed
after every set of 20 taps (Table 1).

PROCEDURE
The children were randomly assigned to a “4.0-s” and a “0.4/4.0-s”
group. In each group, the children were given six sessions of syn-
chronization, one session per day. In the 4.0-s group, the ISI was
always 4.0 s (Table 1). In the 0.4/4.0-s group, the ISI progres-
sively increased from one session to the next: 0.4 s (session 1),
0.63 s (session 2), 1.0 s (session 3), 1.6 s (session 4), 2.5 s (ses-
sion 5), 4.0 s (session 6). Each session was composed of three
successive phases: (1) a pre-synchronization phase, (2) a syn-
chronization phase, (3) and a post-synchronization phase. In the
synchronization phase, the children were given eight successive
sets of 20 auditory ISI. The children were asked to tap at the same
time as the auditory stimulus in order to activate the pictures
(feedback). When the child’s response occurred within a tem-
poral window ranging from 15% before the auditory stimulus
onset until the auditory stimulus offset, the ITI was consid-
ered “correct” and the visual feedback is provided immediately.
However, for the responses given in the period before the stim-
ulus onset, the visual feedback was delivered at the same time
as the auditory stimulus. In addition, the duration of the feed-
back presentation did not exceed that of the auditory stimulus.
Its duration therefore decreased with the increase of the delay

between the child’s response and the auditory stimulus onset. In
both the pre-synchronization and the post-synchronization phase,
20 ITI were recorded. In these phases, the procedure was sim-
ilar to that used for the synchronization phase, except that the
children did not hear the auditory stimulus. The post-phase was
quite similar to the continuation phase usually used in rhythmic
tasks (except that visual feedback was given, as explained previ-
ously). In contrast, the pre-synchronization phase assessed the
children’s SMT for the first session, and the capability of recall-
ing the ISI presented in the previous session. The children were
thus told that they must try to get pictures by tapping at the
right rhythm. Children were offered a demonstration trial by
the experimenter prior to the synchronization phase of the first
session.

RESULTS
For the synchronization, pre-synchronization and post-
synchronization phases, three indexes of performance were
measured: the median ITI, the coefficient of variation of ITI
(Q3-Q1/median∗100), and the percentage of reinforced ITI, i.e.,
followed by a feedback.

SYNCHRONIZATION PHASE
For each index of performance, an analysis of variance (ANOVA)
was conducted with three between-subjects factors (age, group,
sex) and two within-subjects factors (synchronization sets, ses-
sion). When Mauchly’s sphericity test indicated that the assump-
tion of sphericity had been violated for stimulus duration, the
degrees of freedom were adjusted using the Greenhouse–Geisser

Table 1 | Procedure for the 0.4/4.0-s ISI group and the 4.0-s ISI group.

Pre-synchronization Synchronization Post-synchronization

20 ITI Eight sets of 20 ISI 20 ITI

Session 1

0.4/4.0-s group Reinforced ITI at 4.0 s 0.4-s ISI Reinforced ITI at 0.4 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s

Session 2

0.4/4.0-s group Reinforced ITI at 0.4 s 0.63-s ISI Reinforced ITI at 0.63 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s

Session 3

0.4/4.0-s group Reinforced ITI at 0.63 s 1.0-s ISI Reinforced ITI at 1.0 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s

Session 4

0.4/4.0-s group Reinforced ITI at 1.0 s 1.6-s ISI Reinforced ITI at 1.6 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s

Session 5

0.4/4.0-s group Reinforced ITI at 1.6 s 2.5-s ISI Reinforced ITI at 2.5 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s

Session 6

0.4/4.0-s group Reinforced ITI at 2.5 s 4.0-s ISI Reinforced ITI at 4.0 s

4.0-s group Reinforced ITI at 4.0 s 4.0-s ISI Reinforced ITI at 4.0 s
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correction in order to take this violation into account in the
statistical analysis.

Median ITI
The ANOVA showed a significant interaction between age and
group, F(1,32) = 4.55, p = 0.04, η2

p = 0.12, with a significant

main effect of group, F(1,32) = 6.96, p = 0.01, η2
p = 0.18, while

the main effect of age failed to reach significance, F(1,32) = 3.73,
p = 0.06. Age did not interact with any other factor. This significant
interaction is illustrated in Figure 1. As shown in Figure 1 (upper
panel), the 5-year-olds succeeded in lengthening the median of
their ITI in the 4.0-s ISI condition compared to the 0.4/4.0-s ISI
condition, t(18) = 2.55, p = 0.02, while the 3-year-old obtained the
same median ITI in these two temporal conditions, t(18) = 1.60,
p = 0.13.

Consequently, the 5-year-olds produced longer ITI than did the
3-year-olds in the 4.0-s group, t(18) = 2.17, p = 0.04. However,
in the 0.4/4.0-s ISI condition, when the initial rhythm was close to
children’s spontaneous motor tempo, no difference was observed
between the 3- (M = 508, SE = 218) and the 5-year-olds (M = 463,
SE = 218), t(18) = 0.61, p = 0.55, irrespective of the different
synchronization sessions. In this 0.4/4.0-s ISI condition, the mean
of median ITI produced during the synchronization phase of all
the sessions was close to 0.5 s.

The ANOVA also showed a main effect of set, F(7,224) = 2.43,
p = 0.02, η2

p = 0.07, as well as a significant set × session interac-

tion, F(35,1120) = 2.36, p = 0.0001, η2
p = 0.07, the main effect

of session being non-significant, F(5,160) = 1.15, p = 0.34. The
set or the session factor did not interact with the group factor.
To analyze this significant interaction, we ran an ANOVA on the
median ITI with ‘set’ as within-subjects factor for each session
taken separately (Figure 2, upper panel). The results showed a
significant effect of set only for the first session, F(7,273) = 6.14,
p = 0.0001. The effect of set did not reach significance for any of
the other sessions (all p > 0.05). As shown in Figure 2, for the
first session, there was a significant linear decrease in the median
ITI from the first to the eighth set of the synchronization phase,
F(1,39) = 10.76, p = 0.002, indicating that the children speeded
up their motor tapping under the effect of rhythmic auditory
stimuli.

The overall ANOVA also showed a significant interaction
between sex and session, F(5,160) = 3.37, p = 0.006, η2

p = 0.10,
with no main effect of sex, F(1,32) = 0.01, p = 0.91. Indeed,
the boys progressively speeded up the rhythm of their tapping
over sessions, as indicated by the significant linear session effect,
F(5,95) = 4.98, p = 0.03, whereas the girls tended to maintain
their tapping rhythm over sessions, F(5,95) = 1.95, p = 0.09.

Coefficient of variation of ITI
The ANOVA on the coefficient of variation showed a significant
main effect of group, F(1,32) = 17.16, p = 0.0001, η2

p = 0.35,
though group did not interact with any other factor (all p > 0.05).
This indicated that the children produced more variable ITI in
the 4.0-s group than in the 0.4/4.0-s group, regardless of age and
synchronization session (Figure 1, middle panel). The variability
of ITI was thus greater when the children tended to synchronize
their taps to longer ISI. The main effect of age was not significant,

F(1,32) = 0.92, p = 0.34, but age significantly interacted with
session, F(5,160) = 2.99, p = 0.01, η2

p = 0.09. Three and 5-year-
olds thus produced or tended to produce more variable ITI in the
4.0-s group than in the 0.4/4.0-s group [t(18) = 5.26, p = 0.0001,
t(18) = 1.98, p = 0.06, respectively], but the between-group dif-
ference was greater for the 3-year-olds than for the 5-year-olds.

FIGURE 1 | Synchronization phase: indexes of performance as a

function of age and group.
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FIGURE 2 | Synchronization phase: median ITI as a function of sessions and sets.

There was also a significant sex × set interaction, F(7,224) = 2.84,
p = 0.007, η2

p = 0.08. The other main effect or interactions were
not significant. Consequently, the boys, who tended to produce
shorter ITI than the girls (see above), obtained the same coeffi-
cient of variation of ITI over sessions, F(7,133) = 1.65, p = 0.13,
whereas the variability of ITI tended to increase over sessions for
the girls, F(7,133) = 1,93, p = 0.07, η2

p = 0.09.

Percentage of reinforced ITI
As for the median ITI, the ANOVA run on the percentage of rein-
forced ITI obtained during the synchronization phase showed a
significant interaction between age and group, F(1,32) = 6.27,
p = 0.02, η2

p = 0.16, with a significant main effect of group,

F(1,32) = 31.86, p = 0.0001, η2
p = 0.50, and the main effect

of age that tended toward significance, F(1,32) = 3.62, p = 0.07,
η2

p = 0.10 (Figure 1). Consistently with the fact that the 5-year-olds
produced longer ITI than did the 3-year-olds, the older children
obtained a greater percentage of reinforced ITI than the younger
ones in the 4.0-s group [20 vs. 16, t(18) = 2.54, p = 0.02; Figure 1,

bottom panel]. However, in the 0.4/4.0-s group, when the children
had to produce shorter ITI, the 5-year-olds obtained a percent-
age of reinforced ITI similar to the 3-year-olds,’ t(18) = 0.66,
p = 0.52.

The overall ANOVA also showed a significant main effect of
session, F(5,160) = 129.61, p = 0.0001, η2

p = 0.80, and a signifi-
cant session × group interaction, F(5,160) = 146.36, p = 0.0001,
η2

p = 0.82. No other effect was significant. As illustrated in

Figure 3, the percentage of reinforced ITI remained stable over
the sessions in the 4.0-s ISI condition, F(5,95) = 0.64, p = 0.67,
while it decreased in the 0.4-4.0-s ISI condition, F(5,95) = 212.23,
p = 0.0001, η2

p = 0.92, from one session to the next (for all sessions
comparisons with the Bonferroni test, p < 0.05).

PRE-SYNCHRONIZATION AND POST-SYNCHRONIZATION PHASE
Using the same indexes as in the synchronization phase, an
ANOVA was conducted with phase (pre-synchronization vs. post-
synchronization phase) and session as within-subjects factors, and
the same three between-subjects factors: age, group and sex. When
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FIGURE 3 | Synchronization phase: percentage of reinforced ITI as a

function of sessions and groups.

Mauchly’s sphericity test indicated that the assumption of spheric-
ity had been violated for stimulus duration, the degrees of freedom
were adjusted using the Greenhouse–Geisser correction.

Median ITI
As for the synchronization phase, there was a significant interac-
tion between group and age, F(1,32) = 4.60, p = 0.04, η2

p = 0.13,
with significant main effects of age, F(1,32) = 4.13, p = 0.05,
η2

p = 0.11, and group, F(1,32) = 5.41, p = 0.03, η2
p = 0.15. As

shown in Figure 4 (upper panel), the median ITI was longer
in the 4.0-s group than in 0.4-/4.0-s group for the 5-year-olds,
t(18) = 2.38, p = 0.03, while the median ITI value did not change
between groups for the 3-year-olds, t(18) = 0.62, p = 0.54. Con-
sequently, the ITI was longer in the 5- than in the 3-year-olds in
the 4.0-s group, t(18) = 2.22, p = 0.04, while it remained similar
between the two age groups in the 0.4/4.0-s group, t(18) = 0.36,
p = 0.72. No other effect was significant, except the main effect
of phase, F(1,32) = 5.24, p = 0.03, η2

p = 0.14, indicating
that the median ITI was shorter in the post- than in the pre-
synchronization phase (830 vs. 722), irrespective of age. In other
words, the synchronization task tended to speed up the initial
motor rhythm.

Coefficient of variation of ITI
For the coefficient of variation, there was only a main effect of
group, F(1,32) = 19.59, p = 0.0001, η2

p = 0.38, the main effect of
age and the age × group interaction being non-significant (both
p > 0.05; Figure 4, middle panel). Group did not significantly
interact with other factors (all p > 0.05). The children thus pro-
duced more variable ITI in the 4.0-s ISI condition than in the
0.4/4.0-s ISI condition (99 vs. 33).

There was also a significant main effect of phase (pre- vs. post-
synchronization phase), F(1,32) = 5.86, p = 0.02, η2

p = 0.16, as
well as a significant phase × session interaction, F(5,160) = 3.13,
p = 0.01, η2

p = 0.09, no other effect reached significance. The

coefficient of variation of ITI (Figure 5) significantly decreased
after the synchronization phase (Bonferroni tests, p < 0.05), espe-
cially for the latest session (session 6) with the longest ISI and for
the first session, likely linked to the high level of inter-individual
variability in coefficient of variation of ITI for these sessions.

FIGURE 4 | Pre- and post-synchronization phases (averaged): indexes

of performance as a function of age and group.

Percentage of reinforced ITI during pre- and post-synchronization
phase
The overall ANOVA again showed a significant interaction
between group and age, F(1,32) = 4.22, p = 0.048, η2

p = 0.117,
with a significant main effect of group, F(1,32) = 157.30,
p = 0.0001, η2

p = 0.83, but without significant main effect of
age, F(1,32) = 0.01, p = 1.0. Concerning phase (pre- vs. post-
synchronization phase), the participants thus obtained a greater
percentage of reinforced ITI in the 0.4/4.0-s than in the 4.0-s
group, but the magnitude of the between-group difference was
lower for the 5-year-olds than for the 3-year-olds, this differ-
ence was due to the older children who tended to increase the
length of their ITI. There was also a 3-way interaction between
session, phase (pre- vs. post-synchronization phase) and group,
F(5,160) = 61.13, p = 0.0001, η2

p = 0.66, with a significant session
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FIGURE 5 | Pre- and post-synchronization phases: coefficient of variation as a function of sessions.

effect, F(5,160) = 75.12, p = 0.0001, η2
p = 0.70, session × group,

F(5,160) = 86.13, p = 0.0001, η2
p = 0.73, phase × group,

F(1,32) = 5.18, p = 0.03, η2
p = 0.14, and session × phase inter-

action, F(5,160) = 48.40, p = 0.0001, η2
p = 0.60. For each group

taken separately (0.4/4.0-s and 4.0-s group), the ANOVA showed
a significant phase (pre- vs. post-synchronization phase) × ses-
sion interaction [F(5,95) = 76.08, p = 0.0001, η2

p = 0.80,

F(5,95) = 2.40, p = 0.04, η2
p = 0.11, respectively]. As shown

in Figure 6, in the 0.4/4.0-s group, participants obtained more

reinforced ITI after (72%) than before (17%) the synchronization
phase in the first session with the 0.4-s ISI (Bonferroni, p < 0.05).
However, after this first session, the percentage of reinforced ITI
systematically decreased after the synchronization phase whatever
the values of ISI (for all sessions, p < 0.05), in such a way that the
percentage of reinforced ITI for the post-synchronization phase
in sessions 5 and 6 returned to the percentage obtained in the
pre-synchronization phase for the first session (p > 0.05).

Nevertheless, the percentage of ITI obtained in the post-
synchronization phase for the sessions before the fifth session
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FIGURE 6 | Pre- and post-synchronization phases: comparison of the

percentage of reinforced ITI as a function of groups and sessions.

was always greater than that obtained in the pre-synchronization
phase of the first session (all p > 0.05), thereby suggesting a sort
of temporal learning in children. For the 4.0-s group, the per-
centage of reinforced ITI remained low and did not significantly
change between the post- and the pre-synchronization phase for
all sessions (all p > 0.05), except for the first and the last session,
for which a lower percentage of reinforced ITI for the post- than
for the pre-synchronization phase was observed (p < 0.05). This
attests to children’s difficulty in learning to produce long ITI in a
synchronization task.

The overall ANOVA also revealed a significant sex × age × syn-
chronization phase interaction, F(1,32) = 4.37, p = 0.045,
η2

p = 0.12, with no other significant effect. This significant inter-
action indicated that, regardless of session, the percentage of rein-
forced ITI was lower in the post- than in the pre-synchronization
for 5-year-old boys (25 vs. 23, Bonferroni test, p < 0.05), but not
girls (0.26 vs. 0.27, p > 0.05). At three children showed, no signifi-
cant between-phase difference in the percentage of reinforced ITI
was as a function of sex (all p > 0.05).

DISCUSSION
The purpose of this study was to further examine the charac-
teristics of auditory-motor coordination during early childhood.
Specifically we investigated whether, in a synchronization task,
3- and 5-year-olds children can learn to change their preferred
tempo to produce ITI longer than 1 s, in other words to switch
between rhythm production and temporal interval production.

Our results revealed that children succeed in synchronizing
their taps with an external tempo when it is close to their own SMT,
as indicated by the high percentage of reinforced ITI, as well as the
median ITI (close to 400-ms) in the synchronization phase of the
first session of the 0.4/4.0-s group. Consequently, children succeed

in speeding up their tempo under the effect of an external rhythm
with a 0.4-s ISI, as suggested by the progressive decrease of median
ITI from an ISI set to another set in the synchronization phase of
the first session. However, once this motor rhythm was initiated,
the children were not successful in changing it, i.e., in slowing
down their motor rhythm in the synchronization sessions with
longer ITI. In the 0.4/4.0-s condition, the percentage of reinforced
ITI indeed decreased across sessions as the length of ISI increased
(Figure 3), while the median ITI did not vary. In addition, beyond
a threshold of 1.0-s (session 3), when ISI was too far away from
their own SMT, the percentage of reinforced ITI fell below 50%.
This means that less than one tap out of two was reinforced. Fur-
ther experiments are required to examine whether the children
could learn to progressively produce longer ITI in a synchroniza-
tion task with more training sessions and smaller ISI differences
between sessions that those used in our study. Nevertheless, our
data suggest a lack of flexibility in sensory-motor synchronization
in young children, at least in children aged 3- and 5-year-olds. This
is consistent with the results of studies using short ITIs (<900-ms),
reported in the introduction, showing that young children are able
to synchronize their taps to an external auditory tempo but only
when it was close to their own tempo (Provasi and Bobin-Bègue,
2003; Bobin-Bègue and Provasi, 2008). For instance, Provasi and
Bobin-Bègue (2003) showed that the 2½ – and 4-year-old chil-
dren, who had to synchronize their tapping rhythm to an 800 ms
auditory tempo, maintained a spontaneous tapping rhythm of
around 400 ms.

The question raised here is: what factor explains this lack of
flexibility in sensory-motor synchronization in young children.
Are factors related to the development of motor and cognitive
capacities during childhood or factors related to the specificity
of temporal mechanisms underlying rhythmical activities, which
would radically differ from those involved in the production of
temporal interval, or both? Some results in our study suggest
that developmental factors account in part of this lack of flexi-
bility in children’s synchronization behavior. Indeed, in the 4.0-s
condition, when the children must directly learn to synchronize
their taps to a 4.0-s ISI, the 5-year-old children succeeded in
lengthening their ITI compared to the younger children. In the
different synchronization phases (pre-synchronization and post-
synchronization phases and synchronization phase per se), the
5-year-olds indeed obtained longer median ITI than did the 3-
year-olds and the percentage of reinforced ITI was higher for
the 5-year-olds than for the 3-year-olds. The difference in the
coefficient of variation of ITI between the groups was also more
important for the 3-year-olds than for the 5-year-olds. The ITI
were thus more variable in the 4.0-s condition than in the 0.4/4.0-s
group, especially for the 3-year-olds. In summary, this confirmed
our hypothesis that with as they develop, children learn to produce
long intervals in a synchronization task.

The developmental sources of this age-related change in per-
formance in a synchronization task are far from being clear. In a
recent study however, Provasi et al. (2014) used neuropsychologi-
cal tests to assess the cognitive and fine motor skills of children aged
between 5 and 14 performing a synchronization task with ITI of
400-ms and 600-ms. They found that age-related increase in both
fine motor skills and speed of processing were the best predictors
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of individual variance in children’s synchronization performance.
Synchronization performance thus improves with the develop-
ment of abilities involved in the rapid production of motor acts
under temporal constraints. In addition, in our study, the chil-
dren were required to inhibit a spontaneous motor behavior to
produce longer intervals. It has been clearly demonstrated that it
is particularly difficult for children to slow down their own tap-
ping rhythm and/or to inhibit the triggering of a tap (Hulsebus,
1973; Condon and Sander, 1974). This is explained by the limited
inhibitory capacities in young children related to the slow matu-
ration of the prefrontal cortex involved in attention capacities (see
e.g., Bjorklund and Harnishfeger, 1995; Rubia, 2013). In the same
way, Bobin-Bègue and Provasi (2008) found that the 3-year-olds
children were able to accelerate their tapping rhythm during a syn-
chronization task but they did not slow down their tapping rhythm
when the auditory tempo was slower than their own spontaneous
motor tempo. Consequently, the development of cognitive con-
trol capacities (motor inhibition), information processing speed)
and fine motor skills could explain the age-related improvement
in performance in a sensorimotor synchronization task.

However, in our study, even in the 4.0-s group, when the
5-year-olds succeeded in lengthening their ITI, the value of their
ITI did not exceed 1500 ms. The mean of their median ITI was
indeed 1559 ms for the different synchronization sessions. This
ITI value is remarkable because it is very close to the temporal
limit in the production of rhythms pointed out in various studies
(Fraisse, 1984; Repp, 2006; Bangert et al., 2011). As explained by
Repp (2006), when a tempo is longer than 1800 ms, adults per-
ceive auditory events as independent events, and their responses
occur after the beginning of the auditory event, rather than before
the auditory events as an anticipation. Our results thus suggest
that specific mechanisms underlying the production of rhythm
also explain the lack of flexibility of sensorimotor synchronization
behaviors observed in children. Our result point to children’s dif-
ficulty, even impossibility, in switching from rhythmic production
to interval production with long interval (>1.5 s) in a synchro-
nization task. This does not mean that children are unable to
produce long intervals. Several studies using a fixed interval (FI)
schedule of reinforcement have demonstrated that young chil-
dren can learn to produce long intervals between two reinforced
responses (for a review see Droit-Volet et al., 2005; Droit-Volet,
2011, 2013). Our study suggests rather that rhythmic activities
involve different mechanisms for the production of ITI shorter
and longer than 1-2 s. This is consistent with recent data from
adults suggesting there are two processes within this range of
durations (Rammsayer and Troche, 2014). This is also consistent
with results from neuroimaging studies suggesting that the activa-
tion of the cerebellum would be restricted to timing of action in
the range of temporal intervals shorter than 1 s (Ivry et al., 2002;
Wiener et al., 2010). In summary, our study provides empirical
data confirming a border around 1 and 2 s between different tem-
poral processes in a synchronization task, beyond which rhythm
is lost.

Furthermore, although there is no main effect of sex on syn-
chronization performance in our study, our results indicate that
boys progressively speed up their tapping rhythm through sessions
in the synchronization phase whereas girls maintain their tapping

rhythm. Indeed, the percentage of reinforced ITI was lower in the
post-synchronization phase than in the pre-synchronization phase
for boys, but not for girls. However, this sex difference in synchro-
nization performance was only observed at the age of 5 years.
This suggests that, at that age, when children begun to succeed
in changing their tapping rhythm, boys had more difficulties to
do so than girls. However a previous study conducted by Provasi
and Bobin-Bègue (2003) showed that boys aged 4 years performed
better than girls whatever the ISI (0.4, 0.6, and 0.8 s). Other exper-
iments, with more participants, have therefore to be conducted
on the differences between boys and girls in the development of
rhythmic activities. There are indeed very few studies on the gen-
der differences in cognitive development. However, some recent
fMRI studies testing girls and boys across the age range from 7
to 38 years suggest a more mature activation in the fronto-striatal
region during attentional control tasks (inhibition, switching) for
girls than for boys (Christakou et al., 2009; Rubia et al., 2013; for
a review see Rubia, 2013). Higher abilities in attentional control
for girls than for boys related to the brain maturation might thus
account for sex differences in synchronization observed in our
study. However, there is also greater social pressure in education
for women than men as regards inhibition of emotion and social
responses. This education might thus also allow young girls to
enhance their inhibition abilities compared to boys (Bjorklund
and Kipp, 1996).

In conclusion, the present study demonstrates that young chil-
dren do not easily learn to produce intervals longer than 1.5 s
in a sensorimotor synchronization task, even with a procedure
using visual feedback and several training sessions. Indeed, our
results show that children do not succeed in switching from the
production of rhythm to the production of temporal interval. The
processing of short (<1.5 s) and long (>1.5 s) intervals would thus
involve different mechanisms even in a same sensorimotor syn-
chronization task. Nevertheless, 5-year-olds perform better than
3-year-olds revealing an age-related improvement in the flexibil-
ity of synchronization behavior. Further experiments are required
with older children to better describe the development of this
synchronization ability.
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