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Abstract
Voice activity and overlapped speech detection (respectively
VAD and OSD) are key pre-processing tasks for speaker di-
arization. The final segmentation performance highly relies on
the robustness of these sub-tasks. Recent studies have shown
VAD and OSD can be trained jointly using a multi-class classi-
fication model. However, these works are often restricted to a
specific speech domain, lacking information about the general-
ization capacities of the systems. This paper proposes a com-
plete and new benchmark of different VAD and OSD models,
on multiple audio setups (single/multi-channel) and speech do-
mains (e.g. media, meeting...). Our 2/3-class systems, which
combine a Temporal Convolutional Network with speech rep-
resentations adapted to the setup, outperform state-of-the-art
results. We show that the joint training of these two tasks of-
fers similar performances in terms of F1-score to two dedi-
cated VAD and OSD systems while reducing the training cost.
This unique architecture can also be used for single and multi-
channel speech processing.

1. Introduction
Speaker diarization answers the question Who spoke and when?
in an audio stream. Today, this task remains difficult as shown
by the numerous challenges recently organized [1, 2, 3].

Given an audio stream, speaker diarization pipelines gener-
ally address speech segmentation and speaker clustering in two
distinct stages [1].

Therefore, robust speech segmentation - mainly Voice
Activity Detection (VAD) and Overlapped Speech Detection
(OSD) - is essential to improve speaker diarization performance
as shown in previous studies [4, 5]. VAD consists in segmenting
an audio signal into speech and non-speech segments.

Several approaches have been proposed in the literature
such as signal processing methods [6], statistical models [7],
and neural-based approaches [8]. OSD detects segments in
which at least two speakers are simultaneously active. Early
studies mostly focus on statistical models [9, 10] while recent
approaches are mostly based on neural networks [5, 11, 12] and
show promising results.

While VAD and OSD have mainly been considered as
two independent binary classification tasks, they can be ad-
dressed jointly by considering three classes – non-speech, sin-
gle speaker, and overlapped speech – according to the number
of present speakers in each speech segment. In [13], such a
3-class problem is solved by training a recurrent convolutional
network. The use of far-field microphones and a Self-Attention
Channel Combinator (SACC) feature extractor [14] revealed the
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potential of spatial information for OSD. [15] demonstrated that
Temporal Convolutional Network (TCN) is well adapted for
multiple-speaker activity detection with far-field microphones.

In this paper, we propose two 2-class VAD and OSD and 3-
class VAD+OSD for mono and multi-channel signals. We eval-
uate how beneficial is the 3-class approach in comparison to the
use of two independent VAD and OSD models in terms of F1-
score and training resources. Each system is trained and evalu-
ated on four different datasets covering various speech domains
including both single and multiple microphone scenarios. To
the best of our knowledge, no benchmark has been conducted
on these approaches across various speech domains and record-
ing setups (multi/mono channel) in the literature.

This paper presents several contributions: It first claims a
new state of the art for OSD on multiple corpora, it introduces a
benchmark on 4 different datasets covering various speech do-
mains in multi/mono channel scenarios and presents a reduc-
tion of the training cost using a 3-class approach with a detailed
analysis of the benefits of this system.

2. Datasets
Our benchmark datasets combine multiple speech domains in-
cluding far-field audio recordings. For each dataset, VAD and
OSD labels are derived from the provided ground-truth segmen-
tation. Table 1 summarizes corpus characteristics.

Table 1: Corpus characteristics. ⋆multi-microphone data.

Corpus Domain Duration Overlap prop.

DIHARD Multiple 34 h 11.6%
ALLIES Media 328 h 3.2%
ALLIES-clean Media 6 h 13.9%
AMI⋆ Meeting 100 h 24.7%
CHiME-5⋆ Dinner party 60 h 22.9%

2.1. Single Channel

Single channel experiments are conducted on 3 datasets: AL-
LIES [16], DIHARD [1] and AMI [17]. The ALLIES corpus is
a soon-to-be-available French meta-corpus designed to gather
and extend previous French data collected for diarization and
transcription evaluation campaigns. It consists of 328 h of au-
dio extracted from 1998 to 2014 in 1008 shows with 5901 dif-
ferent speakers. The overlap proportion (in duration) fluctuates
widely between broadcast news with little to no interaction and
debates (around 10% of overlaps). Despite a harmonization ef-
fort, the data collected and annotated under different protocols
introduces some homogeneity problems [18]. 15 debate shows,
referred to as ALLIES-clean, were selected in order to get a high
overlap proportion, a manual and homogeneous speech segmen-



tation, and diversity in the shows represented.
The DIHARD corpus contains data from 7 domains with

various recording qualities, situations, and degrees of spontane-
ity from read speech to phone conversations. Since sponta-
neous speech naturally contains a high proportion of overlapped
speech, this corpus is well-suited for OSD. This corpus is parti-
tioned as intended for the challenge and evaluated on the official
evaluation partition.

The AMI meeting corpus contains recordings of realistic
meetings involving up to 5 participants in various environments.
The headset-mix is used for single-channel experiments on this
dataset. The data partition follows the protocol proposed in
[19].

2.2. Multiple Channels

Multiple-channel experiments are conducted on 2 corpora:
AMI [17] and CHiME-5 [20]. We select AMI audio data cap-
tured by the Array 1 as a distant multi-microphone signal. It
consists of a uniform circular array (UCA) composed of 8 omni-
directional microphones placed in the center of the table during
meetings.

The CHiME-5 dataset contains 20 dinner-party sessions in-
volving 4 participants in a real-home environment. Speakers
were asked to move between 3 rooms during the party. Audio
signals thus feature a strong background noise diversity with
varying acoustic conditions. Audio signals are captured with 6
linear arrays composed of 4 microphones. For our experiments,
only the first microphone of each array is selected. Finally, the
resulting signal contains 6 channels.

3. System overview
Figure 1 depicts an overview of VAD, OSD, and VAD+OSD
systems. While the feature extractor (in blue) is adapted with
respect to the number of input channels, the sequence modeling
network (in purple) processes the sequence of features before
the frame classification. The frame classification is done at a
rate of 100 Hz, while the raw waveform is sampled at 16 kHz.
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Figure 1: VAD, OSD, and VAD+OSD systems with the feature
extractor (blue) and the sequence modeling network (purple),
M is the number of channels.

3.1. Single channel features (M = 1)

The single channel feature extractor is based on the WavLM
pre-trained model [21]. This choice is motivated by the per-

formance obtained on the diarization task according to the SU-
PERB benchmark [22]. Furthermore, WavLM has been trained
using simulated overlapped speech and is then more robust to
this type of data. WavLM outputs speech representations ev-
ery 20 ms. In order to align this representation with the target
sequence, we decide to add a linear layer on top of the frozen
WavLM. The linear layer aims to transform a segment of 99
features extracted with WavLM over a 2 s window, into a 200-
frame vector, supposedly aligned with our target.

3.2. Multiple channel features (M > 1)

When multiple channels are available, feature extraction is per-
formed using the Self-Attention Channel Combinator (SACC)
[23]. This architecture has previously shown its efficiency
for OSD under distant speech conditions [14]. The algorithm
consists of a self-attention module [24] which computes per-
channel weights from the multi-channel Short-Time Fourier
Transform (STFT) of the input signal. The channels are then
weighted and combined in order to get a single-channel repre-
sentation. Combination weights are computed from the multi-
channel STFT calculated on 25 ms segments with 10 ms shift.
The attention module is composed of a single attention head of
size d = 256. The combined representation is converted to the
log-mel scale using Nf = 64 filters. Global Mean and Vari-
ance Normalization (MVN) is also applied before feeding the
sequence modeling network.

3.3. Sequence modeling and classification

The sequence modeling network (in purple in Fig. 1) takes as in-
put a sequence x of single or multi-channel features and assigns
a class to each frame of this sequence. This task is performed
using a TCN [27] since this architecture has shown noticeable
results on both VAD and OSD tasks [12, 14, 15, 25]. It is com-
posed of 5 residual convolutional blocks repeated 3 times. Clas-
sification is performed by a 1-d convolutional layer followed by
a softmax activation function.

For each frame in the output sequence, the VAD out-
puts the pseudo-probability to contain at least one speaker
p(Nspk ≥ 1|x). The OSD outputs the pseudo-probability to
contain speech from more than one speaker p(Nspk ≥ 2|x).
Both VAD and OSD are then binary classifiers. The joint
VAD+OSD system outputs the pseudo-probability of either
containing any speech p(Nspk = 0|x), speech from a single
speaker p(Nspk = 1|x), or speech from more than one speaker
p(Nspk ≥ 2|x). The 3-class approach is then converted to 2-
class VAD and OSD by merging the relevant classes.

3.4. Training and Evaluation

In order to estimate the robustness over different speech do-
mains, the three systems are trained and evaluated indepen-
dently on the 5 datasets aforementioned. To counteract the
small number of overlap segments, 50% of the training seg-
ments are augmented on-the-fly by summing them to another
randomly sampled training segment. Associated labels of each
segment are also combined [28]. The loss function is a cross-
entropy, and we used the ADAM optimizer with a learning rate
of lr = 10−3. Single-channel audio data is augmented with
noise extracted from MUSAN [29] and additional reverberation
using simulated room impulse responses. Preliminary experi-
ments have shown that data augmentation did not bring signifi-
cant improvement in the far-field scenario.

Following the DIHARD evaluation plan, we use the F1-
score obtained on the evaluation set as a performance metric. In



Table 2: Overview of the F1-score (%) for each system on the evaluation set of several corpora covering various domains, ⋆ indicates
multi-microphone data, † indicates that the results are taken from the original article.

VAD OSD

DIHARD ALLIES AMI AMI⋆ CHiME⋆ DIHARD ALLIES AMI AMI⋆ CHiME⋆

2-
cl

as
s VAD (ours) 97.0 99.8 97.4 96.4 99.8 - - - - -

OSD (ours) - - - - - 66.2 71.6 79.6 72.2 75.9
Mel+CRNN [15] - - - - - 51.3 - 66.0 57.2 -
Mel+TCN [25] - - - - - 54.7 - 73.4 65.8 -

3-
cl

as
s VAD+OSD (ours) 97.0 89.2 97.2 96.6 99.3 66.8 75.4 80.4 71.8 75.5

Mel+CRNN [15] - - - - - 50.8 - 69.6 61.2 -
Mel+TCN [25] - - - - - 54.5 - 73.8 67.9 -
SincNet+BLSTM [26]† - - - - - 59.9 - 75.3 - -

the 2-class approach, only the positive class output (Nspk ≥ 1
for VAD, and Nspk ≥ 2 for OSD) is used for prediction and two
detection thresholds are applied to predict binary labels [28]. In
the 3-class approach, the class associated with the maximum
softmax output is selected at the frame level. A working ver-
sion of the code will soon be released1.

4. Results
OSD and VAD results obtained on 5 single (DIHARD, AL-
LIES, AMI) and multi-channels (AMI⋆, CHIME-5⋆) datasets
are presented in Table 2.

4.1. Single Channel

So far, ALLIES corpus has only been studied for speaker di-
arization while discarding overlapping speech obtained in the
manual reference [16]. We provide the first evaluation of OSD
for ALLIES data with a 71.6% F1-score using the 2-class ap-
proach.

VAD performances are similar between the 2- and 3-class
approaches except for the ALLIES data for which a strong F1-
score degradation of 10.6% is noticeable. The 3-class approach
improves OSD results in all single-channel datasets, particularly
on ALLIES (+5.3%). Results on ALLIES should be treated cau-
tiously as the average proportion of overlap is rather low, and
we identified some issues in the manual segmentation. In sum-
mary, except for ALLIES, the joint VAD+OSD system offers
better performance than the two dedicated systems. It even out-
performs the previous state-of-the-art results on DIHARD and
AMI data with a new F1-score at 66.8% and 80.4% respectively.

4.2. Domain adaptation

Table 3: VAD and OSD F1-score (%) obtained on the ALLIES
evaluation set. The model trained on DIHARD is fine-tuned on
the subset ALLIES-clean.

Model Task DIHARD ALLIES

Fine-tuning ALLIES-clean No

2-class VAD 99.7 99.8
OSD 75.3 71.6

3-class VAD 99.8 89.2
OSD 75.0 75.4

1Hidden link for anonymous submission

The presence of errors in the reference segmentation of AL-
LIES introduces some noise during the training stage, and thus,
degrades the performance of the 3-class approach especially re-
garding VAD. To cope with this issue, we propose to use the
model trained on DIHARD and fine-tune it with the clean sub-
set ALLIES-clean. Table 3 shows that fine-tuning on ALLIES-
clean brings a similar OSD performance (75.0%) as a model
trained with ALLIES data only (75.4%). More interestingly,
fine-tuning significantly improves the VAD performance with
a relative +11.9% gain on the F1-score, with only 6 h of in-
domain speech. This gain can be explained by the diversity and
quality of the annotations in DIHARD. We conclude that it is
better to train the model on clean and diverse data and apply
fine-tuning on in-domain data.

4.3. Multiple channels

On the AMI meeting corpus, we notice lower performances
on multi-channel data AMI⋆ in comparison to the close-talk
recordings of AMI. Two factors can explain this degradation.
First, multi-channel signals are recorded under distant speech
conditions. This leads to lower quality recordings and thus
performance degradation [14]. Moreover, unlike single chan-
nels, the multi-channel feature extraction algorithm does not
rely on pre-trained features. Therefore, the SACC features are
less optimized compared to WavLM features. On AMI⋆, the
joint VAD+OSD system offers similar VAD performance as
the 2-class approach. The same behavior is observed on the
OSD task where the 3-class system degrades with a 0.5% rela-
tive F1-score degradation. A single 3-class VAD+OSD system
thus offers similar performance as two dedicated VAD and OSD
systems on multi-channel audio from AMI⋆. VAD and OSD
performance are also evaluated on audio data recorded during
dinner parties with the CHiME-5 dataset. Again, the 3-class
VAD+OSD system offers similar VAD and OSD performance
as two dedicated VAD and OSD systems with about 0.5% rel-
ative F1-score degradation on each task. Results on these two
multi-microphone datasets show that joint VAD+OSD is also
adapted to the distant speech scenario with SACC features.

5. Analysis

This section evaluates the benefits of such an approach in terms
of training time, speech domains, and spatial information in the
multi-channel scenario.



5.1. Training time

In order to assess the value of training a joint VAD+OSD sys-
tem against two dedicated models, we compare the training
time required for each approach. Each system is trained on an
RTX6000 GPU card until it reaches its best F1-score on the
validation set. Figure 2 presents the elapsed time to obtain the
best-performing model.
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Figure 2: Training time for each system to converge on two
single-channel and two multi-channel datasets.

2-class OSD task clearly requires more resources than
VAD. Indeed the discrimination of the spectral information be-
tween the presence of one speaker or several speakers is more
difficult than between speech and non-speech signals. Multi-
channel VAD+OSD system converges as fast as the 2-class
VAD system, as observed on the AMI⋆ and CHiME-5⋆ datasets.
In the single channel scenario, the gain is less significant (and
no gain at all with DIHARD), probably because the spatial in-
formation helps to detect multiple speakers.

5.2. Influence of the speech domain on performance

In order to study the influence of the speech domain on OSD,
we analyze the OSD F1-score distributions for each of the DI-
HARD evaluation files, manually separated into 7 domains (see
Fig. 3). Clinical contains conversations between a clinician and
a child, facetoface contain interviews, phone contains phone
conversations, map task contains a game in which someone
guides a person remotely on a map, group chat contains spon-
taneous conversations, court contains court recordings and au-
diobook contains read speech.
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Figure 3: Distribution of F1-scores on DIHARD speech do-
mains

Fig. 3 shows that the F1-score is globally better for phone
conversations than for clinical and face-to-face conversations,
despite the fact that the three domains are dyadic interactions.
We can then hypothesize that the absence of visual cues in
phone conversations limits the diversity of overlaps contained
in the audio files. Another difference between domains is the
quality of the recordings. For example, group chat and face-
to-face files feature strong background noise and low-quality

recordings, which could explain the low performance obtained
in these domains. This analysis concludes that the speech
domain is of major importance for OSD. The presence of noise,
the diversity of overlaps, and the differences in turn-taking
driven by the speech domain is clearly a major issue for OSD.

5.3. Spatialisation

In the CHiME-5 dataset, the rooms where participants are lo-
cated are annotated for each utterance in the evaluation set. We
can thus study which microphone the SACC feature extractor
activates as a function of the speakers’ positions. Since the
VAD+OSD system is trained using one microphone per array in
the CHiME data, we can visualize the combination weights for
each array in each room. Two arrays are located in the kitchen,
two are located in the dining area and two are in the living room.
Figure 4 shows the SACC combination weights of each channel
depending on the location of the speakers. On these utterances,
the SACC system mostly activates the channels placed in the ar-
eas where speakers are located. The system seems able to select
microphones with the most information for the VAD+OSD task.
An in-depth study should however be conducted to better assess
the information used by the system in the multiple-channel sce-
nario.

Figure 4: Combination-weights applied to each channel de-
pending on the room where speakers are staying on 3 CHiME-5
utterances. (Left) Kitchen, (Middle) Dining room, (Right) Liv-
ing room. Utterance-wise normalization is applied for better
visualization by dividing weights by their maximum value.

6. Conclusion
This article presents a benchmark on two speech segmentation
tasks – Voice Activity Detection and Overlapped Speech De-
tection – over multi/mono channel and various domains in 5
datasets. Two approaches are compared by solving jointly or
independently VAD and OSD. The VAD+OSD joint training of-
fers similar performance as the traditional 2-class OSD or VAD
approaches on both single-channel audio data and distant multi-
microphone signals. The proposed system reaches a new state-
of-the-art for OSD on DIHARD (66.8%) and AMI (80.4%)
data. Particularly in the case of ALLIES data with domain adap-
tation, joint training brings an improvement of +11.8% for VAD
and +5.3% for OSD. Furthermore, joint training requires fewer
resources as it reduces the training time on most of the datasets,
especially in the case of multi-channel data.

A deeper analysis demonstrates that background noise and
face-to-face conversations are clearly hard to segment. We also
visualize how the combination weights obtained with the SACC
multi-channel feature extractor are prone to locate active speak-
ers within a session.

Since VAD and OSD performances on multi-microphone
data highly depend on the number of microphones during train-
ing, we intend to evaluate our system in a cross-domain sce-
nario with different types of adaptation to go towards a robust
multi-corpus segmentation model. The impact of the proposed
VAD+OSD system on diarization will also be evaluated.
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