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The stochastic Jacobi flow

by

Elie Äıdékon1, Yueyun Hu2, and Zhan Shi3

Summary. The problem of conditioning on the occupation field was
investigated for the Brownian motion in 1998 independently by Aldous
[4] and Warren and Yor [34] and recently for the loop soup at inten-
sity 1{2 by Werner [35], Sabot and Tarrès [30], and Lupu, Sabot and
Tarrès [22]. We consider this problem in the case of the Brownian loop
soup on the real line, and show that it is connected with a flow version
of Jacobi processes, called Jacobi flow. We give a pathwise construc-
tion of this flow simultaneously for all parameters by means of a com-
mon Brownian motion, via the perturbed reflecting Brownian motion.
The Jacobi flow is related to Fleming–Viot processes, as established by
Bertoin and Le Gall [9] and Dawson and Li [11]. This relation allows us
to interpret Perkins’ disintegration theorem between Feller continuous
state branching-processes and Fleming–Viot processes as a decomposi-
tion of Gaussian measures. Our approach gives a unified framework for
the problems of disintegrating on the real line. The connection with
Bass–Burdzy flows which was drawn in Warren [33] and Lupu, Sabot
and Tarrès [23] is shown to be valid in the general case.

Keywords. Jacobi flow, perturbed reflecting Brownian motion, loop
soup, local time, Fleming–Viot processes, Perkins’ disintegration theo-
rem, Brownian burglar.
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1. Introduction

A Fleming–Viot process is a measure-valued branching process which models the evolu-
tion of a population of constant size 1. In [8], Bertoin and Le Gall construct a generalized
version of the process through a flow of bridges, which are in correspondance with ex-

changeable coalescents. We can understand this flow as follows (it is the flow pB in the
notation of [8]). One represents the population at any time as the interval r0, 1s, each
point of the interval (the label) representing a particle. Only a finite number of particles
at time 0 will beget descendants at time t ą 0. Partitioning the population at time t
into families will yield a finite partition of the interval r0, 1s, the i-th interval from the
left representing the descendants at time t of the ancestor at time 0 with the i-th lowest
label. One can then construct at each time t a piecewise constant bridge from 0 to 1.
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The bridge jumps at the label of a particle at time 0 which has descendants at time t,
the size of the jump being the size of its offspring, and stays constant otherwise. One can
proceed similarly between times s and t (and not only 0 and t), and obtain a collection of
bridges which naturally satisfies a flow property. Incorporating immigration in the model
translates into adding an extra jump at 0 to the bridge, see [13]. In the case where the
coalescents are so-called Λ-coalescents, Dawson and Li [11] consider the flow Y such that
the bridges of [8], [13] are the maps v P r0, 1s Ñ Ys,tpvq, with Ys,tp0q representing the size
of the population descending from immigrants which arrived at rate δ between time s and
t. They construct it as a solution of a stochastic differential equation (SDE) driven by a
white noise and a Poisson random measure.

We consider the flow Y in the case where the SDE appearing in [11] is only driven by
the white noise. The flow lines of Y are the solutions of the SDE

(1.1) dYt “ 2
a
Ytp1 ´ Ytqdγt ` pδp1 ´ Ytq ´ δ1Ytqdt,

where γ denotes a one-dimensional Brownian motion, and δ, δ1 P R. In the case δ “ δ1 “ 0,
the dual of Y corresponds to the classical Kingman coalescent. Following [34] we call the
solution pYtq of (1.1) a Jacobipδ, δ1q process. These processes arise as the ratio of Gamma
processes, see Proposition 8 in [34] in the case of nonnegative parameters, and Theorem 4
in [24]. A Jacobipδ, δ1q process is called in population genetics a Wright–Fisher diffusion
with mutation rates pδ, δ1q.

The Jacobi flow Y is the flow version of the Jacobi processes Jacobipδ, δ1q, see Definitions
4.2 and 4.3.

One of the goals of this paper is to give a pathwise construction, from a one-dimensional
two-sided Brownian motion, of Jacobipδ, δ1q flows simultaneously for all δ, δ1 P R. This is
done by means of the two-sided perturbed reflecting Brownian motion defined as follows.
Let pBt, t ě 0q and pB1

t, t ě 0q be two independent standard one-dimensional Brownian
motions. Denote by L and L

1 their associated local time processes at position zero. The
two-sided Brownian motion pBt, t P Rq is defined as

Bt :“
"
B1

´t t ď 0,
Bt t ě 0.

We also let Lt :“ ´L
1
´t for t ď 0. For µ ą 0, we define the two-sided perturbed reflecting

Brownian motion (PRBM) or µ-process by

(1.2) Xt :“
"

|B1
´t| ` µL1

´t, if t ď 0,
|Bt| ´ µLt, if t ě 0,

which can simply be written as Xt :“ |Bt| ´µLt, t P R. [The case µ “ 1 is special: on the
positive half-line, it is distributed as a Brownian motion while in the negative half-line,
it is a time-reversed three-dimensional Bessel process.] For general properties of PRBM,
see [19, 36] and the references therein.

The promised pathwise construction of Jacobipδ, δ1q flows is as follows:

Theorem I (Theorem 4.6). Let δ, δ1 P R. Let Y be defined as in (4.11). Then Y is a
Jacobipδ, δ1q flow.
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We will see that the flow Y constructed in (4.11) is a measurable function of the PRBM
pXtq. Furthermore, Y satisfies an SDE driven by a specific martingale measure, see
(4.12). This last result can be interpreted as a “flow version” of the well-known Perkins’
disintegration theorem where we disintegrate, with respect to a flow line, an associated
flow of squared Bessel processes; see Section 2 for the definition and construction of
this associated flow of squared Bessel processes. In particular, Theorem 4.6 shows that
Perkins’ disintegration theorem between Feller continuous state branching-processes and
Fleming–Viot processes amounts to a decomposition of Gaussian measures.

Another goal of the paper is to describe the “contour function” of Jacobi flows. We show
that this contour function is a version of the PRBM conditioned on its occupation field.
As such, it gives a unified framework for related problems on disintegrating a standard
Brownian motion [4, 34, 33, 7, 17] and inverting the Ray–Knight identity of the Gaussian
free field on the real line [23]. The connection with Bass–Burdzy flows which was drawn
in these papers is shown to be valid in the general case. It provides a construction of
the PRBM, or equivalently ([21]) of the one-dimensional loop soup, conditioned on its
occupation field. The corresponding result for the loop soup at intensity 1

2
on a metric

graph is given in [1].
The problem of conditioning a Brownian motion on its occupation field has been treated

by Aldous [4] and Warren and Yor [34], via different approaches. Aldous used the tree
structure of the Brownian excursion to show that the genealogy of the conditioned Brow-
nian motion is a time-changed Kingman coalescent (which is the dual of a Fleming–Viot
process). Later, Berestycki and Berestycki [7] found an analogous result with excursion
theory. Warren and Yor [34] solved the question by constructing the conditioned Brown-
ian motion in time (rather that in space, as in the case of Aldous [4]). If |B| is a reflecting
Brownian motion, they define a process Z, called Brownian burglar, by

Zt :“
ż |B|At

0

dr

L|B|pτ 01 p|B|q, rq , At :“ inf

"
s ą 0 :

ż s

0

dr

L|B|pτ 01 p|B|q, |Br|q2
ą t

*

where L|B| and τp|B|q are naturally the local time and the inverse local time of |B|. They
showed that Z is independent of the occupation field pL|B|pτ 01 p|B|q, rq, r ě 0q. In these
works, the link with the Fleming–Viot process has been suggested but not made explicit.
In [34], the authors state that “the results [...] can be seen as describing a contour process
for the Fleming–Viot process”. Recently, Gufler, Kersting and Wakolbinger [17] gave a
rigorous connection between these two models by constructing the Brownian excursion
via an enriched version of the lookdown process, hence giving a precise meaning to the
statement of [34].

In our case, we will recover the connection with Fleming–Viot processes by constructing
Z through our version of Perkins’ disintegration theorem. The idea, which originates in a
paper of Tóth and Werner [31], is to define the burglar via its local time flow. Actually,
this approach will allow us to solve the analogous problem for the whole class of PRBM,
giving rise to a family of “burglars”.

To construct the burglars, we define

Lpt, rq :“ lim
εÑ0

1

ε

ż t

´8
1trďXsďr`εu ds, t P R, r P R,
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as the local time of the continuous semimartingale X at time t and position r; we work
with a bicontinuous version of local times Lp¨, ¨q, as in ([29], Theorem VI.1.7). Let

(1.3) τ rt :“ infts P R : Lps, rq ą tu
be the inverse local time of X . Let

t˚0 :“ sup
 
t ď 0 : Lpτ 01 , Xtq “ 0

(
, t˚ :“ inf

 
t ě 0 : Lpτ 01 , Xtq “ 0

(
,

with the convention inf H “ `8 and supH “ ´8. Define for t P R,

(1.4) Z
p1q
t :“

ż X
A

p1q
t

0

dr

Lpτ 01 , rq , A
p1q
t :“ inf

"
s P R :

ż s

0

dr

Lpτ 01 , Xsq2
ą t

*
.

The process Zp1q is the burglar associated with the process X between times t˚0 and t˚.
Similarly, let for t ě 0,

(1.5) Z
p2q
t :“

ż X
A

p2q
t

0

dr

Lpτ 01 , rq , A
p2q
t :“ inf

#
s ě 0 :

ż τ0
1

τ0
1

´s

dr

Lpτ 01 , Xsq2
ą t

+
.

The burglar Zp2q is associated with the process X between times t˚ and τ 01 . A precise
statement of the following result will be given in Section 5.1.

Theorem II (Theorem 5.3). The processes Zp1q and Zp2q are independent of pLpτ 01 , rq, r P
Rq. The local time flows of the processes Zp1q and Zp2q are the left part and the right part
of a flow which is a Jacobi(δ, 0) flow in the positive time-axis and a Jacobi(δ, 2) flow in
the negative time-axis.

The above result gives a description of the conditional law of a PRBM given its oc-
cupation field up to τ 10 (and from t˚0). It suffices to take the processes Zp1q and Zp2q

independently of the occupation field, and invert the transformations (1.4) and (1.5). We
can also obtain a burglar by disintegrating the positive part of a PRBM with respect
to its occupation field, see Section 5.4. This burglar can be interpreted as the contour
function of the Jacobipδ, 0q flow. Each of its excursion away from 0 being associated with
a continuous tree in the manner of Aldous [4] and Duquesne and Le Gall [12], the burglar
can be viewed as the contour function of a Fleming–Viot forest.

We present now an interesting connection with the Bass–Burdzy flow. This flow was
introduced by Bass and Burdzy in [6]. The Bass–Burdzy flow with parameters pβ1, β2q,
for β1, β2 P R, is the collection of processes pRtpxq, t ě 0, x P Rq which are the strong
solutions of

Rtpxq “ x` γt ` β1

ż t

0

1tRspxqă0uds ` β2

ż t

0

1tRspxqą0uds

where γ is a standard Brownian motion common for all processes R¨pxq. In words, Rtpxq
is a Brownian motion with drift β1 when negative and β2 when positive. Following [18],
for t ě 0, denote by R´1

t p0q the real x such that Rtpxq “ 0. When β1 “ 0 and β2 “ 1, the
process R´1

t p0q is shown in Warren [33] to be a time-change of the Brownian burglar of
Warren and Yor [34]. In a recent paper [23], Lupu, Sabot and Tarrès showed that in the
case β1 “ ´1

2
, β2 “ 1

2
, the process R´1

t p0q is the scaling limit of a self-interacting process
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involved in the inversion of the Ray–Knight identity, see the next paragraph. We show
that in general, one can recover all the burglars Zp2q associated with the PRBM.

Theorem III (Theorem 5.12 and Proposition 5.13). Taking β1 “ δ
2

´1 and β2 “ δ
2
,

the process R´1
t p0q is a time-change of the process Zp2q defined in (1.5).

To prove the theorem, we use a new approach based on a renewal argument. The process
Zp2q has a kind of Markov property. If one appropriately scales the process after time t,
the scaled process will be independent of the past and with always the same distribution,
see Theorem 5.6. We use this property to show that the images of a point on the real line
by these transformations form actually a Lévy process up to hitting 0, and then deduce
that it must be a flow line of a Bass–Burdzy flow for some parameters. Finally, we use
some random variable whose distribution is easily identified to compute the parameters.
This renewal property breaks down when looking at Zp1q. Roughly speaking, one needs to
remember where the infimum was before doing the scaling. Still, we believe that a similar
connection should hold with some perturbed Bass–Burdzy flow.

Yet another, non-trivial, application of our construction concerns the inversion of the
Ray–Knight identity on the line and its connection with loop soups. Consider the PRBM
X . By excursion theory, the excursions of X above its infimum process forms a Poisson
point process of Brownian excursions rooted at various points of the real line. By exploring
the real line in the upwards direction, one can consider the excursions that one encounters
along the way as Brownian loops rooted at their minimum. As shown by Lupu [21], the
collection of loops has the law of a Brownian loop soup on the real line with intensity 1

µ
.

As a result, conditioning a PRBM on its occupation field may be seen as conditioning a
loop soup on its occupation field.

A similar problem was studied recently by Lupu, Sabot and Tarrès [22] in the case
µ “ 2, equivalently δ “ 1, which is the case of the loop soup at intensity 1

2
, related to the

Gaussian free field (the local time is BESQ1, hence the square of the Gaussian Free Field,
which is simply the Brownian motion on the real line). In their setting (reformulated
in terms of loop soups), the authors add a Brownian motion up to a fixed local time at
zero to a loop soup on Rzt0u. Conditionally on the occupation field, they manage to
reconstruct the Brownian motion path up to a random time. The reconstruction process
is actually in terms of the burglar Zp2q, stopped when it reaches local time 1 at some
position (which happens in a finite time almost surely).

We solve the problem for any intensity of the loop soup. Specifically, take a loop soup
in the positive half-line, and add Brownian excursions up to local time 1. We get the
positive part of a PRBM. A space-time transformation of this PRBM gives a burglar
Z` similar to Zp2q in (1.5), which we have interpreted as the contour function of the
Jacobipδ, 0q flow; see (5.12) for the definition of Z`. One then gets a reconstruction of
the Brownian excursions added to the loop soup in terms of the Jacobi flow, or in terms
of a Bass–Burdzy flow driven by a reflecting Brownian motion with drift. More precisely,
we have
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Theorem IV (Theorems 5.15 and 5.16). Let Z` be as in (5.12) and the occupation
field f as in (5.11). Then the process Z` is independent of f and is the burglar associated
with the positive part of the PRBM.

Finally, we may wonder whether it is possible to find the law of a loop soup conditioned
on its occupation field on a cable graph introduced by Lupu in [20]. In general, the loop
soup loses its Markovian properties. But in the case of intensity 1

2
, the relation of the loop

soup with the Gaussian free field indicates that a certain Markov property should hold. It
is the topic of [1], where the description of the conditioned loop soup uses the framework
of this paper. In the discrete case, the analogous problem was answered by Werner [35]
(description that we could label in “space”, via the link with the random current model)
and Sabot, Tarrès [30], Lupu, Sabot and Tarrès [22] (description in “time”, via a self-
interacting process).

The paper is organized as follows. Flows of BESQ processes are studied in Section 2.
Section 3 collects all the transformations that will be needed to state the disintegration
theorems and construct the burglars. Section 4 contains the disintegration result stated
for the BESQδ,δ1

flows and as a corollary the construction of the Jacobi flows from the
PRBM. Theorem II on the conditioning of a PRBM is proved in Section 5.1. In Section
5.3, we will state the Markov property for Zp2q and prove the link with the Bass–Burdzy
flow given in Theorem III. Section 5.4 connects the contour function of the Jacobipδ, 0q
flow to the Bass–Burdzy flow driven by a reflecting Brownian motion with drift. Section A
studies properties of the BESQ and Jacobi flows with emphasis on perfect flow properties,
and Section B contains a Girsanov theorem for Jacobi flows.

Acknowledgements. We thank Hui He, Zenghu Li, Titus Lupu, Emmanuel Schertzer,
Anton Wakolbinger for helpful discussions. The research of EA was partially supported
by NSFC grant QXH1411004.

2. The BESQ flows

We give the definition of the BESQ flows, then embed them in the PRBM. For any
bounded Borel function g : R` ˆ R Ñ R with compact support, let

(2.1) W pgq :“
ż 8

´8
g
`
Lpt, Xtq, Xt

˘
sgnpBtqdBt.

As shown in [2], the stochastic integral is well defined and W is a white noise on R` ˆR.
Define for any x ě r in R and any a ě 0,

(2.2) Sr,xpaq :“ Lpτ ra , xq, S˚
r,xpaq :“ Lpτ´r

a ,´xq.

Theorem 2.1 ([2], Theorem 5.1). Let W be the white noise defined via (2.1). For any
r P R and any a ě 0, Sr,r`¨paq and S˚

r,r`¨paq are the pathwise unique solutions, which are
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strong4, of the following SDEs:

Sr,r`hpaq “ a ` 2

ż r`h

r

W pr0, Sr,spaqs, dsq ` 2

µ
h, h ě 0,(2.3)

S˚
r,r`hpaq “ a ´ 2

ż r`h

r

W ˚pr0, S˚
r,spaqs, dsq ` p2 ´ 2

µ
qh, h P r0, T0pS˚

r,r`¨paqqs,(2.4)

where W ˚ is the image of W under the map pa, sq ÞÑ pa,´sq and T0pS˚
r,r`¨paqq :“ infth ě

0 : S˚
r,r`hpaq “ 0u.

Remark. If It :“ infsďtXs denotes the infimum process ofX , we can rewrite T0pS˚
r,r`¨paqq

in (2.4) as ´Iτ´r
a

´ r.

Ray–Knight theorems are usually statements on marginal distributions. Recall that
the squared Bessel process of dimension δ P R started at x ě 0, denoted BESQδ

x, is the
pathwise unique solution of

St “ x ` 2

ż t

0

a
|Ss|dγs ` δt, t ě 0,

where, as before, γ is a standard Brownian motion. The BESQδ hits zero at a positive
time if and only if δ ă 2. It is absorbed at 0 when δ “ 0 and is reflecting at 0 when
δ P p0, 2q. When δ ă 0, after hitting 0, it behaves as a BESQ´δ

0 in the negative half-
line, see e.g. [15]. See Le Gall and Yor [19] and Yor ([36], Chapter 9) for references on
Ray–Knight theorems.

Ray–Knight theorems show that the flows of squared Bessel processes are embedded
in the PRBM. The setting of Dawson and Li [11] includes the construction of such flows.
We impose some further regularity conditions in order to give it the structure of a flow in
the sense of [5, 31].

Definition 2.2. Let δ ą 0. We call BESQδ flow (or non-killed BESQδ flow) a collection
S of continuous processes pSr,xpaq, x ě rqrPR,aě0 such that:

1) for each pr, aq P RˆR`, the process pSr,xpaq, x ě rq is almost surely the strong solution
of the following SDE

(2.5) Sr,xpaq “ a` 2

ż x

r

Wpr0,Sr,spaqs, dsq ` δpx ´ rq

where W is a white noise on R` ˆ R.
2) Almost surely,

(i) for all r P R and a ě 0, Sr,rpaq “ a,
(ii) for all r ď x, a ÞÑ Sr,xpaq is càdlàg,
(iii) for all r1 ď r and all a1, a ě 0, if Sr1,rpa1q ą a (resp. Sr1,rpa1q ă a), then

Sr1,xpa1q ě Sr,xpaq (resp. Sr1,xpa1q ď Sr,xpaq) for all x ě r.

4By strong solution, we mean that for instance Sr,r`hpaq is measurable with respect to σtW p¨, rr, ssq :
r ď s ď r ` hu. This terminology will be used elsewhere with the same remark.
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Definition 2.3. For ´8 ă δ ă 2, we call killed BESQδ flow the flow solution of (2.5),
where the process is absorbed when hitting 0, and which satisfies the same regularity con-
ditions.

For short, we call general BESQδ flow a killed BESQδ when δ ď 0, a (non-killed)
BESQδ flow when δ ě 2 and either a killed or non-killed BESQδ flow when δ P p0, 2q.

Dawson and Li [11] showed (in a more general setting) that equation (2.5) possesses
a pathwise unique solution. We can show that the same is true in the case δ ă 0, with
arguments similar to the ones of the proof of Theorem 4.6.

We check that the BESQ flows are naturally embedded in the PRBM X , which will give
the existence of these flows for free. In agreement with (2.2), we define Sr,xpaq “ Lpτ ra , xq
for any r, x P R. We call the collection of processes LX :“ pSr,xpaq, ´8 ă r, x ă 8, a ě 0q
the local time flow of X . The flow S :“ pSr,xpaq, x ě rqrPR,aě0 is called the forward local
time flow of X , while S˚ :“ pS´r,´xpaq, x ě rqrPR,aě0 is called the backward local time
flow of X . Both flows are dual as we will see in equation (2.6).

Proposition 2.4. Let µ ą 0.
The forward flow pSr,xpaq, x ě rqrPR,aě0 is a BESQ2{µ flow.

If µ P p0, 1s, the backward flow pS´r,´xpaq, x ě rqrPR,aě0 is a killed BESQ2´2{µ flow.

Proof. The finite-dimensional distributions coincide by Theorem 2.1 so we only have to
check the regularity conditions (i), (ii) and (iii) in Definition 2.2. We have Sr,rpaq “ a

indeed. Statement (ii) is a consequence of the continuity of the local times, and the
observation that a Ñ τ ra is càdlàg by construction. We prove now (iii). We have Sr1,rpa1q “
Lpτ r1

a1 , rq. By definition of τ ra , Sr1,rpa1q ą a is equivalent to τ r
1

a1 ą τ ra . Therefore, Sr1,xpa1q “
Lpτ r1

a1 , xq ě Lpτ ra , xq “ Sr,xpaq. l

Conversely, we can recover X from its local time flow. It is the content of the following
proposition.

Proposition 2.5. The process X is a measurable function of its local time flow LX “
pSr,xpaq, ´8 ă r, x ă 8, a ě 0q.

Proof. By the occupation times formula, for any a ě 0 and b, τ ba “
ş
R

pSb,rpaq ´ S0,rp0qqdr
hence pτ ba , a ě 0, b P Rq is measurable with respect to LX . Therefore Lpt, xq, t P R, x P R,

is measurable with respect to LX , which again by the occupation times formula yields
that X is measurable as well (for any s ă t,

şt
s
Xudu “

ş
R
xpLpt, xq ´ Lps, xqqdx). l

We show now that any BESQδ flow can be constructed from a countable number of
flow lines. It allows us to identify BESQδ flows with flows embedded in a PRBM.

Proposition 2.6. Let S be a general BESQδ flow. Let prn, anqn be a dense countable set
in R ˆ R`. Almost surely, for any x ě r and a ě 0,

Sr,xpaq “ inf
tn : rnďr,Srn,rpanqąau

Srn,xpanq.
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Proof. We first check that almost surely, for any r P R, and any 0 ď a ă a1, one can find
some prn, anq such that rn ď r and Srn,rpanq P pa, a1q. From Theorem 2.1, one can reason
on the local times of the PRBM (notice that one can make this identification because we
only look at a countable number of flow lines). The previous claim property follows since
it suffices to take a ă b1 ă b2 ă a1, and prn, anq such that Lpτ b1r , rnq ă an ă Lpτ b2r , rnq.
We would then have Lpτanrn

, rq ě Lpτ b1r , rq ą a and Lpτanrn
, rq ď Lpτ b2r , rq ă a1.

Let us go back to the proof of the proposition. Fix x ě r and a ě 0. We prove that
Sr,xpaq “ inftn : rnďr,Srn,rpanqąau Srn,xpanq. Notice that the set over which the infimum is
taken is not empty. For any pan, rnq such that Srn,rpanq ą a, we have Srn,xpanq ě Sr,xpaq
by (iii) of Definition 2.2, which proves one inequality. If a1 ą a, we take some pan, rnq
such that Srn,rpanq P pa, a1q. Then Sr,xpaq ď Srn,xpanq ď Srn,xpa1q. We then conclude by
(ii) of Definition 2.2. l

Proposition 2.7. Let δ P R. Let S be a general BESQδ flow. Define its dual S˚ by, for
r ď x,

S
˚
r,xpaq :“ inftb ě 0 : S´x,´rpbq ą au.

Then S˚ is a BESQ2´δ flow (in the case δ P p0, 2q, it is killed if S is not killed, and it is
not killed if S is killed). Moreover, pS˚q˚ “ S.

This proposition gives the dual of a Feller CSBP with immigration. We refer to Foucart,
Ma and Mallein [14] for dual processes of CSBPs.

Proof. It is a direct consequence of Proposition 2.4 and the following claim: almost surely,
for all r, x P R and a ě 0,

(2.6) Sr,xpaq “ inftb ě 0 : Sx,rpbq ą au.
Let us prove this claim. Let b ě 0 be such that Sx,rpbq ą a. By definition, it means
that Lpτxb , rq ą a, and since Lpτ ra , rq “ a, we get τxb ą τ ra so that b “ Lpτxb , xq ě Lpτ ra , xq
which is Sr,xpaq by definition. On the other hand, let b ě 0 such that Sx,rpbq ď a,
i.e., Lpτxb , rq ď a. Take s ě 0 such that Lps, rq ą a, hence s ą τxb . It implies that
Lps, xq ě Lpτxb , xq “ b and Lpτ ra , xq ě b by making s Ó τ ra . l

3. Space-time transformations

In this section, we consider a fixed positive continuous function f : I Ñ p0,8q where I
is an interval (not necessarily open nor bounded).

3.1. Transformations of flows. The results in this section hold in a deterministic set-
ting. They provide the transformations that will be used later in our disintegration results.

We introduce some general notation. Let c P I and define

ηf,cpxq :“
ż x

c

dr

fprq , x P I.
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Definition 3.1. We denote by Ψp¨, f, cq the transformation with domain Df :“ tpa, xq :
a P r0, fpxqs, x P Iu defined as

Ψp¨, f, cq :
#

Df ÞÑ r0, 1s ˆ ηf,cpIq
pa, xq ÞÑ

´
a

fpxq , ηf,cpxq
¯
.

If g : I Ñ R` is a continuous function such that g ď f , we denote by Ψpg, f, cq the
function whose graph is the image of the graph of g by Ψp¨, f, cq. That is

Ψpg, f, cq :
#
ηf,cpIq ÞÑ r0, 1s
x ÞÑ g˝η´1

f,c
pxq

f˝η´1

f,c
pxq .

When c “ 0, we will simply write ηf for ηf,0 and Ψp¨, fq for Ψp¨, f, 0q.

In this section, we will not need a precise definition of flows. Let g : I Ñ R` be
a continuous function. We will simply call g-flow a collection L :“ tSr,¨paq, r P I, a P
r0, gprqsu of continuous functions Sr,¨paq : I ÞÑ R` such that for every r, x P I and
a P r0, gprqs, Sr,rpaq “ a and Sr,xpaq ď gpxq. We call it flow only because we will
deal exclusively with the BESQ and Jacobi flows. More generally, we give the following
definition.

Definition 3.2. We call flow in the domain Df any flow which is a g-flow for some
continuous nonnegative function g ď f .

Remark. We also allow the case f ” 8, meaning that L is a flow in the domain R` ˆR.

If L is a g-flow, the forward flow of L is the collection of functions S :“ pSr,xpaq, x P
I X rr,8qqrPI,aPr0,gprqs and the backward flow of L is the collection of functions S˚ :“
pS´r,´xpaq, x P p´Iq X rr,`8qrP´I,aPr0,gp´rqs where ´I :“ t´x, x P Iu. We already men-
tioned the Jacobi flow and the BESQ flow, which are in our terminology forward flows.
The first one is a forward flow in the domain r0, 1s ˆ R (here gprq ” 1). The second one
is a forward flow in the domain R` ˆ R (formally taking gprq ” 8).

Definition 3.3. Let g ď f be a continuous nonnegative function and c P I. Consider
a g-flow L. We denote by ΨpL, f, cq the flow such that for any pv, rq in the image of
Dg :“ tpa, xq : a P r0, gpxqs, x P Iu by Ψp¨, f, cq, its flow line passing through pv, rq is the
image of the flow line in L passing through the preimage of pv, rq. It is defined through
the following equation:

pΨpL, f, cqqr,x pvq “
Sη´1

f,c
prq,η´1

f,c
pxqpvf ˝ η´1

f,cprqq
f ˝ η´1

f,cpxq
for all r, x P ηf,cpIq, v P r0,Ψpg, f, cqprqs. When c “ 0, we will only write ΨpL, fq for
ΨpL, f, 0q.
Remark. The image flow ΨpL, f, cq is a Ψpg, f, cq-flow.

If we only look at the forward flow S (for example in (4.10)), we will still write ΨpS, f, cq
for the forward flow obtained as in Definition 3.3, restricted to r ď x.



11

3.2. Transformations of processes. Let J be an interval of R containing 0 and X “
pXt, t P Jq be some real-valued continuous process such that Xt P I for all t P J . We
suppose that X admits a version of bicontinuous local times LX pt, xq, t P J , x P I, defined
as the densities of the occupation times: for any Borel nonnegative function h and any
t P J , ż

JXp´8,ts
hpXsqds “

ż

I

hpxqLX pt, xqdx.

We let gpxq :“ LX p8, xq for x P I denote the total local time of X at position x and we
suppose that gpxq ď fpxq on I. Define LX “ pSr,xpaqqr,x,a as, for any x and r in I and
0 ď a ď gprq,

Sr,xpaq :“ LX pτ ra pX q, xq,
where

τ ra pX q :“ inftt P J : LX pt, rq ą au.
We used the convention that inf H “ 8, so that when a “ gprq, τ ra pX q “ 8 and Sr,xpaq “
gpxq for all x. Then LX is a g-flow, which (in agreement with the previous section) we
will refer to as the local time flow of X . Its forward, resp. backward flow is called forward,
resp. backward local time flow of X . By Definition 3.2, LX is a flow in the domain Df .

Proposition 3.4. We set

Cfptq :“
ż t

0

ds

fpXsq2
, t P J.

For c P I, we let ΥpX , f, cq be the process defined as

(3.1) ΥpX , f, cqt :“ ηf,c

´
XC´1

f
ptq

¯
“
ż X

C
´1

f
ptq

c

dr

fprq , t P CfpJq.

Then, the process ΥpX , f, cq possesses bicontinuous local times (given by (3.2)) and its
local time flow is ΨpLX , f, cq.
For sake of brevity, we will write in the rest of this section Z :“ ΥpX , f, cq.

Remarks. (i) The definition of Υ does not depend on the choice of the interval I on
which is defined f .
(ii) Observe that |Cfptq| ă 8 for all t P J and t Ñ Cf ptq is strictly increasing so that Z
is well defined and is a continuous process. Moreover, for all t P CfpJq, Zt P ηf,cpIq.
(iii) In the course of the proof, we will prove that the local time LZpt, xq of Z at time
t P CfpJq and position x P ηf,cpIq is given by

(3.2) LZpt, xq “
LX pC´1

f ptq, η´1
f,cpxqq

f ˝ η´1
f,cpxq .

In particular, the total local time of Z at position x is Ψpg, f, cqpxq ď 1 for all x P ηf,cpIq.
(iv) Explicitly, the proposition means that

LZpτ r̂v pZq, x̂q “ ΨpLX , f, cqr̂,x̂pvq
for all r̂, x̂ P ηf,cpIq and v P r0,Ψpg, f, cqpr̂qs where τ r̂v pZq :“ inftt P CfpJq : LZpt, r̂q ą vu.
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Proof of the proposition. For simplicity, we suppose that c “ 0. First we prove (3.2)
by following the proof of Lemma 2 of [34]. Let h : R Ñ R` be a Borel function. Let
t1 :“ inf J and t2 :“ sup J . Using change of variables, we have for t P pt1, t2q,

ż Cf ptq

Cf pt1q
hpZuqdu “

ż t

t1

hpZCf psqqdCf psq

“
ż t

t1

h ˝ ηf pXsq
ds

fpXsq2

“
ż

If

h ˝ ηfpxqLX pt, xq
fpxq2 dx

by the occupation times formula. Let pLpCfptq, ηfpxqq :“ LX pt,xq
fpxq . We get by the change of

variables z “ ηf pxq,
ż Cf ptq

Cf pt1q
hpZuqdu “

ż 8

´8
hpzqpLpCfptq, zqdz.

Therefore Z has local time given by pL. It proves (3.2). Let r, x P I and 0 ď v ď gprq
fprq . Set

r̂ :“ ηf prq, x̂ :“ ηfpxq, τ̂ r̂v :“ Cfpt̂q where t̂ :“ τ rvfprqpX q. Then pLpτ̂ r̂v , r̂q “ v, and since

v Ñ τ̂ r̂v is right-continuous, we deduce that τ̂ is the inverse local time of Z. Moreover, by
definition,

pLpτ̂ r̂v , x̂q “
LX pτ rvfprqpX q, xq

fpxq “ Sr,xpvfprqq
fpxq .

By Definition 3.3, it is ΨpLX , fqr̂,x̂pvq indeed. l

The transformation Υ behaves well under composition. It is the content of the following
lemma. For a process X , we let Xs`¨ denote the process Xs`t, t ě 0 (as long as Xs`t is
well-defined).

Lemma 3.5. Let s P J and c1 P I. We suppose that f ´LX ps, ¨q is positive on an interval
containing c1 and tXs`¨u. Then, Υ

`
ZCf psq`¨, 1 ´ LZpCfpsq, ¨q, ηf,cpc1q

˘
is well-defined and

equals Υ pXs`¨, f ´ LX ps, ¨q, c1q. In particular, the values at time 0 of the two processes
are identical, i.e.

(3.3)

ż ZCf psq

ηf,cpc1q

dr

1 ´ LZpCf psq, rq “
ż Xs

c1

dr

fprq ´ LX ps, rq .

Remark. By saying that Υ
`
ZCf psq`¨, 1 ´ LZpCfpsq, ¨q, ηf,cpc1q

˘
is well-defined, we mean

that

(i) the total local time of ZCf psq`¨ at position u is smaller than 1´LZpCfpsq, uq (which
is clear since the total local time of Z is smaller than 1)

(ii) 1 ´ LZpCfpsq, ¨q ą 0 on an interval containing ηf,cpc1q and tZCf psq`¨u.
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Proof of Lemma 3.5. We first check that Υ
`
ZCf psq`¨, 1 ´ LZpCfpsq, ¨q, ηf,cpc1q

˘
is well-

defined, hence we check statement (ii) above since (i) is clear. By (3.2), for any u P ηf,cpIq,

LZpCf psq, uq “
LX ps, η´1

f,cpuqq
fpη´1

f,cpuqq .

We deduce that (ii) is satisfied since tZCf psq`¨u “ ηf,cptXs`¨uq. Let us prove the second
statement of the lemma. Let t ě 0 with s ` t P J . Let

t2 :“
ż s`t

s

du

pfpXuq ´ LX ps,Xuqq2 , c2 :“ ηf,cpc1q.

Substituting v for Cf puq in the above integral and using that ZCf puq “ ηf,cpXuq by (3.1),
we get

(3.4) t2 “
ż Cf ps`tq

Cf psq

dv

p1 ´ LZpCf psq,Zvqq2 .

Observe that by the change of variables x “ η´1
f,cprq in the integral,

(3.5) η1´LZ pCf psq,¨q,c2puq “
ż u

c2

dr

1 ´ LZpCfpsq, rq “
ż η´1

f,c
puq

c1

dx

fpxq ´ LX ps, xq .

Let us consider ΥpZCf psq`¨, 1 ´ LZpCfpsq, ¨q, c2q at time t2. By definition and using
equation (3.4),

ΥpZCf psq`¨, 1 ´ LZpCfpsq, ¨q, c2qpt2q “ η1´LZ pCf psq,¨q,c2pZCf ps`tqq.
Equation (3.5) with u “ ZCf ps`tq “ ηf,cpXs`tq yields

η1´LZpCf psq,¨q,c2pZCf ps`tqq “
ż Xs`t

c1

dx

fpxq ´ LX ps, xq “ ηf´LX ps,¨q,c1pXs`tq.

By definition, it is the value of the process ΥpXs`¨, f ´ LX ps, ¨q, c1q at time t2. The proof
is complete. l

Notation 3.6. When c “ X0, we will write ΥpX , fq for ΥpX , f,X0q.
(i) Direct computations also show that ΥpX , fq stays unchanged when replacing X by

X ` a and f by fp¨ ´ aq for a P R arbitrary.
(ii) Since ηf,cpXsq “ ZCf psq by definition, Lemma 3.5 in the case that c1 “ Xs reads

Υ
`
ZCf psq`¨, 1 ´ LZpCf psq, ¨q

˘
“ Υ pXs`¨, f ´ LX ps, ¨qq

We finish this section by a continuity lemma on the transformation Υ that will be used
later on.

Lemma 3.7. We fix a couple pX , fq where X : J “ r0,8q Ñ R, f : I Ñ p0,8q are
continuous and Xt P I for all t ě 0.

We consider a sequence pX n, fnqně1 such that X n : r0, jnq Ñ R, jn P R` Y t`8u,
fn : In Ñ p0,8q and Xt P In for all t P r0, jnq. The sets I, In are intervals.

We make the following assumptions:
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(i) for all n, X n
0 “ X0 “ 0 and

şjn
0

ds
fnpXn

s q2 “
ş8
0

ds
fpXsq2 “ 8;

(ii) limnÑ8 jn “ 8;
(iii) X n converges uniformly to X on any compact set of R`;
(iv) for any compact set K of R`, there exists a compact set L in R such that

(a) for n large enough, X pKq and X npKq are contained in the set L which is itself
contained in I and in In;

(b) fn converges uniformly to f on L.

Then ΥpX n, fnq converges to ΥpX , fq (for the topology of uniform convergence on compact
sets of R`).

See Appendix C for the proof.

4. Jacobi flows

In this section, we define Jacobi flows, and show how they arise by disintegration of the
BESQ flows.

Let λ denote the Lebesgue measure.

Definition 4.1. We introduce the covariance functional

QhpA, pAq “ h
´
λpAX pAq ´ λpAX r0, 1sqλp pAX r0, 1sq

¯

for A, pA Borel sets of R`, and h ě 0. Let pEs, ´8 ă s ă 8q be a right-continuous filtra-
tion. We consider a collection of random variables pMpAˆrs, tsq, s ď t, A Borel set of R`q
such that for any s P R, A, pA Borel sets of R`, pMpAˆrs, s`hsqqhě0 and pMp pAˆrs, s`
hsqqhě0 are two continuous martingales with respect to the filtration pEs`h, h ě 0q and

(4.1) xMpAˆ rs, s` ¨sq,Mp pAˆ rs, s ` ¨sqyh “ QhpA, pAq.
From (4.1), we deduce that for fixed s, h, and pAnqn disjoint Borel sets with λpŤnAnq ă

8, we have MpŤnAn, rs, s` hsq “ ř
nMpAn, rs, s` hsq in L2pΩq. In other words, M is

an pEsq-martingale measure with covariance functional Q on R` ˆ R in the sense of [32].

The martingale measure M can be defined through a white noise W on R` ˆ R:

(4.2) MpAˆ rs, tsq :“ WpA ˆ rs, tsq ´ λpAX r0, 1sqWpr0, 1s ˆ rs, tsq.
We now introduce the Jacobi flows.

Definition 4.2. Let δ ą 0 and δ1 P R. Let Y be a collection of continuous processes
pYs,tpvq, t ě sqsPR, vPr0,1s. We say that Y is a (non-killed) Jacobi(δ, δ1) flow if it is solution
of
(4.3)

Ys,tpvq “ v ` 2

ż t

s

M

´
r0,Ys,rpvqs, dr

¯
`
ż t

s

δp1´ Ys,rpvqq ´ δ1Ys,rpvq dr, t P r0, T1pYs,¨pvqqs

whereM is a martingale measure on R`ˆR with covariance functional Q and T1pYs,¨pvqq :“
inftt ě s : Ys,tpvq “ 1u (it may be infinite). We require the regularity conditions: almost
surely,

(i) for all s P R and v P r0, 1s, Ys,spvq “ v,
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(ii) for all s ď t, v P r0, 1q ÞÑ Ys,tpvq is càdlàg,
(iii) for all s1 ď s and all v1, v P r0, 1s, if Ys1,spv1q ą v, then Ys1,tpv1q ě Ys,tpvq for all

t ě s,
(iv) for all s ď t ď t1, and v P r0, 1s, if Ys,tpvq “ 1 then Ys,t1p1q “ 1.

Definition 4.3. Let δ ă 2 and δ1 P R. We say that Y is a killed Jacobi(δ, δ1) flow if it
is solution of (4.3) but is absorbed at 0 and satisfies the same regularity conditions. For
δ P R, we call general Jacobi(δ, δ1) flow a Jacobi flow which is either killed or non-killed.

Remark. Being non-killed means that the flow line is reflected at zero. With condition
(iv), we arbitrarily decided to kill flow lines when they hit 1. We could also let them reflect
at 1. Therefore, strictly speaking, our Jacobi flows are actually Jacobi flows killed at 1.

The existence of Jacobi flows will be obtained as a consequence of Theorem 4.6. As for
the case of BESQ flows, the Jacobi flow can be constructed from a countable number of
flow lines.

Definition 4.4. Let δ, δ1 P R and b ě 0. Let W be a white noise on R2
`. Consider the

BESQδ flow pSr,xpaq, x ě rqrPR,aě0 driven by W as in Definition 2.2 or Definition 2.3.
Let f “ pfpxq, x P r0, dfqq be the pathwise unique solution of

(4.4) fpxq “ b` 2

ż x

0

Wpr0, fpsqs, dsq ` pδ ` δ1qx

where the process is absorbed at 0 if it hits 0 at a positive time (we denote by df this

absorption time, possibly infinite). We call BESQδ,δ1

b flow driven by W the collection of
continuous processes Θ “ pΘr,xpaq, 0 ď r ď x ă df q, a P r0, fprqsq where Θr,¨paq “ Sr,¨paq
until it meets f , and is equal to f afterwards.

The BESQδ,δ1

b flow is called killed when S is killed.
When b “ 0, by convention the flow will be defined for x ě r ą 0.

Remark. (i) To avoid trivial situations, we suppose either that b ą 0 or b “ 0 and
δ ` δ1 ě 2 (otherwise df “ 0).

(ii) The flow lines may hit f only in the case δ1 ă 2.

We suppose now that b ą 0. We have df ă 8 if and only if δ ` δ1 ă 2. We will use
the transformation Ψ of Section 3.1 with f . We recall that ηf pxq :“

şx
0

dr
fprq . In all cases,

limxÒdf ηf pxq “ `8 (see Lemma 5.1). Define the martingale measure ĂW by, for any Borel
set A Ă R` with finite Lebesgue measure λpAq,

(4.5) ĂWpAˆ r0, tsq :“
ż η´1

f
ptq

r“0

1

fprqW pAfprq, drq , t ě 0,

where Afprq :“ tafprq, a P Au. If pEx, x ě 0q denotes the natural filtration of W, with

Ex :“ σpWp¨ ˆ r0, rsq, 0 ď r ď xq, then the process pĂWpA ˆ r0, tsqqtě0 is a continuous

martingale with respect to the filtration p rEt, t ě 0q :“ pEη´1

f
ptq, t ě 0q whose quadratic
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variation process is equal to λpAqt. We deduce that ĂW is a white noise on R2
` with respect

to the filtration p rEt, t ě 0q.
We define the martingale measure M` on R2

` by the identity for any Borel set A Ă R`:

(4.6) M`pAˆ r0, tsq :“ ĂW pAˆ r0, tsq ´ λpAX r0, 1sq ĂW pr0, 1s ˆ r0, tsq , t ě 0.

Notice that pM`pA ˆ r0, tsqqt,A is a Gaussian process. It is actually an p rEtq-martingale
measure with covariance functional Q as defined in Definition 4.1, from s “ 0. From the
definition of M`, we see that for any deterministic Borel set A Ă R`, and t ě 0,

(4.7) M`pAˆ r0, tsq “
ż η´1

f
ptq

r“0

1

fprq
´
W pAfprq, drq ´ λpAX r0, 1sqW pr0, fprqs, drq

¯
.

We can rewrite it as
ż 8

r“0

ż 8

u“0

gpu, rqM`pdu, drq(4.8)

“
ż 8

r“0

ż 8

u“0

1

fprqg
´ u

fprq , ηfprq
¯ˆ

Wpdu, drq ´ 1r0,fprqspuq du

fprqW pr0, fprqs, drq
˙

for g “ 1Aˆr0,ts. By definition of the stochastic integral, it is also true when g “ Z1Aˆps,ts
where 0 ď s ď t and Z is a bounded rEs-measurable function. By linearity and density,

(4.8) is true for any p rEtq-predictable square integrable function g with respect to the
covariance of M`, i.e.

E

«ż

tě0

ż

uě0

gpu, tq2dudt´
ż

tě0

ˆż

uPr0,1s
gpu, tqdu

˙2

dt

ff
ă 8.

Define

(4.9) γx :“
ż x

0

1a
fprq

Wpr0, fprqs, drq, 0 ď x ă df .

The process γ is an pExq-Brownian motion stopped at df when df ă 8.

Proposition 4.5. The martingale measure M` is independent of the process f .

Proof. The proof is an extension of that of Proposition 8 of [34] to the setting of martingale
measures. Let γ be defined by (4.9). From (4.7), we see that pM`pAˆr0, ηfpxqsq, 0 ď x ă
dfq is a martingale which is orthogonal to γ. On the other hand, its increasing process
is x Ñ pλpAq ´ λpA X r0, 1sq2qηfpxq. We deduce by Knight’s theorem that pM`pA ˆ
r0, tsq, t ě 0q is a Brownian motion (with multiplicative constant) which is independent
of γ. More generally, the multidimensional Knight’s theorem implies that pM`pA1 ˆ
r0, tsq, . . . ,M`pAn ˆ r0, tsq t ě 0q are independent of γ for any n ě 1 and disjoint Borel
sets A1, . . . , An of R`. We deduce that pM`pAˆr0, tsqqt,A is independent of γ. We observe
that the process f is measurable with respect to the filtration of γ (it is the strong solution

of dfpxq “ 2
a
fpxqdγx ` pδ` δ1qdx), therefore pM`pAˆ r0, tsqqt,A is independent of f . l
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0
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v
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Figure 1. On the left: BESQδ,δ1
flow. The process x Ñ fpxq is traced in bold.

A flow line x Ñ S0,xpvq is also represented. On the right: Jacobi(δ, δ1) flow after
a space-time transformation. The process x Ñ fpxq is mapped to the constant
function 1, and the image of the flow line at v is a flow line of the Jacobi flow.

In the notation of Section 3.1 with I “ r0, dfq and c “ 0, we define the flow Y` “
pYs,tpvq, 0 ď s ď t, v P r0, 1sq by

(4.10) Y` :“ ΨpΘ, fq
(we add the superscript in Y` to stress that the flow is only defined for 0 ď s ď t whereas
the flow Y is defined for all ´8 ă s ď t), see Figure 1. By definition,

(4.11) Ys,tpvq “
Θη´1

f
psq,η´1

f
ptq

´
vf ˝ η´1

f psq
¯

f ˝ η´1
f ptq , t ě s ě 0, v P r0, 1s.

Theorem 4.6. Let δ, δ1 P R. Let b ą 0 and Θ be a BESQδ,δ1

b flow. Then, the flow Y`

is a Jacobi(δ, δ1) flow, restricted to the positive time-axis. It is the r0, 1s-valued pathwise
unique solution, which is strong, of the following SDE. Let v P r0, 1s and s ě 0. Almost
surely, for t ě s,

(4.12) Ys,tpvq “ v ` 2

ż t

s

M
`pr0,Ys,rpvqs, drq `

ż t

s

pδp1 ´ Ys,rpvqq ´ δ1
Ys,rpvqqdr

with the required absorption conditions5. In particular, Y` is independent of f .

Remark. The theorem will be used only in the case δ1 “ 0 in the rest of the paper.
The general case will be used in a follow-up paper.

Proof. The regularity conditions (i), (iii) and (iv) of Y` come from the properties of Θ.
Let us check that (ii) is also satisfied. Let u P r0, 1q and s ď t. If Ys,tpuq “ 1, then
Ys,tpvq “ 1 for all v ě u hence v Ñ Ys,tpuq is càdlàg at u. Suppose then that Ys,tpuq ă 1.
There exists v ą u such that Ys,tpvq ă 1. Indeed, the flow pSr,xpaq, x ě rqrPR, aě0 verifies:
almost surely, for all r ă x and a ě 0, supr1Prr,xs |Sr,r1pbq ´ Sr,r1paq| Ñ 0 as b Ó a. This
statement follows from the identification Sr,xpaq “ Lpτ ra , xq (see Section 2), the fact that
b Ñ τ rb is càdlàg, and the bicontinuity of the local times. Since for v ą u close enough to

5The process is absorbed if it hits 1. If Θ is killed, then the process is also absorbed if it hits 0.



18

u, one has Ys,tpvq ă 1, we can use the regularity of the flow pSr,xpaq, x ě rqrPR, aě0 to see
that v Ñ Ys,tpvq is càdlàg at u.

We show now the SDE. To avoid too much notation, we prove it for s “ 0. For brevity,
we suppose that Θ is non-killed. The other case is similar, one just has to look at the
times before the hitting time of 0. By (4.11), we have

Y0,tpvq “
Θ0,η´1

f
ptqpbvq

f ˝ η´1
f ptq .

Equation (4.12) is equivalent to

(4.13)
Θ0,xpbvq
fpxq “ v`2

ż ηf pxq

0

M`pr0,Y0,rpvqs, drq`
ż ηf pxq

0

pδp1 ´ Y0,rpvqq ´ δ1Y0,rpvqqdr.

Let ξxpvq :“ Θ0,xpbvq
fpxq . By (4.8) with gpu, rq :“ 1r0,Y0,rpvqsˆr0,ηf pxqspu, rq (hence gp u

fprq , ηf prqq “
1r0,Θ0,rpbvqsˆr0,xs), the first integral of the right-hand side of (4.13) is equal to

(4.14)

ż x

0

1

fprq pWpr0,Θ0,rpbvqs, drq ´ ξrpvqWpr0, fprqs, drqq .

By a change of variables, the last term of the right-hand side in (4.13) is

(4.15)

ż ηf pxq

0

δp1 ´ Y0,rpvqq ´ δ1Y0,rpvqdr “
ż x

0

δp1 ´ ξrpvqq ´ δ1ξrpvq
fprq dr.

Let us verify (4.13). By (4.4), we have xf, fyx “ 4
şx
0
fpsqds and

xΘ0,¨pbvq, fyx “ 4

ż x

0

Θ0,spbvqds.

We deduce from Itô’s formula that, as long as Θ0,xpbvq ă fpxq, (d ” dx below)

dξxpvq

“ dΘ0,xpbvq
fpxq ´ Θ0,xpbvq

fpxq2 dfpxq ` Θ0,xpbvq4fpxq
f 3pxqdx ´ 1

f 2pxq4Θ0,xpbvqdx

“ dΘ0,xpbvq
fpxq ´ Θ0,xpbvq

fpxq2 dfpxq

“ 1

fpxq
`
2Wpr0,Θ0,xpbvqs, dxq ` δdx

˘
´ ξxpvq
fpxq

`
2Wpr0, fpxqs, dxq ` pδ ` δ1qdx

˘

“ 2

fpxq pWpr0,Θ0,xpbvqs, dxq ´ ξxpvqWpr0, fpxqs, dxqq ` δp1 ´ ξxpvqq ´ δ1ξxpvq
fpxq dx.

Comparing with (4.14) and (4.15), we get (4.13) indeed.
Now we show that Y` is the pathwise unique solution (by Yamada–Watanabe’s theorem

it will imply that it is a strong solution). This can be achieved by imitating the usual
proof of the pathwise uniqueness of a one-dimensional SDE with non-Lipschitz coefficient.
We give the details here for completeness. As before we take s “ 0 for notational brevity.
Define a0 :“ 1 and ak :“ ak´1e

´k for k ě 1. Let ψk be a continuous function on R with
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support in pak, ak´1q such that
şak´1

ak
ψkpxqdx “ 1 and 0 ď ψkpxq ď 2

kx
for x P pak, ak´1q.

Define

φkpyq :“
ż |y|

0

dx

ż x

0

ψkprqdr, y P R.

Observe that φk is twice continuously differentiable and |φ1
k| ď 1. Moreover φkpyq Ñ |y|

as k Ñ 8. Suppose that Y
p1q
0,t pvq and Y

p2q
0,t pvq, t ě 0, are two solutions of (4.12) [with

s “ 0 there] with respect to the same martingale measure M`. Let ∆Yt :“ Y
p1q
0,t pvq ´

Y
p2q
0,t pvq for t ě 0. By (4.6), we have

şt
0
M`pr0,Y piq

0,rpvqs, drq “
şt
0

`ĂWpr0,Y piq
0,rpvqs, drq ´

Y
piq
0,rpvqĂWpr0, 1s, drq

˘
for i “ 1, 2. Then

∆Yt “ 2

ż t

r“0

ż 1

s“0

“
p1tsďY

p1q
0,r pvqu´Y

p1q
0,r pvqq´p1tsďY

p2q
0,r pvqu´Y

p2q
0,r pvqq

‰ĂWpds, drq´pδ`δ1q
ż t

0

∆Yrdr.

Since 0 ď Y
p1q
0,r pvq,Y p2q

0,r pvq ď 1, dx∆Yyr “ 4dr
ş1
s“0

“
p1tsďY

p1q
0,r pvqu ´ Y

p1q
0,r pvqq ´ p1tsďY

p2q
0,r pvqu ´

Y
p2q
0,r pvqq

‰2
ds and we observe that

ş1
s“0

ˇ̌
p1tsďY

p1q
0,r pvqu ´Y

p1q
0,r pvqq´p1tsďY

p2q
0,r pvqu ´Y

p2q
0,r pvqq

ˇ̌2
ds ď

2|∆Yr|. Applying Itô’s formula to φkp∆Ytq gives that

Epφkp∆Ytqq “ ´pδ ` δ1qE
ż t

0

φ1
kp∆Yrq∆Yrdr ` 1

2
E

ż t

0

ψkp|∆Yr|qdx∆Yyr

ď |δ ` δ1|E
ż t

0

|∆Yr|dr ` 8t

k
,

where in the last inequality we have used the facts that |φ1
k| ď 1 and ψkpxqx ď 2

k
for any

x ě 0. Letting k Ñ 8 we deduce from Fatou’s lemma that Ep|∆Yt|q ď |δ`δ1|E
şt
0

|∆Yr|dr,
yielding that ∆Yt “ 0 by Gronwall’s inequality. This shows the pathwise uniqueness and
completes the proof of the theorem. l

Let δ ą 0. Recall that X is a PRBM defined in (1.2) and S is its local time flow
introduced in (2.2). Recall that S satisfies the SDEs (2.3) and (2.4) driven by W . The
following corollary of Theorem 4.6 gives a pathwise construction of a Jacobi flow starting
from a PRBM.

Corollary 4.7. Let b ą 0 and µ ą 0.

1) Let f “ pfpxq, x ě 0q defined by fpxq “ S0,xpbq “ Lpτ 0b , xq. Notice that df “ inftx ě
0 : Lpτ 0b , xq “ 0u. We have df ă 8 if and only if µ ą 1. Let Θ :“ pSr,xpaq, 0 ď
r ď x ă df , a P r0, fprqsq. The flow ΨpΘ, fq is a Jacobi(2{µ, 0) flow in the positive
time-axis, independent of f .

2) Let f “ pfpxq, x ě 0q defined by fpxq “ S0,´xpbq “ Lpτ 0b ,´xq. Notice that df “
´ infr0,τ0

b
s X. Let Θ :“ pS´r,´xpaq, 0 ď r ď x ă df , a P r0, fprqsq. The flow ΨpΘ, fq is

a killed Jacobi(2 ´ 2{µ, 0) flow in the positive time-axis, independent of f .

Remark 4.8. We can rephrase the corollary in the following way. Let b ą 0. Define the
flow Y “ pYs,tpvq,´8 ă s, t ă 8, v P r0, 1sq by Y :“ ΨpLb

X , fq where fpxq “ S0,xpbq and
Lb

X is the local time flow of pXt, t ď τ 0b q. The forward flow of Y in the positive time-axis
(i.e. pYs,tpvq, 0 ď s ď t, v P r0, 1sq) is a Jacobi(2{µ, 0) flow. Similarly, the backward
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flow of Y in the negative time-axis (i.e. pY´s,´tpvq, 0 ď s ď t, v P r0, 1sq) is a killed
Jacobi(2 ´ 2{µ, 0) flow. See Figure 2.

0

1

v

0

Figure 2. The flow Y . A forward flow line in the positive time-axis is a
Jacobi(2{µ, 0) process. A backward flow line in the negative time-axis is a
Jacobi(2 ´ 2{µ, 0) process absorbed at 0.

For later use, let for all s ď t P R, and v P r0, 1s,
Y ˚
s,tpvq :“ inftu P r0, 1s : Y´t,´spuq ą vu ^ 1.

Lemma 4.9. For all s, t P R, and v P r0, 1s, Ys,tpvq “ inftu P r0, 1s : Yt,spuq ą vu ^ 1. In
particular, for s ď t and v P r0, 1s, Y ˚

s,tpvq “ Y´s,´tpvq.
Proof. Let s, t P R. The case v “ 1 is immediate so we can suppose v ă 1. By definition
of Y , we have

Ys,tpvq “
Sη´1

f
psq,η´1

f
ptqpvS0,η´1

f
psqpbqq

S0,η´1

f
ptqpbq

.

By the duality (2.6) for S,

Sη´1

f
psq,η´1

f
ptqpcq “ infta ě 0 : Sη´1

f
ptq,η´1

f
psqpaq ą cu.

Taking c “ vS0,η´1

f
psqpbq, we get

Ys,tpvq “ 1

S0,η´1

f
ptqpbq

inf

#
a ě 0 :

Sη´1

f
ptq,η´1

f
psqpaq

S0,η´1

f
psqpbq

ą v

+

“ inf

#
u ě 0 :

Sη´1

f
ptq,η´1

f
psqpuS0,η´1

f
ptqpbqq

S0,η´1

f
psqpbq

ą v

+

which is inftu P r0, 1s : Yt,spuq ą vu indeed. l

5. Disintegration of the PRBM with respect to its occupation field

5.1. The burglars. Let b ą 0. Consider the PRBM X defined in (1.2) up to τ 0b . Recall
from (2.2) that Sr,xpaq “ Lpτ ra , xq. Set

t˚0 :“ sup
 
t ď 0 : Lpτ 0b , Xtq “ 0

(
, t˚ :“ inf

 
t ě 0 : Lpτ 0b , Xtq “ 0

(
.

Notice that t˚ is almost surely the hitting time of infr0,τ0
b

s X and by the Ray–Knight

theorems, |t˚0 | ă 8 if and only if µ ą 1 (if µ ď 1, tt ď 0 : Lpτ 01 , Xtq “ 0u “ H hence
t˚0 “ ´8).
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We let fpxq :“ S0,xpbq “ Lpτ 0b , xq restricted to the interval I with boundaries

(5.1) inf I :“ inf
r0,τ0

b
s
X “ Xt˚ sup I :“ inftx ě 0 : Lpτ 0b , xq “ 0u

(sup I “ Xt˚
0
when |t˚0 | ă 8 and 8 otherwise). We consider the processes

Xp1q
s :“ Xs, s P pt˚0 , t˚q, Xp2q

s :“ Xτ0
b

´s, s P r0, τ 0b ´ t˚q.
Recall the notation Υ in Section 3.2. We introduce the processes

(5.2) Zp1q :“ ΥpXp1q, fq, Zp2q :“ ΥpXp2q, fq,
see Figure 3. In the case when µ “ 1, Zp2q defines a variant of the Brownian burglar

introduced by Warren and Yor in [34] (its time-change pZp2q in Section 5.3 is distributed
as the one appearing in [33], compare Theorem 5.12 and Proposition 5.13 with Theorem
1 in [33]).

t
˚

τ
0

1

0

0 0

Figure 3. Illustration of the two burglars Zp1q and Zp2q. Top: a PRBM with
µ P p0, 1s up to τ01 , with t˚

0 “ ´8 and t˚ being the time associated with the
minimum. Bottom: the process before time t˚ is mapped through a space-time
transformation to the process Zp1q (left). That after time t˚ is mapped to the

process Zp2q (right).

Lemma 5.1. Almost surely, the process Zp1q is defined on R with limits given by limtÑ´8 Z
p1q
t “

`8 and limtÑ8 Z
p1q
t “ ´8; the process Zp2q is defined on R` and limtÑ8 Z

p2q
t “ ´8.

Proof. We only prove it for Zp1q. First we check that the transformation ηf maps the
interval I defined in (5.1) onto R. Consider sup ηfpIq. When µ ď 1, sup I “ 8 and
limyÑ8 ηfpyq “

ş8
0

dr
fprq which is infinite (Exercise X.3.20 in [29]). In the case µ ą 1,

we need to show that
şsup I

0
dr
fprq “ 8. By time reversal, r Ñ fpsup I ´ rq is a BESQ4´δ

0

process, which, by scaling arguments, implies that the integral is infinite indeed. Consider
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inf ηfpIq. It is
şinf I
0

dr
fprq which is ´8 by the same argument. Finally, we need to show

that
şt˚

0

0
ds

fpXp1q
s q2

“ ´8 and
şt˚

0
ds

fpXp1q
s q2

“ 8. By the occupation time formula,
şt˚

0

0
ds

fpXp1q
s q2

“
şsup I

inf I

Lpt˚
0
,rq´Lp0,rq
fprq2 dr “ ´

şsup I

0

Lp0,rq
fprq2 dr. When r ă sup I is close enough to sup I, Lp0, rq “

fprq, so that the integral is ´8 indeed. Similarly,
ż t˚

0

ds

fpXp1q
s q2

“
ż sup I

inf I

Lpt˚, rq ´ Lp0, rq
fprq2 dr

ě
ż 0

inf I

Lpt˚, rq ´ Lp0, rq
fprq2 dr

“
ż 0

inf I

Lpt˚, rq
fprq2 dr.

On an event of probability arbitrarily close to 1 as ε Ñ 0, Lpt˚, inf I ` yq and fpinf I `
yq ´ Lpt˚, inf I ` yq on r0, εs are independent BESQ processes of respective dimensions δ
and 2, starting at 0 (see Theorem 4.3 in [3]). Scaling arguments ensure again that the
integral is infinite indeed. l

Using the notation Ψ of Section 3.1, define the process Ξ by

(5.3) Ξ :“ ΨpLpt˚, ¨q, fq.
Recall from Remark 4.8 that Y denotes the flow ΨpLb

X , fq. Its forward flow is a Jacobi(2{µ, 0)
flow and its backward flow is a killed Jacobi(2 ´ 2{µ) flow. The following lemma shows
that the process Ξ is measurable with respect to the flow Y .

Lemma 5.2. Almost surely, for all r P R,

(5.4) Ξr “ inftv P r0, 1s : Yr,xpvq “ 1 for some x ă ru.

Proof. By definition, Ξr “ Lpt˚,η´1

f
prqq

fpη´1

f
prqq , with ηf psq :“

şs
0

dr
fprq for s P I. By Definition

3.3, Yr,xpvq “ 1

fpη´1

f
pxqqLptv, η´1

f pxqq, with tv :“ τ
η´1

f
prq

vfpη´1

f
prqq. We have tv ą t˚ for any

1 ě v ą Ξr and η´1
f pxq Ñ Xt˚ as x Ñ ´8. Observe that Yr,xpvq “ 1 for all x such that

η´1
f pxq ď infrtv ,τ0b s X . On the other hand, if v ă Ξr, then tv ă t˚ and Yr,xpvq ă 1 for all
x ă r. l

The law of the process pΞr, r P Rq, called the “primitive Eve” process in Bertoin and
Le Gall [8], will be given in Proposition 5.10.

Let Lp1qpt, rq, resp. Lp2qpt, rq, denote the local time of Zp1q, resp. Zp2q, at time t and
position r. Observe from (3.2) that Lp1qp8, rq `Lp2qp8, rq “ 1 for all r P R. On the other
hand, (5.3) implies that Ξr “ Lp1qp8, rq.
Theorem 5.3. (i) The process Zp1q possesses local time flow Y “seen from the left”,
meaning that Lp1qpτ rv pZp1qq, xq “ Yr,xpvq for v P r0,Ξrs and r, x P R.

(ii) The process Zp2q possesses local time flow Y “seen from the right”, meaning that
Lp2qpτ ru´pZp2qq, xq “ 1 ´ Yr,xp1 ´ uq for u P r0, 1 ´ Ξrs and r, x P R.
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(iii) The processes Zp1q and Zp2q are independent of pLpτ 0b , xq, x P Rq (and their distri-
butions do not depend on the value of b ą 0).

Proof. (i) Note that for any r P I, LXp1q pt, rq “ Lpt, rq for all t ď t˚, hence the local time
flow of Xp1q is the flow S1 :“ tSr,xpaq, r, x P I, 0 ď a ď Lpt˚, rqu. The image flow by
Ψp¨, fq is the flow Y “seen from the left” by definition.

(ii) Similarly for any r P I, LXp2qpt, rq “ fprq ´ Lpτ 0b ´ t, rq for all 0 ď t ď τ 0b ´ t˚. We
deduce that the local time flow of Xp2q is the flow tfpxq ´ Sr,xppfprq ´ aq´q, r, x P I, 0 ď
a ď fprq ´ Lpt˚, rqu. The image flow by Ψp¨, fq is the flow Y “seen from the right”.

(iii) Again Zp1q and Zp2q are measurable with respect to their local time flow Y (by a
proof similar to Proposition 2.5). By Lemma 4.9, the flow Y is measurable with respect
to its forward flow. The forward flow of Y is independent of pLpτ 0b , xq, x P Rq by Theorem
4.6. It completes the proof. l

5.2. A Markov property for the process Zp2q. The following proposition gives a way
of constructing Zp2q by means of a Brownian motion stopped at a hitting time and an
independent squared Bessel process.

Proposition 5.4. Let g ă 0 be a constant. Take a Brownian motion up to the hitting
time of g (call it B “ pBt, t P r0, TB

g sq). Take h such that hpxq “ 0 if x ď g and hpg ` rq,
r ě 0 is an independent BESQδ

0. Let fpxq :“ LBpTB
g , xq ` hpxq, x P R where LB is the

local time of the Brownian motion B. Then ΥpB, fq has the law of Zp2q and is independent
of f .

Proof. We construct a probability measure rP under which Xp1q and Xp2q have simple
descriptions. The process B will stand for the process Xp2q while h will stand for the

local time process of Xp1q under rP conditioned on some event (which is tJpAq “ gu in the
notation below).

Let m ą |g| be an arbitrary constant (the exact value of m plays no role). We con-

sider a probability rP on the product space R` ˆ CpR,Rq such that, under rP, pA,Xq
has the following distribution: A is gamma( δ

2
, 2m) distributed (meaning it has density

p2mq´ δ
2

Γp δ
2
q x

δ
2

´1e´x{2m on R`) and conditionally on A “ b, X has distribution

cb|Jpbq| δ2´11tJpbqą´mu ¨ P

where Jpbq :“ inftPr0,τ0
b

s Xt and cb “ Γp δ
2
q
`
b
2

˘1´ δ
2 e

b
2m is the renormalizing constant. Notice

that Jpbq is measurable with respect to Lpτ 0b , xq, x P R. Let Xp1q, Xp2q, Zp1q, Zp2q be under
rP the processes of Section 5.1 with b “ A. From Theorem 5.3 (iii), and using that JpAq is
measurable with respect to pLpτ 0A, xq, x P Rq, we deduce that under rP, Zp2q has the same
law as under P, and is independent of pLpτ 0A, xq, x P Rq.

Denote by

(5.5) Tr :“ inftt P R : Xt “ ru,
the hitting time of r P R.
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Lemma 5.5. (i) Under rPp¨|JpAq “ gq, the law of the process Xp1q is the one of pXs, s ď
Tgq under P.

(ii) Under rPp¨|JpAq “ gq, the law of the process Xp2q is that of a Brownian motion
stopped when hitting g.

(iii) Under rPp¨|JpAq “ gq, the two processes Xp1q and Xp2q are independent.

Proof of Lemma 5.5. These results can be deduced from [3]. First, the law of pXs, s ď 0q
is the same under P and rP, since pXs, s ď 0q and pXs, s ě 0q are independent. We
restrict our attention to pXs, s P r0, τ 0Asq. By Proposition 9.1 p.123, Section 9.2 of [36]

and Corollary 3.4 in [3], we observe that pA,Xs, s P r0, τ 0Asq under rP has the distribution
of pLpT´m, 0q, Xs, s P r0, gmsq under P, where gm :“ suptt ď T´m : Xt “ 0u. The lemma
is then Theorem 3.2 of [3]. l

We can now complete the proof of Proposition 5.4. Let g P p´m, 0q. We recall that

Zp2q is independent of pLpτ 0A, xq, x P Rq under rP so that the law of Zp2q is identical under
rPp¨|JpAq “ gq for any g P p´m, 0q (and is equal to the law of Zp2q under P). By definition,
Zp2q “ ΥpXp2q, fq where fpxq :“ Lpτ 0A, xq. The statement of the proposition comes from

the description of X under rPp¨|JpAq “ gq in Lemma 5.5. This holds for any g ă 0 since
m is arbitrary. l

We state now the Markov property for Zp2q. It will be the key ingredient in the forth-
coming connection with the Bass–Burdzy flow. Let as before Lp2qpt, xq denote the local
time of Zp2q at time t and position x. Recall Notation 3.6.

Theorem 5.6. For any t ě 0, ΥpZp2q
t`¨, 1 ´ Lp2qpt, ¨qq is independent of pZp2q

r , r P r0, ssq
and distributed as Zp2q. In particular, pZp2q

t , pLp2qpt, xqqxPRq is a Markov process.

Before proving the theorem, we show that for fixed t ě 0, the process ΥpZp2q
t`¨, 1 ´

Lp2qpt, ¨qq is indeed well-defined.

Lemma 5.7. For any fixed t ě 0, the map s ÞÑ ΥpZp2q
s`¨, 1 ´ Lp2qps, ¨qq is a.s. well-

defined on a neighborhood (in R`) of t and is continuous at t (in the space CpR`,Rq of
continuous processes on R` endowed with the usual topology of uniform convergence over
all compacts).

See Appendix C for the proof of Lemma 5.7.

Proof of the theorem. Take B and f as in Proposition 5.4, with, say, g “ ´1. Recall
the notation Cfptq :“

şt
0

ds
fpBsq2 . Set Zp2q :“ ΥpB, fq. Applying Lemma 3.5 to X “ B,

s P J “ r0, TB
´1q, I “ p´1,max0ďtďTB

´1

Bts and c1 “ Bs, we have

ΥpBs`¨, f ´ LBps, ¨qq “ ΥpZp2q
Cf psq`¨, 1 ´ Lp2qpCfpsq, ¨qq.

On the other hand, by Proposition 5.4, the Markov property of the Brownian motion at
time s and Notation 3.6 (i), conditionally on ts ă TB

´1u, the left-hand side is distributed

as Zp2q and is independent of f ´ LBps, ¨q and of pBr, r P r0, ssq.
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It follows that, conditionally on ts ă TB
´1u, ΥpZp2q

Cf psq`¨, 1´Lp2qpCfpsq, ¨qq is independent
of σtf, Br, r P r0, ssu and has the law of Zp2q. Using the continuity of s Ñ ΥpZp2q

s`¨, 1 ´
Lp2qps, ¨qq stated in Lemma 3.7, and since Cfpsq and pZp2q

t , t ď Cf psqq are σtf, Br, r P
r0, ssu-measurable, we deduce that for all t ě 0, ΥpZp2q

t`¨, 1 ´ Lp2qpt, ¨qq is independent of

pZp2q
r , r P r0, tsq and is distributed as Zp2q. l

Remark 5.8. As a consequence of Theorem 5.6, if T is a stopping time with respect to the

natural filtration of Zp2q such that almost surely s Ñ ΥpZp2q
s`¨, 1 ´ Lp2qps, ¨qq is continuous

at T in CpR`,Rq, then ΥpZp2q
T`¨, 1 ´ Lp2qpT, ¨qq is independent of pZp2q

r , r P r0, T sq and

distributed as Zp2q.

The next result gives an invariance principle for Zp2q at small times.

Theorem 5.9. The process
´

1?
a
Z

p2q
at , t ě 0

¯
converges in distribution as a Ó 0 to a stan-

dard Brownian motion.

Proof. We use again the representation Zp2q “ ΥpB, fq from Proposition 5.4 with, say,

g “ ´1. By definition of Υ in Section 3.2, Z
p2q
t “ ηfpBC´1

f
ptqq with ηfpxq “

şx
0

dr
fprq ,

Cfptq “
şt
0

ds
fpBsq2 . Let a ą 0. Define rfprq :“ fpr?

aq, rBt :“ 1?
a
Bat, rZp2q

t :“ 1?
a
Z

p2q
at . We

check that η rfp rBtq “ 1?
a
ηf pBatq which is 1?

a
Z

p2q
Cf patq. Moreover C rfptq “

şt
0

ds
rfp rBsq2 “ 1

a
Cfpatq

so that η rfp rBtq “ 1?
a
Z

p2q
aC rf ptq. We proved that Υp rB, rfq “ rZp2q. By scaling rB is a standard

Brownian motion stopped when hitting ´ 1?
a
. Moreover, rf converges when a Ó 0 to the

constant function fp0q, and rB and fp0q are asymptotically independent. Use Lemma 3.7
(together with Skorokhod’s representation theorem to suppose that the convergence of

p rB, rfq is almost sure instead of in distribution) to complete the proof. l

We end this subsection by describing the law of the process pΞrqrPR defined in (5.4). Let

a, b ą 0. Denote by beta(a, b) the distribution with density Γpa`bq
ΓpaqΓpbqx

a´1p1´ xqb´11p0,1qpxq.

Proposition 5.10. The random variable Ξ0 is distributed as betapδ{2, 1q. Conditionally
on Ξ0, pΞ´tqtě0 and pΞtqtě0 are independent Jacobi(δ, 2) and Jacobi(δ, 0) processes.

Proof. Using the representation Zp2q “ ΥpB, fq in Proposition 5.4 with g “ ´1, we deduce

from (3.2) that Lp2qpt, xq “ LBpC´1

f
ptq,η´1

f
pxqq

fpη´1

f
pxqq , with Cfptq :“

şt
0

ds
fpBsq2 , ηfpxq :“

şx
0

dr
fprq . Note

that f is a BESQ2`δ
0 process on r´1, 0s, and a BESQδ on R`. Since df :“ inftx ą 0 :

fpxq “ 0u “ inftx ą sup0ďsďTB
´1

Bs : hpxq “ 0u, where we recall that h is a BESQδ on

r´1,8q with hp´1q “ 0, independent of B, C´1
f ptq Ñ TB

´1 as t Ñ 8 and Lp2qp8, xq “
LBpTB

´1
,η´1

f
pxqq

fpη´1

f
pxqq for x P R. By the classical Ray–Knight theorem, pLBpTB

´1, yq, y ě ´1q is a

BESQ2
0 on r´1, 0s, and BESQ0 on r0,8q. Since fpyq “ LBpTB

´1, yq `hpyq, we deduce that
Lp2qp8, 0q “ LBpTB

´1
,0q

fp0q is distributed as betap1, δ{2q. By Warren and Yor [34], Lp2qp8, ¨q
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is a Jacobi process of parameters p0, δq on R` starting from Lp2qp8, 0q. Let ε P p0, 1q.
Again by Warren and Yor [34], pLp2qp8, ηfp´1 ` εq ` xq, 0 ď x ď ´ηf p´1 ` εqq is a
Jacobi process of parameters p2, δq. Recall that ηf is independent of Lp2qp8, ¨q. Observe
that Lp2qp8, ηfp´1 ` εqq is still distributed as betap1, δ{2q which is in fact the stationary
distribution of a Jacobi process of parameters p2, δq. By time-reversal, pLp2qp8,´xq, 0 ď
x ď ´ηfp´1`εqq is a Jacobi process of parameters p2, δq. Let ε Ñ 0 we get the proposition
by using the fact that Ξr “ 1 ´ Lp2qp8, rq for all r P R. l

5.3. Link with the Bass–Burdzy flow and proof of Theorem III. Let β1, β2 P R,
σ ą 0 and γ be a standard Brownian motion. Following [6], one defines the Bass–Burdzy
flow of parameters pβ1, β2q and diffusivity σ as the collection of homeomorphisms of the
real line pRt, t ě 0q such that for any x P R, the process pRtpxq, t ě 0q is the strong
solution of the SDE

Rtpxq :“ x ` σγt ` β1

ż t

0

1tRspxqă0uds ` β2

ż t

0

1tRspxqą0uds.

When σ “ 1, we just call it Bass–Burdzy flow with parameters pβ1, β2q as defined in the
introduction.

We continue to look at the process Zp2q and show that it is linked to the Bass–Burdzy
flow via a time-change, extending the result in [33] to all parameters of the PRBM. Using
the same time-change as in [33], we set

(5.6) ζptq :“
ż t

0

ds

p1 ´ Lp2qps, Zp2q
s qq2

, pZp2q
t :“ Z

p2q
ζ´1ptq.

Lemma 5.11. We have limtÑtmax
ζptq “ 8 where tmax :“ infts ě 0 : Lp2qps, Zp2q

s q “
1u P p0,8s (it is finite almost surely if µ ą 1 and infinite otherwise). Consequently, if

tmax ă 8, limtÑ8 pZp2q
t “ Z

p2q
tmax

, and if tmax “ 8, limtÑ8 pZp2q
t “ ´8.

Proof. It suffices to treat the case µ ą 1. Recall the construction of Zp2q in Proposition

5.4 and recall from (3.2) that Lp2qpt, xq “ LBpC´1

f
ptq,η´1

f
pxqq

fpη´1

f
pxqq , with Cf ptq :“

şt
0

ds
fpBsq2 , ηfpxq :“

şx
0

dr
fprq and fpxq “ LBpTB

g , xq ` hpxq where hpg ` ¨q is a BESQδ
0 independent of B. Let

rtmax :“ C´1
f ptmaxq which is infts P r0, TB

g s : LBps, Bsq “ fpBsqu. Using the occupation
time formula, we can express ζptmaxq as

ζptmaxq “
ż

R

LBprtmax, yq
fpyqpfpyq ´ LBprtmax, yqq

dy.

Let y0 :“ Brtmax
. We observe that y0 is the last zero of h before M :“ maxr0,TB

g s B and

rtmax is the last passage time of B at y0 before TB
g . Hence, for any y ě y0, LBprtmax, yq “

LBpTB
g , yq so that

ζptmaxq ě
ż 8

y0

LBpTB
g , yq

fpyqpfpyq ´ LBpTB
g , yqqdy “

ż 8

y0

LBpTB
g , yq

fpyqhpyq dy.
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Notice that in a neighborhood of y0, the numerator is positive and f is bounded from
above while

şy0`ε

y0

dy

hpyq “ 8 for all ε positive.6 l

The local time of pZp2q can be computed since
ż t

0

1t pZp2q
s ăxuds “

ż ζ´1ptq

0

1tZp2q
r ăxu

dr

p1 ´ Lp2qpr, Zp2q
r qq2

“
ż x

´8
dy

ż ζ´1ptq

0

drL
p2qpr, yq

p1 ´ Lp2qpr, yqq2

“
ż x

´8
dy

Lp2qpζ´1ptq, yq
1 ´ Lp2qpζ´1ptq, yq

which proves, with natural notation, that pLp2qpt, yq “ Lp2qpζ´1ptq,yq
1´Lp2qpζ´1ptq,yq . Consequently,

ζ´1ptq “
ż t

0

p1 ´ Lp2qpζ´1prq, pZp2q
r qq2dr “

ż t

0

dr

p1 ` pLp2qpr, pZp2q
r qq2

.

It implies ζ´1 is adapted with respect to the natural filtration pF p2q of pZp2q. We also
introduce for x P R,

(5.7) Rtpxq :“
ż x

Z
p2q

ζ´1ptq

dy

1 ´ Lp2qpζ´1ptq, yq “
ż x

pZp2q
t

´
1 ` pLp2qpt, yq

¯
dy.

Observe that x “ pZp2q
t if and only if Rtpxq “ 0. Note that in the case µ ą 1, the flow

pRtpxq, x P Rq only gives the reconstruction of the burglar Z
p2q
¨ until the finite time tmax.

Theorem 5.12. The process pRtpxq, x P Rq is a Bass–Burdzy flow for some parameters
β1 and β2 and diffusivity σ. Moreover β2 “ β1 ` 1.

Proof. First we note that a.s. for all t ě 0,

(5.8) Ht :“ Rtpxq ´ x´
ż t

0

1tRspxqą0uds, x P R,

is well defined. In other words, the right-hand side of (5.8) does not depend on x. This
can be seen as follows:

ż t

0

1tRspxqą0uds “
ż t

0

1t pZp2q
s ăxuds “

ż x

´8
pLp2qpt, yqdy

showing that the derivative with respect to x of the right-hand side of (5.8) vanishes.

Clearly pHtq is p pF p2q
t q-adapted. We are going to show that pHtq is an p pF p2q

t q-Lévy
process. As we shall see below, this boils down to showing the strong Markov property

6For example, we can express h in terms of the square of a Bessel meander whose law is absolutely
continuous with respect to BESQ, see Section 3.6 in [36].
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for Rt. We use equation (3.3) with X :“ Z
p2q
ζ´1psq`¨, fprq “ 1 ´ Lp2qpζ´1psq, rq, c “ pZp2q

s ,

c1 “ x and ζ´1pt` sq ´ ζ´1psq in lieu of s to get that

(5.9)

ż rZp2q

t̃

Rspxq

dr

1 ´ rLp2qpt̃, rq
“
ż Z

p2q

ζ´1ps`tq

x

dr

1 ´ Lp2qpζ´1ps ` tq, rq

where we used the observation that ηf,cpxq “ Rspxq, the process rZp2q is defined by

rZp2q :“ ΥpZp2q
ζ´1psq`¨, 1 ´ Lp2qpζ´1psq, ¨q, Zp2q

ζ´1psqq ” ΥpZp2q
ζ´1psq`¨, 1 ´ Lp2qpζ´1psq, ¨qq,

and rLp2q is the local time of the process rZp2q, t̃ “ Cfpζ´1pt` sq ´ ζ´1psqq with

Cfpvq :“
ż v

0

du

p1 ´ Lp2qpζ´1psq, Zp2q
ζ´1psq`u

qq2
.

We get

t̃ “
ż ζ´1ps`tq

ζ´1psq

du

p1 ´ Lp2qpζ´1psq, Zp2q
u qq2

.

We can rewrite (5.9) as
rRtpRspxqq “ Rt`spxq

with

rRtpyq “
ż y

rZp2q
rt

dr

1 ´ rLp2qprt, rq
.

Let rζ denote the ζ associated with rZp2q, i.e.,

rζpvq :“
ż v

0

du

p1 ´ rLp2qpu, rZp2q
u qq2

.

Suppose for the time being that we know that

(5.10) rt “ rζ´1ptq.
By Remark 5.8 applied to the stopping time ζ´1psq, rZp2q is distributed as Zp2q and is

independent of σtZp2q
r , r ď ζ´1psqu, thus independent of pF p2q

s . It implies that conditionally

on pF p2q
s and Rspxq “ y, the process pRt`spxqqtě0 has the law of pRtpyqqtě0. It follows that

conditionally on pF p2q
s and Rspxq “ y, for all t ě 0, Ht`s´Hs “ rRtpyq´y´

şt
0
1t rRspyqą0uds “

rHt, where and rH is defined from rR as H is from R. In other words, Ht`s ´ Hs, t ě 0 is

independent of pF p2q
s and has the same distribution as H . Then H is a (continuous) Lévy

process hence of the form σγt ` β1t with γ an p pF p2q
t q-Brownian motion, which yields the

theorem.
It remains to prove (5.10). We know from equation (3.2) that

rLp2qpu, rZp2q
u q “

Lp2qpC´1
f puq, Zp2q

ζ´1psq`C´1

f
puqq ´ Lp2qpζ´1psq, Zp2q

ζ´1psq`C´1

f
puqq

1 ´ Lp2qpζ´1psq, Zp2q
ζ´1psq`C´1

f
puqq

.



29

Hence, by definition of rζ and a change of variables,

rζpt̃q “
ż t̃

0

du

p1 ´ rLp2qpu, rZp2q
u qq2

“
ż ζ´1pt`sq

ζ´1psq

du

p1 ´ Lp2qpu, Zp2q
u qq2

“ t

by definition of ζ , which completes the proof. l

We identify the parameters of the Bass–Burdzy flow in the following proposition.

Proposition 5.13. The parameters of the Bass–Burdzy flow are σ “ 1, β1 “ δ
2

´ 1 and

β2 “ δ
2
.

Proof. We first show that σ “ 1. Recall that pZp2q
t “ Z

p2q
ζ´1ptq. Since 1

t
ζptq tÑ0ÝÑ 1, one

can deduce from Theorem 5.9 that
´

1?
a
pZp2q
at , t ě 0

¯
converges in distribution as a Ó 0 to

a standard Brownian motion. Therefore, the hitting time of x by pZp2q, divided by x2,
converges in law when x Ó 0 to the hitting time of 1 by a standard Brownian motion. But

the hitting time of x by pZp2q is the hitting time of 0 by Rtpxq. We deduce that necessarily
σ “ 1.

We now determine β2 (or equivalently β1 since we know that β2 “ 1`β1). By definition

of the Bass–Burdzy flow, if we start the flow Rtpxq from x˚ “ suptě0
pZp2q
t , then Rtpx˚q ě 0

for all t ě 0 and Rtpx˚q “ x˚ ` γt ` β2t. Note that the unique zero is attained when pZp2q
t

reaches its maximum x˚, that means

x˚ “ ´ inf
tě0

pγt ` β2tq.

It implies that β2 ą 0 and x˚ is exponentially distributed with parameter 2β2. On

the other hand, observe that x˚ “ suptě0 Z
p2q
t , so that, recalling from Section 5.1 that

Ξr “ Lp1qp8, rq “ 1 ´ Lp2qp8, rq,
x˚ :“ inftr ě 0 : Ξr “ 1u.

In other words, by Proposition 5.10, it is the hitting time of 0 by a Jacobi process with
parameters p0, δq with initial distribution beta(1, δ

2
). The proof will be complete once we

prove that this hitting time is exponentially distributed with parameter δ. Let us prove
it. Under some probability P x, denote by V a Jacobi(0, δ) process starting from x, and let
T0 be its hitting time of 0. We can check that Mt :“ Vt

x
eδt is a martingale. We can then

define the probability measure Qx with Radon–Nikodym derivativeMt with respect to P x

on the σ-algebra σpVs, s P r0, tsq. Under Qx, the process V is a Jacobi(4, δ) process. We

have P xpT0 ą tq “ e´δtEQx

”
x
Vt

ı
. Taking x with the betap1, δ

2
q distribution, and setting

P :“
ş1
0

δ
2

p1 ´ xq δ
2

´1P xdx, we get

P pT0 ą tq “ e´δt

ż 1

0

δ

2
p1 ´ xq δ

2
´1EQx

„
x

Vt


dx

“ e´δt

ż 1

0

δ

2
p1 ´ xq δ

2
´1xEQx

„
1

Vt


dx.
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Since betap2, δ
2
q is the invariant distribution of a Jacobi(4, δ) process, one has

ż 1

0

δ

2
p1 ´ xq δ

2
´1xEQx

„
1

Vt


dx “

ż 1

0

δ

2
p1 ´ xq δ

2
´1xEQx

„
1

V0


dx “ 1.

Hence P pT0 ą tq “ e´δt so T0 is indeed exponentially distributed with parameter δ. l

Remark. In light of Theorem III, Theorem 4.6 gives a flow version of the Ray–Knight
theorems appearing in [18].

5.4. Contour function of a Fleming–Viot forest. Let δ ą 0 and b ą 0. Let X be
the PRBM associated with µ “ 2

δ
, which we consider up to time τ 0b when the local time

at position 0 hits b.

Notation 5.14. We define for u P pt˚0 , τ 0b q and t P p´
ş0
t˚
0

1tXsą0uds,
şτ0

b

0
1tXsą0udss,

A`
u :“

ż u

0

1tXsą0uds, α`
t :“ inftu : A`

u ą tu, X`
t :“ Xα`

t
.

The process X` is the process X looked above zero. The processes pX`
t , t ě 0q and

pX`
t , t ď 0q are independent, the former being a reflecting Brownian motion, see [27]. We

let as before

(5.11) fprq :“ Lpτ 0b , rq, r P r0, dfq
be the local time at position r at time τ 0b , where df denotes the hitting time of 0 by
Lpτ 0b , rq, r ě 0 (which is Xt˚

0
if |t˚0 | ă 8 and 8 otherwise). We want to reconstruct X`

conditionally on f up to a certain random time. Recall the definition of the forward local
time flow in Section 3.2. Let S` denote that of X`, i.e. by definition

S`
r,xpaq “ LX` pτ ra pX`q, xq “ Lpτ ra , xq, 0 ď r ď x ă df , a P r0, fprqs.

By Theorem 2.1 and Definition 4.4, S` is a BESQδ,0
b flow. In the notation of Section 3.2,

let Z` :“ ΥppX`
t , t P r0, τ 0b pX`qsq, fq. Specifically,

(5.12) Z`
Cf ptq “

ż X`
t

0

dr

fprq , Cfptq :“
ż t

0

ds

fpX`
s q2 , 0 ď t ď τ 0b pX`q.

The flow Y ` :“ ΨpS`, fq is a Jacobipδ, 0q flow independent of f by Theorem 4.6. In
particular, Z` can be thought of as the contour function of the Fleming–Viot forest
embedded in Y `, rooted at level 0. The following theorem is the analog of Theorem 5.3
(iii).

Theorem 5.15. The process Z` is independent of f .

Proof. The forward local time flow of Z` is composed of the flow lines of Y ` located at
the right of Y `

0,¨p0q. The flow Y ` is independent of f , and Z` is measurable with respect
to its forward local time flow. l
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Let us give now a description in time of the process Z`. We introduce a variant of the
Bass–Burdzy flow. Let γ`,δ be a reflecting Brownian motion with drift 1 ´ δ

2
, see [16]. It

is the absolute value of the unique strong solution of the SDE

dUt “
´
1 ´ δ

2

¯
sgnUt dt` dBt, U0 “ 0

where B is a standard Brownian motion. When δ “ 2, it is the usual reflecting Brownian
motion. It is recurrent when δ ě 2, and transient when δ P p0, 2q. It is proved in [16] that
γ`,δ :“ |U | is distributed as the process psupsPr0,tspBs ` p δ

2
´ 1qsq ´ pBt ` p δ

2
´ 1qtq, t ě 0q.

One defines for any x ě 0, the process pR`,δ
t pxq, t ě 0q which is adapted to the filtration

of γ`,δ and is the strong solution of the SDE 7

R
`,δ
t pxq “ x´ γ

`,δ
t `

ż t

0

1tR`,δ
s pxqą0uds.

Theorem 5.16 will construct such a solution. Let pR`
t pxq, x ě 0, t ě 0q be the flow

associated with Z` via (5.6) and (5.7), i.e. set

(5.13) ζ`ptq :“
ż t

0

ds

p1 ´ L`ps, Z`
s qq2 ,

pZ`
t :“ Z`

pζ`q´1ptq

where L` denotes the local times of Z`, and for x ě 0,

(5.14) R`
t pxq :“

ż x

pZ`
t

dr

1 ´ L`ppζ`q´1ptq, rq “
ż x

pZ`
t

´
1 ` pL`pt, yq

¯
dy.

In the (second) equality, pL` is the local time of pZ`. This equality is proved along the
lines of (5.7). Notice that R` is measurable with respect to X`.

With the notation t`max :“ infts ě 0 : L`ps, Z`
s q “ 1u P p0,8s, we have the analog of

Lemma 5.11, meaning that limtÑt`
max

ζ`ptq “ 8. The time t`max is finite almost surely if
δ P p0, 2q and infinite otherwise. The proof follows the lines of the proof of Lemma 5.11.
We need to replace there B by pX`

t , t P r0, τ 0b pX`qsq, TB
g by τ 0b pX`q, and phpxq, x ě 0q

is the local time at x of pX`
t , t ď 0q, i.e. a BESQδ

0 process.

Theorem 5.16. The process pR`
t pxq, x ě 0, t ě 0q has the law of pR`,δ

t pxq, x ě 0, t ě 0q.
In particular, p pZ`

t , t ě 0q is distributed as pR`,δ
t q´1p0q.

Proof. We observe that pX`
t , t P r0, τ 0b pX`qs, fq and pX`

τ0
b

pX`q´t
, t P r0, τ 0b pX`qs, fq

have the same distribution. Therefore, we will take without loss of generality Z` “
ΥppX`

τ0
b

pX`q´t
, t P r0, τ 0b pX`qsq, fq (and take pZ`, pL`, R` as in (5.13), (5.14) associated

with this Z`).

As in the proof of Theorem 5.12, the process R`
t pxq ´ x ´

şt
0
1tR`

s pxqą0uds does not

depend on x, since
şt
0
1tR`

s pxqą0uds “
şt
0
1t pZ`

s ăxuds “
şx

´8
pL`pt, yqdy. Therefore, it suffices

7To obtain the existence and uniqueness of the (strong) solution, we may use Zvonkin’s method: Let
hpxq :“

şx
0
e2maxpy,0qdy, x P R, be an increasing (and convex) function on R. Applying Itô–Tanaka’s

formula to hpR`,δ
t pxqq, we see that ηt :“ hpR`,δ

t pxqq satisfies the SDE: ηt “ hpxq `
şt
0
σpηsqdγ`,δ

s with

σpxq :“ ´h1ph´1pxqq “ ´1 ´ 2maxpx, 0q. In particular σ is a Lipschitz function, we may apply Theorem
V.6 in Protter [28] to get the existence and uniqueness of the (strong) solution η and then that ofR`,δpxq.
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to show that pR`
t p0q, t ě 0q is distributed as p´γ`,δ

t , t ě 0q (observe that by definition,
R`

t p0q ď 0 for all t).
In Section 5.1, taking b “ 1 in equation (5.2), we constructed the process Zp2q associated

with

Xp2q
s :“ Xτ0

1
´s, s P r0, τ 01 ´ t˚q,

where t˚ is the time such that Xt˚ “ infr0,τ0
1

s X . We proved in Proposition 5.13 that the

time-changed process pZp2q, defined in equation (5.6), is associated with the Bass–Burdzy
flow pRtpxqqt,x with parameters β1 “ δ

2
´ 1 and β2 “ δ

2
.

We define the process Xp2q,` as the process Xp2q looked above 0 (which should be

denoted by pXp2qq` in the notation 5.14). Specifically, X
p2q,`
t “ X`

τ0
1

pX`q´t
, t P r0, τ 01 pX`q´

τ 0ℓ pX`qs where ℓ :“ Lpt˚, 0q. We now introduce the process Zp2q,` :“ ΥpXp2q,`, fq where
f is given by (5.11) with b “ 1. We mention that Zp2q,` is also the process Zp2q looked
above 0. [We omit the details. Intuitively, each excursion of Zp2q,` is obtained from the
corresponding excursion of Xp2q in R` by the transformation Υp¨, fq.] Analogously to
(5.13), we let

pZp2q,`
t :“ Z

p2q,`
pζp2q,`q´1ptq, t ă

ż 8

0

1t pZp2q
s ą0uds “: T`

where ζ p2q,`ptq :“
şt
0

ds

p1´Lp2q,`ps,Zp2q,`
s qq2

, Lp2q,` being the local times of Zp2q,`. Again, the

process pZp2q,` is the process pZp2q looked above 0.
We claim that for any fixed M ą 0,

(5.15) P
`
T` ď M |Lpt˚, 0q “ ℓ

˘
Ñ 0, ℓ Ñ 0.

Let us prove (5.15). First, By Lemma 5.11, if tmax ă 8 and Z
p2q
tmax

ą 0, then T` “ 8.

Suppose now that tmax “ 8 or tmax ă 8 and Z
p2q
tmax

ď 0. By (5.6), we have

T` “
ż tmax

0

1tZp2q
s ą0u

p1 ´ Lp2qps, Zp2q
s qq2

ds.

Recall from (3.2) that Lp2qpt, xq “ L
Xp2q pC´1

f
ptq,η´1

f
pxqq

fpη´1

f
pxqq , with Cfptq :“

şt
0

ds

fpXp2q
s q2

, ηf pxq :“
şx
0

dr
fprq . Therefore

T` “
ż C´1

f
ptmaxq

0

1tXp2q
r ą0u

pfpXp2q
r q ´ LXp2qpr,Xp2q

r qq2
dr “

ż τ0
1

τ0
1

´C´1

f
ptmaxq

1tXsą0u
pLps,Xsqq2ds.

If tmax “ 8 (i.e. δ ě 2), τ 01 ´ C´1
f ptmaxq “ t˚. If tmax ă 8 and Z

p2q
tmax

ď 0, the process

Zp2q stays negative after tmax, which is equivalent with saying that X is always negative

between t˚ and τ 01 ´ C´1
f ptmaxq. Hence, in both cases, T` “

şτ0
1

τ0
1

´C´1

f
ptmaxq

1tXsą0u

pLps,Xsqq2ds “
şτ0

1

t˚

1tXsą0u

pLps,Xsqq2ds. From the occupation times formula, we get that

T` “
ż 8

0

ˆ
1

Lpt˚, xq ´ 1

fpxq

˙
dx ě

ż 1

0

ˆ
1

Lpt˚, xq ´ 1

fpxq

˙
dx
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(the upper boundary 1 is arbitrary). Using [26] Lemma 2.3, conditionally on Lpt˚, 0q “ ℓ,
the processes x P R` Ñ Lpt˚, xq and x P R` Ñ fpxq ´ Lpt˚, xq are independent, with

distribution respectively BESQδ
ℓ and BESQ0

1´ℓ. The integral
ş1
0

1
fpxqdx is tight as ℓ Ñ 0

while the integral
ş1
0

1
Lpt˚,xqdx tends in law to 8 by scaling. We deduce (5.15).

As in (5.14), we define for x ě 0,

R
p2q,`
t pxq :“

ż x

pZp2q,`
t

dr

1 ´ Lp2q,`ppζ p2q,`q´1ptq, rq “
ż x

pZp2q,`
t

´
1 ` pLp2q,`pt, yq

¯
dy.

By construction, pZp2q,` is the process p pZ`
t , t P r0, T`qq, hence for all x ě 0, the process

Rp2q,`pxq coincides with R`pxq up to time T`.

On the other hand, the process Rp2q,`pxq is deduced from Rpxq by a time-change: define

τ
p2q,`
t :“ inf

!
s ě 0 :

ż s

0

1tRup0qă0udu ą t
)

“ inf
!
s ě 0 :

ż s

0

1t pZp2q
u ą0udu ą t

)
.

Then we have for any x ě 0 and 0 ď t ă T`, 8

(5.16) R
p2q,`
t pxq “ R

τ
p2q,`
t

pxq.

Recall that we want to show that pR`
t p0q, t ě 0q is distributed as p´γ`,δ

t , t ě 0q. If we
let γ be the Brownian motion driving the Bass–Burdzy flow pRtpxqqt,x, we have

Rtp0q “ γt ` δ

2
t´

ż t

0

1tRsp0qă0uds.

By Tanaka’s formula,

minpRtp0q, 0q “
ż t

0

1tRsp0qď0udRsp0q ´ 1

2
LRp0qpt, 0q

where LRp0qpt, 0q is the local time of R¨p0q at time t at position 0. By (5.16), observing

that R
p2q,`
t p0q ď 0,

R
p2q,`
t p0q “

ż τ
p2q,`
t

0

1tRsp0qď0udRsp0q ´ 1

2
LRp0qpτ p2q,`

t , 0q.

We have LRp0qpτ p2q,`
t , 0q “ LRp2q,`p0qpt, 0q which is the local time of R

p2q,`
¨ p0q at time t at

position 0. Using that
şτ p2q,`

t

0
1tRsp0qď0uds “

şτ p2q,`
t

0
1tRsp0qă0uds “ t, we get

R
p2q,`
t p0q “

ż τ
p2q,`
t

0

1tRsp0qď0udγs ` pδ
2

´ 1qt´ 1

2
LRp2q,`p0qpt, 0q, 0 ď t ă T`.

8In fact, pZp2q,`
t “ Z

p2q,`

pζp2q,`q´1ptq
“ Z

p2q

αp2q,`˝pζp2q,`q´1ptq
where αp2q,` is the inverse of

şu
0
1

tZ
p2q
s ą0u

ds.

We notice that Lp2q,`ps, xq “ Lp2qpα
p2q,`
s , xq, x ě 0. Hence R

p2q,`
t pxq “ Rζp2q˝αp2q,`˝pζp2q,`q´1ptqpxq.

We check ζp2q ˝ αp2q,` ˝ pζp2q,`q´1ptq “ τ
p2q,`
t by noticing that

şζp2q˝αp2q,`˝pζp2q,`q´1ptq

0
1

t pZp2q
u ą0u

du “
şαp2q,`˝pζp2q,`q´1ptq

0
1

tZ
p2q
s ą0u

ds

p1´Lp2qps,Z
p2q
s qq2

“
şpζp2q,`q´1ptq

0

ds

p1´Lp2q,`ps,Z
p2q,`
s qq2

“ t.
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By Dambis–Dubins–Schwarz theorem, there exists a standard Brownian motion Bp`q “
pBp`q

t , t ě 0q such that

ż τ
p2q,`
t

0

1tRsp0qă0udγs “ B
p`q
t , 0 ď t ă T`.

By Skorokhod’s lemma,

1

2
LRp2q,`p0qpt, 0q “ sup

sďt

ˆ
Bp`q

s `
ˆ
δ

2
´ 1

˙
s

˙
, 0 ď t ă T`.

Define

γ
`,δ
t :“ sup

sďt

ˆ
Bp`q

s `
ˆ
δ

2
´ 1

˙
s

˙
´ B

p`q
t ´

ˆ
δ

2
´ 1

˙
t, t ě 0.

The process ´γ`,δ coincides with Rp2q,`p0q up to time T`. We now prove that R`p0q is
distributed as ´γ`,δ. Fix M ą 0 and a functional F measurable and bounded. Notice
that Lpt˚, 0q is measurable with respect to the process pXs, s P r0, τ 01 sq looked below 0,
which is independent of X`, see [27]. Therefore R` and Lpt˚, 0q are independent, which
implies that for all ℓ ą 0,

ErF pR`
t p0q, t P r0,Msqs “ ErF pR`

t p0q, t P r0,Msq |Lpt˚, 0q ď ℓs.
We consider two cases. The first case is when T` ą M . In this case, R`

t p0q “ R
p2q,`
t p0q “

´γ`,δ
t , for t P r0,Ms. The second case is when T` ď M , which has probability going to

0 under Pp¨ |Lpt˚, 0q ď ℓq when ℓ Ñ 0 by (5.15). We deduce that

ErF pR`
t p0q, t P r0,Msqs “ ErF p´γ`,δ

t , t P r0,Msqs
which is what we wanted to prove. l

Appendix A. Perfect flow property

Recall the definition of a BESQδ in Definition 2.2. We establish some flow properties
for the BESQδ flow.

Proposition A.1. Let S be either a non-killed BESQδ flow with δ ą 0 or a killed BESQδ

flow with δ ď 0. The flow S satisfies the perfect flow property: almost surely, for every
r ď x ď y, Sr,y “ Sx,y ˝ Sr,x.

Proof. The property is true when one of the inequalities in r ď x ď y is an equality since
Sz,zpaq “ a. Let a ě 0 and r ă x ă y. We first treat the case δ ą 0. By Proposition
2.4, we can set S “ pSr,xpaq, x ě rqa,rPR. We want to show that Sr,ypaq “ Sx,y ˝ Sr,xpaq.
Let b :“ Sr,xpaq. By definition of S, Lpτ ra , xq “ b hence τxb ě τ ra . If t ą infts ą τ ra :
Xs ą xu “: θ, then Lpt, xq ą b since a Brownian motion accumulates local time at any
level that it visits. It implies that τxb ď θ. If t P pτ ra , θq, one has Lpt, xq “ Lpτ ra , xq “ b.
We conclude that Lpτ ra , yq “ Lpτxb , yq indeed (and τxb “ θ). We now deal with the case

δ ď 0. To be consistent with our setting, we will actually consider a BESQδ1

flow with
δ1 ď 0, and rather take δ :“ 2 ´ δ1 which is now greater than 2. Then we can set
S “ pS´r,´xpaqqrďx,aě0. We write S´r,´xpaq “ Lpτ´r

a ,´xq “: b and see that τ´x
b ě τ´r

a .
Again, if t ą infts ą τ´r

a : Xs ă ´xu, then Lpt,´xq ą b because the PRBM does not
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have point of monotonicity when δ ě 2, see [27]. We deduce that Lpτ´r
a ,´yq “ Lpτ´x

b , yq.
l

When δ P p0, 2q, the killed BESQδ flow loses this property. There will be exceptional
times when a flow line starting at 0 will exit the boundary 0. This comes from the fact
that in the case δ P p0, 2q, the PRBM has points of monotonicity, see [27]. Still the flow
satisfies a weaker form of the flow property stated in Proposition A.5. We need some
preliminary results.

The following proposition shows that, for δ P p0, 2q the killed BESQδ flow is naturally
embedded in its non-killed version.

Proposition A.2. Let δ P p0, 2q and S “ pSr,xpaq, x ě rqrPR,aě0 be a non-killed BESQδ

flow. Define a flow ΠpSq :“ p rSr,xpaq, x ě rqrPR,aě0 where for r P R and a ě 0, rSr,xpaq
is equal to Sr,xpaq for x ě r up to the time inftr1 ą r : Sr,r1paq “ 0u, and is equal to 0
afterwards. Then ΠpSq is a killed BESQδ flow. We call ΠpSq the killed version of S.

Remark. Note that when a “ 0, at times r when the flow line pSr,xp0q, x ě rq starts an

excursion away from 0, the flow line p rSr,xp0q, x ě rq traces the same excursion then gets
absorbed at 0 when coming back.

Proof. The flow lines of ΠpSq have the required distribution by construction so we need
to check the regularity of ΠpSq imposed in Definition 2.2. Assumption (i) is clear. We

prove (ii). The map a ÞÑ rSr,xpaq is nondecreasing. Indeed, if rSr,xpaq ą 0, then rSr,xpaq “
Sr,xpaq ď Sr,xpa1q “ rSr,xpa1q for all a1 ě a. And obviously rSr,xpaq ď rSr,xpa1q if rSr,xpaq “
0. We show the right-continuity. The case rSr,xpaq ą 0 is immediate from the same

arguments, using the right-continuity of a ÞÑ Sr,xpaq. Suppose now that rSr,xpaq “ 0. We
can suppose x ą r. By construction, there exists r1 P pr, xs such that Sr,r1paq “ 0. Since
b ÞÑ Sr,r1pbq is piecewise constant, we would have Sr,r1pbq “ 0 for b ą a small enough,

which implies Sr1,rpbq “ 0 for the same set of b, hence rSr,r1pbq “ 0. The right-continuity is

therefore proved. Finally, we check condition (iii). We suppose rSr1,rpa1q ą a. In particular,
rSr1,rpa1q ą 0 so rSr1,rpa1q “ Sr1,rpa1q hence by construction rSr1,xpa1q “ Sr1,xpa1q ě Sr,xpaq “
rSr,xpaq for all x before rSr,¨paq hits 0 when it will get absorbed. The case rSr1,rpa1q ă a is
dealt with similarly. l

Conversely, for δ P p0, 2q, a non-killed BESQδ flow can also be constructed from its
killed version. Recall the definition of the dual flow in Proposition 2.7.

Proposition A.3. Let δ P p0, 2q and rS be a killed BESQδ flow. The dual of rS is a
non-killed BESQ2´δ flow, from which we can construct its killed version by Proposition
A.2. Let S denote the dual of the latter. Then S is a non-killed BESQδ flow, and rS is
the killed version of S.

Proof. We start with a lemma.

Lemma A.4. Let δ P p0, 2q. Let S be a non-killed BESQδ flow. Then the dual of S is
the killed version of the dual of ΠpSq, i.e. S˚ “ ΠpΠpSq˚q.
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Proof. Let S˚, resp. ΠpSq˚, denote the dual of S, resp. ΠpSq. Write rS for ΠpSq. We
have by definition, for any r ď x,

S˚
r,xpaq :“ inftb ě 0 : S´x,´rpbq ą au, p rSq˚

r,xpaq :“ inftb ě 0 : rS´x,´rpbq ą au.

Let r ă x and a ě 0. We first show that p rSq˚
r,xpaq ě S˚

r,xpaq. Let b ą p rSq˚
r,xpaq, hence

rS´x,´rpbq ą a. In particular, rS´x,´rpbq ą 0 so that rS´x,´rpbq “ S´x,´rpbq. Therefore
S´x,´rpbq ą a hence the inequality.

We suppose now that S˚
r,spaq ‰ 0 for all s P pr, xq, and we want to show that S˚

r,xpaq “
p rSq˚

r,xpaq. We only have to prove that S˚
r,xpaq ě p rSq˚

r,xpaq. Let b ą S˚
r,xpaq. Then

S´x,´rpbq ą a. If S´x,´spbq “ 0 for some s P pr, xq, we would have by the perfect
flow property S´s,´rp0q ą a hence S˚

r,spaq “ 0, which is a contradiction. Therefore

S´x,´spbq ‰ 0 for all s P pr, xq, hence S´x,´rpbq “ rS´x,´rpbq so rS´x,´rpbq ą a. We de-

duce that S˚
r,xpaq ě p rSq˚

r,xpaq.
Finally, we show that flow lines in S˚ are absorbed at 0. So we suppose that S˚

r,spaq “ 0
for some s P pr, xq, and we want to show that S˚

r,xpaq “ 0. We have by definition,
S´s,´rpbq ą a for all b ą 0. Since b Ñ S´s,´rpbq is piecewise constant, we must have
S´s,´rp0q ą a, therefore S´x,´rp0q ą a by the perfect flow property. It implies that
S˚
r,xpaq “ 0. l

We go back to the proof of the proposition. We use the notation of the proposition.

By definition, S “ pΠpp rSq˚qq˚. By the lemma (using p rSq˚, which is a non-killed BESQ2´δ

flow in place of S in the statement of the lemma), we have ΠpSq “ pp rSq˚q˚ “ rS. The fact
that S is a non-killed BESQδ flow comes from Proposition 2.7. l

We can now state a flow property for a general BESQδ flow.

Proposition A.5. Let δ P R. A general BESQδ flow S satisfies the following properties
almost surely:

‚ (Almost perfect flow property) If r ď x ď y, a ě 0 and Sr,xpaq ą 0, then Sx,y ˝
Sr,xpaq “ Sr,ypaq.

‚ (Coalescence) If r1, r ă x, 0 ď a, a1 and Sr,xpaq “ Sr1,xpa1q, then Sr,ypaq “ Sr1,ypa1q
for all y ě x.

Proof. These properties hold for non-killed BESQδ flows and killed BESQδ flows with
δ ď 0 as a consequence of the perfect flow property, so we should only deal with δ P p0, 2q
and killed BESQδ flows. Write it rS and let rather S be the non-killed version of it (i.e.

the flow such that ΠpSq “ rS). Let r ď x ď y, a ě 0 and suppose b :“ rSr,xpaq ą 0. From

the definition of ΠpSq, we have rSr,spaq “ Sr,spaq for all s from r to the hitting time of
0, hence we can apply the perfect flow property of S. After hitting 0, the flow line is

absorbed. Let now r, r1 ă x, 0 ď a, a1 and suppose that b :“ rSr,xpaq “ Sr1,xpa1q. If b ą 0,
we can apply the almost perfect flow property to conclude that flow lines coalesce. If
b “ 0, both flow lines are absorbed at 0 (we use here the fact that r, r1 ă x so that none
are flow lines which are departing from 0 to trace an excursion). l
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Remark. The coalescence property does not hold in full generality if we let r “ x

for killed BESQδ flows when δ P p0, 2q. Indeed, at times when a flow line starts at r an
excursion away from 0, flow lines which are already absorbed at 0 will stay stuck at 0,
while the flow line starting at r will leave 0.

Corollary A.6. Let δ, δ1 P R. A general Jacobi(δ, δ1) flow satisfies the following properties
almost surely:

‚ (Almost perfect flow property) If r ď s ď t, v P r0, 1s and Yr,spvq ą 0, then
Ys,t ˝ Yr,spvq “ Yr,tpvq.

‚ (Coalescence) If r, r1 ă s, v, v1 P r0, 1s and Yr,spvq “ Yr1,spvq, then Yr,tpvq “ Yr1,tpvq
for all t ě s.

Proof. Proposition A.5 stays true for BESQδ,δ1

b flows by construction (for a P r0, fprqs and
r, r1 P r0, dfq there) then we use Theorem 4.6 to prove the corollary when r, r1 ě 0. It is
true for all r, r1 by stationarity. l

Appendix B. A Girsanov theorem for Jacobi flows

Let δ P R. Consider a general Jacobipδ, 0q flow Y , driven by the martingale measure
M given by Definition 4.1 under some measure P. Fix T ą 0, and restrict to the time
interval r0, T s. Call YT the collection pYs,t, 0 ď s ď t ď T q. Let δ1 P R. We want to relate
the Jacobi(δ, δ1) flow to the Jacobi(δ, 0) flow. We will use in this section the notation
MspAq :“ MpAˆ r0, ssq for s ě 0 and A a Borel set of r0, 1s.

For v P r0, 1s, let FT
v
be the σ-field generated by pMspAq, s P r0, T s, A Borel set of r0, vsq.

Observe that FT :“ pFT
v
, v P r0, 1qq forms a filtration.

We define

mT
v
:“ e´ δ1

2p1´vq
MT pr0,vsq´T

8

δ12

1´v
v
, v P r0, 1q.

Theorem B.1. The process pmv, v P r0, 1qq is a FT -martingale. Introduce the measure
Q on FT

1 such that

dQ

dP
ˇ̌
FT

v

:“ mT
v
, v P r0, 1q.

Under Q, M has drift ´ δ1

2
1r0,1sˆr0,T spu, xqdudx, and YT is a general Jacobi(δ, δ1) flow on

r0, T s.

Proof. We use the representation in (4.6): MT pr0, usq “ ĂWT pr0, usq ´ uĂWT pr0, 1sq where
ĂW is a white noise and we used the notation ĂWspAq :“ ĂWpAˆ r0, ssq for s ě 0 and Borel
sets A. The random variable

(B.1) e
´ δ1

2p1´vq
ĂWT pr0,vsq´T

8

δ12

p1´vq2
v

has mean 1. Take this random variable as the Radon–Nikodym derivative of a new

probability measure with respect to P on σpĂWspAq, 0 ď s ď T,A Borel set of r0, 1sq.
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This change of measure adds a drift ´ δ1

2p1´vq1r0,vsˆr0,T spu, xqdudx to the white noise ĂW .

Therefore it adds a drift

´δ1

2

´ 1

p1 ´ vq1r0,vsˆr0,T spu, xq ´ v

1 ´ v

¯
“ ´δ1

2

´
1r0,vsˆr0,T spu, xq ´ v

1 ´ v
1pv,1sˆr0,T spu, xq

¯

to the martingale measure M. Use that MT pr0, vsq “ ĂWT pr0, vsq ´ vĂWT pr0, 1sq, and
average (B.1) over ĂWT pr0, 1sq which is independent of M to obtain that it is also the
distribution of M under mT

v
¨ P. Notice that on r0, vs ˆ r0, T s, the drift is just ´ δ1

2
. We

conclude that mT
v
is the Radon-Nykodim derivative on FT

v
of the probability measure

under which M has drift ´ δ1

2
1r0,1sˆr0,T spu, xq. Hence mT is a martingale, and M under Q

has the required distribution (we could directly check thatmT
v
is a FT

v
-martingale, by using

the semimartingale decomposition of the bridge: MT pr0, usq “
?
T pBu ´

şu
0

ds
1´s

MT pr0, ssq
where pB is a standard FT -Brownian motion.).

Plug the drift into (4.3) to conclude that a flow line from v P r0, 1s and s P r0, T s is
a (possibly absorbed at 0) Jacobi(δ, δ1) process up to the minimum between the hitting
time of 1 and T . We set, under Q, YT

s,tp1q :“ 1 for all 0 ď s ď t ď T , and absorb at 1 any
flow line which hits 1.

Let v P r0, 1q. From the absolute continuity of Q with respect to P on FT
v
, one concludes

that the almost perfect flow property of Corollary A.6 holds as long as the flow lines do
not touch v. Making v tend to 1, this property is also true as long as they do not touch
1. With our convention, it is also true after the hitting time of 1. Hence YT possesses the
almost perfect flow property also under Q. We can similarly show that flow lines coalesce
under Q in the sense of Corollary A.6.

Let us check the regularity conditions of Definition 4.3. Statement (i) is clear. We prove
(ii). We already know that v P r0, 1s Ñ YT

s,tpvq is nondecreasing since flow lines coalesce.
Again, for any v P p0, 1q, the right-continuity holds for any 0 ď s ď t ď T at any v P r0, 1q
such that the flow line Ys,¨pvq did not hit v on rs, ts. Then, it holds if the flow line did
not hit 1. Since Ys,tpvq “ 1 if the flow line hit 1, we conclude that it is right-continuous
at any v P r0, 1q. Condition (iii) is a consequence of the fact that flow lines coalesce and
condition (iv) is satisfied by construction. l

Appendix C. Proofs of Lemmas 3.7 and 5.7

Proof of Lemma 3.7. Fix M ě 0 and take a compact set L as in the statement of
the lemma, for K “ r0,Ms. By assumption, there exists ε P p0, 1q such that fn and
f are contained in pε, ε´1q on L for n large enough. Let t P r0,Ms. We have, since
X pr0,Msq Y X npr0,Msq Ă L Ă In for n large enough,

|ηfpXtq ´ ηfnpX n
t q| ď

ˇ̌
ˇ̌
ż Xt

0

dr

ˆ
1

fprq ´ 1

fnprq

˙ ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż Xn

t

Xt

dr

fnprq

ˇ̌
ˇ̌.

The first term is bounded by || 1
f

´ 1
fn ||L||X ||r0,Ms. The second term is bounded by 1

ε
||X ´

X n||r0,Ms. Both terms go to 0 as n Ñ 8. It shows the uniform convergence of ηfn ˝ X n to
ηf ˝X on r0,Ms. Since |fpXtq ´ fnpX n

t q| ď |fpXtq ´ fpX n
t q| ` |fpX n

t q ´ fnpX n
t q|, that f is

uniformly continuous on L, that X n converges uniformly to X on r0,Ms and fn converges
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uniformly to f on L, we have that fn ˝ X n converges uniformly to f ˝ X on r0,Ms. Let

Cfnptq :“
şt
0

ds
fnpXn

s q2 for t P r0, jnq and Cfptq :“
şt
0

ds
fpXsq2 for t ě 0. Notice that the range of

Cfn and of Cf is R` by our assumption (i). Dominated convergence implies that Cfnptq
converges to Cfptq for all t P r0,Ms. Fix t P p0,Mq and set x :“ Cf ptq. Let tn :“ C´1

fn
pxq.

Since Cfnpvq ´ Cfnpuq ě ε2pv ´ uq for v ě u in r0,Ms, we have |Cfnptq ´ x| ě ε2|t ´ tn|.
We deduce that tn Ñ t, i.e. C´1

fn pxq Ñ C´1
f pxq. Since M is arbitrary, it proves that C´1

fn

converges to C´1
f pointwise on R`. Since C´1

fn
, C´1

f are increasing continuous functions
on R`, it implies the uniform convergence on any compact set of R`. By composition
of ηfn ˝ X n and C´1

fn
, we deduce that ΥpX n, fnq converges to ΥpX , fq uniformly on any

compact. l

Proof of Lemma 5.7. First, for any t ě 0, a.s., 1 ´Lp2qpt, xq ą 0 for all x P tZp2q
t`u, u ě 0u.

Let us prove this statement. Because Zp2q accumulates some local time at each level
that it crosses, if Lp2qpt, xq “ 1, it implies that the process Zp2q will never visit x again.

Hence necessarily, the only possibility to have Lp2qpt, xq “ 1 for some x P tZp2q
t`u, u ě 0u

is to have x “ Z
p2q
t . So we need to show that for all t ě 0, a.s., Lp2qpt, Zp2q

t q ă 1.
Let ε P p0, 1q. We have by the occupation times formula, for any s ă t and M ě
0,

şt
s
1tLp2qpu,Zp2q

u qě1´ε, |Zp2q
u |ďMudu “

ş
xPr´M,Ms

şt
s
1tLp2qpu,xqě1´εuduL

p2qpu, xqdx ď 2Mεpt ´
sq. Taking expectation, we deduce that t is an accumulation of points s such that

PpLp2qps, Zp2q
s q ě 1 ´ ε, |Zp2q

s | ď Mq ď 2Mε, hence by continuity of s Ñ Lp2qps, Zp2q
s q

and of Zp2q, PpLp2qpt, Zp2q
t q “ 1, |Zp2q

t | ă Mq ď 2Mε which proves the claim by making

ε Ñ 0 then M Ñ 8. It implies that ΥpZp2q
t`¨, 1 ´ Lp2qpt, ¨qq is well-defined. Notice that by

continuity of Zp2q, it implies that ΥpZp2q
s`¨, 1 ´ Lp2qps, ¨qq is well-defined on a neighborhood

of t.
Let us go back to the proof of the continuity and fix t ě 0. Let t1 ă t ă t2 and

x2 :“ inftx : Lp2qpt2, xq “ 1u. We suppose that t1 and t2 are close enough to t so

that x2 ą suptuět1u Z
p2q
u (such t1 and t2 exist a.s. from what we just proved). Let ptnqn

be a sequence which converges to t. We can suppose that tn P pt1, t2q for all n for

simplicity. We apply Lemma 3.7 with Xu :“ Z
p2q
t`u ´ Z

p2q
t , fpxq :“ 1 ´ Lp2qpt, x ` Z

p2q
t q,

I “ p´8, x2 ´ Z
p2q
t q, and X n, fn, In defined similarly by replacing t by tn. Let us check

the assumptions of Lemma 3.7. In the notation of that lemma, (i) and (ii) are verified
since all processes start at 0, jn “ 8 and fpxq “ fnpxq “ 1 for x Ñ ´8. Assumption
(iii) comes from the uniform continuity of Zp2q on compact sets. Let K be a compact set

of R`. Take ℓ` P R such that infpt1,t2q Z
p2q ` ℓ` ą supuět1 Z

p2q
u and suppt1,t2q Z

p2q ` ℓ` ă x2

(we can suppose that t and t2 are close enough so that ℓ` exists). Then for all s ě 0,

Z
p2q
t`s ´ Z

p2q
t ď ℓ`. Indeed, Z

p2q
t`s ´ Z

p2q
t ď supuět1 Z

p2q
u ´ infpt1,t2q Z

p2q ď ℓ`. The same lines

replacing t by tn imply that for all s ě 0, Z
p2q
tn`s ´ Z

p2q
tn ď ℓ` for all n. Similarly, take

ℓ´ P R such that suppt1,t2q Z
p2q ` ℓ´ ă infuďt2`supK Z

p2q
t2`u. We have that for all s P K,

Z
p2q
t`s ´ Z

p2q
t ě ℓ´ since Z

p2q
t`s ´ Z

p2q
t ě infuďt2`supK Z

p2q
u ´ supt1,t2 Zp2q ě ℓ´, similarly for

tn. The compact set L “ rℓ´, ℓ`s satisfies assumption (iv). We deduce the convergence of
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ΥpZp2q
tn`¨, 1 ´ Lp2qptn, ¨qq towards ΥpZp2q

t`¨, 1 ´ Lp2qpt, ¨qq (on an event of probability 1 which
does not depend on the choice of ptnqn). l
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