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Distributed Observer-based Leader-following Consensus Control for LPV Multi-agent Systems: Application to multiple VTOL-UAVs Formation Control

This paper presents a distributed observer-based leader-following consensus control for linear parameter-varying multi-agent systems. The stability of the observer and the controller is proved by the Lyapunov theory. It is shown that the design conditions of the estimated states and consensus control are expressed in a set of linear matrix inequalities considering Polya's theorem for less conservatism. To show the effectiveness of the proposed strategy, the formation control problem on a team of vertical take-off and landing unmanned aerial vehicles are considered in the simulation results.

I. INTRODUCTION

In the last decades, Multi-Agent Systems (MASs) have been of interest due to their potential compared with the performance of a single agent [START_REF] Ziquan | A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles[END_REF], where an agent is defined as an autonomous dynamical system. The control problem is to design an appropriate controller to coordinate every agent to achieve a global objective [START_REF] Li | Cooperative Control of Multi-Agent Systems: A Consensus Region Approach[END_REF]. Different strategies to coordinate MASs can be considered, such as: consensus-based [START_REF] Rehan | Consensus of one-sided lipschitz multi-agents under input saturation[END_REF], which objective is that agents converge to a common value by interacting with each other via a communication network; Leader-following [START_REF] He | h∞ leader-following consensus of nonlinear multi-agent systems under semi-markovian switching topologies with partially unknown transition rates[END_REF], where the agents are considered followers of another agent, which can be a real system or a virtual system, this agent is a reference for the others and is commonly known as a leader; Virtual structure strategies [START_REF] Yan | Formation control and obstacle avoidance algorithm of a multi-usv system based on virtual structure and artificial potential field[END_REF] consider that the agents have geometric relations between them and with a reference frame, this is a leaderless method, but the stability of the MASs is not guaranteed; Behaviorbased strategies [START_REF] Huang | Distributed behavioral control for second-order nonlinear multi-agent systems[END_REF] are biological techniques inspired by the joint movement of some animals in nature, it is assumed that the agents are able to obtain information from their environment and communicate with each other to generate a global grouping behavior; Artificial potentials [START_REF] Liu | Formation potential field for trajectory tracking control of multi-agents in constrained space[END_REF], where agents are assumed to be able to avoid collisions, consider dynamic distances between agents, or track trajectories and targets; graph-theory strategies [START_REF] Li | Multilayer formation control of multi-agent systems[END_REF] are commonly used to model the communications between agents and guarantee the stability of the MASs. The coordination of MASs is essential to accomplish common objectives [START_REF] Yan | A survey and analysis of multi-robot coordination[END_REF], some of these Mexico. gvalencia@hermosillo.tecnm.mx Consider for the Best Student Paper Award objectives are formation control [START_REF] Vazquez Trejo | Distributed observer-based leader-following consensus control robust to external disturbance and measurement sensor noise for lti multiagent systems[END_REF], formation tracking [START_REF] Dong | Timevarying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[END_REF], and leader-following UAV swarms [START_REF] Zaidi | Distributed observer-based leader following consensus tracking protocol for a swarm of drones[END_REF], among others.

Recently, the use of Unmanned Aerial Vehicles (UAVs) has become promising mobile platforms capable of autonomous navigation. An extensive number of applications of UAVs have been proposed, such as agriculture assessment [START_REF] Elmokadem | Distributed coverage control of quadrotor multi-uav systems for precision agriculture[END_REF], search and rescue missions [START_REF] Paez | Distributed particle swarm optimization for multirobot system in search and rescue operations[END_REF], marine exploration [START_REF] Wang | A multi-auv maritime target search method for moving and invisible objects based on multi-agent deep reinforcement learning[END_REF], and fire monitoring [START_REF] Hu | Fault-tolerant cooperative navigation of networked uav swarms for forest fire monitoring[END_REF], among others [START_REF] Idrissi | A review of quadrotor unmanned aerial vehicles: Applications, architectural design and control algorithms[END_REF]. Research works based on MASs using UAVs have considered the leader-following consensus related to Linear Time-Invariant (LTI) focused on second-order MASs with irregular discrete sampling times [START_REF] Wang | Time-varying formation of second-order discretetime multi-agent systems under non-uniform communication delays and switching topology with application to uav formation flying[END_REF], particle swarm optimization [START_REF] Belkadi | Particle swarm optimization method for the control of a fleet of unmanned aerial vehicles[END_REF], eventtriggered mechanisms [START_REF] Antonio | Observer-based event-triggered model reference control for multi-agent systems[END_REF], and communication faults [START_REF] Antonio | Leader-following formation control for networked multi-agent systems under communication faults/failures[END_REF]. Furthermore, [START_REF] Chen | Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems[END_REF] proposed an observer-based consensus control against actuator faults for Linear Parameter-Varying (LPV) MASs. Moreover, a gain-scheduled observer-based consensus for LPV MASs is investigated in [START_REF] Rotondo | Gain-scheduled observer-based consensus for linear parameter varying multi-agent systems[END_REF], where the controller and observer gains are functions of some time-varying parameter vector that is measured in real-time, Polya's theorem [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of polya's theorem[END_REF] is considered to reduce conservatism compared with the work of [START_REF] Chen | Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems[END_REF].

The main contribution of this paper is the design of a leader-following consensus control for MASs. Linear Matrix Inequalities (LMIs) conditions are obtained to guarantee the existence of the polytopic controller and observer gains for a team of LPV MASs based on leader-following consensus control observer-based inspired by the work of [START_REF] Chen | Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems[END_REF] and [START_REF] Rotondo | Gain-scheduled observer-based consensus for linear parameter varying multi-agent systems[END_REF]. The main differences from previous works are the leader-following consensus for MASs, the use of the Schur complement [START_REF] Zhou | Essentials of robust control[END_REF] and the Young relation [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] to determine the LMIs conditions considering Polya's theorem. In order to validate the proposal, the developed strategy is applied to a team of nonlinear quadcopters where the solution for the LMIs is computed using the quasi-LPV representation of the UAVs.

This paper is organized as follows. The problem statement and system description are presented in Section II. In Section III, the proposed LPV observer-based leader-following control is designed. The quasi-LPV representation of the nonlinear quadcopter model is presented in Section IV. The simulation results to show the effectiveness of this approach are presented in Section V. The conclusions are shown in Section VI. PRELIMINARIES Notation. To simplify the notation, the symbol * represents the symmetric elements of a matrix. The Kronecker product is denoted by the symbol ⊗. The Hermitian part of a square matrix Z is denoted by He{Z} = Z + Z T . Given s ∈ N, the symbol D s and D + s denote the following sets:

Ds = ⃗ d = ⃗ d1, . . . , ⃗ ds T ∈ N s |1 ≤ ⃗ d k ≤ s ∀k = 1, . . . , s , (1) 
D + s = ⃗ d ∈ D s | ⃗ d k ≤ ⃗ d k+1 , k = 1, . . . , s -1 , (2) 
where the set of permutations with possible repeated elements of the multi-index ⃗ d is denoted by D( ⃗ d) ⊂ D s .

II. PROBLEM STATEMENT

Let us consider the following LPV multi-agent system

ẋi (t) = A(ζ i (t))x i (t) + B(ζ i (t))u i (t), y i (t) = C(ζ i (t))x i (t), (3) 
composed of N identical systems. For each one, i is the agent number (i = 1, . . . , N ); 

x i (t) ∈ R n , u i (t) ∈ R r , y i (t) ∈ R p ,
  = S h=1 ρ h (ζ i (t))   A h B h C h   , S h=1 ρ h (ζ i (t)) = 1, ρ h (ζ i (t)) ≥ 0 ∀ζ i (t) ∈ R (4) 
where each agent is considered as an autonomous dynamical system able to share the information of their states with the neighboring agents. Then, in order to design the communication exchange between agents, some elements of graph theory are recalled. Let consider a directed graph G(V, E, A) where

V = {v 1 , v 2 , . . . , v N } is a set of nodes (agents), E = {(i, j) : i, j ∈ V} ⊆ V ×V is a set of

edges, and the adjacency matrix

A = [a ij ] ∈ R N ×N is defined as a ii = 0, a ij > 0 if and only if the pair (i, j) ∈ E, otherwise a ij = 0. When the graph is undirected, also, a ij = a ji , ∀i ̸ = j and A = A T . The Laplacian matrix L ∈ R N ×N is defined as L ii = j̸ =i a ij and L ij = -a ij .
The set of neighbors related to the i-th agent is denoted as j ∈ N i . α i is related with the leader, α i = 1 if there is a link between the i-th agent and the leader, otherwise α i = 0. The following assumptions are held in this work (∀h = 1, . . . , S):

Assumption 1: The pair (A h , B h ) is stabilizable. Assumption 2: The pair (A h , C h ) is observable. Assumption 3: The graph G is undirected.
The main objective of this work is the design of a leaderfollowing control for LPV multi-agent systems consensusbased. The LPV virtual leader dynamic is defined by:

ẋl (t) = A(ζ l (t))x l (t) + B(ζ l (t))u l (t), (5) 
where x l (t) ∈ R n , u l (t) ∈ R r are the state and input vectors of the virtual leader. Consensus between the leader and the followers can be achieved only if

ζ 1 (t) = ζ 2 (t) =, . . . , = ζ N (t) = ζ l (t) = ζ(t). Let δ i (t) = x i (t) -x l (t)
, then, the dynamics of the synchronization error between each agent i and the leader is:

δi (t) = A(ζ(t))δ i (t) + B(ζ(t)) u i (t) -u l (t) . ( 6 
)
Let us propose the following observer-based consensus protocol:

u i (t) = K(ζ(t)) j∈Ni xi (t) -xj (t) + α i xi (t) -x l (t) + u l (t), (7) 
where K(ζ(t)) ∈ R r×n is the LPV control gain to be designed and xj (t) ∈ R n are the estimated states of the neighboring agents. Due to the estimated states of agent i and agent j are considered in the consensus protocol [START_REF] Liu | Formation potential field for trajectory tracking control of multi-agents in constrained space[END_REF], the estimated state vector xi (t) ∈ R n is given by the following distributed LPV observer:

ẋi (t) = A(ζ(t))x i (t) + B(ζ(t))u i (t) + L(ζ(t)) y i (t) -ŷi (t) , ŷi (t) = C(ζ(t))x i (t), (8) 
where L(ζ(t)) ∈ R n×p is the LPV observer gain to be designed and ŷi (t) ∈ R p is the estimated output vector. The polytopic representation of the control gain K(ζ(t)) and the observer gain L(ζ(t)) are considered as follows:

K(ζ(t)) L(ζ(t)) = S h=1 ρ h (ζ(t)) K h L h . (9) 
Defining the estimation error e i (t) = x i (t) -xi (t), then, the dynamics of the estimation error are:

ėi (t) = A(ζ(t)) -L(ζ(t))C(ζ(t)))e i (t). ( 10 
)
The design of the vertex control gains K h and the vertex observer gains L h using LMIs and computed simultaneously, is the main problem.

III. LPV OBSERVER-BASED LEADER-FOLLOWING CONSENSUS CONTROLLER

The LMI conditions to guarantee the existence of the control and observer gains are presented in this section using the Lyapunov stability analysis. Let us consider the time-varying parameters vector

ζ(t) = [ζ 1 (t) T , ζ 2 (t) T , . . . , ζ N (t) T ] T , defining the matrix: ρ ij (ζ(t)) = diag(ρ i⋆j (ζ 1 (t)), . . . , ρ i⋆j (ζ N (t))) (11) 
with

ρ i⋆j (ζ g (t)) ≜ ρ i (ζ g (t))ρ j (ζ g (t)
), g = 1, . . . , N . Considering e(t) = [e 1 (t) T , e 2 (t) T , . . . , e N (t) T ] T , and δ(t) = [δ 1 (t) T , δ 2 (t) T , . . . , δ N (t) T ] T , the estimation error and the synchronization error are expressed using the Kronecker product as follows:

ė(t) = S h=1 S g=1 [ρ hg (ζ(t)) ⊗ (A h -L h C g )] e(t), (12) 
δ(t) = S h=1 S g=1 ρ hg (ζ(t)) IN ⊗ A h + L ⊗ BgK h δ(t)- ρ hg (ζ(t)) L ⊗ BgK h e(t) (13) 
where L = L + Λ is the sum of the Laplacian matrix L and Λ = diag(α 1 , α 2 , . . . , α N ), the communication exchange between the leader and the followers. Let z(t) = [δ(t) T , e(t) T ] T , then the closed-loop multi-agent system is expressed as follows (for easy notation, the time dependency is removed):

ż = S h=1 S g=1 ρ h (ζ)ρ g (ζ) × I N ⊗ A h + L ⊗ B g K h -L ⊗ B g K h 0 I N ⊗ (A h -L h C g ) z. (14) 
Let us choose a quadratic candidate Lyapunov function as follows:

V (z) = δ T e T I N ⊗ P 1 0 0 I N ⊗ P 2 δ e . ( 15 
)
The following theorem provides LMI-based conditions that guarantee the existence of the LPV control and LPV observer gains based on the Lyapunov stability analysis.

Theorem 1: Consider the closed-loop LPV multi-agent system [START_REF] Paez | Distributed particle swarm optimization for multirobot system in search and rescue operations[END_REF]. The estimation [START_REF] Zaidi | Distributed observer-based leader following consensus tracking protocol for a swarm of drones[END_REF] and synchronization [START_REF] Elmokadem | Distributed coverage control of quadrotor multi-uav systems for precision agriculture[END_REF] errors are proven to be exponentially stable by [START_REF] Wang | A multi-auv maritime target search method for moving and invisible objects based on multi-agent deep reinforcement learning[END_REF] for any s ∈ N, with s ≥ 2, given the eigenvalues λ j ( L), ∀j = 1, 2, . . . , N ; if there exist symmetric matrices P1 > 0 ∈ R n×n and P 2 > 0 ∈ R n×n , matrices N 1 , N 2 , . . . , N S , and M 1 , M 2 , . . . , M S ; the tuning scalar variable µ > 0, such that

⃗ ϱ∈D( ⃗ d)     Q j11 0 Q j13 0 * Q 22 0 I N * * -µ -1 P1 0 * * * -µ P1     < 0 (16) holds ∀ ⃗ d ∈ D + s , where Q j11 = He{A ⃗ ϱ1 P1 + λ j B ⃗ ϱ2 N ⃗ ϱ1 },Q 22 = He{P 2 A ⃗ ϱ1 -M ⃗ ϱ1 C ⃗ ϱ2 }, and Q j13 = -λ j B ⃗ ϱ2 N ⃗ ϱ1
, then, the control vertex gain can be computed with K h = N h P -1

1
and the observer vertex gain with

L h = P -1 2 M h .
Proof. The derivative of ( 15) along the trajectories of ( 14) is given by:

V (z) = S h=1 S g=1 ρ h (ζ)ρ g (ζ) 2δ T (I N ⊗ P 1 A h + L ⊗ P 1 B g K h )δ -2δ T ( L ⊗ P 1 B g K h )e + 2e T (I N ⊗ P 2 (A h -L h C g ))e . (17) 
Let us perform a spectral decomposition of the matrix L, such that L = T JT -1 with an invertible matrix T ∈ R N ×N and a diagonal matrix J = diag(λ 1 , λ 2 , . . . , λ N ) ∈ R N ×N of which λ j ( L), j = 1, 2, . . . , N are the eigenvalues of L.

Defining the change of coordinates as φ = (T -1 ⊗ I N )δ and ϕ = (T -1 ⊗ I N )e, (17) can be rewritten as:

V (z) = S h=1 S g=1 ρ h (ζ)ρ g (ζ) N j=1 φ T He{P 1 A h + λ j P 1 B g K h }φ j -2 N j=1 φ T λ j P 1 B g K h ϕ j + N j=1 ϕ T He{P 2 A h -P 2 L h C g }ϕ j . (18) 
Considering the vector [φ T j , ϕ T j ] T , ( 18) can be rewritten as follows:

V (z) = S h=1 S g=1 ρ h (ζ)ρ g (ζ) φ T j ϕ T j B j hg φ j ϕ j , (19) 
B j hg = He{P 1 A h + λ j P 1 B g K h } -λ j P 1 B g K h * He{P 2 A h -P 2 L h C g } (20) 
which corresponds to the problem of verifying the negativity of double polytopic sums. We define P1 = P -1

1 β j hg = P1 0 0 I N B j hg P1 0 0 I N < 0 (21) 
β j hg = He{A h P1 + λ j B g K h P1 } -λ j B g K h * He{P 2 A h -P 2 L h C g } < 0, (22) 
then, ( 22) can be rewritten as follows:

β j hg 11 0 * β j hg 22 + He β j hg 12 0 0 I N < 0 (23)
where

β j hg 11 = He{A h P1 + λ j B g K h P1 }, β j hg 22 = He{P 2 A h -P 2 L h C g }, and 
β j hg 12 = -λ j B g K h .
Applying the Young relation [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], the following inequality is obtained:

β j hg 11 0 * β j hg 22 + µ β j hg 12 0 P1 β T j hg 12 0 + µ -1 0 I N P -1 1 0 I N < 0 (24) 
where µ > 0. Using the Schur complement [START_REF] Zhou | Essentials of robust control[END_REF], considering N h = K h P1 , and M h = P 2 L h and by applying the Polya's theorem on definite quadratic forms in [START_REF] Belkadi | Particle swarm optimization method for the control of a fleet of unmanned aerial vehicles[END_REF] as in [START_REF] Rotondo | Gain-scheduled observer-based consensus for linear parameter varying multi-agent systems[END_REF], ( 16) is obtained, and the proof is completed.

IV. QUADCOPTER QUASI-LPV MODEL

Quasi-LPV systems are LPV systems in which the varying parameters ζ are endogenous signals, related to the internal states or input signals [START_REF] Rotondo | Analysis and design of linear parameter varying systems using lmis[END_REF]. Theorem 1 is also fulfilled for quasi-LPV systems. Multiple UAV quadcopters are considered to illustrate the proposed leader-following consensus method. In this section, the nonlinear dynamic model of one quadcopter aerial vehicle is presented [START_REF] Sadeghzadeh | Linear parameter varying control synthesis: State feedback versus h∞ technique with application to quadrotor ua v[END_REF]. Fig. 1 shows the scheme of the quadcopter representing the main forces acting on the vehicle. To obtain this dynamic model, the following assumptions are stated [START_REF] Ortiz-Torres | Fault estimation and fault tolerant control strategies applied to vtol aerial vehicles with soft and aggressive actuator faults[END_REF]:

Assumption 4: The quadcopter structure is rigid and symmetrical, Assumption 5: The center of mass and the origin of the body frame O B coincide. The quadcopter is composed of four independent motors with four propellers that produce torques and thrusts in the direction of the propellers axis of rotation. Propellers 1 and 3 turn in the clockwise direction, while propellers 2 and 4 turn in the counterclockwise direction. From Fig. 1 The dynamics of the quadcopter can be defined as follows [START_REF] Ortiz-Torres | An actuator fault tolerant control for vtol vehicles using fault estimation observers: Practical validation[END_REF]:

ξ = v, m s v = RF, Ṙ = R Ω, J Ω = -Ω × JΩ + τ, ( 25 
)
where ξ = [p x , p y , p z ] T ∈ R 3 and v = [v x , v y , v z ] T ∈ R 3
denotes the position and velocity of the vehicle with respect to the frame I, respectively. The angular velocity is defined by Ω = [p, q, r] T ∈ R 3 in the body-fixed frame B, and m s is the total mass of the vehicle. The Euler angles are expressed by roll ϕ, pitch θ, and yaw ψ. The moment of inertia is denoted by J = diag(J x , J y , J z ) ∈ R 3×3 defined in B, τ expresses the moments in B, Ω introduces the skewsymmetric matrix of the vector Ω, R means the rotation matrix from B to I, and F are the forces produced by the motors. By considering the previous assumptions and using the Newton-Euler formalism, ( 25) can be expressed as follows [START_REF] Sadeghzadeh | Linear parameter varying control synthesis: State feedback versus h∞ technique with application to quadrotor ua v[END_REF]:

ṗx = v x , ṗy = v y , ṗz = v z , vx = cψsθcϕ + sψsϕ 1 m s u z - d f m s v x , vy = sψsθcϕ -cψsϕ 1 m s u z - d f m s v y , vz = -g + cθcϕ 1 m s u z - d f m s v z , φ = p + sϕtanθ q + cϕtanθ r, θ = cϕq -sϕr, ψ = sϕq + cϕr 1 cθ , ṗ = qr(J y -J z ) + u ϕ 1 J x - d t J x p, q = pr(J z -J x ) + u θ 1 J y - d t J y q, ṙ = pq(J x -J y ) + u ψ 1 J z - d t J z r, (26) 
where c, s and tan denote the trigonometric functions cosine, sine and tangent, respectively. The system inputs for the translational and attitude dynamics are defined as u = [u z , u ϕ , u θ , u ψ ] T . The real inputs of the system are the upward-lifting forces generated by each propeller, defined as f 1 , f 2 , f 3 and f 4 (see Fig. 1).

A. Model simplification

Some considerations are made for the full nonlinear system [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF] in order to obtain a simpler model for control design purposes. When the vehicle is near to hover, the rotational dynamics can be simplified by considering that φ, θ, ψ ≈ p, q, r [START_REF] Zaki | Trajectory control of a quadrotor using a control allocation approach[END_REF]. Also, if the hover condition is established during the entire flight period u z ≈ m s g. Drag force and drag torque can be considered null when the vehicle velocity is low. Therefore, the nonlinear equation for the quadcopter vehicle ( 26) is rewritten in an quasi-LPV state-space form as follows:

ẋ =A ζ)x + B ζ)u, y =Cx, (27) 
with

A ζ) =                  
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 g 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -g 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q1ζ3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Q2ζ2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Q3ζ3 0 0 0 0

                  , B ζ) =                 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ζ1/ms 0 0 0 0 0 0 0 0 1/Jx 0 0 0 0 0 0 0 0 1/Jy 0 0 0 0 0 0 0 0 1/Jz                 h=1 ρ h (ζ) A h x + B h u , y =Cx. (32) 
V. SIMULATIONS RESULTS

In this section, the proposed leader-following consensus formation control based on MASs is applied to a fleet of five identical quadcopters. The two objectives of the MAS are to follow the trajectories described by a virtual leader and maintain a desired shape. The dynamic model of the virtual leader and followers is considered as [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF], and the parameters of the UAVs are described in Table I. The initial conditions of the quadcopters and their respective observers are presented in Table II. The initial conditions of the axis velocities, the angles, and the angular velocities are zero for all UAVs and observers. All the initial states of the virtual leader are zero.

To solve the formation control consensus-based problem the control law ( 7) is considered as:

u i = K h   j∈Ni a ij ( ŝi -ŝj ) + α i ( ŝi -sl )   , (33) 
where ŝi (t) = [p T i -h T i , vT i , ωT i , ωT i ] T , is the estimated state vector of agent i and sl = [p T l , v T l , ω T l , ωT l ] T is the virtual leader state vector. Considering

p i = [p xi , p yi , p zi ], v i = [v xi , v yi , v zi ], ω = [ϕ i , θ i , ψ i ], ω = [ φi , θi , ψi ],
and u i the position, the axis velocities, the angular position, the angular velocities, and the acceleration respectively of agent i, H = [h T 1 , h T 2 , . . . , h T N ] T contains the desired distance column vectors h i of every agent. In this example, the following matrix H is used to perform the formation of a pentagon: where r = 4 is the radius of the pentagon and the distance between the leader and each UAV. The communication topology is illustrated in Fig. 2. Based on Fig. 2, the communication with the virtual leader is denoted by Λ = diag(1, 0, 0, 0, 0) and the Laplacian matrix:

H = r •   s(36) s ( 
L =       3 -1 -1 0 -1 -1 2 -1 0 0 -1 -1 3 -1 0 0 0 -1 2 -1 -1 0 0 -1 2       . ( 35 
)
To compute the vertex control gains K h and the vertex observer gains L h , the quasi-LPV representation of the UAVs ( 27) is used to find a solution for the LMIs presented in Theorem 1 with µ = 0.001 using Matlab software with the toolbox SDPT3 [START_REF] Toh | Sdpt3-a matlab software package for semidefinite programming, version 1.3[END_REF].

To prove the performance of the LPV observer (8), the estimation error e i = y i -ŷi is shown in Fig. 3, where the convergence of all the estimated states of all agents is guaranteed. Sensor noise was added as a random function with normal distribution, a mean value of zero, and a standard deviation of 0.003. The objective of the virtual leader is to be the center of the pentagon and reach the reference position [0, 0, 20]

T which corresponds with the axis p x , p y , and p z . In order to track a smooth trajectory, the following trajectory planning (36) is used as a change of reference for the altitude of the virtual leader:

z ref (t) =z(0) + (10/T 3 )[z(T ) -z(0)]t 3 - (15/T 4 )[z(T ) -z(0)]t 4 + (6/T 5 )[z(T ) -z(0)]t 5 . (36) 
where z(0) = 0 is the initial position of the virtual leader, z(T ) = 20m is the desired altitude, T = 5s is the period of time between z(0) and z(T ). To synthesize (36) the initial and final conditions of the velocity żref and the acceleration zref are considered as zero to ensure a smooth trajectory. Fig. 4 shows the trajectory reference z ref , the virtual leader z l , and all UAVs altitudes z i . If the altitude reference is a step of 20m, an overshoot occurs in the thrust u z outside the physical limitations allowable by a UAV, the overshoot is removed with the trajectory planning (36) and all the obtained thrust in Fig. 5 are at appropriate physical values. Fig. 5 shows the obtained thrust u z for the virtual leader and the five quadcopters when (36) is considered for the virtual leader. To measure the synchronization error in this example, let us define δ i = ∥x i -x l ∥ -r. Fig. 7 represents the evolution of δ i . The quadcopters follow the leader's trajectories in their desired pentagon vertex when δ i = 0. Let us define d ij = ∥([x i , y i , z i ] T -[x j , y j , z j ] T ) -(h ih j )∥ if d ij = 0, then, the desired formation is reached. Fig. 8 illustrates the relative distances performance between the quadcopters to reach the desired formation H. 

VI. CONCLUSIONS

A distributed leader-following consensus control for LPV multi-agent systems was presented. The LMIs conditions to compute the control and observer gains were presented considering the less conservative Polya's theorem. The simulation results show that a team of UAVs was able to follow the trajectories of a virtual leader and maintain a desired formation with the proposed approach. As an extension of this work, collision avoidance and communication constraint management are suggested. Because an agent can be affected by actuator or sensor faults, compromising the global objective of the team, an LMI-based fault-tolerant control for LPV multi-agent systems is proposed for future work.

  , I = {O I , p x I , p y I , p z I } denotes an inertial frame, and B = {O B , p x B , p y B , p z B } denotes a rigid frame attached to the center of mass of the vehicle.
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 4 Fig. 4. Trajectory planning of the virtual leader in z-axis.
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 5 Fig. 5. Thrust of the leader and the followers.
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 6 Fig.6shows the performance of the quadcopters' trajectories. The leader quadcopter is in the middle of all the followers in black color at the desired altitude. The followers reach their desired position in the vertex of the pentagon highlighted in green color.
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 6 Fig. 6. Trajectories of the quadcopters.
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 7 Fig. 7. Synchronization error.
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 8 Fig. 8. Distances between followers to reach the formation.

  are the state, input, and output, vectors respectively;A(ζ i (t)) ∈ R n×n , B(ζ i (t)) ∈ R n×r , and C(ζ i (t)) ∈ R p×nare the matrix functions scheduled by the vector ζ i (t) ∈ R n ζ , which is considered known and available for every i-th agent, and is assumed to vary in a closed set R.

		The bounding box
	method [27] is used in order to express A(ζ i (t)), B(ζ i (t)),
	and C(ζ i (t)) as a convex combination of S vertex matrices,
	such that
		A(ζ i (t))
	 B(ζ i (t))
		C(ζ i (t))

TABLE I PARAMETERS

 I OF THE VTOL-UAV.

	Parameter	Value	Unit
	Mass of the vehicle, ms	1.4	Kg
	Acceleration due to gravity, g	9.81	m/s 2
	Drag force coefficient, d f	0.1	Ns
	Drag torque coefficient, dt	0.8	Nms
	Moment of inertia about x, Jx	0.02	Kgm 2
	Moment of inertia about y, Jy	0.03	Kgm 2
	Moment of inertia about z, Jz	0.04	Kgm 2

where ζ 1 = cθcϕ, ζ 2 = φ, ζ 3 = θ, Q 1 = (J y -J z )/J x , Q 2 = (J z -J x )/J y , and Q 3 = (J x -J y )/J z . The state vector for one quadcopter vehicle is defined as x = [p x , v x , p y , v y , p z , v z , ϕ, φ, θ, θ, ψ, ψ] T and C matrix is chosen in order that the output vector is y = [p x , p y , p z , ϕ, θ, ψ]. The dynamic system [START_REF] Sun | Affine lpv modelling and its use in gain-scheduled helicopter control[END_REF] is modeled as a quasi-LPV representation in order to design an effective leader-following consensus.

B. Quasi-LPV representation

Based on the sector-nonlinearity technique [START_REF] Ohtake | Fuzzy modeling via sector nonlinearity concept[END_REF], the number of local linear models is directly related to the number of nonlinear terms. For each nonlinear term, two sub-models are obtained such that for f nonlinear terms, the global model is composed of m = 2 f sub-models. The scheduling 

Thus, applying [START_REF] Rotondo | Analysis and design of linear parameter varying systems using lmis[END_REF] to the quadcopter vehicle, the weighting functions are expressed as:

Therefore, for f = 3, m = 8 scheduling functions are computed as the product of the weighting functions that correspond to each local model, as:

satisfying the convex set sum property in [START_REF] He | h∞ leader-following consensus of nonlinear multi-agent systems under semi-markovian switching topologies with partially unknown transition rates[END_REF]. Note that (30) can be rewritten, as

, where [h 1 , h 2 , h 3 ] is the 3-digit binary representation of (h -1). The known matrices A h and B h , with h = 1, . . . , 8 (defining the 8 submodels) are computed by replacing the scheduling variables ζ 0 f or ζ 1 f , with f = 1, 2 and 3, to the matrices A ζ) and B ζ) in [START_REF] Sun | Affine lpv modelling and its use in gain-scheduled helicopter control[END_REF], such that:

) where ζ f indicate which portion of the f -th scheduling variable is involved in the h-th sub-model. Consequently, by using the scheduling functions given by ( 30), the nonlinear system ( 27) is exactly represented as the following quasi-LPV model: