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Abstract—The exponential growth in the use of smartphones
means that users must constantly be concerned about the security
and privacy of mobile data because the loss of a mobile device
could compromise personal information. To address this issue,
continuous authentication systems have been proposed, in which
users are monitored transparently after initial access to the
smartphone. In this paper, we address the problem of user
authentication by considering human activities as behavioral
biometric information. We convert the behavioral biometric data
(considered as time series) into a 2D color image. This trans-
formation process keeps all the characteristics of the behavioral
signal. Time series does not receive any filtering operation with
this transformation and the method is reversible. This signal-
to-image transformation allows us to use the 2D convolutional
networks to build efficient deep feature vectors. This allows us to
compare these feature vectors to the reference template vectors to
compute the performance metric. We evaluate the performance
of the authentication system in terms of Equal Error Rate (EER)
on a benchmark UCI-HAR dataset and we show the efficiency
of the approach.

Index Terms—User authentication, behavioral biometrics, se-
curity, privacy, convolutional networks, human activity.

I. INTRODUCTION

W ITH the increasing use of smartphones to store
personal and sensitive information such as bank

account details, personal IDs, passwords, and credit card
information, people remain constantly connected and their
mobile devices are at risk of security and privacy breaches
by malicious actors [1]–[3]. Traditional forms of protection
such as passcodes, PINs, patterns, facial recognition, and
fingerprint scans are all vulnerable to various forms of
attack, including smudge attacks, side-channel attacks, and
shoulder-surfing attacks [1], [3], [4].

The development of Information and Communication
Technologies (ICT), as well as improvements in ambient
intelligent technologies, such as sensors and smartphones,
have led to the growth of smart environments [4], [5]. By
using sensors, staff can save resources by recording and
monitoring users or automatically reporting any unusual
behavior [4], [6], [7]. For instance, in payment systems,
to ensure strong customer authentication, it is necessary to
implement adequate security features 1 based on authentication
factors such as knowledge, possession, inherent or biometric

1http://data.europa.eu/eli/reg_del/2018/389/oj

factors [8]. Knowledge factors are based on information that
the user knows, such as a password, PIN, or shared secret.
Possession factors rely on an object that the user possesses,
like a smart card, USB key, smartphone, or security token.
Inherent or biometric factors are directly related to the user
and are useful in reducing the risk of unauthorized parties
discovering, disclosing, and using elements such as algorithm
specifications, key length, and information entropy [9].
When Multi-Factor Authentication (MFA) is requested, using
Seamless biometrics, as behavioral, improves the security
without decreasing the User Experience (UX). Increasing
performance of such biometrics is a high need of current
industrials [3].

User authentication for logical access control, such as brows-
ing the Internet on a laptop, is now commonly done using bio-
metrics [3], [9], [10]. Experts employ various biometric meth-
ods, such as fingerprint, retina, and voice recognition, to design
recognition systems using artificial intelligence techniques like
machine learning and deep learning. Each approach has its
own pros and cons, with fingerprint recognition being well-
established and available in commercial products. However,
these systems require input readers, such as sensors, which
can vary in cost on the market [11]. Moreover, some of these
biometric modalities usage are not frictionless for the subject
as they have to do an additional action to authenticate.
Behavioral biometrics involves measuring a user’s behavioral
tendencies, which can include gait, human activity, voice
recognition, signature verification, keystroke dynamics,
mouse dynamics, and Graphical User Interface (GUI) usage
analysis [12]. According to Bailey et al., behavioral biometrics
has not been as widely adopted as physiological biometrics
due to the variability of the human body and mind [12]. It is
worth noting that analyzing user activities does not require
additional hardware.

Human activity can be one solution to enhance the security
of password authentication without adding any disruptive
handling for users. Industries are looking for more security
without impacting too much user experience. Considered as
a frictionless solution, human activity is a powerful solution
to increase trust during user authentication without adding
charge to the user like keystroke dynamic as a behavioral
modality.

http://data.europa. eu/eli/reg_del/2018/389/oj
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Behavioral biometrics identification/authentication methods
have lower performance compared to morphological
modalities [12]. This survey aims to introduce an alternative
approach using deep learning for behavioral biometrics
described by time series.

The contributions of the proposed paper are numerous.
The proposed research uses an image-based architecture
(for a chosen behavioral biometric modality: gait analysis).
A deep learning process for user authentication based
on human activity is proposed. We consider only one
behavioral biometrics modality which refers to the following
physical activities including laying, sitting, standing, walking,
walking downstairs, and walking upstairs, all of them being
acquired by a smartphone. We tested many architectures
for identification/authentication purposes. Generated deep
features are fused through different strategies. The obtained
performance on a dataset used by the research community
outperforms results from the state of the art.

The paper is organized as follows. Section II contains
related works on authentication systems from human activity.
Section III presents the proposed method and the different
tested deep learning models with the specifications and the
impact of different parameters on our evaluation system.
Section IV draws the experimental protocol. Section V details
the experiments on benchmark datasets and the results we
obtained. Section VI gives the conclusions of this work and
some perspectives.

Table I: Human activity aims.

HAR tasks
Basic Activity Recognition
Daily Activity Recognition
Unusual Event Recognition

Biometric Subject Identification
Prediction of Energy Expenditures

Biometric Subject Verification/Authentication*

II. RELATED WORK

Biometrics have been widely proposed as a means of
continuous user authentication in various studies [1], [15],
[16], [36], [37]. In the field of continuous authentication,
inertial data is used to determine the motion, orientation, and
position of a device in the surrounding environment. Methods
that use this type of data for non-intrusive authentication
employ user behavioral features such as gait, touch screen
operations, hand gestures, keyboard patterns, speech, or
signature movements to generate behavioral features [1].

Zheng et al. [38] were pioneers in collecting a large dataset
for continuous authentication and using a one-class distance-
based classifier. They employed inertial data from the
device’s accelerometer and gyroscope along with touchscreen,
acceleration, pressure, touch area size, and time frame
information between interactions to develop user profiles

of how each person held their smartphone when entering
their PIN number, to identify either the genuine owner or an
impostor, with an EER of up to 3.6%.

Trojahn et al. [39] also applied deep learning techniques
using hand movement to authenticate smartphone users based
on data collected during repeated password entry. Researchers
classified users using different models such as the multilayer
perceptron (MLP) [40], Bayesian Net classifiers [41], and
Naïve Bayes [42].

An effective procedure for normalizing signals from
smartphone accelerometers is proposed in [43] by De
Marsico et al. The authors show that normalization has a
positive effect on matching data from the same device, in the
context of gait recognition.

Table I lists the aims of human activity. Human activity can
be used for different goals (identification, authentication,
soft biometrics) in different cases (continuous or static) [4],
[44]. When using hand movement as a biometric solution,
some systems rely on reference data, such as typing style,
for verification of new samples. For identification and
authentication, a reference is a specific user’s typing style,
while for soft biometrics, a reference is a group of users’
typing style, such as male, female, or left/right-handed. This
reference data is used to match or verify the identity of
the user from a sample [45]. We position ourselves on the
biometric verification of individuals based on human activity
data.

Table II lists the state of the art on user identification and
verification from human activity data. We list for each paper
the method, the accuracy score, the EER value, and human
activities considered for the processing. The related work in
Table II focuses on activity recognition, and less work focuses
on user authentication with fairly high EER values. Our goal
is to verify a user based on the activities they have performed.
We seek to authenticate a user based on their activities, which
corresponds to an activity-based user verification approach.
Therefore, our approach focuses on behavioral biometric
verification of individuals using human activity data. We
detail the proposed approach in the next section in order
to enhance performance on user authentication with human
activity data.

III. PROPOSED ARCHITECTURE

In Figure 1, we describe the proposed user authentication
system based on the analysis of human activity as an extension
of the work in [3]. It is composed of three different steps
namely A) data collection (signal-to-image transformation),
B) deep features extraction and C) verification process by
scoring algorithms. We detail the following steps.
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Table II: Overview of user activity identification and authentication in the state of the art.

Paper Approach Method Activity Input Source Accuracy EER

[13] Action recognition DTW Gait Smartphone [83.00% −
93.00%]

[0.09%−
0.10%]

[14] Gender recognition SVC, RF, AdaBoost, k-
NN

Looking and avoid the camera in
motion Video [68.10% −

82.50%]
-

[15] Continuous user authenti-
cation Ten different classifier Walking, sitting Mobile devices - 07.50%

[16] Learning human identity
from motion patterns Dense Clockwork RNN Walking Smartphone 93.02% 18.17%

[17] User identification SVM Pose estimation GUI 74.35% -

[18] Identifying users from gait
pattern Correlation coefficients walking Smartphone [72%−88%] 7%

[19] Gait identification using
accelerometer SVM Walking Mobile phone 92.7% -

[20] Gait recognition, analysis
of approaches SVM Walking Cell phone - 33.30%

[21] Pace independent mobile
gait biometrics Nearest neighbor Walking Mobile - 7.22%

[22] Comparison study to clas-
sify human activities

SVM, MLP, RF,Naive
Bayes

Sleeping, eating, walking, falling,
talking on the phone Image 86.0% -

[23]
Hybrid deep learning for
activity and action recog-
nition

GMM, KF, Gated Recur-
rent Unit

Walking, jogging, running, boxing,
hand-waving, hand-clapping Video 96.3% -

[24]

Infer high-level rules for
noninvasive ambient that
help to anticipate abnor-
mal activities

RF

Abnormal activities: agitation, al-
teration, screams, verbal aggres-
sion, physical aggression and inap-
propriate behavior

Ambient sensors 98.0% -

[25]
Active learning to recog-
nize human activity using
Smartwatch

RF, Extra Trees, Naive
Bayes, Logistic Regres-
sion, SVM

Running, walking, standing, sit-
ting, lying down Smartwatch 93.3% -

[26]
Recognizing human activ-
ity using smartphone sen-
sors

Quadratic, k-NN, ANN,
SVM Walking upstairs, downstair Smartphone 84.4% -

[27] Activity recognition CNN
Standing, sitting, laying, walking,
walking downstairs, walking up-
stairs

Smartphone 99.30% -

[28] Activity recognition Spatial Attention-aided
CNN

Standing, sitting, laying, walking,
walking downstairs, walking up-
stairs

Smartphone 99.45% -

[29] Action recognition Nearest Neighbour Classi-
fier & SVM

Bend, jack, jump, pjump, run, side,
skip walk, wave

Virtual camera
(6)

[90.50% −
95.70%]

-

[30] User identification I-vector Gait Mobile devices [67.5% −
85.0%]

[06.80%−
08.90%]

[31] Multi-view action recog-
nition

Gaussian process + His-
togram intersection kernel

Appearance of dynamic systems
captured from different viewpoints

Sony AIBO robot
dogs (6) 79.00% -

[32] Action recognition GP-based & k-NN

golf swing (back, front, side), kick-
ing (front, side), riding horse, run,
skateboarding, swing bench, swing
(side), and walk

Virtual camera [86.90% −
88.50%]

-

[33] User verification HMM 25 users, 500 signatures Samsung Galaxy
Note - 06.20%

[34] User verification Histogram similarity and
Cycle length Gait Mobile devices - [05.00%−

09.00%]

[35] User verification Manhattan distance Hand movement Keyboard [89.00% −
94.00%]

[06.00%−
11.00%]

A. Data collection : signal-to-image transformation

Time series analysis in the frequency domain plays an
essential role in signal processing. The same is true for image
analysis in the frequency domain, which plays a key role in
computer vision and was even part of the standard pipeline in
the early days of deep learning [46]. In this paper, we use a
function that helps us transform behavioral biometric signals,
which can be considered as time series, into an image, i.e., we
convert a signal (user activity attempt) vector v of size 1×m,
into a matrix M of size n× n such that: m = n× (n− 1)/2.

If the number of features in the dataset does not meet this
condition, we recommend using zero padding/ or discarding
some data after preprocessing.
Such transformation is performed by using the squareform() 2

function in MatLab. One of the properties of the squareform()
function is to convert a vector into a matrix, and vice versa.
Conversely, the squareform of matrix M is a vector v. The
squareform() function is bijective and this function has never
been used for a transformation of human activity data.

2https://fr.mathworks.com/help/stats/squareform.html

https://fr.mathworks.com/help/stats/squareform.html
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Figure 1: Architecture of the authentication system.

Table III: Architectures and optimizations hyper-parameters for the deep learning approaches

Models #Layers Depth Image Input Size Activate Normalize Algorithm Loss #Epochs #Batch Learning rate

ResNet-101 347 101 imresize(I, [224 224]) ReLU Batch SGDM cross-entropy 300 10 0.001
ShuffleNet 172 50 imresize(I, [224 224]) ReLU Batch SGDM cross-entropy 300 10 0.001
GoogleNet 144 22 imresize(I, [224 224]) ReLU Batch SGDM cross-entropy 300 10 0.001
DarkNet-53 184 53 imresize(I, [256 256]) ReLU Batch SGDM cross-entropy 300 10 0.001

For instance, consider the UCI-HAR dataset 3, which includes
human activity information for 30 individuals. Each individ-
ual’s data is represented by a raw vector of m = 561 features,
which is then used to construct an image matrix of size 34 ×
34, where n = 34. The matrix is displayed with false colors
representing distance values.

We finally have a 2D image in RGB format. Figure 2 shows
the step-by-step instructions to verify individual identities
through our framework starting from the signal (computing
the time series signal into a color image). The transformation
is performed on each attempt of each user for each human
activity.

B. Deep features extraction

Deep learning algorithms have been used in the last
decade in several fields and are becoming more and
more widespread [47], [48]. One advantage of using such
approaches relies in its capabilities to provide relevant features
at deeper layers which can be used as feature vectors by any
dissimilarity measure. In this work, we generate deep features
vectors by transfer learning from four different deep networks
namely ResNet-101, ShuffleNet, GoogleNet and DarkNet-53.
In the literature, these models were firstly pre-trained on the

3http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+
Using+Smartphones

ImageNet dataset 4 and they are the most recent successful
deep learning architectures for image classification [49] and
can be used for an authentication context since authentication
can be considered as the result of a binary classification
problem (genuine or impostor).

Table III summarizes the architecture and the optimization
hyper-parameters for the four trial deep networks where the
network depth is defined as the largest number of sequential
convolutional or fully connected layers on a path from the
input layer to the output layer. As input, networks take RGB
images format describing a human activity. These convolu-
tional networks are used to build an output feature vector (by
extraction at the last layer of the convolutional network), which
is then compared to the reference/test model.

C. Matching algorithms
Deep architectures as previously explained generate feature

vectors that can be used as reference/test templates. We need a
matching algorithm to compare them and make the verification
decision. Many distance metrics can be used to compute a
distance score [9] between a reference (xs) and a sample (xt )
such as:

• The Minkowski distance

d =
n

∑
j=1

|xs j − x
′
t j| (1)

4https://image-net.org

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://image-net.org
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Figure 2: Examples of the obtained results when the signal-to-image transformation is applied.

Table IV: Activities, sample number of each activity and their descriptions on UCI-HAR dataset [26].

Activity Abbreviation No. of Samples Sample Percent of Each Human Activity Description

Laying lyx 1722 16.72% Subject sleeps or lies down on a bed
Sitting six 1544 14.99% Subject sits on a chair either working or resting

Standing stx 1406 13.65% Subject stands and talks to someone
Walking wlx 1777 17.25% Subject goes down multiple flights

Walking Downstair wdn 1906 18.51% Subject goes down multiple flights
Walking Upstairs wup 1944 18.88% Subject goes up multiple flights

• The Euclidean distance

d2 = (xs − xt)(xs − xt)
′

(2)

• The Cosine distance

d = 1 − xsx
′
t√

(xsx
′
s)(xtx

′
t)

(3)

Once we obtain a matching score, we decide if the user
is authenticated by a simple thresholding approach (accept
when the score is upper a given threshold).

Algorithm 1 Scores Computation
Input Output data, distance, N, M INTRA, INTER
Scores_computation data, distance, N, M
Initialize counters cptra = 1 cpter = 1
Compute intraclass and interclass scores
i = 1 N l = 1 N j = 2 M i == l
INTRA(cptra) = pdist([data(M*(i-1)+1,:);
data(M*(l-1)+j,:)], distance)
cptra = cptra + 1
INTER(cpter) = pdist([data(M*(i-1)+1,:);
data(M*(l-1)+j,:)], distance)
cpter = cpter + 1
Return INTRA, INTER
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Figure 3: Relationship between FMR, FNMR and EER (source
[3]).

Algorithm 1 describes the procedure for computing INTRA
scores for similarity and INTER scores for dissimilarity.
These scores are used to compute the FMR, FNMR and EER
scores later on.

IV. EXPERIMENTAL PROTOCOL

We draw in this part the experimental protocol we follow
in this work. We detail the used biometric dataset and the
performance metrics.

A. Database

We use in this work the UCI-HAR database [26] which
was collected with data from 30 people aged between 19 and
48 years. Each person performed 6 physical activities such
as sitting, standing, laying walking, walking upstairs and
walking downstairs. The data were collected from a Samsung
Galaxy S II mobile phone handset using the accelerometer
and gyroscope (3-axial raw signals with tAcc-XYZ and
tGyro-XYZ) sensors at a frequency of 50Hz. The collection
was obtained with the smartphone located at the user’s waist.
All steps of data collection were recorded and the data was
manually labeled. UCI-HAR contains 10,299 samples.

Table IV presents the activities, the abbreviation of each
activity, the proportion of activity samples and their descrip-
tions. For each signal of each activity, the signal-to-image
transformation (as mentioned in section III) is applied to
obtain a 2D color image. To the best of our knowledge, such
transformation with the squareform() function applied to the
UCI-HAR dataset does not exist in the literature up to now.
Among the transformed samples of each user, 70% out of
100% samples (attempts per subject) are used for the training
set and the remaining 30% for the testing set.

B. Pretrained models

As previously mentioned, the used pretrained models for
comparison of the different architectures are the following
networks: ResNet-101, ShuffleNet, GoogleNet, and DarkNet-
53. It is not the purpose of this paper to provide theoretical
information on how each of these architectures work; more
details on each of them can be found in [3].

C. Performance metrics

The authentication/verification stage involves acquiring and
processing raw data to create a biometric template, which
is then compared to reference templates in the dataset.
A matching algorithm is used to determine the similarity
between the biometric sample and existing reference
templates. Scores are calculated based on features extracted
from deep networks, and three distance metrics described
in subsection III-C are applied to evaluate the degree of
similarity between the activity of each user.

Two important error rates are used to assess the performance of
a biometric authentication system according to ISO19795 [50]:
1) False Match Rate (FMR) and 2) False Non-Match Rate
(FNMR).

1) The FMR is the proportion of a specified set of
completed non-mated comparison trials that result in a
comparison decision of match,

2) The FNMR is the proportion of completed mated com-
parison trials that result in a comparison decision of non-
match.

The Equal Error Rate (EER) is obtained when the biometric
decision threshold is set to have the FMR value equal to
the FNMR one as depicted in Figure 3. It can be seen as
a compromise between usability and security. The goal of a
matching algorithm is to minimize this value. The lower the
value of EER, the better the performance of the authentication
system is. This error rate is the most commonly used in the
literature to evaluate the performance of biometric systems.
In this work, we evaluate the performance of the proposed
architecture in terms of EER. Experiments has been realized
on an Intel Core i5-9600K CPU 3.70 GHz computer equipped
with 16.00 GB of RAM with MatLab.

V. RESULTS AND DISCUSSION

In this section, we present the experimental results we
obtained. We tried to structure them by addressing some
questions concerning the performance of the proposed method
on such behavioral biometric datasets. Note that we considered
70% of user samples (attempts per subject) for the learning
phase and 30% for the testing one.

A. Which performance can we expected on a larger dataset ?

First, we consider all the six activity sub-datasets defined as
the UCI-HAR dataset (Fusion of features). Table V draws
the obtained results for the user verification task considering
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Figure 4: Visual inspection of deep features projection from (a) ResNet-101, (b) ShuffleNet, (c) DarkNet-53 and (d) GoogleNet.

the three distances. One can observe that whatever the deep
architecture, the distance minimizing the EER value is the
Cosine one. In the rest of this work, all results are given
considering this distance.

Table V: EER value on HAR dataset for the three tested
distances.

Models EERmananthan EEReuclidean EERcosine

ResNet-101 22.69% 17.71% 12.48%
ShuffleNet 14.77% 14.63% 11.57%
GoogleNet 14.88% 14.56% 13.52%
DarkNet-53 17.46% 14.31% 11.72%

We visually inspected our four deep networks by performing a
feature projection through the T-SNE (t-Distributed Stochastic
Neighbor Embedding) function as shown in Figure 4 for each
architecture. We observe that the deep features projection form
a nearly distant cluster in ShuffleNet (EER = 11.57%) than
DarkNet-53 (EER = 11.72%), ResNet-101 (EER = 12.48%)
and GoogleNet (EER= 13.52%). This result is correlated with
the fact that ShuffleNet performs better than other networks
in terms of EER value.

B. How well can we perform on each activity separately?

In this section, we consider each activity separately as
shown in Table IV to generate six sub-datasets among
others laying (1722 samples for the 30 subjects), sitting
(1544 samples for the 30 subjects), standing (1406 samples
for the 30 subjects), walking (1777 samples for the 30
subjects), walking downstairs (1906 samples for the 30
subjects), walking upstairs (1944 samples for the 30 subjects).

We illustrate the four architectures (namely ResNet-101,
ShuffleNet and GoogleNet and DarkNet-53) and we draw the
model on each sub-datasets separately.

This is illustrated by the block 1 in Figure 5.
The best model among the four deep networks for
each activity in terms of EER value are: standing
(GoogleNet=13.52%), sitting (GoogleNet=15.15%), laying
(GoogleNet=07.78%), walking (ShuffleNet=07.02%), walking
downstairs (ShuffleNet=08.14%) and walking upstairs
(GoogleNet=06.88%). Here, we try to verify one user among
the 30 users based on their activities separately.

We note that we do not have the same performance from
one activity to another. So, using 70% of samples (attempts
per subject) for the generation of the reference template does
not provide exceptional results (with an EER value between
06.88% to 19.65%) as shown in the block 1 in Figure 5. Ob-
viously, if we had more samples per subject (or by combining
activities), we could expect to obtain a better performance.

C. What performance can be achieved if the user performs
more than one activity ?

In this part, it is assumed that a person achieved more than
one activity to authenticate himself/herself. We merge by
summing the legitimate and impostor scores considering the
number of samples (activity attempt) per user (Fusion of
scores). Table VI shows the obtained results if we used all
the six activities (i.e., simulating a user achieving 6 activities
to be authenticated). ShuffleNet comes out as the best method
with an EER score of 03.58% as presented in Table VI.
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Figure 5: EER rate on deep architectures for the multi-instance biometric system. In block 1, we have (stx), (six), (lyx), (wlx),
(wdn) and (wup) activities. In block 2, we have the fusion of inter and intra class score from {(stx)+(six)} to {(wdn)+(wup)}
activities respectively. In block 3, we have {(stx)+(six)+(lyx)} to {(wlx)+(wdn)+(wup)}. In block 4, {(stx)+(six)+(lyx)+(wlx)} to
{(lyx)+(wlx)+(wdn)+(wup)}, in Block 5, {(stx)+(six)+(lyx)+(wlx)+(wdn)} to {(six)+(lyx)+(wlx)+(wdn)+(wup)} and in Block
6 {(stx)+(six)+(lyx)+(wlx)+(wdn)+(wup)}.

ShuffleNet is ahead of ResNet-101 (03.63%), GoogleNet
(03.76%) and DarkNet-53 (03.70%).

Table VI: Performance evaluation on the multi-instance bio-
metric system by fusion of features and scores level on UCI-
HAR dataset.

Models (EERcosine) Fusion of features Fusion of scores

ResNet-101 12.48% 3.63%
ShuffleNet 11.57% 3.58%
GoogleNet 13.52% 3.76%
DarkNet-53 11.72% 3.70%

To complete these results, we studied the obtained per-
formance versus the number of activities (laying, sitting,
standing, walking, walking downstairs and walking upstairs)
achieved by a user in a multi-instance context. Figure 5
highlights the EER value obtained for each case.

• If we use 2 activities, we obtain an EER value between
[04.20%−12.98%] illustrated by block 2 in Figure 5.

• If we have 3 activities, we have an EER value between
[03.94%−08.55%] represented in block 3.
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Figure 6: t-SNE projection of (a) raw features and (b) deep features extracted from the top-performing method (ShuffleNet).
The x-axis corresponds to dimension 1, while the y-axis corresponds to dimension 2.

• If we use 4 activities, we have an EER value around
[03.85%−05.71%] depicted by block 4.

• If we use 5 activities, we have an EER value around
[03.72%−04.54%] shown by block 5.

• If we use 6 activities (laying + sitting + standing +
walking + walking downstairs + walking upstairs), we
get an EER value around [03.58%−03.76%] depicted by
block 5. This shows we can decrease easily the EER value
for this kind of authentication.

We find that the value of EER obtained by fusion of the scores
of each activity decreases for all architectures. It also appears
from this work that the more information we have, the better
the performance can be, this is not surprising. With a more
extensive database, we could expect to get better results (i.e.
with an EER value very close to 0%) by increasing the number
of samples per user [3].

D. Discussion

Due to their ability to perform sensitive operations like
mobile banking, communication, and personal data storage,
smartphones have become a crucial part of daily life. This
has led to a greater need for secure authentication methods to
protect critical information from unauthorized access. [1].

The purpose of this work is to analyze several information
from user activity in order to authenticate himself/herself.
A comparative analysis of the four architectures on UCI-
HAR dataset allows us to identify the best performance for a

continuous authentication. From Table V, it is provided by the
ShuffleNet architecture with an EER value equal to 11.57%.
Figure 6 shows a visual inspection of features (raw versus
deep features) projection for ShuffleNet. It shows clearly the
good separability of the deep features. Multi-instance systems
intend to capture samples of two or more different instances of
the same biometric characteristics. The Table VI shows that
for an authentication performed on human activity, the best
verification scores are obtained on the fusion of scores (EER =
03.58%) as opposed to the fusion of features (EER = 11.57%)
on ShuffleNet among the four different deep neural network
architectures.
In the literature, several works notably [51]–[58] shown in
Table II and others in Table VII have been carried out only
on the recognition of activities (where the target is : standing,
sitting, laying, walking, walking downstairs, walking upstairs)
from the UCI-HAR dataset. The used methods are respectively
Deep CNN-LSTM with Self-Attention (accuracy = 93.11%),
linear SVC (accuracy = 96.50%), LSTM-CNN (accuracy =
95.78%), SVM (accuracy = 97.12%), Lego-CNN (accuracy
= 96.90%), LSTM (accuracy = 97.40%), CNN (accuracy =
96.40%). Among these works, there are several studies that
convert the 1D time-series into a 2D image representation and
then apply 2D image-based feature extraction technique [27]–
[29]. These transformations are not reversible and the related
works are typically based on activity or action recognition.
However, this work focuses on activity-based user verification.

We can compare our results with research works that has
been performed on the UCI-HAR dataset in Table VIII.
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Table VII: Comparison with other published works (target = activities).

Dataset Author/S (ref) Years Classifiers Accuracy EER
UCI-HAR (target = activities) Sanchez et al. [27] 2022 CNN 99.30% -

UCI-HAR (target = activities) Sarkar et al. [28] 2022 Spatial Attention-aided
CNN 99.45% -

CMU mocap (target = actions) Junejo et al. [29] 2008 Nearest Neighbour Classi-
fier & SVM

[90.50% −
95.70%]

-

Naturalistic McGill University gait
dataset and Osaka University gait
dataset

Zhong et al. [30] 2014 I-vector [67.5% −
85.0%]

[06.80%−
08.90%]

IXMAS (target = actions) Korner et al. [31] 2013 Gaussian process + His-
togram intersection kernel 79.00% -

UCF sports (target = actions) Chuan et al. [32] 2015 GP-based & k-NN [86.90% −
88.50%]

-

Table VIII: Comparison with other published works on user activity (target = users).

Dataset Author/S (ref) Years Classifiers Accuracy EER
UCI-HAR (target = users) This Paper 2022 ShuffleNet - 03.57%
UCI-HAR (target = users) Mekruksavanich et al. [1] 2021 DeepConvLSTM - 5.10%
Touch gestures data Patel et al. [15] 2016 Ten classifiers - 07.50%
WISDM Zhang et al. [16] 2019 Dense Clockwork RNN - 18.17%
Gait signal data Mantyjarvi et al. [18] 2005 Correlation coefficients - 07%
Biometric gait data Muaazz et al. [20] 2013 SVM - 33.30%
Mobile gait data Zhong et al. [21] 2015 Nearest neighbor - 07.22%

Mekruksavanich et al. [1] in 2021 work on deep learning
approaches for continuous authentication based on activity
patterns using mobile sensing. They had obtained for each
distinct activity an EER score 5.10% with the DeepConvL-
STM network. By merging the legitimate and impostor scores
of each activity, we obtain an EER score of 03.58% with
the ShuffleNet network. This means that during a verification
scheme, the more activities a user performs, the better it can be
authenticated by our framework. To the best of our knowledge,
in the literature, there is no work addressing fusion of scores
on the basis of the UCI-HAR dataset.

VI. CONCLUSION AND PERSPECTIVES

This survey is based on a new method for user authentica-
tion by analyzing human activities in this paper. We tested
various deep learning classifiers (ResNet-101, ShuffleNet,
GoogleNet, and DarkNet-53) on the UCI-HAR benchmark
dataset for authentication applications. The results showed that
using a combination of motion sensor data resulted in the
lowest Equal Error Rate (EER) for binary classification.
The aim of this study was to determine the effectiveness
of deep learning architectures in authenticating smartphone
users based on their physical activity patterns measured by
the accelerometer, gyroscope, and magnetometer sensors on
their smartphones. We demonstrated that our new framework
outperforms current state-of-the-art methods in terms of Equal
Error Rate (EER) for continuous smartphone authentication
utilizing various sensor data. The main contribution of this
paper is to answer how well deep learning approaches could
verify individual identities by using smartphone sensing data
from 30 users. Since in the state of the art, results are
given for the activity classification, our second contribution is
the use of another signal-to-image transformation (a bijective
transformation) of the input data, which leads to improved
authentication results.

For future research, we plan to study how to improve the
security of biometric continuous authentication systems linked
to human activities by creating innovative Presentation At-
tack Instruments for laboratory evaluations and synthetically
generated Human Activities Databases. We intend to consider
the quality assessment of human activities with deep learning
architectures in order to enhance the authentication results.
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