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The stochastic Jacobi flow

by
Elie Aidékon', Yueyun Hu? and Zhan Shi®

Summary. The problem of conditioning on the occupation field was
investigated for the Brownian motion in 1998 independently by Aldous
[4] and Warren and Yor [34] and recently for the loop soup at inten-
sity 1/2 by Werner [35], Sabot and Tarres [30], and Lupu, Sabot and
Tarres [22]. We consider this problem in the case of the Brownian loop
soup on the real line, and show that it is connected with a flow version
of Jacobi processes, called Jacobi flow. We give a pathwise construc-
tion of this flow simultaneously for all parameters by means of a com-
mon Brownian motion, via the perturbed reflecting Brownian motion.
The Jacobi flow is related to Fleming—Viot processes, as established by
Bertoin and Le Gall [9] and Dawson and Li [11]. This relation allows us
to interpret Perkins’ disintegration theorem between Feller continuous
state branching-processes and Fleming—Viot processes as a decomposi-
tion of Gaussian measures. Our approach gives a unified framework for
the problems of disintegrating on the real line. The connection with
Bass—Burdzy flows which was drawn in Warren [33] and Lupu, Sabot
and Tarres [23] is shown to be valid in the general case.

Keywords. Jacobi flow, perturbed reflecting Brownian motion, loop
soup, local time, Fleming—Viot processes, Perkins’ disintegration theo-
rem, Brownian burglar.

2010 Mathematics Subject Classification. 60J65, 60J55, 60J80.

1. INTRODUCTION

A Fleming—Viot process is a measure-valued branching process which models the evolu-
tion of a population of constant size 1. In [8], Bertoin and Le Gall construct a generalized
version of the process through a flow of bridges, which are in correspondance with ex-
changeable coalescents. We can understand this flow as follows (it is the flow B in the
notation of [8]). One represents the population at any time as the interval [0, 1], each
point of the interval (the label) representing a particle. Only a finite number of particles
at time 0 will beget descendants at time ¢ > 0. Partitioning the population at time ¢
into families will yield a finite partition of the interval [0, 1], the i-th interval from the
left representing the descendants at time ¢ of the ancestor at time 0 with the i-th lowest
label. One can then construct at each time ¢ a piecewise constant bridge from 0 to 1.
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The bridge jumps at the label of a particle at time 0 which has descendants at time ¢,
the size of the jump being the size of its offspring, and stays constant otherwise. One can
proceed similarly between times s and ¢ (and not only 0 and ¢), and obtain a collection of
bridges which naturally satisfies a flow property. Incorporating immigration in the model
translates into adding an extra jump at 0 to the bridge, see [13]. In the case where the
coalescents are so-called A-coalescents, Dawson and Li [11] consider the flow ) such that
the bridges of [8], [13] are the maps v € [0, 1] — Vs+(v), with Vs (0) representing the size
of the population descending from immigrants which arrived at rate  between time s and
t. They construct it as a solution of a stochastic differential equation (SDE) driven by a
white noise and a Poisson random measure.

We consider the flow ) in the case where the SDE appearing in [11] is only driven by
the white noise. The flow lines of )}V are the solutions of the SDE

(1.1) aY; = 2¢/Y,(1 — Yy)dy, + (5(1 — ;) — §'Yy) dt,

where v denotes a one-dimensional Brownian motion, and 6,9’ € R. In the case § = §' = 0,
the dual of Y corresponds to the classical Kingman coalescent. Following [34] we call the
solution (Y;) of (1.1) a Jacobi(d, d") process. These processes arise as the ratio of Gamma
processes, see Proposition 8 in [34] in the case of nonnegative parameters, and Theorem 4
in [24]. A Jacobi(é, ") process is called in population genetics a Wright-Fisher diffusion
with mutation rates (4, d’).

The Jacobi flow ) is the flow version of the Jacobi processes Jacobi(d, §’), see Definitions
4.2 and 4.3.

One of the goals of this paper is to give a pathwise construction, from a one-dimensional
two-sided Brownian motion, of Jacobi(d, §’) flows simultaneously for all 6, 0” € R. This is
done by means of the two-sided perturbed reflecting Brownian motion defined as follows.
Let (B, t = 0) and (B}, t = 0) be two independent standard one-dimensional Brownian
motions. Denote by £ and £’ their associated local time processes at position zero. The
two-sided Brownian motion (B, t € R) is defined as

| B, t<O,
Bt'_{Bt t=0.

We also let £, := —£&", for t < 0. For p > 0, we define the two-sided perturbed reflecting
Brownian motion (PRBM) or u-process by

B 4 g, ift <0,

which can simply be written as X; := |By| — u£, t € R. [The case p = 1 is special: on the
positive half-line, it is distributed as a Brownian motion while in the negative half-line,
it is a time-reversed three-dimensional Bessel process.] For general properties of PRBM,
see [19, 36] and the references therein.

The promised pathwise construction of Jacobi(d, d’) flows is as follows:

Theorem I (Theorem 4.6). Let §,6' € R. Let Y be defined as in (4.11). Then Y is a
Jacobi(d, d") flow.
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We will see that the flow ) constructed in (4.11) is a measurable function of the PRBM
(X;). Furthermore, ) satisfies an SDE driven by a specific martingale measure, see
(4.12). This last result can be interpreted as a “flow version” of the well-known Perkins’
disintegration theorem where we disintegrate, with respect to a flow line, an associated
flow of squared Bessel processes; see Section 2 for the definition and construction of
this associated flow of squared Bessel processes. In particular, Theorem 4.6 shows that
Perkins’ disintegration theorem between Feller continuous state branching-processes and
Fleming—Viot processes amounts to a decomposition of Gaussian measures.

Another goal of the paper is to describe the “contour function” of Jacobi flows. We show
that this contour function is a version of the PRBM conditioned on its occupation field.
As such, it gives a unified framework for related problems on disintegrating a standard
Brownian motion [4, 34, 33, 7, 17] and inverting the Ray—Knight identity of the Gaussian
free field on the real line [23]. The connection with Bass-Burdzy flows which was drawn
in these papers is shown to be valid in the general case. It provides a construction of
the PRBM, or equivalently ([21]) of the one-dimensional loop soup, conditioned on its
occupation field. The corresponding result for the loop soup at intensity % on a metric
graph is given in [1].

The problem of conditioning a Brownian motion on its occupation field has been treated
by Aldous [4] and Warren and Yor [34], via different approaches. Aldous used the tree
structure of the Brownian excursion to show that the genealogy of the conditioned Brow-
nian motion is a time-changed Kingman coalescent (which is the dual of a Fleming—Viot
process). Later, Berestycki and Berestycki [7] found an analogous result with excursion
theory. Warren and Yor [34] solved the question by constructing the conditioned Brown-
ian motion in time (rather that in space, as in the case of Aldous [4]). If | B| is a reflecting
Brownian motion, they define a process Z, called Brownian burglar, by

Bla, dr : dr
7, = , Ay i=inf{s>0 : >t
t L LB B)), ) e {S L LIFI(r)(|B]), | B,|)2 }

where LBl and 7(|B|) are naturally the local time and the inverse local time of |B|. They
showed that Z is independent of the occupation field (LIZI(79(|B),r), » = 0). In these
works, the link with the Fleming-Viot process has been suggested but not made explicit.
In [34], the authors state that “the results [...] can be seen as describing a contour process
for the Fleming—Viot process’. Recently, Gufler, Kersting and Wakolbinger [17] gave a
rigorous connection between these two models by constructing the Brownian excursion
via an enriched version of the lookdown process, hence giving a precise meaning to the
statement of [34].

In our case, we will recover the connection with Fleming—Viot processes by constructing
Z through our version of Perkins’ disintegration theorem. The idea, which originates in a
paper of T6th and Werner [31], is to define the burglar via its local time flow. Actually,
this approach will allow us to solve the analogous problem for the whole class of PRBM,
giving rise to a family of “burglars”.

To construct the burglars, we define

t
L(t, r):= lim1 1p<x,<rie) ds, teR, reR,

e—0 ¢ —o
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as the local time of the continuous semimartingale X at time ¢ and position r; we work
with a bicontinuous version of local times L(-,-), as in ([29], Theorem VI.1.7). Let

(1.3) 7/ =inf{se R : L(s,r) >t}
be the inverse local time of X. Let

to=sup{t<0: L(r), X;) =0}, t*:=inf{t>0: L(r), X;) = 0},
with the convention inf &5 = +00 and sup J = —o0. Define for ¢t € R,

X0 dr s dr
1.4 Z(l) :=J A= A(l) = inf R : J — >t
e R ¢S M B B N 7005 Yl

The process ZM is the burglar associated with the process X between times t; and t*.
Similarly, let for ¢ > 0,

X, dr g dr
1 7@ ;:f “ AD i ;f U
L5 Z5= | Ty SRR A P e o

T

The burglar Z(?) is associated with the process X between times t* and 70. A precise
statement of the following result will be given in Section 5.1.

Theorem II (Theorem 5.3). The pmcesses ZW and Z® are independent of (L(10,7), r €
R). The local time flows of the processes ZY) and Z®) are the left part and the right part
of a flow which is a Jacobi(d,0) flow in the positive time-azxis and a Jacobi(d,2) flow in
the negative time-axis.

The above result gives a description of the conditional law of a PRBM given its oc-
cupation field up to 7¢ (and from ¢%). It suffices to take the processes Z(!) and Z®?
independently of the occupation field, and invert the transformations (1.4) and (1.5). We
can also obtain a burglar by disintegrating the positive part of a PRBM with respect
to its occupation field, see Section 5.4. This burglar can be interpreted as the contour
function of the Jacobi(d,0) flow. Each of its excursion away from 0 being associated with
a continuous tree in the manner of Aldous [4] and Duquesne and Le Gall [12], the burglar
can be viewed as the contour function of a Fleming—Viot forest.

We present now an interesting connection with the Bass—Burdzy flow. This flow was
introduced by Bass and Burdzy in [6]. The Bass-Burdzy flow with parameters (51, 82),
for f1, P2 € R, is the collection of processes (R;(z), t = 0, x € R) which are the strong

solutions of
t

t
Ri(z) =2+ + ﬁlf 1R, (x)<0yds + 52[ LR, (@)>0yds
0 0

where v is a standard Brownian motion common for all processes R.(x). In words, R;(x)
is a Brownian motion with drift ; when negative and fs when positive. Following [18],
for t = 0, denote by R, (0) the real  such that R;(z) = 0. When 3; = 0 and 3, = 1, the
process R; *(0) is shown in Warren [33] to be a time-change of the Brownian burglar of
Warren and Yor [34]. In a recent paper [23], Lupu, Sabot and Tarres showed that in the
case 51 = —%, By = %, the process R; '(0) is the scaling limit of a self-interacting process
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involved in the inversion of the Ray—Knight identity, see the next paragraph. We show
that in general, one can recover all the burglars Z® associated with the PRBM.

Theorem IIT (Theorem 5.12 and Proposition 5.13). Taking 5 = %—1 and By = g,
the process R;*(0) is a time-change of the process Z® defined in (1.5).

To prove the theorem, we use a new approach based on a renewal argument. The process
Z® has a kind of Markov property. If one appropriately scales the process after time t,
the scaled process will be independent of the past and with always the same distribution,
see Theorem 5.6. We use this property to show that the images of a point on the real line
by these transformations form actually a Lévy process up to hitting 0, and then deduce
that it must be a flow line of a Bass—Burdzy flow for some parameters. Finally, we use
some random variable whose distribution is easily identified to compute the parameters.
This renewal property breaks down when looking at Z(). Roughly speaking, one needs to
remember where the infimum was before doing the scaling. Still, we believe that a similar
connection should hold with some perturbed Bass-Burdzy flow.

Yet another, non-trivial, application of our construction concerns the inversion of the
Ray—Knight identity on the line and its connection with loop soups. Consider the PRBM
X. By excursion theory, the excursions of X above its infimum process forms a Poisson
point process of Brownian excursions rooted at various points of the real line. By exploring
the real line in the upwards direction, one can consider the excursions that one encounters
along the way as Brownian loops rooted at their minimum. As shown by Lupu [21], the
collection of loops has the law of a Brownian loop soup on the real line with intensity i
As a result, conditioning a PRBM on its occupation field may be seen as conditioning a
loop soup on its occupation field.

A similar problem was studied recently by Lupu, Sabot and Tarres [22] in the case
1 = 2, equivalently 0 = 1, which is the case of the loop soup at intensity %, related to the
Gaussian free field (the local time is BESQ', hence the square of the Gaussian Free Field,
which is simply the Brownian motion on the real line). In their setting (reformulated
in terms of loop soups), the authors add a Brownian motion up to a fixed local time at
zero to a loop soup on R\{0}. Conditionally on the occupation field, they manage to
reconstruct the Brownian motion path up to a random time. The reconstruction process
is actually in terms of the burglar Z®), stopped when it reaches local time 1 at some
position (which happens in a finite time almost surely).

We solve the problem for any intensity of the loop soup. Specifically, take a loop soup
in the positive half-line, and add Brownian excursions up to local time 1. We get the
positive part of a PRBM. A space-time transformation of this PRBM gives a burglar
Z* similar to Z® in (1.5), which we have interpreted as the contour function of the
Jacobi(d,0) flow; see (5.12) for the definition of Z*. One then gets a reconstruction of
the Brownian excursions added to the loop soup in terms of the Jacobi flow, or in terms
of a Bass—Burdzy flow driven by a reflecting Brownian motion with drift. More precisely,
we have
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Theorem IV (Theorems 5.15 and 5.16). Let Z* be as in (5.12) and the occupation
field f asin (5.11). Then the process Z* is independent of f and is the burglar associated
with the positive part of the PRBM.

Finally, we may wonder whether it is possible to find the law of a loop soup conditioned
on its occupation field on a cable graph introduced by Lupu in [20]. In general, the loop
soup loses its Markovian properties. But in the case of intensity %, the relation of the loop
soup with the Gaussian free field indicates that a certain Markov property should hold. It
is the topic of [1], where the description of the conditioned loop soup uses the framework
of this paper. In the discrete case, the analogous problem was answered by Werner [35]
(description that we could label in “space”, via the link with the random current model)
and Sabot, Tarres [30], Lupu, Sabot and Tarres [22] (description in “time”, via a self-
interacting process).

The paper is organized as follows. Flows of BESQ processes are studied in Section 2.
Section 3 collects all the transformations that will be needed to state the disintegration
theorems and construct the burglars. Section 4 contains the disintegration result stated
for the BESQ®® flows and as a corollary the construction of the Jacobi flows from the
PRBM. Theorem II on the conditioning of a PRBM is proved in Section 5.1. In Section
5.3, we will state the Markov property for Z(® and prove the link with the Bass Burdzy
flow given in Theorem III. Section 5.4 connects the contour function of the Jacobi(d,0)
flow to the Bass—Burdzy flow driven by a reflecting Brownian motion with drift. Section A
studies properties of the BESQ and Jacobi flows with emphasis on perfect flow properties,
and Section B contains a Girsanov theorem for Jacobi flows.

Acknowledgements. We thank Hui He, Zenghu Li, Titus Lupu, Emmanuel Schertzer,
Anton Wakolbinger for helpful discussions. The research of EA was partially supported
by NSFC grant QXH1411004.

2. THE BESQ FLOWS

We give the definition of the BESQ flows, then embed them in the PRBM. For any
bounded Borel function g : R, x R — R with compact support, let

00
(2.1) Wi(g) := J g(L(t, X:), X¢)sgn(B,)dB,.

—0o0
As shown in [2], the stochastic integral is well defined and W is a white noise on Ry x R.
Define for any x > r in R and any a > 0,

(2.2) Srz(a) == L(1), ), Syela) == L(r,", —x).

Theorem 2.1 ([2], Theorem 5.1). Let W be the white noise defined via (2.1). For any

reR and anya =0, S,,y.(a) and S}, (a) are the pathwise unique solutions, which are



strong®, of the following SDEs:

r+h
(2.3) Sypyn(a) = a—+ QJ W([0, S, s(a)],ds) + 2h, h >0,
1

24 Stale) = o2 [ W] ds) + 2= D b e [0.Th(S], )]

where W* is the image of W under the map (a, s) — (a, —s) and To(S},, (a)) := inf{h >
0: 8% u(a) =0}

Remark. If /; := inf,; X, denotes the infimum process of X, we can rewrite Ty(S}, ,.(a))
in (2.4) as =L — 1.

Ray-Knight theorems are usually statements on marginal distributions. Recall that
the squared Bessel process of dimension d € R started at = > 0, denoted BESQ‘;, is the
pathwise unique solution of

t
St=x+2j \ |Ss| dys + ot t>=0,
0

where, as before, 7 is a standard Brownian motion. The BESQ? hits zero at a positive
time if and only if § < 2. It is absorbed at 0 when é = 0 and is reflecting at 0 when
§ € (0,2). When 6 < 0, after hitting 0, it behaves as a BESQ,? in the negative half-
line, see e.g. [15]. See Le Gall and Yor [19] and Yor ([36], Chapter 9) for references on
Ray-Knight theorems.

Ray—Knight theorems show that the flows of squared Bessel processes are embedded
in the PRBM. The setting of Dawson and Li [11] includes the construction of such flows.
We impose some further regularity conditions in order to give it the structure of a flow in
the sense of [5, 31].

Definition 2.2. Let 6 > 0. We call BESQ® flow (or non-killed BESQ® flow) a collection
S of continuous processes (S, (a), T = T)reras0 Such that:

1) for each (r,a) € RxR,, the process (S, (a), x = 1) is almost surely the strong solution
of the following SDE

(2.5) Soala) = a+2 f W0, S, (a)], ds) + 6z — 1)

where W is a white noise on Ry x R.
2) Almost surely,
(i) for allr € R and a =0, S, ,(a) = a,
(ii) for allr < x, a— S, .(a) is cadlag,
(i1i) for all v < r and all a’;a = 0, if Sy,(a') > a (resp. Sy ,(d') < a), then
Sy z(d') = S, .(a) (resp. Spi(a') < S, x(a)) for all x = 7.

4By strong solution, we mean that for instance .., 1,(a) is measurable with respect to a{W (-, [r, s]) :
r < s < r+ h}. This terminology will be used elsewhere with the same remark.
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Definition 2.3. For —co < § < 2, we call killed BESQ® flow the flow solution of (2.5),
where the process is absorbed when hitting 0, and which satisfies the same regularity con-
ditions.

For short, we call general BESQ® flow a killed BESQ® when § < 0, a (non-killed)
BESQ’ flow when § = 2 and either a killed or non-killed BESQ® flow when 6 € (0,2).

Dawson and Li [11] showed (in a more general setting) that equation (2.5) possesses
a pathwise unique solution. We can show that the same is true in the case § < 0, with
arguments similar to the ones of the proof of Theorem 4.6.

We check that the BESQ flows are naturally embedded in the PRBM X, which will give
the existence of these flows for free. In agreement with (2.2), we define S, ,(a) = L(7], z)
for any r, 2 € R. We call the collection of processes Ly := (S, .(a), —0 <r,x < 0, a = 0)
the local time flow of X. The flow S := (S, ,(a), = 7),er a0 is called the forward local
time flow of X, while S* := (S_, _,(a), x = 7)rera>0 is called the backward local time
flow of X. Both flows are dual as we will see in equation (2.6).

Proposition 2.4. Let 1 > 0.
The forward flow (S,.(a), T = 1),craz0 is a BESQY* flow.
If e (0,1], the backward flow (S_,_»(a), T = 1)rer.aso is a killed BESQ* " flow.

Proof. The finite-dimensional distributions coincide by Theorem 2.1 so we only have to
check the regularity conditions (i), (ii) and (iii) in Definition 2.2. We have S, ,(a) = a
indeed. Statement (ii) is a consequence of the continuity of the local times, and the
observation that a — 7. is cadlag by construction. We prove now (iii). We have S, ,.(a’) =
L(77,,7). By definition of 77, S, ,(a’) > a is equivalent to 77, > 77. Therefore, S,/ ,(a') =
L(77,2) = L(70,2) = Sy.(a). O

Conversely, we can recover X from its local time flow. It is the content of the following
proposition.

Proposition 2.5. The process X is a measurable function of its local time flow Lx =
(Syz(a), —0 <r,x <o, a=0).

Proof. By the occupation times formula, for any a > 0 and b, 72 = {3 (S (a) — So,(0))dr
hence (72, a = 0, b € R) is measurable with respect to Lx. Therefore L(t,z),t € R,z € R,
is measurable with respect to Lx, which again by the occupation times formula yields
that X is measurable as well (for any s < ¢, Sz X,du = §; 2(L(t,x) — L(s,z))dz). O

We show now that any BESQ? flow can be constructed from a countable number of
flow lines. It allows us to identify BESQ® flows with flows embedded in a PRBM.

Proposition 2.6. Let S be a general BESQ® flow. Let (ry, ay), be a dense countable set
in R x Ry. Almost surely, for any x = r and a = 0,

Sru(a) = inf S z(ay).

{n:rn<r, Sp, r(an)>a}l
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Proof. We first check that almost surely, for any r € R, and any 0 < a < @/, one can find
some (r,,a,) such that r, <r and S,, »(a,) € (a,a’). From Theorem 2.1, one can reason
on the local times of the PRBM (notice that one can make this identification because we
only look at a countable number of flow lines). The previous claim property follows since
it suffices to take a < by < by < d’, and (r,,a,) such that L(7%,7,) < a, < L(7%2,7,).
We would then have L(7%,r) = L(t*,r) > a and L(7{»,r) < L(722,r) < d'.

Let us go back to the proof of the proposition. Fix £ > r and a = 0. We prove that
Sraz(a) = infg.<r s, (an)>a} Sraz(an). Notice that the set over which the infimum is
taken is not empty. For any (a,,r,) such that S,, .(a,) > a, we have S;, »(a,) = S, ,(a)
by (iii) of Definition 2.2, which proves one inequality. If ' > a, we take some (a,,r,)
such that S,, ,(a,) € (a,a'). Then S, ,(a) < S;, +(a,) < S, »(a’). We then conclude by
(ii) of Definition 2.2. []

Proposition 2.7. Let 6 € R. Let S be a general BESQ® flow. Define its dual S* by, for
r<uo,

Sy (a) ==inf{b>0:8, .(b) > a}.

Then S* is a BESQ®™° flow (in the case § € (0,2), it is killed if S is not killed, and it is
not killed if S is killed). Moreover, (§*)* = S.

This proposition gives the dual of a Feller CSBP with immigration. We refer to Foucart,
Ma and Mallein [14] for dual processes of CSBPs.

Proof. 1t is a direct consequence of Proposition 2.4 and the following claim: almost surely,
forall r,x e R and a > 0,

(2.6) Srz(a) =1inf{b >0 : S, ,(b) > a}.

Let us prove this claim. Let b > 0 be such that S,,(b) > a. By definition, it means
that L(7f,r) > a, and since L(7),r) = a, we get 77 > 77 so that b = L(77,z) = L(7],x)
which is S, .(a) by definition. On the other hand, let b > 0 such that S, ,.(b) < a,
ie., L(mf,r) < a. Take s = 0 such that L(s,r) > a, hence s > 77. It implies that
L(s,z) = L(1¥,x) = b and L(7),x) = b by making s | 7. [J

3. SPACE-TIME TRANSFORMATIONS

In this section, we consider a fixed positive continuous function f : I — (0, 0) where [
is an interval (not necessarily open nor bounded).

3.1. Transformations of flows. The results in this section hold in a deterministic set-
ting. They provide the transformations that will be used later in our disintegration results.

We introduce some general notation. Let ¢ € I and define

Todr
Npe(z) = 70 xel.
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Definition 3.1. We denote by V(-, f, c) the transformation with domain Dy := {(a,x) :
a € [0, f(x)], z € I} defined as

Dy — [0,1] xns(1)
V(- f,e): (a,2) <L ( ))
’ Ty el ®

If g : I — R, is a continuous function such that g < f, we denote by V(g, f,c) the
function whose graph is the image of the graph of g by V(-, f,c). That is

nge(d) —  [0,1]
\Ij(ga f> C) : T N m
fong L(x)”

When ¢ = 0, we will simply write ny for ngo and ¥ (-, f) for ¥(-, f,0).

In this section, we will not need a precise definition of flows. Let g : I — R, be
a continuous function. We will simply call g-flow a collection £ := {S,.(a),r € I, a €
[0,9(r)]} of continuous functions S,.(a) : I — R, such that for every r,xz € I and
a € [0,9(r)], Sir(a) = a and S,,(a) < g(xz). We call it flow only because we will
deal exclusively with the BESQ and Jacobi flows. More generally, we give the following
definition.

Definition 3.2. We call flow in the domain Dy any flow which is a g-flow for some
continuous nonnegative function g < f.

Remark. We also allow the case f = o0, meaning that £ is a flow in the domain R, x R.

If £ is a g-flow, the forward flow of L is the collection of functions S := (S, ,(a), = €
I N [7,00))reracfoqe) and the backward flow of L is the collection of functions S* :=
(S—r—z(a), x € (=I) N [r, +90)re_r,ae[0,9(—r)] Where —I := {—z, x € I}. We already men-
tioned the Jacobi flow and the BESQ flow, which are in our terminology forward flows.
The first one is a forward flow in the domain [0, 1] x R (here g(r) = 1). The second one
is a forward flow in the domain R, x R (formally taking g(r) = o).

Definition 3.3. Let g < f be a continuous nonnegative function and ¢ € 1. Consider
a g-flow L. We denote by V(L, f,c) the flow such that for any (v,r) in the image of
D, :={(a,z) : a€|0,9(x)], z eI} by V(- f,c), its flow line passing through (v,r) is the
image of the flow line in L passing through the preimage of (v,r). It is defined through
the following equation:
S 1 -1 vfonyi(r
WL, f,0),, () = 0T 2 el

f © nf7C (x>

for all r,x € ng(I), v e [0,Y(g, f,c)(r)]. When ¢ = 0, we will only write V(L, f) for
U(L, f,0).

Remark. The image flow W(L, f,c) is a ¥(g, f, ¢)-flow.

If we only look at the forward flow S (for example in (4.10)), we will still write ¥ (S, f, ¢)
for the forward flow obtained as in Definition 3.3, restricted to r < .
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3.2. Transformations of processes. Let J be an interval of R containing 0 and X =
(X, t € J) be some real-valued continuous process such that X; € [ for all t € J. We
suppose that X admits a version of bicontinuous local times Ly (t,x), t € J, z € I, defined
as the densities of the occupation times: for any Borel nonnegative function h and any
ted,
J h(X5)ds = f h(z)Lx(t,z)dz.
Jn(—o0,t] I
We let g(x) := Ly (o0, z) for x € I denote the total local time of X at position x and we
suppose that g(z) < f(z) on I. Define Ly = (S, .(a))rzq as, for any x and r in I and
0<a<g(r),
Srala) = La(7(X), ),

where

70(X):=1inf{t € J : Lx(t,7) > a}.

a

We used the convention that inf ¢f = 00, so that when a = g(r), 77(X) = o0 and S, ,(a) =
g(z) for all x. Then Ly is a g-flow, which (in agreement with the previous section) we
will refer to as the local time flow of X. Its forward, resp. backward flow is called forward,

resp. backward local time flow of X. By Definition 3.2, Ly is a flow in the domain Dy.
Proposition 3.4. We set

tods
Cy(t) ::LW’ e

Force I, we let Y(X, f,c) be the process defined as

Yot dr
3.1 T(X, f,c) i= c(;(l):f ro e
(3.1) (X, f,e)e ==y, ) . )

Then, the process Y (X, f,c) possesses bicontinuous local times (given by (3.2)) and its
local time flow is V(Ly, f,c).

te Cf(J)

For sake of brevity, we will write in the rest of this section Z := T(X, f, ¢).

Remarks. (i) The definition of T does not depend on the choice of the interval I on
which is defined f.
(ii) Observe that |Cy(t)| < oo for all t € J and t — C(¢) is strictly increasing so that Z
is well defined and is a continuous process. Moreover, for all t € C((.J), Z; € nys.(1).
(iii) In the course of the proof, we will prove that the local time Lz(t,z) of Z at time
t € C¢(J) and position x € ns.(I) is given by

_ LX(C;I(t),n;i(x))
fonyax)

In particular, the total local time of Z at position x is U(g, f,c)(z) < 1 for all z € n.(1).
(iv) Explicitly, the proposition means that

Lz((2),2) = (Lx, f,0)ra(v)
for all 7,2 € ny.(I) and v € [0, (g, f, ¢)(7)] where 77 (Z) := inf{t € C;(J) : Lz(t,7) > v}.

(3.2) Ls(t, )
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Proof of the proposition. For simplicity, we suppose that ¢ = 0. First we prove (3.2)
by following the proof of Lemma 2 of [34]. Let h : R — R, be a Borel function. Let
t; :=inf J and ¢, := sup J. Using change of variables, we have for ¢ € (¢4, t),

Cf(t) rt
J hZ,)du = h(ZCf(s))dOf(S)
Cy(t1) Jtq
rt ds
= h Xy)———
), e ) g
[ ng(t,l')
= hone(x dx
Ji; () f(z)?

by the occupation times formula. Let E(Cf(t), ng(x)) = % We get by the change of

variables z = ns(z),

ch@) h(Z,)du — F W) E(C; (1), 2)dz.

Cf(t1) —0o0

Therefore Z has local time given by L. It proves (3.2). Let r,z € I and 0 < v < ?E:)) Set

= np(r), & 1= ns(x), 77 1= C4(f) where t := 7y iy (X). Then L(7#7,#) = v, and since
v — 77 is right-continuous, we deduce that 7 is the inverse local time of Z. Moreover, by
definition,

~

L(7), &) =

v

L (7} (X), 2) _ S (vf(r))
f(@) flz)
By Definition 3.3, it is ¥(Lx, f)s2(v) indeed. [J

The transformation T behaves well under composition. It is the content of the following
lemma. For a process X, we let X,,. denote the process X, t = 0 (as long as X,y is
well-defined).

Lemma 3.5. Let s€ J and ¢ € I. We suppose that f — Lx(s,-) is positive on an interval
containing ¢ and {X,..}. Then, T (Z¢,(s)+.,1 — Lz(Cy(s),),n5.e(¢')) is well-defined and
equals T (Xgy., f — Lx(s,-), ). In particular, the values at time 0 of the two processes
are identical, i.e.

(3.3)

chf@ dr e dr
ng,c(c)) 1- LZ(Cf(8)7 T) o (T) - LX(‘S? T) .

Remark. By saying that T (Z¢, (94,1 — Lz(C(s), "), nse(c)) is well-defined, we mean
that
(i) the total local time of Z¢,(s)4. at position u is smaller than 1 — Lz(Cy(s),u) (which

is clear since the total local time of Z is smaller than 1)
(ii) 1 — Lz(Cy(s),-) > 0 on an interval containing 7;.(c’) and {Z¢;(s)5-}-
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Proof of Lemma 3.5. We first check that T (Z¢, (4., 1 — Lz(Cy(s), ), nse(c)) is well-
defined, hence we check statement (ii) above since (i) is clear. By (3.2), for any u € ny (1),
| La(s.piw)

F (e (u)

We deduce that (i) is satisfied since {Z¢,(s)+.} = n7..({Xs1.}). Let us prove the second
statement of the lemma. Let ¢ > 0 with s +¢ € J. Let

"o, i du "o /
v= |, )~ LaGs e © el

Substituting v for Cy(u) in the above integral and using that Z¢,w) = 17..(X.) by (3.1),
we get

Cy(s+t) dv
(3.4) - f N
cis) (1 —=Lz(Cr(s), Z,))

Observe that by the change of variables = = nj?i (r) in the integral,

—1
v dr M7.e(%) da
3.9 _ §).).c = = .
I R I e =rccws Bl M v

Let us consider Y(Z¢,(s)+., 1 — Lz(Cy(s),),c") at time ¢". By definition and using
equation (3.4),

(2o 1 = Lz(Cp(s), ), )E") = morz0p).0.0(Z0pst0)-
Equation (3.5) with u = Z¢ (s1¢) = 1.c(Xs4t) yields

et dx
= - s.:).c’ XS .
T = Loy - tatene (Ford)

Lz(Cy(s),u)

M-L2(Cp () ) (ZCp(st1) = f

c/

By definition, it is the value of the process Y (X;,., f — Lx(s,+), ) at time ¢”. The proof
is complete. []

Notation 3.6. When ¢ = Xy, we will write Y (X, f) for T(X, f, Xp).

(i) Direct computations also show that T (X, f) stays unchanged when replacing X by
X +aand f by f(- —a) for a e R arbitrary.

(ii) Since ny.(Xs) = Zc,(s) by definition, Lemma 5.5 in the case that ¢/ = X reads

T (Zcf(8)+., 1- Lz(Cf(S), )) =T (Xer-vf - LX(87 ))

We finish this section by a continuity lemma on the transformation T that will be used
later on.

Lemma 3.7. We fix a couple (X, f) where X : J = [0,0) - R, f: I — (0,0) are
continuous and X, € I for allt = 0.

We consider a sequence (X", f"),=1 such that X™ : [0,7,) — R, j, € Ry U {+o0},
fr: L, — (0,00) and X, € I,, for allt € |0, j,). The sets I, I,, are intervals.

We make the following assumptions:
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= 00’

)

(1) for alln, X} = Xy =0 and Sé" FATE X” ={ f(
(1) lim,, o j, = 0;
(111) X™ converges uniformly to X on any compact set of Ry ;
(iv) for any compact set K of R, , there exists a compact set L in R such that
(a) for n large enough, X (K) and X™(K) are contained in the set L which is itself
contained in I and in I,;
(b) f™ converges uniformly to f on L.
Then Y (X™, f) converges to T (X, f) (for the topology of uniform convergence on compact
sets of R, ).

See Appendix C for the proof.

4. JACOBI FLOWS

In this section, we define Jacobi flows, and show how they arise by disintegration of the
BESQ flows.
Let A denote the Lebesgue measure.

Definition 4.1. We introduce the covariance functional
Qu(A, A) = h (MA A A) = XA~ [0,1)AA A [0,1]))

for A, A Borel sets of Ry, and h = 0. Let (€, —o0 < s < ) be a right-continuous filtra-
tion. We consider a collection of random variables (M(Ax[s,t]), s < t, A Borel set of R,)

such that for any s € R, A, A Borel sets of Ry, (M(Ax [s, s+h]))nso and (M(Ax [s, s+
h]))n=0 are two continuous martingales with respect to the filtration (Esip, h = 0) and

(4.1) (M(A % [5,5+]), M(A x [s,5+ ]))n = Qn(A, A).

From (4.1), we deduce that for fixed s, h, and (A,,),, disjoint Borel sets with A(|J, 4,) <
w0, we have M(|J, An, [s,s+ h]) =D, M(A,, [s,s+ h]) in L*(Q2). In other words, M is
an (&)-martingale measure with covariance functional ) on R} x R in the sense of [32].

The martingale measure M can be defined through a white noise YW on R, x R:
(4.2) M(A x [s,t]) == W(A x [s,t]) = A(A [0, 1)W(][0, 1] x [s,t]).

We now introduce the Jacobi flows.
Definition 4.2. Let § > 0 and §' € R. Let ) be a collection of continuous processes
(Vst(v), t = 5)ser,vef0,1]- We say that Y is a (non-killed) Jacobi(é, ") flow if it is solution

of
(4.3)

Vo o(v) = v+ 2f

S

t t

M([0.Ds 0 dr) + [ 61— Vurl0)) = Do) dr £ € [0,V ()]

where M is a martingale measure on Ry xR with covariance functional Q and T1(Ys,.(v)) :=
inf{t > s : Vs.(v) = 1} (it may be infinite). We require the reqularity conditions: almost
surely,

(1) for all s€ R and v € [0, 1], Vs s(v) = v,
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(11) for all s <t, ve|0,1)— YV, (v) is cadlag,

(iii) for all ' < s and all v';v € [0,1], if Vo s(v) > v, then Vg, (V') = Vs1(v) for all
t>s,

(iv) for all s <t <t', and v e [0,1], if Vst(v) = 1 then Vsp(1) = 1.

Definition 4.3. Let § < 2 and §' € R. We say that Y is a killed Jacobi(d,0") flow if it
is solution of (4.3) but is absorbed at 0 and satisfies the same regularity conditions. For
d € R, we call general Jacobi(6, ") flow a Jacobi flow which is either killed or non-killed.

Remark. Being non-killed means that the flow line is reflected at zero. With condition
(iv), we arbitrarily decided to kill flow lines when they hit 1. We could also let them reflect
at 1. Therefore, strictly speaking, our Jacobi flows are actually Jacobi flows killed at 1.

The existence of Jacobi flows will be obtained as a consequence of Theorem 4.6. As for
the case of BESQ flows, the Jacobi flow can be constructed from a countable number of
flow lines.

Definition 4.4. Let 6,6’ € R and b = 0. Let W be a white noise on R%. Consider the
BESQ’ flow (Srz(a),x = 7)reras0 driven by W as in Definition 2.2 or Definition 2.3.
Let f = (f(z), x € [0,0y)) be the pathwise unique solution of

(4.4) flx)=0b+2 E W([O0, f(s)],ds) + (6 + &)z

where the process is absorbed at 0 if it hits 0 at a positive time (we denote by 0 this
absorption time, possibly infinite). We call BESQ‘;"S/ flow driven by W the collection of
continuous processes © = (0, ,(a), 0 <r <z <), ac |0, f(r)]) where ©,.(a) = S,,.(a)
until it meets f, and is equal to f afterwards.

The BESQY" flow is called killed when S is killed.

When b = 0, by convention the flow will be defined for x = r > 0.

Remark. (i) To avoid trivial situations, we suppose either that b > 0 or b = 0 and
d + ¢ =2 (otherwise 9y = 0).
(ii) The flow lines may hit f only in the case ¢’ < 2.

We suppose now that b > 0. We have 0; < oo if and only if § + ¢’ < 2. We will use

the transformation ¥ of Section 3.1 with f. We recall that ny(z) := {; f‘%:). In all cases,

limg1o, ny(z) = +0 (see Lemma 5.1). Define the martingale measure W by, for any Borel
set A < R, with finite Lebesgue measure \(A),

— n; ' (t) 1
(4.5) W(A x [0,1]) := f ! — W (Af(r), dr), t>0,
r=0 f(’f’)
where Af(r) := {af(r), a € A}. If (&, © = 0) denotes the natural filtration of W, with

&y == o(W(- x [0,7]),0 < r < x), then the process (W(A x [0,t]))i=0 is a continuous
martingale with respect to the filtration (&;, ¢ = 0) := (@@n;l ) t = 0) whose quadratic
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variation process is equal to A(A)t. We deduce that W is a white noise on R? with respect

to the filtration (&, ¢ = 0).
We define the martingale measure M™* on R2 by the identity for any Borel set A < R:

(4.6) MM (Ax[0,8]) ;=W (A x [0,4]) = A(A [0, 1])W([0,1] x [0,4]),  t=>0.

Notice that (M™(A x [0,%])):.4 is a Gaussian process. It is actually an (éé)—martingale
measure with covariance functional @) as defined in Definition 4.1, from s = 0. From the
definition of M™, we see that for any deterministic Borel set A < R, and ¢t > 0,

TG

(4.7) M*(Ax [0,1]) = f_o m(w (Af(r), dr) = A(A A [0, 1) W([0, £(r)], dr) ).

We can rewrite it as
o0 o0

(4.8) J J g(u, r)M*(du, dr)
r=0 Ju=0

L(]uof f() %

for g = 1ax[0,- By definition of the stochastic integral, it is also true when g = Z1 4,5

i) (W) = Lo (0 S5 W D0 50 )

where 0 < s < t and Z is a bounded éz—measurable function. By linearity and density,
(4.8) is true for any (&;)-predictable square integrable function g with respect to the
covariance of M™, i.e.

2
E[J f g(u,t)zdudt—f (f g(u,t)du) dt] <
20 Ju=0 20 \Jue[0,1]
Define

(4.9) Vo 1= J: ;(ﬂW([O, f(r)],dr), 0<z <0y

The process v is an (&} )-Brownian motion stopped at 9y when 0, < 0.

Proposition 4.5. The martingale measure M™ is independent of the process f.

Proof. The proof is an extension of that of Proposition 8 of [34] to the setting of martingale
measures. Let v be defined by (4.9). From (4.7), we see that (M™(Ax[0,ns(z)]), 0 <z <
0y) is a martingale which is orthogonal to 7. On the other hand, its increasing process
is z = (AMA) = MA " [0,1])*)ns(x). We deduce by Knight’s theorem that (M*(A x
[0,7]), t = 0) is a Brownian motion (with multiplicative constant) which is independent
of v. More generally, the multidimensional Knight’s theorem implies that (M™(A; x
[0,2]),..., MT (A, x [0,t])t = 0) are independent of v for any n > 1 and disjoint Borel
sets Ay, ..., A, of Ry. We deduce that (M™(Ax[0,t])): 4 is independent of . We observe
that the process f is measurable with respect to the filtration of «y (it is the strong solution
of df(x) = 24/ f(x)dy, + (6 + 0")dx), therefore (M™(A x [0,1]));.a is independent of f. []
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0 " 0

FIGURE 1. On the left: BESQ®® flow. The process & — f(x) is traced in bold.
A flow line  — Sy ;(v) is also represented. On the right: Jacobi(d,¢’) flow after
a space-time transformation. The process © — f(x) is mapped to the constant
function 1, and the image of the flow line at v is a flow line of the Jacobi flow.

In the notation of Section 3.1 with I = [0,0f) and ¢ = 0, we define the flow Y* =
(Voal0),0 < s < 1,0 [0,1]) by
(4.10) Y'i=9(O,f)
(we add the superscript in " to stress that the flow is only defined for 0 < s < t whereas
the flow ) is defined for all —o0 < s < t), see Figure 1. By definition,

O 1 -1 ’Uf o 17_1(8)
(s)m; () f
(4.11) V(o) = —2 "1} - 77(_1@ ) t>s>0vel0,1].
!

Theorem 4.6. Let 0,6’ € R. Let b > 0 and © be a BESQZ"S/ flow. Then, the flow Y+
is a Jacobi(d, ") flow, restricted to the positive time-axis. It is the [0, 1]-valued pathwise
unique solution, which is strong, of the following SDE. Let v € [0,1] and s = 0. Almost
surely, fort = s,

(4.12) Vii(v) =v+ 2J MF([0, Vs, (v)],dr) + J (0(1 = Vs r(v)) = 6" Vs r(v)) dr

S

with the required absorption conditions®. In particular, Y+ is independent of f.

Remark. The theorem will be used only in the case ' = 0 in the rest of the paper.
The general case will be used in a follow-up paper.

Proof. The regularity conditions (i), (iii) and (iv) of Y* come from the properties of ©.
Let us check that (ii) is also satisfied. Let uw € [0,1) and s < t. If YV, (u) = 1, then
YVs+(v) =1 for all v = u hence v — Vs (u) is cadlag at w. Suppose then that Y, (u) < 1.
There exists v > u such that V;,(v) < 1. Indeed, the flow (S, ,(a), * = 7),er a0 verifies:
almost surely, for all r < z and a > 0, sup,gf, 41 |Sr.#(b) — Spv(a)] — 0 as b | a. This
statement follows from the identification S, ,(a) = L(7},x) (see Section 2), the fact that
b — 7 is cadlag, and the bicontinuity of the local times. Since for v > u close enough to

5The process is absorbed if it hits 1. If © is killed, then the process is also absorbed if it hits 0.
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u, one has Y, ,(v) < 1, we can use the regularity of the flow (S, ,.(a), © = 7),er, >0 tO see
that v — Vs .(v) is cadlag at .

We show now the SDE. To avoid too much notation, we prove it for s = 0. For brevity,
we suppose that © is non-killed. The other case is similar, one just has to look at the
times before the hitting time of 0. By (4.11), we have

90 17 t (bv>
W)=
Equation (4.12) is equivalent to
(z) (z)
(4.13) %S“) _ v+2fnf ME([0, Yo (v)], dr) + L " 00 = Vor () — Vo, (v)) dr

Let &,(v) := 255 By (4.8) with g(u, 7) := 10,30, (o)1x[0.; 21 (4, 7) (hence g( 75, ms(r)) =
110,00, (bv)] x[0,2 ) the first integral of the right-hand side of (4.13) is equal to

(4.14) f ) % ([0, 8o, (b0)], dr) — & (WYW([0, ()], dr).

By a change of variables, the last term of the right-hand side in (4.13) is

ny(x) z e(u) — 5 (v
a1 [0 = st = [ A,

Let us verify (4.13). By (4.4), we have (f, f), = 4§; f(s)ds and

(Oo.(b0), f5e — 4 L Oo.s(bv)ds

We deduce from Itd’s formula that, as long as O, (bv) < f(z), (d = d, below)

d&.(v)
_ dOg(bv) @Ox(bv) : Af(x) . 1 .
T i@ g T Ol gy gy el
_ dOgg(bv)  Oou(bv)
= T fw S YW
- ﬁ@W([O, Oo.2(bv)], dz) + ddx) — 5;((;’)) (@2W([0, f(2)], dz) + (6 + &')dz)
- = o) ds) — (0 oy A= E0) —FEw)
- f(2) (W([0, Oox(bv)], dz) — & (v)W([0, f(2)], dz)) + f(z) d

Comparing with (4.14) and (4.15), we get (4.13) indeed.

Now we show that Y* is the pathwise unique solution (by Yamada—Watanabe’s theorem
it will imply that it is a strong solution). This can be achieved by imitating the usual
proof of the pathwise uniqueness of a one-dimensional SDE with non-Lipschitz coefficient.
We give the details here for completeness. As before we take s = 0 for notational brevity.
Define ag := 1 and a; := aj_1e” " for k > 1. Let 1}, be a continuous function on R with
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support in (ay, ag_1) such that SZ:* Yp(z)de = 1 and 0 < ¢y(z) < 2 for = € (ay, ap—1).
Define

lyl x
Pr(y) = L da:fo Yy (r)dr, y € R.

Observe that ¢ is twice continuously differentiable and |¢}.| < 1. Moreover ¢x(y) — |y|
as k — oo. Suppose that yé}t’ (v) and yo(?t) (v), t = 0, are two solutions of (4.12) [with
s = 0 there] with respect to the same martingale measure ./\/lJr Let Ayt = yé}t)(v) -
yoi (v) for t = 0. By (4.6), we have Sé/\/ﬁ( 0, y So( (v)],dr) —
yOT(v) W([0,1],dr)) for i = 1,2. Then

t
AV, =2 f . f 10 g =000~y =S ) s, dr) (6 f AV,dr.

0
1 1
Since 0 < Vg4 (v), V2 (v) < 1, dAY), = 4dr §!_ [(1 ey D) - (1 {s%@ T

2 2 1 1 2
yér)(v))] ds and we observe that {_ \(1{s<y(§}j(v)} - 0(,3 (v))— (1{s<y(2) yOT v))|"ds <

2|AY,|. Applying Itd’s formula to ¢(AY;) gives that

B@(A) = ~(0+)E [ 669 Aiar + 38 [ (A aAD),

8t
k Y
where in the last inequality we have used the facts that |¢}| < 1 and ¢y (z)z < 2 for any

2 > 0. Letting k — o0 we deduce from Fatou’s lemma that E(|AY;|) < |0+8| E §; [AY,|dr,
yielding that A); = 0 by Gronwall’s inequality. This shows the pathwise uniqueness and
completes the proof of the theorem. []

t
< 16+ 5’|EJ AV, |dr +
0

Let § > 0. Recall that X is a PRBM defined in (1.2) and S is its local time flow
introduced in (2.2). Recall that S satisfies the SDEs (2.3) and (2.4) driven by W. The
following corollary of Theorem 4.6 gives a pathwise construction of a Jacobi flow starting
from a PRBM.

Corollary 4.7. Let b > 0 and p > 0.

1) Let f = (f(x), 2 = 0) defined by f(x) = So.(b) = L(7,x). Notice that d; = inf{x >
0 : L(r),x) = 0}. We have d; < o if and only if p > 1. Let © := (S,.(a), 0 <
r<x<0ysac(0,f(r)]). The flow ¥(O, f) is a Jacobi(2/u,0) flow in the positive
time-azxis, independent of f.

2) Let f = (f(z), x = 0) defined by f(x) = So_.(b) = L(70,—x). Notice that d; =
—infjo 0 X. Let © 1= (S_;,—2(a), 0 <7 <2 <0, a0, f(r)]). The flow ¥(O, f) is
a killed Jacobi(2 — 2/, 0) flow in the positive time-azis, independent of f.

Remark 4.8. We can rephrase the corollary in the following way. Let b > 0. Define the
flow Y = (Yy4(v),—o0 < s,t < o0,v € [0,1]) by YV := (LY, f) where f(z) = Sp.(b) and
L5 is the local time flow of (X;, t < 7). The forward flow of Y in the positive time-axis
(1e (Ys:(v),0 < s < t,v e [0,1])) is a Jacobi(2/u,0) flow. Similarly, the backward
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flow of Y in the negative time-axis (i.e. (Y_5_+(v),0 < s < t, v € [0,1])) is a killed
Jacobi(2 — 2/u,0) flow. See Figure 2.

1

. T

0

\

FIGURE 2. The flow Y. A forward flow line in the positive time-axis is a
Jacobi(2/u,0) process. A backward flow line in the negative time-axis is a
Jacobi(2 — 2/u,0) process absorbed at 0.

For later use, let for all s <t e R, and v € [0, 1],
Y5 (v) :=inf{ue [0,1] : Yot _s(u) > v} A L

s,t
Lemma 4.9. For all s,t € R, and v € [0,1], Y .(v) = inf{u € [0,1] : Yis(u) > v} Al. In
particular, for s <t and v € [0,1], Ys*t(v) =Y, _4(v).

Proof. Let s,t € R. The case v = 1 is immediate so we can suppose v < 1. By definition

of Y, we have
St @z 0 (V0715) (0)

50777;1 () (b)

Ys,t(“) =

By the duality (2.6) for S,
S

77]:1(8)777;1@) (C) == 1nf{a 2 O . Snljl(t),n;l(s)(a) > C}

Taking ¢ = 'USOﬂnjl(s)(b), we get

1 Syt wym; ) (@)
Yii(v) = ————inf{a>0: L > v
' So (t) (b) { So,n;1 (s) (b)

Urs
Szt 0 () (W0, (1) (D)) N U}
50,77;1 (s) (b)

= inf{u?O:

which is inf{u € [0,1] : Y} 4(u) > v} indeed. (]
5. DISINTEGRATION OF THE PRBM WITH RESPECT TO ITS OCCUPATION FIELD

5.1. The burglars. Let b > 0. Consider the PRBM X defined in (1.2) up to 70. Recall
from (2.2) that S, ,(a) = L(1],x). Set

to =sup{t <0: L(r), X;) = 0}, t*:=inf{t >0 : L(7},X;) = 0}.
Notice that t* is almost surely the hitting time of inf[ong]X and by the Ray-Knight
theorems, |tf| < oo if and only if p > 1 (if p < 1, {t <0 : L(7), Xy) = 0} = & hence
th = —o0).
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We let f(x) := Sp.(b) = L(7), x) restricted to the interval I with boundaries

(5.1) inf I := [mf]X Xy sup I :=inf{z > 0: L(7),x) = 0}
OTb

(sup I = Xyx when [t5] < o0 and o0 otherwise). We consider the processes
XM= X, se(th,t*), X=X sel0,7) —t*).

Recall the notation T in Section 3.2. We introduce the processes

(5.2) 7O =1xW ), Z® =1 ),

see Figure 3. In the case when p = 1, Z® defines a Varlant of the Brownian burglar

introduced by Warren and Yor in [34] (1ts time-change Z@ in Section 5.3 is distributed
as the one appearing in [33], compare Theorem 5.12 and Proposmon 5.13 with Theorem
1 in [33]).

7

FIGURE 3. Illustration of the two burglars Z() and Z®). Top: a PRBM with
p e (0,1] up to 79, with t¥ = —co and t* being the time associated with the
minimum. Bottom: the process before time t* is mapped through a space-time
transformation to the process Z() (left). That after time t* is mapped to the

process Z?) (right).
Lemma 5.1. Almost surely, the process ZW z's defined on R with limits given by lim,_, _ Zt(l) =

+00 and lim;_, Z(l) —0; the process Z@ is defined on R, and lim,_,, Zt(2) = —00.

Proof. We only prove it for ZW). First we check that the transformation n; maps the
interval [ deﬁned in (5.1) onto R. Consider supn(I). When p < 1, sup/ = oo and
limy o nf(y) = So T which is infinite (Exercise X.3.20 in [29]). In the case p > 1,

we need to show that Ssupl ‘%:) = o0. By time reversal, r — f(supl —r) is a BESQ‘OL";

process, which, by scaling arguments, implies that the integral is infinite indeed. Consider
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infny(7). It is Sm“ d: which is —oo by the same argument. Finally, we need to show

¥ ds . . tak ds
that So W = —oo and { W = . By the occupation time formula, §; o =
SIS;‘;’II L(t;idr = Zup[ K 0 r) 7dr. When r < sup [ is close enough to sup I, L(0,r) =

f(r), so that the integral is —oo mdeed Similarly,
J ds fupf L(t*,r) — L(0,7)
0 f(Xs(l))2 inf I f(r)?

0 * _
L[ Uen-ton,

inf 1 f(r)

0 L(t*

— J‘ ( 7;) d?“.

intr S(7)
On an event of probability arbitrarily close to 1 as ¢ — 0, L(t*,inf I + y) and f(inf I +
y) — L(t*,inf I + y) on [0, €] are independent BESQ) processes of respective dimensions &

and 2, starting at 0 (see Theorem 4.3 in [3]). Scaling arguments ensure again that the
integral is infinite indeed. []

¥

dr

Using the notation W of Section 3.1, define the process = by

(53) = = WL, ), f).
Recall from Remark 4.8 that Y denotes the flow W(L%, f). Its forward flow is a Jacobi(2/u, 0)

flow and its backward flow is a killed Jacobi(2 — 2/u) flow. The following lemma shows
that the process = is measurable with respect to the flow Y.

Lemma 5.2. Almost surely, for all r € R,

(5.4) =, =inf{v e [0,1] : Y, ,(v) =1 for some x < r}.
Proof. By definition, =, = %, with 7;(s) := So Definition
f T
_ 1 -1 : o 77f ') #
3.3, Y.(v) = f(T]J;I(fE))L(tU’nf (x)), with t, : Tt ()" We have t, > t* for any

1>wv>Z, and 77]71(3:) — X as v — —o0. Observe that Y, ,(v) = 1 for all  such that

n; (z) < infy, oy X. On the other hand, if v < Z,, then t, < t* and Y,..(v) < 1 for all
f l:‘ ['U7 b] 3

T <.

The law of the process (Z,,7 € R), called the “primitive Eve” process in Bertoin and
Le Gall [8], will be given in Proposition 5.10.

Let LW (t,7), resp. L®(t,r), denote the local time of Z(!) resp. Z®) at time ¢ and
position r. Observe from (3.2) that LM (00, 7) + L® (00, 7) = 1 for all 7 € R. On the other
hand, (5.3) implies that =, = LM (o, 7).

Theorem 5.3. (i) The process ZD possesses local time flow Y “seen from the left”,
meaning that LY (77(ZW), z) = Y, . (v) forve [0,Z,] and r,x € R.

(ii) The process Z® possesses local time flow Y “seen from the right”, meaning that
LA (Z®),2) =1~ Y,,(1 —u) forue[0,1—-Z,] and r,z € R.
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(iii) The processes ZV and Z® are independent of (L(70,x), v € R) (and their distri-
butions do not depend on the value of b > 0).

Proof. (i) Note that for any r € I, Ly (t,7) = L(t,r) for all t < t*, hence the local time
flow of X is the flow S' := {S,.(a), ,z € I,0 < a < L(t*,r)}. The image flow by
U(-, f) is the flow Y “seen from the left” by definition.

(ii) Similarly for any r € I, Ly (t,r) = f(r) — L(7 —t,r) for all 0 < ¢ < 70 — t*. We
deduce that the local time flow of X ?) is the flow {f(x) — S,.((f(r) —a)—), r,x e I, 0 <
a < f(r)— L(t*, )} The image flow by W(-, f) is the flow Y “seen from the right”.

(iii) Again ZM) and Z® are measurable with respect to their local time flow Y (by a
proof similar to Proposition 2.5). By Lemma 4.9, the flow Y is measurable with respect
to its forward flow. The forward flow of Y is independent of (L(7, z), € R) by Theorem
4.6. It completes the proof. []

5.2. A Markov property for the process Z?). The following proposition gives a way
of constructing Z® by means of a Brownian motion stopped at a hitting time and an
independent squared Bessel process.

Proposition 5.4. Let g < 0 be a constant. Take a Brownian motion up to the hitting
time of g (call it B = (By, t € [0,T7])). Take h such that h(x) =0 if x < g and h(g + ),
r = 0 is an independent BESQ). Let f(z) := Lp(TP,x) + h(z), x € R where Ly is the
local time of the Brownian motion B. Then Y (B, f) has the law of Z®) and is independent
of f.

Proof. We construct a probability measure P under which X® and X® have simple
descriptions. The process B will stand for the process X while h will stand for the
local time process of X under P conditioned on some event (which is {J(A) = g} in the
notation below).

Let m > |g| be an arbitrary constant (the exact value of m plays no role). We con-
sider a probability P on the product space R+ x C(R,R) such that, under IP (A, X)
has the following distribution: A is gamma( ,2m) distributed (meamng it has density

?)(;)xz le=#/2m on R,) and conditionally on A = b, X has distribution
3

Mloq

cplJ(b)2™

where J(b) := infco 01 X; and ¢, = ['(5) (%)17 e is the renormalizing constant. Notice
that J(b) is measurable with respect to L(7),x), v € R. Let XM X@ 71 7(2) he under
IP the processes of Section 5.1 with b = A. From Theorem 5.3 (iu) and using that J(A) is

measurable with respect to (L(79,z),z € R), we deduce that under P, Z® has the same
law as under P, and is independent of (L(79,z),z € R).
Denote by

(5.5) T,:=inf{te R: X; =r},

Ly@s—my - P

(b
s
2

the hitting time of r € R.
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Lemma 5.5. (i) Under P(-|J(A) = g), the law of the process X1 is the one of (X, s <
T,) under P.

(i) Under P(:|J(A) = g), the law of the process X is that of a Brownian motion
stopped when hitting g.

(iii) Under P(-|J(A) = g), the two processes X1 and X@ are independent.

Proof of Lemma 5.5. These results can be deduced from [3]. First, the law of (X5, s <0)
is the same under P and P, since (X,, s < 0) and (X, s > 0) are independent. We
restrict our attention to (Xj, s € [0,74]). By Proposition 9.1 p.123, Section 9.2 of [36]
and Corollary 3.4 in [3], we observe that (A, X, s € [0,79]) under P has the distribution
of (L(T-,,,0), Xs, s € [0, gn]) under P, where g, := sup{t < T_,, : X; = 0}. The lemma
is then Theorem 3.2 of [3]. [J

We can now complete the proof of Proposition 5.4. Let g € (—m,0). We recall that
Z® is independent of (L(79,z), € R) under P so that the law of Z? is identical under
P(-|J(A) = g) for any g € (—m, 0) (and is equal to the law of Z(® under P). By definition,
72 =7T(X® f) where f(x) := L(7}, z). The statement of the proposition comes from

the description of X under P(-|J(A) = g) in Lemma 5.5. This holds for any g < 0 since
m is arbitrary. []

We state now the Markov property for Z®. It will be the key ingredient in the forth-
coming connection with the Bass-Burdzy flow. Let as before L(® (¢, z) denote the local
time of Z® at time ¢ and position z. Recall Notation 3.6.

Theorem 5.6. For any t > 0, T(Zt(i),,l — L@)(t,.)) is independent of (Zﬁz), r e [0,s])
and distributed as Z®. In particular, (212, (L@ (t,z))ser) is a Markov process.

Before proving the theorem, we show that for fixed ¢ > 0, the process T(Zt(i),, 1—
L®(t,-)) is indeed well-defined.

Lemma 5.7. For any fixed t > 0, the map s — T(Zs(i),,l — L?(s,")) is a.s. well-
defined on a neighborhood (in Ry ) of t and is continuous at t (in the space C'(R,,R) of
continuous processes on R, endowed with the usual topology of uniform convergence over
all compacts).

See Appendix C for the proof of Lemma 5.7.

Proof of the theorem. Take B and f as in Proposition 5.4, with, say, ¢ = —1. Recall
the notation Cy(t) := Sé mdg—ss)z. Set Z? .= Y(B, f). Applying Lemma 3.5 to X = B,
seJ =[0,T5),I = (-1, maxoqcrp Bi] and ¢’ = B, we have

Y(Bor, f = Lp(s,)) = T(Z5) 01 = LO(Cr(s), ).

On the other hand, by Proposition 5.4, the Markov property of the Brownian motion at
time s and Notation 3.6 (i), conditionally on {s < 7B}, the left-hand side is distributed

as Z® and is independent of f — Lp(s,-) and of (B,, r € [0, s]).
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It follows that, conditionally on {s < T}, T(ng)(sH., 1—L®(Cy(s),-)) is independent
of o{f,B., r € [0,5]} and has the law of Z. Using the continuity of s — T(Zs(i),, 1-
L®)(s,)) stated in Lemma 3.7, and since C(s) and (Z(2 t < Cy(s)) are o{f,B,, r €
[0, s]}-measurable, we deduce that for all t = 0, Y(Z, +), 1 — L@ (t,-)) is independent of

(Z, r e [0,]) and is distributed as Z®. O

Remark 5.8. As a consequence of Theorem 5.6, if T"is a stopping time with respect to the
natural filtration of Z® such that almost surely s — T(Zs(i),, 1 — L®(s,-)) is continuous
at T in C'(R;,R), then T(Zf(pz}r., 1 — L®(T,+)) is independent of (Z”, r € [0,T]) and
distributed as Z(?)

The next result gives an invariance principle for Z) at small times.

Theorem 5.9. The process (\/—Zﬁ), > O) converges in distribution as a | 0 to a stan-

dard Brownian motion.

Proof. We use again the representation Z® = Y(B, f) from Proposition 5. 4 with, say,

)
g = —1. By definition of YT in Section 3.2, Z() = ns(Be 71(t) with 77f So HOL
Cy(t) = So f( . Let a > 0. Define f( ) := f(ry/a), By := Bat, Z = %Z . We
check that nf(Bt) = \/—nf(B ¢) which is Z(2 . Moreover C’ = {0 +4 Foor 2C4(at)

so that nf(ét) = aZaC (- We proved that T(B =2 By scahng B is a standard

Brownian motion stopped when hitting — \/— Moreover, f converges when a | 0 to the
constant function f(0), and B and f(0) are asymptotically independent. Use Lemma 3.7
(together with Skorokhod’s representation theorem to suppose that the convergence of
(B, f) is almost sure instead of in distribution) to complete the proof. []

We end this subsection by describing the law of the process (Z,),cr defined in (5.4). Let

a,b > 0. Denote by beta(a, b) the distribution with density F(((;;:flz) 21— 2)" o0 (2).

Proposition 5.10. The random variable Zq is distributed as beta(d/2,1). Conditionally
on Zg, (E_¢)i=0 and ()0 are independent Jacobi(d,2) and Jacobi(d,0) processes.

Proof. Using the representation Z® = Y(B, f) in Proposition 5.4 with g = —1, we deduce

@ (4. ) — LEC g @) s
from (3.2) that L (¢, x) Fo (@) with Cy(t) = 7% oy Nl = o 75 Note

that f is a BESQZ™ process on [—1,0], and a BESQ‘S on R+. Since Df = inf{z > 0 :
f(z) = 0} = inf{z > supyc,<rp Bs : h(z) = 0}, where we recall that h is a BESQ’ on

[—1,00) with h(—1) = 0, independent of B, C;'(t) — T? as t — oo and L® (0, ) =

B
% for z € R. By the classical Ray—Knight theorem, (LZ(TZ,,y),y > —1) is a
!

BESQ; on [—1,0], and BESQ® on [0, c0). Since f(y) = LB(TZ,,y) + h(y), we deduce that

L®(0,0) = LB;%E;“O) is distributed as beta(1,/2). By Warren and Yor [34], L) (o0, )
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is a Jacobi process of parameters (0,0) on R, starting from L®)(o0,0). Let ¢ € (0,1).
Again by Warren and Yor [34], (L® (o0, ns(=1 +¢) + 2),0 < 2 < —ns(—1+¢)) is a
Jacobi process of parameters (2,9). Recall that 7y is independent of L® (o0, -). Observe
that L (o0, (=1 + ¢)) is still distributed as beta(1,d/2) which is in fact the stationary
distribution of a Jacobi process of parameters (2,§). By time-reversal, (L® (o0, —z),0 <
x < —np(—1+¢)) is a Jacobi process of parameters (2, §). Let ¢ — 0 we get the proposition
by using the fact that =, = 1 — L® (o0, r) for all r € R. []

5.3. Link with the Bass—Burdzy flow and proof of Theorem III. Let 5;, §5 € R,
o > 0 and ~ be a standard Brownian motion. Following [6], one defines the Bass—Burdzy
flow of parameters (31, f2) and diffusivity o as the collection of homeomorphisms of the
real line (R, t = 0) such that for any z € R, the process (R;(z), t > 0) is the strong
solution of the SDE

t t
Ri(x) ==z + oy + B f LR, (@)<0yds + 52[ LR, (2)>0yds.
0 0

When o = 1, we just call it Bass—Burdzy flow with parameters (5, 52) as defined in the
introduction.

We continue to look at the process Z and show that it is linked to the Bass-Burdzy
flow via a time-change, extending the result in [33] to all parameters of the PRBM. Using
the same time-change as in [33], we set

t ds 50 _ )
(5:6) 0= | ey A A

Lemma 5.11. We have lim,_,; . ((t) = o0 where tpa. = inf{s = 0 : L (s, Z(2)
1} € (0,00] (it is finite almost surely if p > 1 and infinite otherwzse) Consequently, if

tmax < 00, limy_,o Z(2) Z(Q)X, and if tmax = 00, lim;_, Zt@) = —00.

Proof. Tt suffices to treat the case p > 1. Recall the construction of Z® in Proposition

1 “1(g
5.4 and recall from (3.2) that L®) (¢, z) = LB(Cf’EnE?{nf) 9D with Cy(t) So B2 ny(x) =
¥ €T

gfdr and f(z) = Lp(TP,x) + h(z) where h(g +-) is a BESQ) mdependent of B. Let
frnax 1= C’;l(tmax) which is inf{s € [0,T] : Lp(s, Bs) = f(Bs)}. Using the occupation

time formula, we can express ((tmax) as

L
max J‘ B max> y) dy
f LB( max» y))

We observe that yq is the last zero of h before M := maxo 5 B and

Let yo := B>
tmax 1S the last passage time of B at y, before TB Hence, for any y > o, LB(tNmaX, y) =
Lg(TP,y) so that

t max

* L (TBay> * LB(TgBay)

o) > | o5 TFo = Lo ™ ) Fn) ¥
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Notice that in a neighborhood of yq, the numerator is positive and f is bounded from
above while Sggﬁ % = o for all € positive.® []

The local time of Z® can be computed since
[pgae- [ i
5(2) S = (2)
o 120} Lz <w}< — LO(r, Z))2

<o @ (r,y)
fdyf <1—L<2<ry>>
e L), y)
Lodyl ZOE (1), y)

L@ (¢
y>:1.u$@g@

dr
1+ L®(r, Z9))2

which proves, with natural notation, that L@ (t, . Consequently,

)= [0-19 0. 200 - | -

It implies ¢! is adapted with respect to the natural filtration F® of Z®. We also
introduce for x € R,

(5.7) Ri(z) := Jx dy = Jx (1 + IO (t, y)> dy.

o, T IO g
471 t t

Observe that z = Z” if and only if R,(z) = 0. Note that in the case p > 1, the flow
(Ri(z), = € R) only gives the reconstruction of the burglar Z? until the finite time #ay.

Theorem 5.12. The process (Ry(x), x € R) is a Bass—Burdzy flow for some parameters
By and By and diffusivity o. Moreover By = 1 + 1.

Proof. First we note that a.s. for all ¢ > 0,
t

(5.8) Hy:= R(x) —x — f (g, (z)>01ds, reR,
0

is well defined. In other words, the right-hand side of (5.8) does not depend on z. This
can be seen as follows:

t t T
J LR, (z)>0yds = J 1w _yds = J L (t,y)dy
0 0 —0
showing that the derivative with respect to x of the right-hand side of (5.8) vanishes.

Clearly (H,) is (F”)-adapted. We are going to show that (H,) is an (F\2)-Lévy
process. As we shall see below, this boils down to showing the strong Markov property

SFor example, we can express h in terms of the square of a Bessel meander whose law is absolutely
continuous with respect to BESQ), see Section 3.6 in [36].
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A~

for R,. We use equation (3.3) with X := Z) flr) =1 =LA Y(s),r), c = 2,

¢1(s)+?
¢ =xand ("1t + s) — ("!(s) in lieu of s to get that
(5 9) Jvzt@ L . J ¢ 1(s+t) dr
. R 1—LOEr) L 1-LO(C (s +1),7)

where we used the observation that 7 .(x) = Rs(x), the process Z® is defined by
> 2 - 2 2 _
7@ =122, 1= IO s),), 28, ) = 128, ), 1= LT (s), ),

SIOIS
and L® is the local time of the process Z®, i = C;(¢(t + s) — " 1(s)) with
v du
Cr(v) = J 2)((—1 (2) 2’
0 (1 - L( )(C_ (8)7 Zg“*l(s)-i-u))
We get
~ ¢ (s+t) du
i~ —
¢l (1= LB (s), Za7))?

We can rewrite (5.9) as

with

&

—

Neyd
1

~ ) J Y dr
7®1—L® (t,7)
Let gdenote the ( associated with 2(2), ie.,

~ v du
((v) := f — — .
v 0o (1-LO(u, Z?))?
Suppose for the time being that we know that
(5.10) T=C0).

By Remark 5.8 applied to the stopping time ¢~(s), Z® is distributed as Z® and is
independent of a{Z,@, r < (71(s)}, thus independent of F 1t implies that conditionally
on 7 and Ry(z) =y, the process (Riys(x))i=0 has the law of (R:(y))i=o. It follows that
c:)nditionally onw]?ﬁz) and Ry(x) = g, forallt >0, Hy ,—H, = ﬁ’t(y)—y—% 1{Rs(y)>0}d5 =
H,;, where and H is defined from R as H is from R. In other words, H;,, — H,,t = 0 is
independent of F¥ and has the same distribution as H. Then H is a (continuous) Lévy
process hence of the form oy, + it with v an (ﬁ(Q))—Brownian motion, which yields the
theorem.
It remains to prove (5.10). We know from equation (3.2) that

- 2 _ 2
LOCT W), 225 ov) — LV 20 o)

_ 1@ (-1 2)
1 L (C (8)7 ZC—1(8)+C;1(U))

u

LP(u, Z?)) =
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Hence, by definition of Z and a change of variables,

o t du L(t+s) du
0 (1—=L@(u,Z2s7))? Jers  (1—LO(u, Z,7))?

by definition of (, which completes the proof. []

We identify the parameters of the Bass—Burdzy flow in the following proposition.

Proposition 5.13. The parameters of the Bass—Burdzy flow are o = 1, f; = g —1 and
B— 3.

Proof. We first show that ¢ = 1. Recall that Z(2 = Z(21(t) Since C() 291, one
can deduce from Theorem 5.9 that ( \/—Z,g 1= 0) converges in distribution as a | 0 to

a standard Brownian motion. Therefore, the hitting time of z by Z®, divided by 22,
converges in law when x | 0 to the hitting time of 1 by a standard Brownian motion. But
the hitting time of z by 7@ is the hitting time of 0 by R;(x). We deduce that necessarily
o=1.

We now determine f3; (or equivalently (; since we know that S = 1+ 1). By definition
of the Bass-Burdzy flow, if we start the flow R;(x) from 2* = sup,s Z?  then Ry(z*) = 0
for all t > 0 and Ry(z*) = x* + 4 + [2t. Note that the unique zero is attained when Z(z)
reaches its maximum z*, that means

.
¥ = %Izl(f)(fyﬂrﬁgt).

It implies that By > 0 and z* is exponentially distributed with parameter 25,. On
the other hand, observe that z* = sup,, Zt(z), so that, recalling from Section 5.1 that
E.=LW(w,r)=1— L0, 7r),
¥ i=inf{r>0: =, =1}

In other words, by Proposition 5.10, it is the hitting time of 0 by a Jacobi process with
parameters (0, d) with initial distribution beta(1, %) The proof will be complete once we
prove that this hitting time is exponentially distributed with parameter 6. Let us prove
it. Under some probability P*, denote by V' a Jacobi(0, 5) process starting from x, and let
Ty be its hitting time of 0. We can check that M; := 2t ¢ is a martingale. We can then
define the probability measure )* with Radon—Nikodym derivative M; with respect to P*
on the o-algebra o(V;, s € [0,t]). Under Q*, the process V' is a Jacobi(4, d) process. We

have P*(Ty > t) = e Fge [—] Taking = with the beta(1, ) distribution, and setting
S (1—2)2-1P*dz, we get

_ s _
P(T0>t) = eétjéi(l—x)2 IEQx[Vt:|dx
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Since beta(2, 2) is the invariant distribution of a Jacobi(4, §) process, one has

L 5 1 Ls 5 1
—(1—2)2 ' Ege | — = | —(1—2)"2Ep |— = 1.
JO2( x)2 x By lVde J 2( x)2 x Eg lv}dx

0 0

Hence P(Ty > t) = =% so Ty is indeed exponentially distributed with parameter 6. []

Remark. In light of Theorem III, Theorem 4.6 gives a flow version of the Ray-Knight
theorems appearing in [18].

5.4. Contour function of a Fleming—Viot forest. Let § > 0 and b > 0. Let X be
the PRBM associated with y = %, which we consider up to time 70 when the local time
at position 0 hits b.

Notation 5.14. We define for u € (t§,70) and t € (— ng 1ix,~0yds, Sg’? 1ix,~03ds],
Al :=J 1ix,~0ds, o = inf{u : A} >t} X;= Xor-
0

The process X+ is the process X looked above zero. The processes (X;", t = 0) and
(X;7, t <0) are independent, the former being a reflecting Brownian motion, see [27]. We
let as before

(5.11) f(r):= L(7),7r), re[0,0f)

be the local time at position r at time 7, where d; denotes the hitting time of 0 by
L(ry),r), 7 = 0 (which is Xy« if [t5] < oo and oo otherwise). We want to reconstruct X*
conditionally on f up to a certain random time. Recall the definition of the forward local
time flow in Section 3.2. Let ST denote that of X, i.e. by definition

Syo(a) = Lx+(1,(X"),z) = L(7;, ), 0<r<z<d;ac]0,f(r)]

By Theorem 2.1 and Definition 4.4, S* is a BESQg’O flow. In the notation of Section 3.2,
let ZT :=Y((X;, te[0,72(X)]), f). Specifically,

(5.12) Z Vo Ch(t) Jt ds 0<t<7o(X")
. = —_— = P ETa— x SN .

GO gy T R b
The flow Yt := U(S*, f) is a Jacobi(d,0) flow independent of f by Theorem 4.6. In
particular, Z* can be thought of as the contour function of the Fleming—Viot forest
embedded in Y, rooted at level 0. The following theorem is the analog of Theorem 5.3
(i)
Theorem 5.15. The process Z* is independent of f.

Proof. The forward local time flow of Z* is composed of the flow lines of Yt located at
the right of Y;"(0). The flow Y is independent of f, and Z* is measurable with respect
to its forward local time flow. []
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Let us give now a description in time of the process Z*. We introduce a variant of the
Bass-Burdzy flow. Let v+ be a reflecting Brownian motion with drift 1 — 2, see [16]. It
is the absolute value of the unique strong solution of the SDE

U, = (1 - g)sgnUt dt +dB, Uy =0

where B is a standard Brownian motion. When 4 = 2, it is the usual reflecting Brownian

motion. It is recurrent when ¢ > 2, and transient when § € (0,2). It is proved in [16] that

79 = |U] is distributed as the process (SUPsepo, t](B +(2=1)s) = (Be+ (£ —1)1), t =0).

One defines for any x > 0, the process (R, (z), t > 0) which is adapted to the filtration
of v and is the strong solutlon of the SDE 7

t
0 0
R(x) =2 — " + J L r+ ()0 ds-
0

Theorem 5.16 will construct such a solution. Let (R; (z), z = 0,¢t = 0) be the flow
associated with Z* via (5.6) and (5.7), i.e. set

t ds ~
+(4) te=7"
(5.13) SGE L § Pk Z7 Z(C*)*l(t)

where L™ denotes the local times of Z*, and for = > 0,

(5.14) Rf(z) == L I (?:)_1 oo L (1 + E+(t,y)) dy.

In the (second) equality, L* is the local time of Z+. This equality is proved along the
lines of (5.7). Notice that R* is measurable with respect to X ™.

With the notation ¢}, :=inf{s >0 : L*(s,Z]) = 1} € (0, 0], we have the analog of
Lemma 5.11, meaning that lim, ,;+ (*(t) = co. The time 3, is finite almost surely if
d € (0,2) and infinite otherwise. The proof follows the lines of the proof of Lemma 5.11.
We need to replace there B by (X7, t € [0, 7)(XT)]), T,V by 7)(X ™), and (h(z), z = 0)
is the local time at z of (X;", t <0), i.e. a BESQS process.

Theorem 5.16. The process (R (z), z = 0, t = 0) has the law of (R}’ (), z = 0, t = 0).
In particular, (Z;, t = 0) is distributed as (R;°)~1(0).
Proof. We observe that (X;", ¢ € [0,72(X )], f) and (X%(Xﬂft,t e [0,72(X1)], f)

have the same distribution. Therefore, we will take without loss of generality Z t =
T((XT Lt e [0, (X)), f) (and take Z*, L*, R* as in (5.13), (5.14) associated

O(X+

with this Z+).
As in the proof of Theorem 5.12, the process R/ (x) — x — Sf) (gt (1)>0pds does not

depend on z, since Sé 1{R:(x)>o}d5 = Sé 1{Zj<x}d3 = L*(t,y)dy. Therefore, it suffices

"To obtain the existence and uniqueness of the (strong) solution, we may use Zvonkin’s method: Let
h(z) = g e2m>xw0dy 2 € R, be an increasing (and convex) function on R. Applymg [t6-Tanaka’s
formula to h(Rzr %(x)), we see that 1, := h(RZ“‘;(x)) satisfies the SDE: n, = h(z) + So (ns)dyF+? with
o(x) := —h'(h"!(x)) = —1 — 2max(z,0). In particular o is a Lipschitz function, we may apply Theorem
V.6 in Protter [28] to get the existence and uniqueness of the (strong) solution 7 and then that of R*+°(z).



32

to show that (R (0), t > 0) is distributed as (—y;°, t = 0) (observe that by definition,
R/ (0) <0 for all t).
In Section 5.1, taking b = 1 in equation (5.2), we constructed the process Z?) associated
with
X = Xro_g, S€ [0, 7) — %),
where t* is the time such that X« = inf[oﬁi)] X. We proved in Proposition 5.13 that the

time-changed process 7 (2 defined in equation (5.6), is associated with the Bass—Burdzy
flow (R¢(x)):, with parameters 51 = g —1and By = g.

We define the process X+ as the process X looked above 0 (which should be
denoted by (X®)* in the notation 5.14). Specifically, X* XJZ)(Xﬂ tel0,(XT)—
79 (X )] where ¢ := L(t*,0). We now introduce the process AQREES “I‘(X(2 f) where
f is given by (5.11) with b = 1. We mention that Z®+ is also the process Z? looked
above 0. [We omit the details. Intuitively, each excursion of Z®* is obtained from the

corresponding excursion of X® in R, by the transformation Y(-, f).] Analogously to
(5.13), we let

o
7(2),+
Zy = Z(C(Q) =11y t < L (20 O}dS T

ds L)+ being the local times of Z()*. Again, the

where (@ (¢) = So TEEE Z(QH =

process Z®+ is the process Z® looked above 0.
We claim that for any fixed M > 0,

(5.15) P(T* < M|L(t*,0) = £) — 0, {—0.

Let us prove (5.15). First, By Lemma 5.11, if ¢, < o and Zt(fllx > 0, then T" = o0.
Suppose now that t,.« = 00 or t.x < o0 and Zt(i)ax < 0. By (5.6), we have

tmax ]_ (2)
T+ — J‘ {Zs7' >0} o ds.
0 (1— L(Q)(s Z57))?

L) (C7 )m: (x)
Recall from (3.2) that L®)(t,2) = —=X© f(%l(:c))f , with C(t) := So fX(z))2, ny(r) =
g%. Therefore
-1
N Cf (tmax) 1{X7(n2)>0} 7'{) 1{X‘5>0}
TH = @ @ dr = oy ds.
0 (f(Xe”) = Lxo (r, X;7))? 07 ) (L(8, X))
If tax = 0 (ie. § = 2), 77 — C'f_l(tmax) = t*. If tpax < 0 and Zt(f,)ax < 0, the process
7 stays negative after tmay, which is equivalent with saying that X is always negative
between t* and 77 — C; ' (tmax). Hence, in both cases, T = S O ) (Léf;?‘)} ds =

0
§ s 1{X5>°} >ds. From the occupation times formula, we get that

S N
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(the upper boundary 1 is arbitrary). Using [26] Lemma 2.3, conditionally on L(t*,0) = ¢,
the processes v € Ry, — L(t*,z) and x € R, — f(z) — L(t*, x) are independent, with
distribution respectively BESQ‘; and BESQ? ,. The integral Sé ﬁdx is tight as £ — 0

while the integral Sé %dx tends in law to oo by scaling. We deduce (5.15).

As in (5.14), we define for x > 0,

CRI dr _[ (1+ 20 (t.y))
B ) ng%l—L@)’*(((@)’*)1(t)ﬂ”) f LY )4y

By construction, 7@+ is the process (Zj, t € [0,77)), hence for all z > 0, the process
R®*(z) coincides with R*(z) up to time T'*.

On the other hand, the process R * () is deduced from R(z) by a time-change: define

Tt(2)7+ = inf {s >0 : L 1¢Rr, (0)<0ydu > t} = inf {S >0 : fo 1{2ﬁz>>0}du > t}.
Then we have for any 2 > 0and 0 <t < T+, 8
(5.16) R (z) = R .+ ().

Recall that we want to show that (R;(0), ¢ = 0) is distributed as (—;°, t = 0). If we
let v be the Brownian motion driving the Bass-Burdzy flow (R;(z)):., we have

5 t
Rt(O) = + §t — J 1{R5(0)<0}d5-
0

By Tanaka’s formula,

t
. 1
min(R,(0),0) = f1{RS <0y d R (0) = 5 Lo (1, 0)
0

where Lg)(t,0) is the local time of R.(0) at time ¢ at position 0. By (5.16), observing
that R (0) <0,

@)+

T 1

R (0) =f Lir,0)<0dR:(0) = 5 Lao) (1, 0).
0

We have LR(O)(Q@)’JF, 0) = Lp@.+(p)(t,0) which is the local time of R.(2)’+(0) at time t at
(@),+ (@), +
position 0. Using that {*  1(g,0)<oyds = §;'  Lr.0)<0yds = t, we get

(2),+
Ty 5 1
R (0) = J Lro<odrs + (5 = D = SLre+ ot 0), 0t < T
0

8n fact, Zt(?)’ AN -z ) where a(®)+ is the inverse of Sg 1{Z<2> ds.

(¢@+)=1(¢t) a+o(¢2)s +) 1 ~0}
We notice that L@+ (s,z) = L®(a (2)+7$) > 0. Hence R£2)’+(£E) = Re@oa +o(c@+)-1(1) (2)-
(2) (D) i+ o (¢ (2)i+)—1
We check (@ o o+ o (¢H)=1(t) = 7'15(2) ' by noticing that Sg Fo(¢® T {2£2)>0}du

a®Fo(¢® )" (1) (SRS 0) ds
So =t

(20 TEm 7~ (=L@ + (5,28 F )2
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By Dambis-Dubins-Schwarz theorem, there exists a standard Brownian motion B(™*) =
(BY, t = 0) such that
'rt(z)’+

J Lir, (0)<0ydvs = BM o<t<TH,
0

By Skorokhod’s lemma,

1 5
~Lpe(o)(t,0) = sup (B§+> + (5 — 1) s>, 0<t<T".

2 s<t

) 0
v i=sup (BO + (2 —1)s) =B — (2 1)t t>0.
s<t 2 2

The process —y*° coincides with R*(0) up to time 7. We now prove that R*(0) is
distributed as —y*°. Fix M > 0 and a functional F' measurable and bounded. Notice
that L(t*,0) is measurable with respect to the process (X, s € [0,77]) looked below 0,
which is independent of X, see [27]. Therefore R™ and L(t*,0) are independent, which
implies that for all ¢ > 0,

E[F(R/(0), t € [0, M])] = E[F(R;(0), t € [0, M]) | L(z*,0) < {].
We consider two cases. The first case is when T > M. In this case, R, (0) = R§2)’+(0) =

—~;°, for t € [0, M]. The second case is when T+ < M, which has probability going to
0 under P(-| L(t*,0) < ¢) when ¢ — 0 by (5.15). We deduce that

E[F(R;(0), t € [0,M])] = E[F(—", t € [0, M])]

which is what we wanted to prove. []

Define

APPENDIX A. PERFECT FLOW PROPERTY

Recall the definition of a BESQ® in Definition 2.2. We establish some flow properties
for the BESQ° flow.

Proposition A.1. Let S be either a non-killed BESQ® flow with § > 0 or a killed BESQ®
flow with 6 < 0. The flow S satisfies the perfect flow property: almost surely, for every
r<z<yY, Sy=38y0°S,.

Proof. The property is true when one of the inequalities in r < x < y is an equality since
S..(a) =a. Let a >0 and r < x < y. We first treat the case 6 > 0. By Proposition
2.4, we can set S = (S,.(a), © = 1)4er. We want to show that S, ,(a) = S, 0 S, ,(a).
Let b := S, ,(a). By definition of S, L(7),x) = b hence 77 > 7. If t > inf{s > 77 :
Xs > x} =: 6, then L(t,z) > b since a Brownian motion accumulates local time at any
level that it visits. It implies that 77 < 0. If t € (77,0), one has L(t,xz) = L(7},z) = b.
We conclude that L(7),y) = L(7¥,y) indeed (and 7' = #). We now deal with the case
§ < 0. To be consistent with our setting, we will actually consider a BESQY flow with
0" < 0, and rather take § := 2 — ¢ which is now greater than 2. Then we can set
S = (S-r-2(a))r<zas0. We write S_, _,(a) = L(7, ", —x) =: b and see that 7, * > 7, 7".
Again, if t > inf{s > 7,7 : X, < —z}, then L(t,—x) > b because the PRBM does not
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have point of monotonicity when ¢ > 2, see [27]. We deduce that L(7, ", —y) = L(7, “, y).
]

When 6 € (0,2), the killed BESQ? flow loses this property. There will be exceptional
times when a flow line starting at 0 will exit the boundary 0. This comes from the fact
that in the case 0 € (0,2), the PRBM has points of monotonicity, see [27]. Still the flow
satisfies a weaker form of the flow property stated in Proposition A.5. We need some
preliminary results.

The following proposition shows that, for § € (0,2) the killed BESQ’ flow is naturally
embedded in its non-killed version.

Proposition A.2. Let § € (0,2) and S = (S,.(a), T = 7)reraso be a non-killed BESQ®
flow. Define a flow II(S) := (S, .(a), = 7)reras0 where for r € R and a = 0, S, ,(a)
is equal to S, (a) for x = r up to the time inf{r’ > r : S,/ (a) = 0}, and is equal to 0

afterwards. Then TI(S) is a killed BESQ® flow. We call TI(S) the killed version of S.

Remark. Note that when a = 0, at times r when the flow line (S, ,(0), x > r) starts an

~

excursion away from 0, the flow line (S, ,(0), = r) traces the same excursion then gets
absorbed at 0 when coming back.

Proof. The flow lines of II(S) have the required distribution by construction so we need
to check the regularity of II(S) imposed in Definition 2.2. Assumption (i) is clear. We

prove (ii). The map a — S,,(a) is nondecreasing. Indeed, if S, ,(a) > 0, then S, 4(a) =
Sra(a) < Sppla) = S.u(a) for all @’ > a. And obviously 8,,(a) < S,.(d) if 8,.(a) =
0. We show the right-continuity. The case §r7x(a) > (0 is immediate from the same
arguments, using the right-continuity of a — S, ,(a). Suppose now that S, ,(a) = 0. We
can suppose « > r. By construction, there exists 7’ € (r, x| such that S, (a) = 0. Since
b — S,,(b) is piecewise constant, we would have S,/ (b) = 0 for b > a small enough,

which implies S,,(b) = 0 for the same set of b, hence S, (b) = 0. The right-continuity is
therefore proved. Finally, we check condition (iii). We suppose grgr(a’ ) > a. In particular,
grl,r(a’) > 0 so §T/7r(a’) = S,+(a’) hence by construction SVT/,x(a/) =Sy .(d) =S .(a) =
S,..(a) for all z before S,.(a) hits 0 when it will get absorbed. The case Sy, (a') < a is
dealt with similarly. []

Conversely, for 6 € (0,2), a non-killed BESQ’ flow can also be constructed from its
killed version. Recall the definition of the dual flow in Proposition 2.7.

Proposition A.3. Let § € (0,2) and S be a killed BESQ’ flow. The dual of S is a
non-killed BESQ*™° flow, from which we can construct its killed version by Proposition
A.2. Let S denote the dual of the latter. Then S is a non-killed BESQ? flow, and S s
the killed version of S.

Proof. We start with a lemma.

Lemma A.4. Let § € (0,2). Let S be a non-killed BESQ® flow. Then the dual of S is
the killed version of the dual of I1(S), i.e. S* = II(II(S)*).
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Proof. Let S*, resp. II(S)*, denote the dual of S, resp. II(S). Write S for II(S). We
have by definition, for any r < x,

Sfo(a)i=inf{b=>0:8,,(0b)>a}, (S),(a):=inf{b=>0:8,_.(b)>a}.

r,x

Let r < x and a > 0. We first show that (S) (a) = 8 (a). Let b > (g);‘x(a), hence
S_o_(b) > a. In particular, S_, _.(b) > 0 so that S_, _,(b) = S_, _(b). Therefore
S_;—(b) > a hence the inequality.

We suppose now that S (a) # 0 for all s € (r, ), and we want to show that S7 (a) =

(g)’:m(a) We only have to prove that S, (a) > (N)’;m(a). Let b > Sf,(a). Then
(r,

S_z—(b) > a. If S, _4(b) = 0 for some s € x), we would have by the perfect
flow property S_; ,.(0) > a hence S (a) = 0, Wthh is a contradiction. Therefore
S_p_s(b) # 0 for all s € (r,z), hence S_y_,(b) = S_y_,(b) 50 S_y_,(b) > a. We de-
duce that S (a) = (§)jx(a)

Finally, we show that flow lines in §* are absorbed at 0. So we suppose that Sy (a) = 0
for some s € (r,x), and we want to show that S} (a) = 0. We have by definition,
S_s_r(b) > a for all b > 0. Since b — S_,_,(b) is piecewise constant, we must have
S_s-+(0) > a, therefore S_, _,(0) > a by the perfect flow property. It implies that

Sip(a)=0.0

We go back to the proof of the proposition. We use the notation of the proposition.
By definition, S = (II((S)*))*. By the lemma (using (S)*, which is a non-killed BESQ?~
flow in place of S in the statement of the lemma), we have II(S) = ((S)*)* = S. The fact
that S is a non-killed BESQ® flow comes from Proposition 2.7. [

We can now state a flow property for a general BESQ°® flow.

Proposition A.5. Let § € R. A general BESQ® flow S satisfies the following properties
almost surely:
o (Almost perfect flow property) If r < x <y, a > 0 and S, ,(a) > 0, then S, 0
Siz(a) =S, y(a).
o (Coalescence) If r',r <z, 0 < a,d’ and S, ,(a) = Sy (d’), then S, (a) = Sy 4(d’)
forally > x.

Proof. These properties hold for non-killed BESQ°® flows and killed BESQ® flows with
d < 0 as a consequence of the perfect flow property, so we should only deal with ¢ € (0, 2)
and killed BESQ? flows. Write it S and let rather S be the non-killed version of it (i.e.
the flow such that II(S) = S). Let r < z <y, a > 0 and suppose b := gm(a) > 0. From
the definition of II(S), we have S, (a) = S,.(a) for all s from r to the hitting time of
0, hence we can apply the perfect flow property of S. After~hitting 0, the flow line is
absorbed. Let now 7,7’ < z, 0 < a,d’ and suppose that b := S, ,(a) = Sy (a'). If b > 0,
we can apply the almost perfect flow property to conclude that flow lines coalesce. If
b = 0, both flow lines are absorbed at 0 (we use here the fact that r, 7’ < x so that none
are flow lines which are departing from 0 to trace an excursion). []
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Remark. The coalescence property does not hold in full generality if we let r = x
for killed BESQ® flows when 6 € (0,2). Indeed, at times when a flow line starts at r an
excursion away from 0, flow lines which are already absorbed at 0 will stay stuck at 0,
while the flow line starting at r will leave 0.

Corollary A.6. Let 9,0 € R. A general Jacobi(d,d") flow satisfies the following properties
almost surely:

o (Almost perfect flow property) If r < s < t, v € [0,1] and YV, s(v) > 0, then
ys,t o yr,s(v> = yﬁt<v)'

o (Coalescence) If ;1" < s, v,v" € [0, 1] and Y, s(v) = YV 5(v), then Y1 (v) = Vo 1(v)
forallt > s.

Proof. Proposition A.5 stays true for BESQg";/ flows by construction (for a € [0, f(r)] and
r,r" € [0,05) there) then we use Theorem 4.6 to prove the corollary when 7,7 > 0. It is
true for all r, 7’ by stationarity. []

APPENDIX B. A GIRSANOV THEOREM FOR JACOBI FLOWS

Let 6 € R. Consider a general Jacobi(d,0) flow Y, driven by the martingale measure
M given by Definition 4.1 under some measure P. Fix T" > 0, and restrict to the time
interval [0, 7]. Call Y7 the collection (Vss, 0 < s <t < T). Let &' € R. We want to relate
the Jacobi(d, ") flow to the Jacobi(d,0) flow. We will use in this section the notation
M (A) := M(A x [0,s]) for s = 0 and A a Borel set of [0, 1].

For v € [0, 1], let FI be the o-field generated by (M(A), s € [0,T], A Borel set of [0, v]).
Observe that FT := (FI, v € [0,1)) forms a filtration.
We define

! 6’2

T _ s Mr(00)-5 o vel0,1).

m, = e ,

Theorem B.1. The process (my, v € [0,1)) is a F'-martingale. Introduce the measure
Q on F{ such that

— = 1).
P }RT my s vel0,1)

Under Q, M has drift —%'1[0,1]X[07T] (u, z)dudx, and YT is a general Jacobi(é,d") flow on
[0, T7].

Proof. We use the representation in (4.6): Mx([0, u]) = Wi ([0, u]) — wWp([0,1]) where
W is a white noise and we used the notation W,(A) := W(A x [0, s]) for s > 0 and Borel
sets A. The random variable

(B.1) o T Wr(0e)-F e

has mean 1. Take this random variable as the Radon—Nikodym derivative of a new
probability measure with respect to P on o(Ws(A),0 < s < T, A Borel set of [0, 1]).
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This change of measure adds a drift — (1‘5 5 Ljo,0)x[0,77(w, z)dudz to the white noise W.
Therefore it adds a drift

/ !
(; <ﬁ1[O,U]X[O,T] (u,z) — ﬁ) = (; (1[0 o] x [0, (U, T) — %1(u,11x[o,T] (U,$)>
to the martingale measure M. Use that My ([0,0]) = Wr([0,0]) — v;([0,1]), and
average (B.1) over VNVT([O, 1]) which is independent of M to obtain that it is also the
distribution of M under m! - P. Notice that on [0, 0] x [0,T], the drift is just —%l. We
conclude that m! is the Radon-Nykodim derivative on F! of the probability measure
under which M has drift —%/1[071]403] (u, ). Hence m” is a martingale, and M under Q
has the required distribution (we could directly check that m! is a .F I martingale by using

the semlmartlngale decomposition of the bridge: Mr([0,u]) = — §5 2= Mo ([0, s])

where B is a standard F7-Brownian motion.).

Plug the drift into (4.3) to conclude that a flow line from v € [0,1] and s € [0,T7] is
a (possibly absorbed at 0) Jacobi(d, d’) process up to the minimum between the hitting
time of 1 and T". We set, under Q, gt(l) :=1forall 0 < s<t¢<T,and absorb at 1 any
flow line which hits 1.

Let v € [0, 1). From the absolute continuity of Q with respect to P on F, one concludes
that the almost perfect flow property of Corollary A.6 holds as long as the flow lines do
not touch v. Making v tend to 1, this property is also true as long as they do not touch
1. With our convention, it is also true after the hitting time of 1. Hence YT possesses the
almost perfect flow property also under Q. We can similarly show that flow lines coalesce
under Q in the sense of Corollary A.6.

Let us check the regularity conditions of Definition 4.3. Statement (i) is clear. We prove
(ii). We already know that v € [0,1] — VI,(v) is nondecreasing since flow lines coalesce.
Again, for any v € (0, 1), the right-continuity holds for any 0 < s <t < T at any v € [0, 1)
such that the flow line ) .(v) did not hit v on [s,¢]. Then, it holds if the flow line did
not hit 1. Since Y ,(v) = 1 if the flow line hit 1, we conclude that it is right-continuous
at any v € [0,1). Condition (iii) is a consequence of the fact that flow lines coalesce and
condition (iv) is satisfied by construction. []

APPENDIX C. PROOFS OF LEMMAS 3.7 AND 5.7

Proof of Lemma 3.7. Fix M > 0 and take a compact set L as in the statement of
the lemma, for K = [0, M]. By assumption, there exists ¢ € (0,1) such that f" and
f are contained in (g,e7!) on L for n large enough. Let t € [0, M]. We have, since
X ([0, M]) v X"([0,M]) = L < I, for n large enough,

X dr

i e < [Cor (- 5 ) [+ g

The first term is bounded by ||% - fin|| £1%|[0,217- The second term is bounded by 1|X —

X" [0,a1]- Both terms go to 0 as n — co. It shows the uniform convergence of 7 o X™ to
nyo & on [0, M]. Since |F(X) — FA(XP)] < |£() — (XM + | F(XP) — ()], that f is
uniformly continuous on L, that X™ converges uniformly to X on [0, M] and f™ converges
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uniformly to f on L, we have that f™ o &A™ converges uniformly to f o X on [0, M]. Let
Cy, (1) = So f"(X" for t € [0, j,) and C(t) := So EAL ds > for t > 0. Notice that the range of
Cy, and of Cy is Ry by our assumption (i () Dommated convergence implies that Cyn(t)
converges to C(t) for all £ € [0, M]. Fix t € (0, M) and set x := C(t). Let t,, := Cf_nl(:c).
Since Cn(v) — Cpn(u) = €2(v — u) for v = w in [0, M], we have |Cpa(t) — x| = 2|t — t,].
We deduce that t, — t, i.e. C7l(x) — C’;l( x). Since M is arbitrary, it proves that fnl
converges to C’;l pointwise on R,. Since Cfn ,Cf are increasing continuous functions
on R,, it implies the uniform convergence on any compact set of R.. By composition
of ngm o X™ and C’;nl, we deduce that T(X™, f™) converges to YT(X, f) uniformly on any
compact. []

Proof of Lemma 5.7. First, for any t > 0, a.s., 1 — L@ (t,2) > 0 for all z € {Zt(i)u, u = 0}.
Let us prove this statement. Because Z® accumulates some local time at each level
that it crosses, if L®)(t,x) = 1, it implies that the process Z? will never visit x again.
Hence necessarily, the only possibility to have L®(t,z) = 1 for some = € {Zt(i)u, u = 0}
is to have z = Zt(z). So we need to show that for all ¢t > 0, a.s., L®(t, Zt@)) < 1.
Let ¢ € (0,1). We have by the occupation times formula, for any s < ¢t and M >
0§21 0002512, 120120 = S aran § Lo @oz1-a W L® (v 2)de < 2Me(t -
s). Taking expectation, we deduce that t is an accumulation of points s such that
P(L?(s,Zz) = 1—¢, |ZP] < M) 2Me, hence by continuity of s — L®(s, Z{?)
and of Z® P(LA) (¢, Zt(Q)) =1, |Z | < M) < 2Me which proves the claim by making
g — 0 then M — oco. It implies that T(Zt(i .1 — L®(t,.)) is well-defined. Notice that by
continuity of Z®), it implies that T(Z,1— L@ (s, ")) is well-defined on a neighborhood

of t.
Let us go back to the proof of the continuity and fix ¢t > 0. Let ¢/ < t < t” and

"

2" = inf{x : L@ (" ) = 1}. We suppose that ¢ and " are close enough to t so
that 2" > sup,, z% (such ' and ¢ exist a.s. from what we just proved). Let (¢,),
be a sequence which converges to t. We can suppose that ¢, € (t',t") for all n for
simplicity. We apply Lemma 3.7 with X, 1= 2%, — 2%, f(z) = 1 — LO(t,z + Z),
I=(—00,2" - Zt(z)), and X", f™, I, defined similarly by replacing ¢ by ¢,. Let us check
the assumptions of Lemma 3.7. In the notation of that lemma, (i) and (ii) are verified
since all processes start at 0, j, = o0 and f(z) = f"(x) = 1 for + — —o0. Assumption
(iii) comes from the uniform continuity of Z® on compact sets. Let K be a compact set

of R,. Take ¢, € R such that inf . 7% i, > SUD >y 7% and SUp (s ) 7O 40, <"
(we can suppose that ¢t and ¢” are close enough so that ¢, exists). Then for all s > 0,
Zg)s - Zt@) < /.. Indeed, Zt(i)s — Zt(2) < SUP,>p z? - inf (s 7Z® < (. The same lines
replacing t by t, imply that for all s > 0, Zt(fls — Zt(f) < (4 for all n. Similarly, take
(€ R such that sup Z® 40 < infucpiqpr Zt(,,Zlu. We have that for all s € K,
Zﬁ)s - Zt@) > (_ since Zﬁ)s - Zt@) > inf,<pisup ke z? — Supy 4 @) > ¢_, similarly for
t,. The compact set L = [(_, (] satisfies assumption (iv). We deduce the convergence of
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T(Zt(fzr_, 1— L@ (t,,-)) towards T(Zt(i),, 1 — LA (t,-)) (on an event of probability 1 which
does not depend on the choice of (t,),). [J
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