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We will see that the flow Y constructed in (4.11) is a measurable function of the PRBM pX t q. Furthermore, Y satisfies an SDE driven by a specific martingale measure, see (4.12). This last result can be interpreted as a "flow version" of the well-known Perkins' disintegration theorem where we disintegrate, with respect to a flow line, an associated flow of squared Bessel processes; see Section 2 for the definition and construction of this associated flow of squared Bessel processes. In particular, Theorem 4.6 shows that Perkins' disintegration theorem between Feller continuous state branching-processes and Fleming-Viot processes amounts to a decomposition of Gaussian measures.

.

The problem of conditioning a Brownian motion on its occupation field has been treated by Aldous [4] and Warren and Yor [34], via different approaches. Aldous used the tree structure of the Brownian excursion to show that the genealogy of the conditioned Brownian motion is a time-changed Kingman coalescent (which is the dual of a Fleming-Viot process). Later, Berestycki and Berestycki [7] found an analogous result with excursion theory. Warren and Yor [34] solved the question by constructing the conditioned Brownian motion in time (rather that in space, as in the case of Aldous [4]). If |B| is a reflecting Brownian motion, they define a process Z, called Brownian burglar, by

The stochastic Jacobi flow by Elie Aïdékon 1 , Yueyun Hu 2 , and Zhan Shi 3 Summary. The problem of conditioning on the occupation field was investigated for the Brownian motion in 1998 independently by Aldous [START_REF] Aldous | Brownian excursion conditioned on its local time[END_REF] and Warren and Yor [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF] and recently for the loop soup at intensity 1{2 by Werner [START_REF] Werner | On the spatial Markov property of soups of unoriented and oriented loops[END_REF], Sabot and Tarrès [START_REF] Sabot | Inverting Ray-Knight identity[END_REF], and Lupu, Sabot and Tarrès [START_REF] Lupu | Inverting the coupling of the signed Gaussian free field with a loop-soup[END_REF]. We consider this problem in the case of the Brownian loop soup on the real line, and show that it is connected with a flow version of Jacobi processes, called Jacobi flow. We give a pathwise construction of this flow simultaneously for all parameters by means of a common Brownian motion, via the perturbed reflecting Brownian motion. The Jacobi flow is related to Fleming-Viot processes, as established by Bertoin and Le Gall [START_REF] Bertoin | Stochastic flows associated to coalescent processes II: stochastic differential equations[END_REF] and Dawson and Li [11]. This relation allows us to interpret Perkins' disintegration theorem between Feller continuous state branching-processes and Fleming-Viot processes as a decomposition of Gaussian measures. Our approach gives a unified framework for the problems of disintegrating on the real line. The connection with Bass-Burdzy flows which was drawn in Warren [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF] and Lupu, Sabot and Tarrès [START_REF] Lupu | Inverting the Ray-Knight identity on the line[END_REF] is shown to be valid in the general case.

Introduction

A Fleming-Viot process is a measure-valued branching process which models the evolution of a population of constant size 1. In [START_REF] Bertoin | Stochastic flows associated to coalescent processes[END_REF], Bertoin and Le Gall construct a generalized version of the process through a flow of bridges, which are in correspondance with exchangeable coalescents. We can understand this flow as follows (it is the flow p B in the notation of [START_REF] Bertoin | Stochastic flows associated to coalescent processes[END_REF]). One represents the population at any time as the interval r0, 1s, each point of the interval (the label) representing a particle. Only a finite number of particles at time 0 will beget descendants at time t ą 0. Partitioning the population at time t into families will yield a finite partition of the interval r0, 1s, the i-th interval from the left representing the descendants at time t of the ancestor at time 0 with the i-th lowest label. One can then construct at each time t a piecewise constant bridge from 0 to 1.

The bridge jumps at the label of a particle at time 0 which has descendants at time t, the size of the jump being the size of its offspring, and stays constant otherwise. One can proceed similarly between times s and t (and not only 0 and t), and obtain a collection of bridges which naturally satisfies a flow property. Incorporating immigration in the model translates into adding an extra jump at 0 to the bridge, see [START_REF] Foucart | Generalized Fleming-Viot processes with immigration via stochastic flows of partitions[END_REF]. In the case where the coalescents are so-called Λ-coalescents, Dawson and Li [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF] consider the flow Y such that the bridges of [START_REF] Bertoin | Stochastic flows associated to coalescent processes[END_REF], [START_REF] Foucart | Generalized Fleming-Viot processes with immigration via stochastic flows of partitions[END_REF] are the maps v P r0, 1s Ñ Y s,t pvq, with Y s,t p0q representing the size of the population descending from immigrants which arrived at rate δ between time s and t. They construct it as a solution of a stochastic differential equation (SDE) driven by a white noise and a Poisson random measure.

We consider the flow Y in the case where the SDE appearing in [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF] is only driven by the white noise. The flow lines of Y are the solutions of the SDE (1.1) dY t " 2 a Y t p1 ´Yt qdγ t `pδp1 ´Yt q ´δ1 Y t q dt, where γ denotes a one-dimensional Brownian motion, and δ, δ 1 P R. In the case δ " δ 1 " 0, the dual of Y corresponds to the classical Kingman coalescent. Following [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF] we call the solution pY t q of (1.1) a Jacobipδ, δ 1 q process. These processes arise as the ratio of Gamma processes, see Proposition 8 in [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF] in the case of nonnegative parameters, and Theorem 4 in [START_REF] Pal | Wright-Fisher diffusion with negative mutation rates[END_REF]. A Jacobipδ, δ 1 q process is called in population genetics a Wright-Fisher diffusion with mutation rates pδ, δ 1 q.

The Jacobi flow Y is the flow version of the Jacobi processes Jacobipδ, δ 1 q, see Definitions 4.2 and 4.3.

One of the goals of this paper is to give a pathwise construction, from a one-dimensional two-sided Brownian motion, of Jacobipδ, δ 1 q flows simultaneously for all δ, δ 1 P R. This is done by means of the two-sided perturbed reflecting Brownian motion defined as follows. Let pB t , t ě 0q and pB 1 t , t ě 0q be two independent standard one-dimensional Brownian motions. Denote by L and L 1 their associated local time processes at position zero. The two-sided Brownian motion pB t , t P Rq is defined as

B t :" " B 1 ´t t ď 0, B t t ě 0.
We also let L t :" ´L1 ´t for t ď 0. For µ ą 0, we define the two-sided perturbed reflecting Brownian motion (PRBM) or µ-process by (1.2) X t :"

" |B 1 ´t| `µL 1 ´t, if t ď 0, |B t | ´µL t , if t ě 0,
which can simply be written as X t :" |B t | ´µL t , t P R. [The case µ " 1 is special: on the positive half-line, it is distributed as a Brownian motion while in the negative half-line, it is a time-reversed three-dimensional Bessel process.] For general properties of PRBM, see [START_REF] Gall | Excursions Browniennes et carrés de processus de Bessel[END_REF][START_REF] Yor | Some aspects of Brownian motion[END_REF] and the references therein.

The promised pathwise construction of Jacobipδ, δ 1 q flows is as follows:

Theorem I (Theorem 4.6). Let δ, δ 1 P R. Let Y be defined as in (4.11). Then Y is a Jacobipδ, δ 1 q flow. They showed that Z is independent of the occupation field pL |B| pτ 0 1 p|B|q, rq, r ě 0q. In these works, the link with the Fleming-Viot process has been suggested but not made explicit. In [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF], the authors state that "the results [...] can be seen as describing a contour process for the Fleming-Viot process". Recently, Gufler, Kersting and Wakolbinger [START_REF] Gufler | A decomposition of the Brownian excursion[END_REF] gave a rigorous connection between these two models by constructing the Brownian excursion via an enriched version of the lookdown process, hence giving a precise meaning to the statement of [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF].

In our case, we will recover the connection with Fleming-Viot processes by constructing Z through our version of Perkins' disintegration theorem. The idea, which originates in a paper of Tóth and Werner [START_REF] Tóth | The true self-repelling motion[END_REF], is to define the burglar via its local time flow. Actually, this approach will allow us to solve the analogous problem for the whole class of PRBM, giving rise to a family of "burglars".

To construct the burglars, we define Lpt, rq :" lim εÑ0 1 ε ż t ´8 1 trďXsďr`εu ds, t P R, r P R, as the local time of the continuous semimartingale X at time t and position r; we work with a bicontinuous version of local times Lp¨, ¨q, as in ( [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF], Theorem VI.1.7). Let

(1.3) τ r t :" infts P R : Lps, rq ą tu be the inverse local time of X. Let t 0 :" sup t ď 0 : Lpτ 0 1 , X t q " 0 ( , t ˚:" inf t ě 0 : Lpτ 0 1 , X t q " 0 ( , with the convention inf H " `8 and sup H " ´8. Define for t P R,

(1.4) Z p1q t

:"

ż X A p1q t 0 dr Lpτ 0 1 , rq , A p1q 
t :" inf " s P R :

ż s 0 dr Lpτ 0 1 , X s q 2 ą t * .
The process Z p1q is the burglar associated with the process X between times t 0 and t ˚.

Similarly, let for t ě 0, (1.5) Z p2q t

:"

ż X A p2q t 0 dr Lpτ 0 1 , rq , A p2q 
t :" inf # s ě 0 :

ż τ 0 1 τ 0 1 ´s dr Lpτ 0 1 , X s q 2 ą t + .
The burglar Z p2q is associated with the process X between times t ˚and τ 0 1 . A precise statement of the following result will be given in Section 5.1.

Theorem II (Theorem 5.3). The processes Z p1q and Z p2q are independent of pLpτ 0 1 , rq, r P Rq. The local time flows of the processes Z p1q and Z p2q are the left part and the right part of a flow which is a Jacobi(δ, 0) flow in the positive time-axis and a Jacobi(δ, 2) flow in the negative time-axis.

The above result gives a description of the conditional law of a PRBM given its occupation field up to τ 1 0 (and from t 0 ). It suffices to take the processes Z p1q and Z p2q independently of the occupation field, and invert the transformations (1.4) and (1.5). We can also obtain a burglar by disintegrating the positive part of a PRBM with respect to its occupation field, see Section 5.4. This burglar can be interpreted as the contour function of the Jacobipδ, 0q flow. Each of its excursion away from 0 being associated with a continuous tree in the manner of Aldous [START_REF] Aldous | Brownian excursion conditioned on its local time[END_REF] and Duquesne and Le Gall [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF], the burglar can be viewed as the contour function of a Fleming-Viot forest.

We present now an interesting connection with the Bass-Burdzy flow. This flow was introduced by Bass and Burdzy in [START_REF] Bass | Stochastic Bifurcation Models[END_REF]. The Bass-Burdzy flow with parameters pβ 1 , β 2 q, for β 1 , β 2 P R, is the collection of processes pR t pxq, t ě 0, x P Rq which are the strong solutions of

R t pxq " x `γt `β1 ż t 0 1 tRspxqă0u ds `β2 ż t 0 1 tRspxqą0u ds
where γ is a standard Brownian motion common for all processes R ¨pxq. In words, R t pxq is a Brownian motion with drift β 1 when negative and β 2 when positive. Following [START_REF] Hu | Ray-Knight theorems related to a stochastic flow[END_REF], for t ě 0, denote by R ´1 t p0q the real x such that R t pxq " 0. When β 1 " 0 and β 2 " 1, the process R ´1 t p0q is shown in Warren [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF] to be a time-change of the Brownian burglar of Warren and Yor [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF]. In a recent paper [START_REF] Lupu | Inverting the Ray-Knight identity on the line[END_REF], Lupu, Sabot and Tarrès showed that in the case β 1 " ´1 2 , β 2 " 1 2 , the process R ´1 t p0q is the scaling limit of a self-interacting process involved in the inversion of the Ray-Knight identity, see the next paragraph. We show that in general, one can recover all the burglars Z p2q associated with the PRBM.

Theorem III (Theorem 5.12 and Proposition 5.13). Taking β 1 " δ 2 ´1 and β 2 " δ 2 , the process R ´1 t p0q is a time-change of the process Z p2q defined in (1.5).

To prove the theorem, we use a new approach based on a renewal argument. The process Z p2q has a kind of Markov property. If one appropriately scales the process after time t, the scaled process will be independent of the past and with always the same distribution, see Theorem 5.6. We use this property to show that the images of a point on the real line by these transformations form actually a Lévy process up to hitting 0, and then deduce that it must be a flow line of a Bass-Burdzy flow for some parameters. Finally, we use some random variable whose distribution is easily identified to compute the parameters. This renewal property breaks down when looking at Z p1q . Roughly speaking, one needs to remember where the infimum was before doing the scaling. Still, we believe that a similar connection should hold with some perturbed Bass-Burdzy flow.

Yet another, non-trivial, application of our construction concerns the inversion of the Ray-Knight identity on the line and its connection with loop soups. Consider the PRBM X. By excursion theory, the excursions of X above its infimum process forms a Poisson point process of Brownian excursions rooted at various points of the real line. By exploring the real line in the upwards direction, one can consider the excursions that one encounters along the way as Brownian loops rooted at their minimum. As shown by Lupu [START_REF] Lupu | Poisson ensembles of loops of one-dimensional diffusions[END_REF], the collection of loops has the law of a Brownian loop soup on the real line with intensity 1 µ . As a result, conditioning a PRBM on its occupation field may be seen as conditioning a loop soup on its occupation field.

A similar problem was studied recently by Lupu, Sabot and Tarrès [START_REF] Lupu | Inverting the coupling of the signed Gaussian free field with a loop-soup[END_REF] in the case µ " 2, equivalently δ " 1, which is the case of the loop soup at intensity 1 2 , related to the Gaussian free field (the local time is BESQ 1 , hence the square of the Gaussian Free Field, which is simply the Brownian motion on the real line). In their setting (reformulated in terms of loop soups), the authors add a Brownian motion up to a fixed local time at zero to a loop soup on Rzt0u. Conditionally on the occupation field, they manage to reconstruct the Brownian motion path up to a random time. The reconstruction process is actually in terms of the burglar Z p2q , stopped when it reaches local time 1 at some position (which happens in a finite time almost surely).

We solve the problem for any intensity of the loop soup. Specifically, take a loop soup in the positive half-line, and add Brownian excursions up to local time 1. We get the positive part of a PRBM. A space-time transformation of this PRBM gives a burglar Z `similar to Z p2q in (1.5), which we have interpreted as the contour function of the Jacobipδ, 0q flow; see (5.12) for the definition of Z `. One then gets a reconstruction of the Brownian excursions added to the loop soup in terms of the Jacobi flow, or in terms of a Bass-Burdzy flow driven by a reflecting Brownian motion with drift. More precisely, we have Theorem IV (Theorems 5. 15 and 5.16). Let Z `be as in (5.12) and the occupation field f as in (5.11). Then the process Z `is independent of f and is the burglar associated with the positive part of the PRBM.

Finally, we may wonder whether it is possible to find the law of a loop soup conditioned on its occupation field on a cable graph introduced by Lupu in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF]. In general, the loop soup loses its Markovian properties. But in the case of intensity 1 2 , the relation of the loop soup with the Gaussian free field indicates that a certain Markov property should hold. It is the topic of [START_REF] Aïdékon | Cluster explorations of the loop soup on a metric graph related to Gaussian free field[END_REF], where the description of the conditioned loop soup uses the framework of this paper. In the discrete case, the analogous problem was answered by Werner [START_REF] Werner | On the spatial Markov property of soups of unoriented and oriented loops[END_REF] (description that we could label in "space", via the link with the random current model) and Sabot, Tarrès [START_REF] Sabot | Inverting Ray-Knight identity[END_REF], Lupu, Sabot and Tarrès [START_REF] Lupu | Inverting the coupling of the signed Gaussian free field with a loop-soup[END_REF] (description in "time", via a selfinteracting process).

The paper is organized as follows. Flows of BESQ processes are studied in Section 2. Section 3 collects all the transformations that will be needed to state the disintegration theorems and construct the burglars. Section 4 contains the disintegration result stated for the BESQ δ,δ 1 flows and as a corollary the construction of the Jacobi flows from the PRBM. Theorem II on the conditioning of a PRBM is proved in Section 5.1. In Section 5.3, we will state the Markov property for Z p2q and prove the link with the Bass-Burdzy flow given in Theorem III. Section 5.4 connects the contour function of the Jacobipδ, 0q flow to the Bass-Burdzy flow driven by a reflecting Brownian motion with drift. Section A studies properties of the BESQ and Jacobi flows with emphasis on perfect flow properties, and Section B contains a Girsanov theorem for Jacobi flows.

The BESQ flows

We give the definition of the BESQ flows, then embed them in the PRBM. For any bounded Borel function g : R `ˆR Ñ R with compact support, let

(2.1) W pgq :" ż 8 ´8 g `Lpt, X t q, X t ˘sgnpB t qdB t .
As shown in [START_REF] Aïdékon | An infinite-dimensional representation of the Ray-Knight theorems[END_REF], the stochastic integral is well defined and W is a white noise on R `ˆR. where W ˚is the image of W under the map pa, sq Þ Ñ pa, ´sq and T 0 pS r,r`¨p aqq :" infth ě 0 : S r,r`h paq " 0u.

Remark. If I t :" inf sďt X s denotes the infimum process of X, we can rewrite T 0 pS r,r`¨p aqq in (2.4) as ´Iτ ´r a ´r.

Ray-Knight theorems are usually statements on marginal distributions. Recall that the squared Bessel process of dimension δ P R started at x ě 0, denoted BESQ δ

x , is the pathwise unique solution of

S t " x `2 ż t 0 a |S s | dγ s `δt, t ě 0,
where, as before, γ is a standard Brownian motion. The BESQ δ hits zero at a positive time if and only if δ ă 2. It is absorbed at 0 when δ " 0 and is reflecting at 0 when δ P p0, 2q. When δ ă 0, after hitting 0, it behaves as a BESQ ´δ 0 in the negative halfline, see e.g. [START_REF] Going-Jaeschke | A survey and some generalizations of Bessel processes[END_REF]. See Le Gall and Yor [START_REF] Gall | Excursions Browniennes et carrés de processus de Bessel[END_REF] and Yor ([36], Chapter 9) for references on Ray-Knight theorems.

Ray-Knight theorems show that the flows of squared Bessel processes are embedded in the PRBM. The setting of Dawson and Li [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF] includes the construction of such flows. We impose some further regularity conditions in order to give it the structure of a flow in the sense of [START_REF] Arratia | Coalescing Brownian motions on the line[END_REF][START_REF] Tóth | The true self-repelling motion[END_REF]. Definition 2.2. Let δ ą 0. We call BESQ δ flow (or non-killed BESQ δ flow) a collection S of continuous processes pS r,x paq, x ě rq rPR,aě0 such that: 1) for each pr, aq P RˆR `, the process pS r,x paq, x ě rq is almost surely the strong solution of the following SDE

(2.5) S r,x paq " a `2 ż x r Wpr0, S r,s paqs, dsq `δpx ´rq
where W is a white noise on R `ˆR. 2) Almost surely, (i) for all r P R and a ě 0, S r,r paq " a, (ii) for all r ď x, a Þ Ñ S r,x paq is càdlàg, (iii) for all r 1 ď r and all a 1 , a ě 0, if S r 1 ,r pa 1 q ą a (resp. S r 1 ,r pa 1 q ă a), then S r 1 ,x pa 1 q ě S r,x paq (resp. S r 1 ,x pa 1 q ď S r,x paq) for all x ě r.

Definition 2.3. For ´8 ă δ ă 2, we call killed BESQ δ flow the flow solution of (2.5), where the process is absorbed when hitting 0, and which satisfies the same regularity conditions.

For short, we call general BESQ δ flow a killed BESQ δ when δ ď 0, a (non-killed) BESQ δ flow when δ ě 2 and either a killed or non-killed BESQ δ flow when δ P p0, 2q.

Dawson and Li [START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF] showed (in a more general setting) that equation (2.5) possesses a pathwise unique solution. We can show that the same is true in the case δ ă 0, with arguments similar to the ones of the proof of Theorem 4.6.

We check that the BESQ flows are naturally embedded in the PRBM X, which will give the existence of these flows for free. In agreement with (2.2), we define S r,x paq " Lpτ r a , xq for any r, x P R. We call the collection of processes L X :" pS r,x paq, ´8 ă r, x ă 8, a ě 0q the local time flow of X. The flow S :" pS r,x paq, x ě rq rPR,aě0 is called the forward local time flow of X, while S ˚:" pS ´r,´x paq, x ě rq rPR,aě0 is called the backward local time flow of X. Both flows are dual as we will see in equation (2.6).

Proposition 2.4. Let µ ą 0.

The forward flow pS r,x paq, x ě rq rPR,aě0 is a BESQ 2{µ flow. If µ P p0, 1s, the backward flow pS ´r,´x paq, x ě rq rPR,aě0 is a killed BESQ 2´2{µ flow.

Proof. The finite-dimensional distributions coincide by Theorem 2.1 so we only have to check the regularity conditions (i), (ii) and (iii) in Definition 2.2. We have S r,r paq " a indeed. Statement (ii) is a consequence of the continuity of the local times, and the observation that a Ñ τ r a is càdlàg by construction. We prove now (iii). We have S r 1 ,r pa 1 q " Lpτ r 1 a 1 , rq. By definition of τ r a , S r 1 ,r pa 1 q ą a is equivalent to τ r 1 a 1 ą τ r a . Therefore, S r 1 ,x pa 1 q " Lpτ r 1 a 1 , xq ě Lpτ r a , xq " S r,x paq. l Conversely, we can recover X from its local time flow. It is the content of the following proposition.

Proposition 2.5. The process X is a measurable function of its local time flow L X " pS r,x paq, ´8 ă r, x ă 8, a ě 0q.

Proof. By the occupation times formula, for any a ě 0 and b, τ b a " ş R pS b,r paq ´S0,r p0qqdr hence pτ b a , a ě 0, b P Rq is measurable with respect to L X . Therefore Lpt, xq, t P R, x P R, is measurable with respect to L X , which again by the occupation times formula yields that X is measurable as well (for any s ă t,

ş t s X u du " ş R xpLpt, xq ´Lps, xqqdx). l
We show now that any BESQ δ flow can be constructed from a countable number of flow lines. It allows us to identify BESQ δ flows with flows embedded in a PRBM. Proposition 2.6. Let S be a general BESQ δ flow. Let pr n , a n q n be a dense countable set in R ˆR`. Almost surely, for any x ě r and a ě 0, S r,x paq " inf tn : rnďr, Sr n,r panqąau S rn,x pa n q.

Proof. We first check that almost surely, for any r P R, and any 0 ď a ă a 1 , one can find some pr n , a n q such that r n ď r and S rn,r pa n q P pa, a 1 q. From Theorem 2.1, one can reason on the local times of the PRBM (notice that one can make this identification because we only look at a countable number of flow lines). The previous claim property follows since it suffices to take a ă b 1 ă b 2 ă a 1 , and pr n , a n q such that Lpτ b 1 r , r n q ă a n ă Lpτ b 2 r , r n q. We would then have Lpτ an rn , rq ě Lpτ b 1 r , rq ą a and Lpτ an rn , rq ď Lpτ b 2 r , rq ă a 1 . Let us go back to the proof of the proposition. Fix x ě r and a ě 0. We prove that S r,x paq " inf tn : rnďr, Sr n,r panqąau S rn,x pa n q. Notice that the set over which the infimum is taken is not empty. For any pa n , r n q such that S rn,r pa n q ą a, we have S rn,x pa n q ě S r,x paq by (iii) of Definition 2.2, which proves one inequality. If a 1 ą a, we take some pa n , r n q such that S rn,r pa n q P pa, a 1 q. Then S r,x paq ď S rn,x pa n q ď S rn,x pa 1 q. We then conclude by (ii) of Definition 2.2. l Proposition 2.7. Let δ P R. Let S be a general BESQ δ flow. Define its dual S ˚by, for r ď x, S r,x paq :" inftb ě 0 : S ´x,´r pbq ą au.

Then S ˚is a BESQ 2´δ flow (in the case δ P p0, 2q, it is killed if S is not killed, and it is not killed if S is killed). Moreover, pS ˚q˚" S.

This proposition gives the dual of a Feller CSBP with immigration. We refer to Foucart, Ma and Mallein [START_REF] Foucart | Coalescences in Continuous-State Branching Processes[END_REF] for dual processes of CSBPs.

Proof. It is a direct consequence of Proposition 2.4 and the following claim: almost surely, for all r, x P R and a ě 0, (2.6) S r,x paq " inftb ě 0 : S x,r pbq ą au.

Let us prove this claim. Let b ě 0 be such that S x,r pbq ą a. By definition, it means that Lpτ x b , rq ą a, and since Lpτ r a , rq " a, we get τ x b ą τ r a so that b " Lpτ x b , xq ě Lpτ r a , xq which is S r,x paq by definition. On the other hand, let b ě 0 such that S x,r pbq ď a, i.e., Lpτ x b , rq ď a. Take s ě 0 such that Lps, rq ą a, hence s ą τ x b . It implies that Lps, xq ě Lpτ x b , xq " b and Lpτ r a , xq ě b by making s Ó τ r a . l

Space-time transformations

In this section, we consider a fixed positive continuous function f : I Ñ p0, 8q where I is an interval (not necessarily open nor bounded).

3.1. Transformations of flows. The results in this section hold in a deterministic setting. They provide the transformations that will be used later in our disintegration results.

We introduce some general notation. Let c P I and define η f,c pxq :" 

# D f Þ Ñ r0, 1s ˆηf,c pIq pa, xq Þ Ñ ´a f pxq , η f,c pxq ¯.
If g : I Ñ R `is a continuous function such that g ď f , we denote by Ψpg, f, cq the function whose graph is the image of the graph of g by Ψp¨, f, cq. That is

Ψpg, f, cq : # η f,c pIq Þ Ñ r0, 1s x Þ Ñ g˝η ´1 f,c pxq f ˝η´1 f,c pxq .
When c " 0, we will simply write η f for η f,0 and Ψp¨, f q for Ψp¨, f, 0q.

In this section, we will not need a precise definition of flows. Let g : I Ñ R `be a continuous function. We will simply call g-flow a collection L :" tS r,¨p aq, r P I, a P r0, gprqsu of continuous functions S r,¨p aq : I Þ Ñ R `such that for every r, x P I and a P r0, gprqs, S r,r paq " a and S r,x paq ď gpxq. We call it flow only because we will deal exclusively with the BESQ and Jacobi flows. More generally, we give the following definition.

Definition 3.2. We call flow in the domain D f any flow which is a g-flow for some continuous nonnegative function g ď f .

Remark. We also allow the case f " 8, meaning that L is a flow in the domain R `ˆR.

If L is a g-flow, the forward flow of L is the collection of functions S :" pS r,x paq, x P I X rr, 8qq rPI,aPr0,gprqs and the backward flow of L is the collection of functions S ˚:" pS ´r,´x paq, x P p´Iq X rr, `8q rP´I,aPr0,gp´rqs where ´I :" t´x, x P Iu. We already mentioned the Jacobi flow and the BESQ flow, which are in our terminology forward flows. The first one is a forward flow in the domain r0, 1s ˆR (here gprq " 1). The second one is a forward flow in the domain R `ˆR (formally taking gprq " 8). Definition 3.3. Let g ď f be a continuous nonnegative function and c P I. Consider a g-flow L. We denote by ΨpL, f, cq the flow such that for any pv, rq in the image of D g :" tpa, xq : a P r0, gpxqs, x P Iu by Ψp¨, f, cq, its flow line passing through pv, rq is the image of the flow line in L passing through the preimage of pv, rq. It is defined through the following equation:

pΨpL, f, cqq r,x pvq " S η ´1 f,c prq,η ´1 f,c pxq pvf ˝η´1 f,c prqq f ˝η´1
f,c pxq for all r, x P η f,c pIq, v P r0, Ψpg, f, cqprqs. When c " 0, we will only write ΨpL, f q for ΨpL, f, 0q.

Remark. The image flow ΨpL, f, cq is a Ψpg, f, cq-flow.

If we only look at the forward flow S (for example in (4.10)), we will still write ΨpS, f, cq for the forward flow obtained as in Definition 3.3, restricted to r ď x.

Transformations of processes.

Let J be an interval of R containing 0 and X " pX t , t P Jq be some real-valued continuous process such that X t P I for all t P J. We suppose that X admits a version of bicontinuous local times L X pt, xq, t P J, x P I, defined as the densities of the occupation times: for any Borel nonnegative function h and any t P J, ż

JXp´8,ts hpX s qds "

ż I hpxqL X pt, xqdx.
We let gpxq :" L X p8, xq for x P I denote the total local time of X at position x and we suppose that gpxq ď f pxq on I. Define L X " pS r,x paqq r,x,a as, for any x and r in I and 0 ď a ď gprq, S r,x paq :" L X pτ r a pX q, xq, where τ r a pX q :" inftt P J : L X pt, rq ą au. We used the convention that inf H " 8, so that when a " gprq, τ r a pX q " 8 and S r,x paq " gpxq for all x. Then L X is a g-flow, which (in agreement with the previous section) we will refer to as the local time flow of X . Its forward, resp. backward flow is called forward, resp. backward local time flow of X . By Definition 3.2, L X is a flow in the domain D f . Proposition 3.4. We set

C f ptq :" ż t 0 ds f pX s q 2 , t P J.
For c P I, we let ΥpX , f, cq be the process defined as

(3.1) ΥpX , f, cq t :" η f,c ´XC ´1 f ptq ¯" ż X C ´1 f ptq c dr f prq , t P C f pJq.
Then, the process ΥpX , f, cq possesses bicontinuous local times (given by (3.2)) and its local time flow is ΨpL X , f, cq.

For sake of brevity, we will write in the rest of this section Z :" ΥpX , f, cq.

Remarks. (i)

The definition of Υ does not depend on the choice of the interval I on which is defined f . (ii) Observe that |C f ptq| ă 8 for all t P J and t Ñ C f ptq is strictly increasing so that Z is well defined and is a continuous process. Moreover, for all t P C f pJq, Z t P η f,c pIq. (iii) In the course of the proof, we will prove that the local time L Z pt, xq of Z at time t P C f pJq and position x P η f,c pIq is given by

(3.2) L Z pt, xq " L X pC ´1 f ptq, η ´1 f,c pxqq f ˝η´1 f,c pxq .
In particular, the total local time of Z at position x is Ψpg, f, cqpxq ď 1 for all x P η f,c pIq.

(iv) Explicitly, the proposition means that

L Z pτ r v pZq, xq " ΨpL X , f, cq r,
x pvq for all r, x P η f,c pIq and v P r0, Ψpg, f, cqprqs where τ r v pZq :" inftt P C f pJq : L Z pt, rq ą vu.

Proof of the proposition. For simplicity, we suppose that c " 0. First we prove (3.2) by following the proof of Lemma 2 of [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF]. Let h : R Ñ R `be a Borel function. Let t 1 :" inf J and t 2 :" sup J. Using change of variables, we have for t P pt 1 , t 2 q, ż C f ptq

C f pt 1 q hpZ u qdu " ż t t 1 hpZ C f psq qdC f psq " ż t t 1 h ˝ηf pX s q ds f pX s q 2 " ż I f h ˝ηf pxq L X pt, xq f pxq 2 dx
by the occupation times formula. Let p LpC f ptq, η f pxqq :" L X pt,xq f pxq . We get by the change of variables z " η f pxq,

ż C f ptq C f pt 1 q hpZ u qdu " ż 8 ´8 hpzq p LpC f ptq, zqdz.
Therefore Z has local time given by p L. It proves (3.2). Let r, x P I and 0 ď v ď gprq f prq . Set r :" η f prq, x :" η f pxq, τ r v :" C f p tq where t :" τ r vf prq pX q. Then p Lpτ r v , rq " v, and since v Ñ τ r v is right-continuous, we deduce that τ is the inverse local time of Z. Moreover, by definition,

p Lpτ r v , xq " L X pτ r vf prq pX q, xq f pxq " S r,x pvf prqq f pxq . By Definition 3.3, it is ΨpL X , f q r,x pvq indeed. l
The transformation Υ behaves well under composition. It is the content of the following lemma. For a process X, we let X s`¨d enote the process X s`t , t ě 0 (as long as X s`t is well-defined). Lemma 3.5. Let s P J and c 1 P I. We suppose that f ´LX ps, ¨q is positive on an interval containing c 1 and tX s`¨u . Then, Υ `ZC f psq`¨, 1 ´LZ pC f psq, ¨q, η f,c pc 1 q ˘is well-defined and equals Υ pX s`¨, f ´LX ps, ¨q, c 1 q. In particular, the values at time 0 of the two processes are identical, i.e.

(3.3) ż Z C f psq η f,c pc 1 q dr 1 ´LZ pC f psq, rq " ż Xs c 1 dr f prq ´LX ps, rq .
Remark. By saying that Υ `ZC f psq`¨, 1 ´LZ pC f psq, ¨q, η f,c pc 1 q ˘is well-defined, we mean that (i) the total local time of Z C f psq`¨a t position u is smaller than 1 ´LZ pC f psq, uq (which is clear since the total local time of Z is smaller than 1) (ii) 1 ´LZ pC f psq, ¨q ą 0 on an interval containing η f,c pc 1 q and tZ C f psq`¨u .

Proof of Lemma 3.5. We first check that Υ `ZC f psq`¨, 1 ´LZ pC f psq, ¨q, η f,c pc 1 q ˘is welldefined, hence we check statement (ii) above since (i) is clear. By (3.2), for any u P η f,c pIq,

L Z pC f psq, uq " L X ps, η ´1 f,c puqq f pη ´1 f,c puqq .
We deduce that (ii) is satisfied since tZ C f psq`¨u " η f,c ptX s`¨u q. Let us prove the second statement of the lemma. Let t ě 0 with s `t P J. Let

t 2 :" ż s`t s du pf pX u q ´LX ps, X u qq 2 , c 2 :" η f,c pc 1 q.
Substituting v for C f puq in the above integral and using that Z C f puq " η f,c pX u q by (3.1), we get

(3.4) t 2 " ż C f ps`tq C f psq dv p1 ´LZ pC f psq, Z v qq 2 .
Observe that by the change of variables x " η ´1 f,c prq in the integral,

(3.5) η 1´L Z pC f psq,¨q,c 2 puq " ż u c 2 dr 1 ´LZ pC f psq, rq " ż η ´1 f,c puq c 1 dx f pxq ´LX ps, xq .
Let us consider ΥpZ C f psq`¨, 1 ´LZ pC f psq, ¨q, c 2 q at time t 2 . By definition and using equation (3.4),

ΥpZ C f psq`¨, 1 ´LZ pC f psq, ¨q, c 2 qpt 2 q " η 1´L Z pC f psq,¨q,c 2 pZ C f ps`tq q. Equation (3.5) with u " Z C f ps`tq " η f,c pX s`t q yields η 1´L Z pC f psq,¨q,c 2 pZ C f ps`tq q " ż X s`t c 1 dx f pxq ´LX ps, xq " η f ´LX ps,¨q,c 1 pX s`t q.
By definition, it is the value of the process ΥpX s`¨, f ´LX ps, ¨q, c 1 q at time t 2 . The proof is complete. l Notation 3.6. When c " X 0 , we will write ΥpX , f q for ΥpX , f, X 0 q. (i) Direct computations also show that ΥpX , f q stays unchanged when replacing X by X `a and f by f p¨´aq for a P R arbitrary.

(ii) Since η f,c pX s q " Z C f psq by definition, Lemma 3.5 in the case that c 1 " X s reads

Υ `ZC f psq`¨, 1 ´LZ pC f psq, ¨q˘" Υ pX s`¨, f ´LX ps, ¨qq
We finish this section by a continuity lemma on the transformation Υ that will be used later on. Lemma 3.7. We fix a couple pX , f q where X : J " r0, 8q Ñ R, f : I Ñ p0, 8q are continuous and X t P I for all t ě 0.

We consider a sequence pX n , f n q ně1 such that X n : r0, j n q Ñ R, j n P R `Y t`8u, f n : I n Ñ p0, 8q and X t P I n for all t P r0, j n q. The sets I, I n are intervals.

We make the following assumptions:

(i) for all n, X n 0 " X 0 " 0 and

ş jn 0 ds f n pX n s q 2 " ş 8 0 ds f pXsq 2 " 8; (ii) lim nÑ8 j n " 8;
(iii) X n converges uniformly to X on any compact set of R `; (iv) for any compact set K of R `, there exists a compact set L in R such that (a) for n large enough, X pKq and X n pKq are contained in the set L which is itself contained in I and in I n ; (b) f n converges uniformly to f on L. Then ΥpX n , f n q converges to ΥpX , f q (for the topology of uniform convergence on compact sets of R `).

See Appendix C for the proof.

Jacobi flows

In this section, we define Jacobi flows, and show how they arise by disintegration of the BESQ flows.

Let λ denote the Lebesgue measure.

Definition 4.1. We introduce the covariance functional

Q h pA, p Aq " h ´λpA X p Aq ´λpA X r0, 1sqλp p A X r0, 1sq
for A, p A Borel sets of R `, and h ě 0. Let pE s , ´8 ă s ă 8q be a right-continuous filtration. We consider a collection of random variables pMpAˆrs, tsq, s ď t, A Borel set of R `q such that for any s P R, A, p A Borel sets of R `, pMpA ˆrs, s `hsqq hě0 and pMp p A ˆrs, s hsqq hě0 are two continuous martingales with respect to the filtration pE s`h , h ě 0q and (4.1) xMpA ˆrs, s `¨sq, Mp p A ˆrs, s `¨sqy h " Q h pA, p Aq.

From (4.1), we deduce that for fixed s, h, and pA n q n disjoint Borel sets with λp Ť n A n q ă 8, we have Mp Ť n A n , rs, s `hsq " ř n MpA n , rs, s `hsq in L 2 pΩq. In other words, M is an pE s q-martingale measure with covariance functional Q on R `ˆR in the sense of [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF].

The martingale measure M can be defined through a white noise W on R `ˆR:

(4.2)
MpA ˆrs, tsq :" WpA ˆrs, tsq ´λpA X r0, 1sqWpr0, 1s ˆrs, tsq.

We now introduce the Jacobi flows. where M is a martingale measure on R `ˆR with covariance functional Q and T 1 pY s,¨p vqq :" inftt ě s : Y s,t pvq " 1u (it may be infinite). We require the regularity conditions: almost surely, (i) for all s P R and v P r0, 1s, Y s,s pvq " v, (ii) for all s ď t, v P r0, 1q Þ Ñ Y s,t pvq is càdlàg, (iii) for all s 1 ď s and all v 1 , v P r0, 1s, if Y s 1 ,s pv 1 q ą v, then Y s 1 ,t pv 1 q ě Y s,t pvq for all t ě s, (iv) for all s ď t ď t 1 , and v P r0, 1s, if Y s,t pvq " 1 then Y s,t 1 p1q " 1. Definition 4.3. Let δ ă 2 and δ 1 P R. We say that Y is a killed Jacobi(δ, δ 1 ) flow if it is solution of (4.3) but is absorbed at 0 and satisfies the same regularity conditions. For δ P R, we call general Jacobi(δ, δ 1 ) flow a Jacobi flow which is either killed or non-killed.

Remark. Being non-killed means that the flow line is reflected at zero. With condition (iv), we arbitrarily decided to kill flow lines when they hit 1. We could also let them reflect at 1. Therefore, strictly speaking, our Jacobi flows are actually Jacobi flows killed at 1.

The existence of Jacobi flows will be obtained as a consequence of Theorem 4.6. As for the case of BESQ flows, the Jacobi flow can be constructed from a countable number of flow lines. Definition 4.4. Let δ, δ 1 P R and b ě 0. Let W be a white noise on R 2 `. Consider the BESQ δ flow pS r,x paq, x ě rq rPR,aě0 driven by W as in Definition 2.2 or Definition 2.3. Let f " pf pxq, x P r0, d f qq be the pathwise unique solution of

(4.4) f pxq " b `2 ż x 0 Wpr0, f psqs, dsq `pδ `δ1 qx
where the process is absorbed at 0 if it hits 0 at a positive time (we denote by d f this absorption time, possibly infinite). We call BESQ δ,δ 1 b flow driven by W the collection of continuous processes Θ " pΘ r,x paq, 0 ď r ď x ă d f q, a P r0, f prqsq where Θ r,¨p aq " S r,¨p aq until it meets f , and is equal to f afterwards.

The BESQ δ,δ 1 b flow is called killed when S is killed. When b " 0, by convention the flow will be defined for x ě r ą 0.

Remark. (i) To avoid trivial situations, we suppose either that b ą 0 or b " 0 and δ `δ1 ě 2 (otherwise d f " 0).

(ii) The flow lines may hit f only in the case δ 1 ă 2.

We suppose now that b ą 0. We have d f ă 8 if and only if δ `δ1 ă 2. We will use the transformation Ψ of Section 3.1 with f . We recall that η f pxq :" ş x 0 dr f prq . In all cases, lim xÒd f η f pxq " `8 (see Lemma 5.1). Define the martingale measure Ă W by, for any Borel set A Ă R `with finite Lebesgue measure λpAq, (4.5) Ă WpA ˆr0, tsq :"

ż η ´1 f ptq r"0 1 f prq W pAf prq, drq , t ě 0,
where Af prq :" taf prq, a P Au. If pE x , x ě 0q denotes the natural filtration of W, with E x :" σpWp¨ˆr0, rsq, 0 ď r ď xq, then the process p Ă WpA ˆr0, tsqq tě0 is a continuous martingale with respect to the filtration p r E t , t ě 0q :" pE η ´1 f ptq , t ě 0q whose quadratic variation process is equal to λpAqt. We deduce that Ă W is a white noise on R 2 `with respect to the filtration p r E t , t ě 0q. We define the martingale measure M `on R 2 `by the identity for any Borel set A Ă R `:

(4.6) M `pA ˆr0, tsq :" Ă W pA ˆr0, tsq ´λpA X r0, 1sq Ă W pr0, 1s ˆr0, tsq , t ě 0.

Notice that pM `pA ˆr0, tsqq t,A is a Gaussian process. It is actually an p r E t q-martingale measure with covariance functional Q as defined in Definition 4.1, from s " 0. From the definition of M `, we see that for any deterministic Borel set A Ă R `, and t ě 0, (4.7) M `pA ˆr0, tsq "

ż η ´1 f ptq r"0 1 f prq ´W pAf prq, drq ´λpA X r0, 1sq W pr0, f prqs, drq ¯.
We 

ż x 0 1 a f prq Wpr0, f prqs, drq, 0 ď x ă d f .
The process γ is an pE x q-Brownian motion stopped at d f when d f ă 8.

Proposition 4.5. The martingale measure M `is independent of the process f .

Proof. The proof is an extension of that of Proposition 8 of [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF] to the setting of martingale measures. Let γ be defined by (4.9). From (4.7), we see that pM `pAˆr0, η f pxqsq, 0 ď x ă d f q is a martingale which is orthogonal to γ. On the other hand, its increasing process is x Ñ pλpAq ´λpA X r0, 1sq 2 qη f pxq. We deduce by Knight's theorem that pM `pA r0, tsq, t ě 0q is a Brownian motion (with multiplicative constant) which is independent of γ. More generally, the multidimensional Knight's theorem implies that pM `pA 1 r0, tsq, . . . , M `pA n ˆr0, tsq t ě 0q are independent of γ for any n ě 1 and disjoint Borel sets A 1 , . . . , A n of R `. We deduce that pM `pAˆr0, tsqq t,A is independent of γ. We observe that the process f is measurable with respect to the filtration of γ (it is the strong solution of df pxq " 2 a f pxqdγ x `pδ `δ1 qdx), therefore pM `pA ˆr0, tsqq t,A is independent of f . l

0 v 1 0 v 1 Figure 1.
On the left: BESQ δ,δ 1 flow. The process x Ñ f pxq is traced in bold.

A flow line x Ñ S 0,x pvq is also represented. On the right: Jacobi(δ, δ 1 ) flow after a space-time transformation. The process x Ñ f pxq is mapped to the constant function 1, and the image of the flow line at v is a flow line of the Jacobi flow.

In the notation of Section 3.1 with I " r0, d f q and c " 0, we define the flow Y `"

pY s,t pvq, 0 ď s ď t, v P r0, 1sq by (4.10) Y `:" ΨpΘ, f q (we add the superscript in Y `to stress that the flow is only defined for 0 ď s ď t whereas the flow Y is defined for all ´8 ă s ď t), see Figure 1. By definition, with the required absorption conditions 5 . In particular, Y `is independent of f .

(4.11) Y s,t pvq " Θ η ´1 f psq,η ´1 f ptq ´vf ˝η´1 f psq f ˝η´1 f ptq , t ě s ě 0, v P r0, 1s.
Remark. The theorem will be used only in the case δ 1 " 0 in the rest of the paper. The general case will be used in a follow-up paper.

Proof. The regularity conditions (i), (iii) and (iv) of Y `come from the properties of Θ. Let us check that (ii) is also satisfied. Let u P r0, 1q and s ď t. If Y s,t puq " 1, then Y s,t pvq " 1 for all v ě u hence v Ñ Y s,t puq is càdlàg at u. Suppose then that Y s,t puq ă 1. There exists v ą u such that Y s,t pvq ă 1. Indeed, the flow pS r,x paq, x ě rq rPR, aě0 verifies: almost surely, for all r ă x and a ě 0, sup r 1 Prr,xs |S r,r 1 pbq ´Sr,r 1 paq| Ñ 0 as b Ó a. This statement follows from the identification S r,x paq " Lpτ r a , xq (see Section 2), the fact that b Ñ τ r b is càdlàg, and the bicontinuity of the local times. Since for v ą u close enough to u, one has Y s,t pvq ă 1, we can use the regularity of the flow pS r,x paq, x ě rq rPR, aě0 to see that v Ñ Y s,t pvq is càdlàg at u. We show now the SDE. To avoid too much notation, we prove it for s " 0. For brevity, we suppose that Θ is non-killed. The other case is similar, one just has to look at the times before the hitting time of 0. By (4.11), we have We deduce from Itô's formula that, as long as Θ 0,x pbvq ă f pxq, (d " d x below)

Y 0,t pvq " Θ 0,η ´1 f ptq pbvq f ˝η´1 f ptq . Equation (4.12) is equivalent to (4.13) Θ 0,x pbvq f pxq " v`2 ż η f pxq 0 M `pr0, Y 0,
dξ x pvq " dΘ 0,x pbvq f pxq ´Θ0,x pbvq f pxq 2 df pxq `Θ0,x pbvq 4f pxq f 3 pxq dx ´1 f 2 pxq 4Θ 0,x pbvqdx " dΘ 0,x pbvq f pxq ´Θ0,x pbvq f pxq 2 df pxq " 1 f pxq `2Wpr0, Θ 0,x pbvqs, dxq `δdx ˘´ξ x pvq f pxq `2Wpr0, f pxqs, dxq `pδ `δ1 qdx " 2 f pxq pWpr0, Θ 0,x pbvqs, dxq ´ξx pvqWpr0, f pxqs, dxqq `δp1 ´ξx pvqq ´δ1 ξ x pvq f pxq dx.
Comparing with (4.14) and (4.15), we get (4.13) indeed. Now we show that Y `is the pathwise unique solution (by Yamada-Watanabe's theorem it will imply that it is a strong solution). This can be achieved by imitating the usual proof of the pathwise uniqueness of a one-dimensional SDE with non-Lipschitz coefficient. We give the details here for completeness. As before we take s " 0 for notational brevity. Define a 0 :" 1 and a k :" a k´1 e ´k for k ě 1. Let ψ k be a continuous function on R with support in pa k , a k´1 q such that ş a k´1 a k ψ k pxqdx " 1 and 0 ď ψ k pxq ď 2 kx for x P pa k , a k´1 q. Define φ k pyq :"

ż |y| 0 dx ż x 0 ψ k prqdr, y P R.
Observe that φ k is twice continuously differentiable and |φ 1 k | ď 1. Moreover φ k pyq Ñ |y| as k Ñ 8. Suppose that Y p1q 0,t pvq and Y p2q 0,t pvq, t ě 0, are two solutions of (4.12) [with s " 0 there] with respect to the same martingale measure M `. Let ∆Y t :" Y p1q 0,t pvq Ýp2q 0,t pvq for t ě 0. By (4.6), we have 

ş t 0 M `pr0, Y piq 0,
Epφ k p∆Y t qq " ´pδ `δ1 q E ż t 0 φ 1 k p∆Y r q ∆Y r dr `1 2 E ż t 0 ψ k p|∆Y r |qdx∆Yy r ď |δ `δ1 | E ż t 0 |∆Y r |dr `8t k ,
where in the last inequality we have used the facts that |φ 1 k | ď 1 and ψ k pxqx ď 2 k for any x ě 0. Letting k Ñ 8 we deduce from Fatou's lemma that Ep|∆Y t |q ď |δ`δ 1 | E ş t 0 |∆Y r |dr, yielding that ∆Y t " 0 by Gronwall's inequality. This shows the pathwise uniqueness and completes the proof of the theorem. l Let δ ą 0. Recall that X is a PRBM defined in (1.2) and S is its local time flow introduced in (2.2). Recall that S satisfies the SDEs (2.3) and (2.4) driven by W . The following corollary of Theorem 4.6 gives a pathwise construction of a Jacobi flow starting from a PRBM. Corollary 4.7. Let b ą 0 and µ ą 0. 1) Let f " pf pxq, x ě 0q defined by f pxq " S 0,x pbq " Lpτ 0 b , xq. Notice that d f " inftx ě 0 : Lpτ 0 b , xq " 0u. We have d f ă 8 if and only if µ ą 1. Let Θ :" pS r,x paq, 0 ď r ď x ă d f , a P r0, f prqsq. The flow ΨpΘ, f q is a Jacobi(2{µ, 0) flow in the positive time-axis, independent of f . 2) Let f " pf pxq, x ě 0q defined by f pxq " S 0,´x pbq " Lpτ 0 b , ´xq. Notice that d f " ´inf r0,τ 0 b s X. Let Θ :" pS ´r,´x paq, 0 ď r ď x ă d f , a P r0, f prqsq. The flow ΨpΘ, f q is a killed Jacobi(2 ´2{µ, 0) flow in the positive time-axis, independent of f . Remark 4.8. We can rephrase the corollary in the following way. Let b ą 0. Define the flow Y " pY s,t pvq, ´8 ă s, t ă 8, v P r0, 1sq by Y :" ΨpL b X , f q where f pxq " S 0,x pbq and L b X is the local time flow of pX t , t ď τ 0 b q. The forward flow of Y in the positive time-axis (i.e. pY s,t pvq, 0 ď s ď t, v P r0, 1sq) is a Jacobi(2{µ, 0) flow. Similarly, the backward flow of Y in the negative time-axis (i.e. pY ´s,´t pvq, 0 ď s ď t, v P r0, 1sq) is a killed Jacobi(2 ´2{µ, 0) flow. See Figure 2. For later use, let for all s ď t P R, and v P r0, 1s, Y s,t pvq :" inftu P r0, 1s : Y ´t,´s puq ą vu ^1. Lemma 4.9. For all s, t P R, and v P r0, 1s, Y s,t pvq " inftu P r0, 1s : Y t,s puq ą vu ^1. In particular, for s ď t and v P r0, 1s, Y s,t pvq " Y ´s,´t pvq. 

Y s,t pvq " 1 S 0,η ´1 f ptq pbq inf # a ě 0 : S η ´1 f ptq,η ´1 f psq paq S 0,η ´1 f psq pbq ą v + " inf # u ě 0 : S η ´1 f ptq,η ´1 f psq puS 0,η ´1 f ptq pbqq S 0,η ´1 f psq pbq ą v +
which is inftu P r0, 1s : Y t,s puq ą vu indeed. l 5. Disintegration of the PRBM with respect to its occupation field 5.1. The burglars. Let b ą 0. Consider the PRBM X defined in (1.2) up to τ 0 b . Recall from (2.2) that S r,x paq " Lpτ r a , xq. Set t 0 :" sup t ď 0 : Lpτ 0 b , X t q " 0 ( , t ˚:" inf t ě 0 : Lpτ 0 b , X t q " 0 ( .

Notice that t ˚is almost surely the hitting time of inf r0,τ 0 b s X and by the Ray-Knight theorems, |t 0 | ă 8 if and only if µ ą 1 (if µ ď 1, tt ď 0 : Lpτ 0 1 , X t q " 0u " H hence t 0 " ´8).

We let f pxq :" S 0,x pbq " Lpτ 0 b , xq restricted to the interval I with boundaries (5.1) inf I :" inf r0,τ 0 b s X " X t ˚sup I :" inftx ě 0 : Lpτ 0 b , xq " 0u (sup I " X t 0 when |t 0 | ă 8 and 8 otherwise). We consider the processes X p1q s :" X s , s P pt 0 , t ˚q, X p2q s :" X τ 0 b ´s, s P r0, τ 0 b ´t˚q .

Recall the notation Υ in Section 3.2. We introduce the processes (5.2) Z p1q :" ΥpX p1q , f q, Z p2q :" ΥpX p2q , f q, see Figure 3. In the case when µ " 1, Z p2q defines a variant of the Brownian burglar introduced by Warren and Yor in [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF] (its time-change p Z p2q in Section 5.3 is distributed as the one appearing in [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF], compare Theorem 5.12 and Proposition 5.13 with Theorem 1 in [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF]). µ P p0, 1s up to τ 0 1 , with t 0 " ´8 and t ˚being the time associated with the minimum. Bottom: the process before time t ˚is mapped through a space-time transformation to the process Z p1q (left). That after time t ˚is mapped to the process Z p2q (right).

Lemma 5.1. Almost surely, the process Z p1q is defined on R with limits given by lim tÑ´8 Z p1q t " `8 and lim tÑ8 Z p1q t " ´8; the process Z p2q is defined on R `and lim tÑ8 Z p2q t " ´8.

Proof. We only prove it for Z p1q . First we check that the transformation η f maps the interval I defined in (5.1) onto R. Consider sup η f pIq. When µ ď 1, sup I " 8 and lim yÑ8 η f pyq " ş 8 0 dr f prq which is infinite (Exercise X.3.20 in [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF]). In the case µ ą Lpt ˚, rq f prq 2 dr. On an event of probability arbitrarily close to 1 as ε Ñ 0, Lpt ˚, inf I `yq and f pinf I ỳq ´Lpt ˚, inf I `yq on r0, εs are independent BESQ processes of respective dimensions δ and 2, starting at 0 (see Theorem 4.3 in [START_REF] Aïdékon | A lifetime of excursions through random walks and Lévy processes[END_REF]). Scaling arguments ensure again that the integral is infinite indeed. l Using the notation Ψ of Section 3.1, define the process Ξ by (5.3) Ξ :" ΨpLpt ˚, ¨q, f q.

Recall from Remark 4.8 that Y denotes the flow ΨpL b X , f q. Its forward flow is a Jacobi(2{µ, 0) flow and its backward flow is a killed Jacobi(2 ´2{µ) flow. The following lemma shows that the process Ξ is measurable with respect to the flow Y . 

1 f pη ´1 f pxqq Lpt v , η ´1 f pxqq, with t v :" τ η ´1 f prq vf pη ´1
f prqq . We have t v ą t ˚for any 1 ě v ą Ξ r and η ´1 f pxq Ñ X t ˚as x Ñ ´8. Observe that Y r,x pvq " 1 for all x such that η ´1 f pxq ď inf rtv ,τ 0 b s X. On the other hand, if v ă Ξ r , then t v ă t ˚and Y r,x pvq ă 1 for all x ă r. l

The law of the process pΞ r , r P Rq, called the "primitive Eve" process in Bertoin and Le Gall [START_REF] Bertoin | Stochastic flows associated to coalescent processes[END_REF], will be given in Proposition 5.10.

Let L p1q pt, rq, resp. L p2q pt, rq, denote the local time of Z p1q , resp. Z p2q , at time t and position r. Observe from (3.2) that L p1q p8, rq `Lp2q p8, rq " 1 for all r P R. On the other hand, (5.3) implies that Ξ r " L p1q p8, rq.

Theorem 5.3. (i) The process Z p1q possesses local time flow Y "seen from the left", meaning that L p1q pτ r v pZ p1q q, xq " Y r,x pvq for v P r0, Ξ r s and r, x P R. (ii) The process Z p2q possesses local time flow Y "seen from the right", meaning that L p2q pτ r u´p Z p2q q, xq " 1 ´Yr,x p1 ´uq for u P r0, 1 ´Ξr s and r, x P R.

(iii) The processes Z p1q and Z p2q are independent of pLpτ 0 b , xq, x P Rq (and their distributions do not depend on the value of b ą 0).

Proof. (i) Note that for any r P I, L X p1q pt, rq " Lpt, rq for all t ď t ˚, hence the local time flow of X p1q is the flow S 1 :" tS r,x paq, r, x P I, 0 ď a ď Lpt ˚, rqu. The image flow by Ψp¨, f q is the flow Y "seen from the left" by definition.

(ii) Similarly for any r P I, L X p2q pt, rq " f prq ´Lpτ 0 b ´t, rq for all 0 ď t ď τ 0 b ´t˚. We deduce that the local time flow of X p2q is the flow tf pxq ´Sr,x ppf prq ´aq´q, r, x P I, 0 ď a ď f prq ´Lpt ˚, rqu. The image flow by Ψp¨, f q is the flow Y "seen from the right".

(iii) Again Z p1q and Z p2q are measurable with respect to their local time flow Y (by a proof similar to Proposition 2.5). By Lemma 4.9, the flow Y is measurable with respect to its forward flow. The forward flow of Y is independent of pLpτ 0 b , xq, x P Rq by Theorem 4.6. It completes the proof. l 5.2. A Markov property for the process Z p2q . The following proposition gives a way of constructing Z p2q by means of a Brownian motion stopped at a hitting time and an independent squared Bessel process. Proposition 5.4. Let g ă 0 be a constant. Take a Brownian motion up to the hitting time of g (call it B " pB t , t P r0, T B g sq). Take h such that hpxq " 0 if x ď g and hpg `rq, r ě 0 is an independent BESQ δ 0 . Let f pxq :" L B pT B g , xq `hpxq, x P R where L B is the local time of the Brownian motion B. Then ΥpB, f q has the law of Z p2q and is independent of f . Proof. We construct a probability measure r P under which X p1q and X p2q have simple descriptions. The process B will stand for the process X p2q while h will stand for the local time process of X p1q under r P conditioned on some event (which is tJpAq " gu in the notation below).

Let m ą |g| be an arbitrary constant (the exact value of m plays no role). We consider a probability r P on the product space R `ˆC pR, Rq such that, under r P, pA, Xq has the following distribution: A is gamma( δ 2 , 2m) distributed (meaning it has density

p2mq ´δ 2 Γp δ 2 q x δ 2 ´1e
´x{2m on R `) and conditionally on A " b, X has distribution

c b |Jpbq| δ 2 ´11 tJpbqą´mu

¨P

where Jpbq :" inf tPr0,τ 0 b s X t and c b "

Γp δ 2 q `b 2 ˘1´δ 2 e b 2m
is the renormalizing constant. Notice that Jpbq is measurable with respect to Lpτ 0 b , xq, x P R. Let X p1q , X p2q , Z p1q , Z p2q be under r P the processes of Section 5.1 with b " A. From Theorem 5.3 (iii), and using that JpAq is measurable with respect to pLpτ 0 A , xq, x P Rq, we deduce that under r P, Z p2q has the same law as under P, and is independent of pLpτ 0 A , xq, x P Rq. Denote by (5.5) T r :" inftt P R : X t " ru, the hitting time of r P R.

Lemma 5.5. (i) Under r Pp¨|JpAq " gq, the law of the process X p1q is the one of pX s , s ď T g q under P.

(ii) Under r Pp¨|JpAq " gq, the law of the process X p2q is that of a Brownian motion stopped when hitting g.

(iii) Under r Pp¨|JpAq " gq, the two processes X p1q and X p2q are independent.

Proof of Lemma 5.5. These results can be deduced from [START_REF] Aïdékon | A lifetime of excursions through random walks and Lévy processes[END_REF]. First, the law of pX s , s ď 0q is the same under P and r P, since pX s , s ď 0q and pX s , s ě 0q are independent. We restrict our attention to pX s , s P r0, τ 0 A sq. By Proposition 9.1 p.123, Section 9.2 of [START_REF] Yor | Some aspects of Brownian motion[END_REF] and Corollary 3.4 in [START_REF] Aïdékon | A lifetime of excursions through random walks and Lévy processes[END_REF], we observe that pA, X s , s P r0, τ 0

A sq under r P has the distribution of pLpT ´m, 0q, X s , s P r0, g m sq under P, where g m :" suptt ď T ´m : X t " 0u. The lemma is then Theorem 3.2 of [START_REF] Aïdékon | A lifetime of excursions through random walks and Lévy processes[END_REF]. l

We can now complete the proof of Proposition 5.4. Let g P p´m, 0q. We recall that Z p2q is independent of pLpτ 0 A , xq, x P Rq under r P so that the law of Z p2q is identical under r Pp¨|JpAq " gq for any g P p´m, 0q (and is equal to the law of Z p2q under P). By definition, Z p2q " ΥpX p2q , f q where f pxq :" Lpτ 0 A , xq. The statement of the proposition comes from the description of X under r

Pp¨|JpAq " gq in Lemma 5.5. This holds for any g ă 0 since m is arbitrary. l

We state now the Markov property for Z p2q . It will be the key ingredient in the forthcoming connection with the Bass-Burdzy flow. Let as before L p2q pt, xq denote the local time of Z p2q at time t and position x. Recall Notation 3.6.

Theorem 5.6. For any t ě 0, ΥpZ p2q t`¨, 1 ´Lp2q pt, ¨qq is independent of pZ p2q r , r P r0, ssq and distributed as Z p2q . In particular, pZ p2q t , pL p2q pt, xqq xPR q is a Markov process.

Before proving the theorem, we show that for fixed t ě 0, the process ΥpZ p2q t`¨, 1 Ĺp2q pt, ¨qq is indeed well-defined. Lemma 5.7. For any fixed t ě 0, the map s Þ Ñ ΥpZ p2q s`¨, 1 ´Lp2q ps, ¨qq is a.s. welldefined on a neighborhood (in R `) of t and is continuous at t (in the space CpR `, Rq of continuous processes on R `endowed with the usual topology of uniform convergence over all compacts).

See Appendix C for the proof of Lemma 5.7.

Proof of the theorem. Take B and f as in Proposition 5.4, with, say, g " ´1. Recall the notation C f ptq :" ş t 0 ds f pBsq 2 . Set Z p2q :" ΥpB, f q. Applying Lemma 3.5 to X " B, s P J " r0, T B ´1q, I " p´1, max 0ďtďT B ´1 B t s and c 1 " B s , we have ΥpB s`¨, f ´LB ps, ¨qq " ΥpZ p2q C f psq`¨, 1 ´Lp2q pC f psq, ¨qq. On the other hand, by Proposition 5.4, the Markov property of the Brownian motion at time s and Notation 3.6 (i), conditionally on ts ă T B ´1u, the left-hand side is distributed as Z p2q and is independent of f ´LB ps, ¨q and of pB r , r P r0, ssq.

It follows that, conditionally on ts ă T B

´1u, ΥpZ p2q C f psq`¨, 1 ´Lp2q pC f psq, ¨qq is independent of σtf, B r , r P r0, ssu and has the law of Z p2q . Using the continuity of s Ñ ΥpZ p2q s`¨, 1 Ĺp2q ps, ¨qq stated in Lemma 3.7, and since C f psq and pZ p2q t , t ď C f psqq are σtf, B r , r P r0, ssu-measurable, we deduce that for all t ě 0, ΥpZ p2q t`¨, 1 ´Lp2q pt, ¨qq is independent of pZ p2q r , r P r0, tsq and is distributed as Z p2q . l Remark 5.8. As a consequence of Theorem 5.6, if T is a stopping time with respect to the natural filtration of Z p2q such that almost surely s Ñ ΥpZ p2q s`¨, 1 ´Lp2q ps, ¨qq is continuous at T in CpR `, Rq, then ΥpZ p2q T `¨, 1 ´Lp2q pT, ¨qq is independent of pZ p2q r , r P r0, T sq and distributed as Z p2q .

The next result gives an invariance principle for Z p2q at small times.

Theorem 5.9. The process ´1 ? a Z p2q at , t ě 0 ¯converges in distribution as a Ó 0 to a standard Brownian motion.

Proof. We use again the representation Z p2q " ΥpB, f q from Proposition 5.4 with, say, g " ´1. By definition of Υ in Section 3.2, Z p2q t " η f pB C ´1 f ptq q with η f pxq "

ş x 0 dr f prq , C f ptq " ş t 0 ds f pBsq 2 . Let a ą 0. Define r f prq :" f pr ? aq, r B t :" 1 ? a B at , r Z p2q t :" 1 ? a Z p2q at . We check that η r f p r B t q " 1 ? a η f pB at q which is 1 ? a Z p2q C f patq . Moreover C r f ptq " ş t 0 ds r f p r Bsq 2 " 1 a C f patq so that η r f p r B t q " 1 ? a Z p2q aC r f ptq . We proved that Υp r B, r f q " r Z p2q . By scaling r B is a standard
Brownian motion stopped when hitting ´1 ? a . Moreover, r f converges when a Ó 0 to the constant function f p0q, and r B and f p0q are asymptotically independent. Use Lemma 3.7 (together with Skorokhod's representation theorem to suppose that the convergence of p r B, r f q is almost sure instead of in distribution) to complete the proof. l

We end this subsection by describing the law of the process pΞ r q rPR defined in (5.4). Let a, b ą 0. Denote by beta(a, b) the distribution with density Γpa`bq ΓpaqΓpbq x a´1 p1 ´xq b´1 1 p0,1q pxq. Proposition 5.10. The random variable Ξ 0 is distributed as betapδ{2, 1q. Conditionally on Ξ 0 , pΞ ´tq tě0 and pΞ t q tě0 are independent Jacobi(δ, 2) and Jacobi(δ, 0) processes.

Proof. Using the representation Z p2q " ΥpB, f q in Proposition 5.4 with g " ´1, we deduce from (3.2) that L p2q pt, xq "

L B pC ´1 f ptq,η ´1 f pxqq f pη ´1 f pxqq , with C f ptq :" ş t 0 ds f pBsq 2 , η f pxq :" ş x 0 dr f prq . Note that f is a BESQ 2`δ 0
process on r´1, 0s, and a BESQ δ on R `. Since d f :" inftx ą 0 : f pxq " 0u " inftx ą sup 0ďsďT B ´1 B s : hpxq " 0u, where we recall that h is a BESQ δ on r´1, 8q with hp´1q " 0, independent of B, C ´1 f ptq Ñ T B ´1 as t Ñ 8 and L p2q p8, xq "

L B pT B ´1,η ´1 f pxqq f pη ´1 f pxqq
for x P R. By the classical Ray-Knight theorem, pL B pT B ´1, yq, y ě ´1q is a BESQ 2 0 on r´1, 0s, and BESQ 0 on r0, 8q. Since f pyq " L B pT B ´1, yq `hpyq, we deduce that L p2q p8, 0q "

L B pT B ´1,0q f p0q
is distributed as betap1, δ{2q. By Warren and Yor [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF], L p2q p8, ¨q is a Jacobi process of parameters p0, δq on R `starting from L p2q p8, 0q. Let ε P p0, 1q. Again by Warren and Yor [START_REF] Warren | The Brownian burglar: conditioning Brownian motion by its local time process[END_REF], pL p2q p8, η f p´1 `εq `xq, 0 ď x ď ´ηf p´1 `εqq is a Jacobi process of parameters p2, δq. Recall that η f is independent of L p2q p8, ¨q. Observe that L p2q p8, η f p´1 `εqq is still distributed as betap1, δ{2q which is in fact the stationary distribution of a Jacobi process of parameters p2, δq. By time-reversal, pL p2q p8, ´xq, 0 ď x ď ´ηf p´1`εqq is a Jacobi process of parameters p2, δq. Let ε Ñ 0 we get the proposition by using the fact that Ξ r " 1 ´Lp2q p8, rq for all r P R. l 5.3. Link with the Bass-Burdzy flow and proof of Theorem III. Let β 1 , β 2 P R, σ ą 0 and γ be a standard Brownian motion. Following [START_REF] Bass | Stochastic Bifurcation Models[END_REF], one defines the Bass-Burdzy flow of parameters pβ 1 , β 2 q and diffusivity σ as the collection of homeomorphisms of the real line pR t , t ě 0q such that for any x P R, the process pR t pxq, t ě 0q is the strong solution of the SDE R t pxq :" x `σγ t `β1

ż t 0 1 tRspxqă0u ds `β2 ż t 0 1 tRspxqą0u ds.
When σ " 1, we just call it Bass-Burdzy flow with parameters pβ 1 , β 2 q as defined in the introduction.

We continue to look at the process Z p2q and show that it is linked to the Bass-Burdzy flow via a time-change, extending the result in [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF] to all parameters of the PRBM. Using the same time-change as in [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF], we set (5.6) ζptq :"

ż t 0 ds p1 ´Lp2q ps, Z p2q s qq 2 , p Z p2q t :" Z p2q ζ ´1ptq .
Lemma 5.11. We have lim tÑtmax ζptq " 8 where t max :" infts ě 0 : L p2q ps, Z p2q s q " 1u P p0, 8s (it is finite almost surely if µ ą 1 and infinite otherwise). Consequently, if t max ă 8, lim tÑ8 p Z p2q t " Z p2q tmax , and if t max " 8, lim tÑ8 p Z p2q t " ´8.

Proof. It suffices to treat the case µ ą 1. Recall the construction of Z p2q in Proposition 5.4 and recall from (3.2) that L p2q pt, xq "

L B pC ´1 f ptq,η ´1 f pxqq f pη ´1 f pxqq
, with C f ptq :" ş t 0 ds f pBsq 2 , η f pxq :" ş x 0 dr f prq and f pxq " L B pT B g , xq `hpxq where hpg `¨q is a BESQ δ 0 independent of B. Let r t max :" C ´1 f pt max q which is infts P r0, T B g s : L B ps, B s q " f pB s qu. Using the occupation time formula, we can express ζpt max q as ζpt max q " ż R L B p r t max , yq f pyqpf pyq ´LB p r t max , yqq dy.

Let y 0 :" B r tmax . We observe that y 0 is the last zero of h before M :" max r0,T B g s B and r t max is the last passage time of B at y 0 before T B g . Hence, for any y ě y 0 , L B p r t max , yq " L B pT B g , yq so that

ζpt max q ě ż 8 y 0 L B pT B g , yq f pyqpf pyq ´LB pT B g , yqq dy " ż 8 y 0 L B pT B g , yq f pyqhpyq dy.
Notice that in a neighborhood of y 0 , the numerator is positive and f is bounded from above while ş y 0 `ε y 0 dy hpyq " 8 for all ε positive. 6 

l

The local time of p Z p2q can be computed since L p2q pζ ´1ptq, yq 1 ´Lp2q pζ ´1ptq, yq which proves, with natural notation, that p L p2q pt, yq " L p2q pζ ´1ptq,yq 1´L p2q pζ ´1ptq,yq . Consequently,

ż t 0 1 t p Z p2q s ăxu ds " ż ζ ´1ptq 0 1 t Z p2q
ζ ´1ptq " ż t 0 p1 ´Lp2q pζ ´1prq, p Z p2q r qq 2 dr " ż t 0 dr p1 `p L p2q pr, p Z p2q r qq 2 .
It implies ζ ´1 is adapted with respect to the natural filtration p F p2q of p Z p2q . We also introduce for x P R, (

R t pxq :"

ż x Z p2q ζ ´1ptq dy 1 ´Lp2q pζ ´1ptq, yq " ż x p Z p2q t
´1 `p L p2q pt, yq ¯dy.

Observe that x " p Z p2q t if and only if R t pxq " 0. Note that in the case µ ą 1, the flow pR t pxq, x P Rq only gives the reconstruction of the burglar Z p2q ¨until the finite time t max .

Theorem 5.12. The process pR t pxq, x P Rq is a Bass-Burdzy flow for some parameters β 1 and β 2 and diffusivity σ. Moreover β 2 " β 1 `1.

Proof. First we note that a.s. for all t ě 0, (5.8)

H t :" R t pxq ´x ´ż t 0 1 tRspxqą0u ds, x P R,
is well defined. In other words, the right-hand side of (5.8) does not depend on x. This can be seen as follows:

ż t 0 1 tRspxqą0u ds " ż t 0 1 t p Z p2q s ăxu ds " ż x ´8 p L p2q pt, yqdy
showing that the derivative with respect to x of the right-hand side of (5.8) vanishes.

Clearly pH t q is p p F p2q t q-adapted. We are going to show that pH t q is an p p F p2q t q-Lévy process. As we shall see below, this boils down to showing the strong Markov property 6 For example, we can express h in terms of the square of a Bessel meander whose law is absolutely continuous with respect to BESQ, see Section 3.6 in [START_REF] Yor | Some aspects of Brownian motion[END_REF].

for R t . We use equation (3.3) with X :" Z p2q ζ ´1psq`¨, f prq " 1 ´Lp2q pζ ´1psq, rq, c " p Z p2q s , c 1 " x and ζ ´1pt `sq ´ζ´1 psq in lieu of s to get that (5.9)

ż r Z p2q t Rspxq dr 1 ´r L p2q p t, rq " ż Z p2q ζ ´1ps`tq
x dr 1 ´Lp2q pζ ´1ps `tq, rq where we used the observation that η f,c pxq " R s pxq, the process r Z p2q is defined by p Z p2q at , t ě 0 ¯converges in distribution as a Ó 0 to a standard Brownian motion. Therefore, the hitting time of x by p Z p2q , divided by x 2 , converges in law when x Ó 0 to the hitting time of 1 by a standard Brownian motion. But the hitting time of x by p Z p2q is the hitting time of 0 by R t pxq. We deduce that necessarily σ " 1.

r Z p2q :" ΥpZ p2q ζ ´1psq`¨, 1 ´Lp2q pζ ´1psq, ¨q, Z p2q ζ ´1psq q " ΥpZ p2q ζ ´1psq`¨,
We now determine β 2 (or equivalently β 1 since we know that β 2 " 1 `β1 ). By definition of the Bass-Burdzy flow, if we start the flow R t pxq from x ˚" sup tě0 p Z p2q t , then R t px ˚q ě 0 for all t ě 0 and R t px ˚q " x ˚`γ t `β2 t. Note that the unique zero is attained when p Z p2q t reaches its maximum x ˚, that means

x ˚" ´inf tě0 pγ t `β2 tq.

It implies that β 2 ą 0 and x ˚is exponentially distributed with parameter 2β 2 . On the other hand, observe that x ˚" sup tě0 Z p2q t , so that, recalling from Section 5.1 that Ξ r " L p1q p8, rq " 1 ´Lp2q p8, rq, x ˚:" inftr ě 0 : Ξ r " 1u.

In other words, by Proposition 5.10, it is the hitting time of 0 by a Jacobi process with parameters p0, δq with initial distribution beta(1, δ 2 ). The proof will be complete once we prove that this hitting time is exponentially distributed with parameter δ. Let us prove it. Under some probability P x , denote by V a Jacobi(0, δ) process starting from x, and let T 0 be its hitting time of 0. We can check that M t :" Vt x e δt is a martingale. We can then define the probability measure Q x with Radon-Nikodym derivative M t with respect to P x on the σ-algebra σpV s , s P r0, tsq. Under Q x , the process V is a Jacobi(4, δ) process. We have P x pT 0 ą tq " e ´δt E Q x " x Vt

ı

. Taking x with the betap1, δ 2 q distribution, and setting P :"

ş 1 0 δ 2 p1 ´xq δ 2 ´1P
x dx, we get

P pT 0 ą tq " e ´δt ż 1 0 δ 2 p1 ´xq δ 2 ´1 E Q x " x V t  dx " e ´δt ż 1 0 δ 2 p1 ´xq δ 2 ´1x E Q x " 1 V t  dx.
Since betap2, δ 2 q is the invariant distribution of a Jacobi(4, δ) process, one has

ż 1 0 δ 2 p1 ´xq δ 2 ´1x E Q x " 1 V t  dx " ż 1 0 δ 2 p1 ´xq δ 2 ´1x E Q x " 1 V 0  dx " 1.
Hence P pT 0 ą tq " e ´δt so T 0 is indeed exponentially distributed with parameter δ. l

Remark. In light of Theorem III, Theorem 4.6 gives a flow version of the Ray-Knight theorems appearing in [START_REF] Hu | Ray-Knight theorems related to a stochastic flow[END_REF]. Notation 5.14. We define for u P pt 0 , τ 0 b q and t P p´ş

0 t 0 1 tXsą0u ds, ş τ 0 b 0 1 tXsą0u dss, A ù :" ż u 0 1 tXsą0u ds, α t :" inftu : A ù ą tu, X t :" X α t .
The process X `is the process X looked above zero. The processes pX t , t ě 0q and pX t , t ď 0q are independent, the former being a reflecting Brownian motion, see [START_REF] Perman | Perturbed Brownian motions[END_REF]. We let as before (5.11) f prq :" Lpτ 0 b , rq, r P r0, d f q be the local time at position r at time τ 0 b , where d f denotes the hitting time of 0 by Lpτ 0 b , rq, r ě 0 (which is X t 0 if |t 0 | ă 8 and 8 otherwise). We want to reconstruct X conditionally on f up to a certain random time. Recall the definition of the forward local time flow in Section 3.2. Let S `denote that of X `, i.e. by definition S r,x paq " L X `pτ r a pX `q, xq " Lpτ r a , xq, 0 ď r ď x ă d f , a P r0, f prqs.

By Theorem 2.1 and Definition 4.4, S `is a BESQ δ,0 b flow. In the notation of Section 3.2, let Z `:" ΥppX t , t P r0, τ 0 b pX `qsq, f q. Specifically, (5.12) Z Cf ptq "

ż X t 0 dr f prq , C f ptq :" ż t 0 ds f pX s q 2 , 0 ď t ď τ 0 b pX `q.
The flow Y `:" ΨpS `, f q is a Jacobipδ, 0q flow independent of f by Theorem 4.6. In particular, Z `can be thought of as the contour function of the Fleming-Viot forest embedded in Y `, rooted at level 0. The following theorem is the analog of Theorem 5.3 (iii).

Theorem 5.15. The process Z `is independent of f . Proof. The forward local time flow of Z `is composed of the flow lines of Y `located at the right of Y 0,¨p 0q. The flow Y `is independent of f , and Z `is measurable with respect to its forward local time flow. l

Let us give now a description in time of the process Z `. We introduce a variant of the Bass-Burdzy flow. Let γ `,δ be a reflecting Brownian motion with drift 1 ´δ 2 , see [START_REF] Graversen | An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift[END_REF]. It is the absolute value of the unique strong solution of the SDE dU t " ´1 ´δ 2 ¯sgnU t dt `dB t , U 0 " 0 where B is a standard Brownian motion. When δ " 2, it is the usual reflecting Brownian motion. It is recurrent when δ ě 2, and transient when δ P p0, 2q. It is proved in [START_REF] Graversen | An extension of P. Lévy's distributional properties to the case of a Brownian motion with drift[END_REF] that γ `,δ :" |U| is distributed as the process psup sPr0,ts pB s `p δ 2 ´1qsq ´pB t `p δ 2 ´1qtq, t ě 0q. One defines for any x ě 0, the process pR `,δ t pxq, t ě 0q which is adapted to the filtration of γ `,δ and is the strong solution of the SDE In the (second) equality, p L `is the local time of p Z `. This equality is proved along the lines of (5.7). Notice that R `is measurable with respect to X `.

With the notation t max :" infts ě 0 : L `ps, Z s q " 1u P p0, 8s, we have the analog of Lemma 5.11, meaning that lim tÑt max ζ `ptq " 8. The time t max is finite almost surely if δ P p0, 2q and infinite otherwise. The proof follows the lines of the proof of Lemma 5.11. We need to replace there B by pX t , t P r0, τ 0 b pX `qsq, T B g by τ 0 b pX `q, and phpxq, x ě 0q is the local time at x of pX t , t ď 0q, i.e. a BESQ δ 0 process. Theorem 5.16. The process pR t pxq, x ě 0, t ě 0q has the law of pR `,δ t pxq, x ě 0, t ě 0q. In particular, p p Z t , t ě 0q is distributed as pR `,δ t q ´1p0q. Proof. We observe that pX t , t P r0, τ 0 b pX `qs, f q and pX τ 0 b pX `q´t , t P r0, τ 0 b pX `qs, f q have the same distribution. Therefore, we will take without loss of generality Z `" ΥppX τ 0 b pX `q´t , t P r0, τ 0 b pX `qsq, f q (and take p Z `, p L `, R `as in (5.13), (5.14) associated with this Z `).

As in the proof of Theorem 5.12, the process R t pxq ´x ´şt 0 1 tR s pxqą0u ds does not depend on x, since ş t 0 1 tR s pxqą0u ds " ş t 0 1 t p Z s ăxu ds " ş x ´8 p L `pt, yqdy. Therefore, it suffices 7 To obtain the existence and uniqueness of the (strong) solution, we may use Zvonkin's method: Let hpxq :" ş x 0 e 2 maxpy,0q dy, x P R, be an increasing (and convex) function on R. Applying Itô-Tanaka's formula to hpR `,δ t pxqq, we see that η t :" hpR `,δ t pxqq satisfies the SDE: η t " hpxq `şt 0 σpη s qdγ `,δ s with σpxq :" ´h1 ph ´1pxqq " ´1 ´2 maxpx, 0q. In particular σ is a Lipschitz function, we may apply Theorem V.6 in Protter [START_REF] Protter | Stochastic integration and differential equations[END_REF] to get the existence and uniqueness of the (strong) solution η and then that of R `,δ pxq.

to show that pR t p0q, t ě 0q is distributed as p´γ `,δ t , t ě 0q (observe that by definition, R t p0q ď 0 for all t).

In Section 5.1, taking b " 1 in equation (5.2), we constructed the process Z p2q associated with X p2q s :" X τ 0 1 ´s, s P r0, τ 0 1 ´t˚q , where t ˚is the time such that X t ˚" inf r0,τ 0 1 s X. We proved in Proposition 5.13 that the time-changed process p Z p2q , defined in equation (5.6), is associated with the Bass-Burdzy flow pR t pxqq t,x with parameters β 1 " δ 2 ´1 and β 2 " δ 2 . We define the process X p2q,`a s the process X p2q looked above 0 (which should be denoted by pX p2q q `in the notation 5.14). Specifically, X p2q,t " X τ 0 1 pX `q´t , t P r0, τ 0 1 pX `qτ 0 ℓ pX `qs where ℓ :" Lpt ˚, 0q. We now introduce the process Z p2q,`: " ΥpX p2q,`, f q where f is given by (5.11) with b " 1. We mention that Z p2q,`i s also the process Z p2q looked above 0. [We omit the details. Intuitively, each excursion of Z p2q,`i s obtained from the corresponding excursion of X p2q in R `by the transformation Υp¨, f q.] Analogously to (5. qq 2 , L p2q,`b eing the local times of Z p2q,`. Again, the process p Z p2q,`i s the process p Z p2q looked above 0. We claim that for any fixed M ą 0, (5.15)

P `T `ď M | Lpt ˚, 0q " ℓ ˘Ñ 0, ℓ Ñ 0.
Let us prove (5.15). First, By Lemma 5.11, if t max ă 8 and Z p2q tmax ą 0, then T `" 8. Suppose now that t max " 8 or t max ă 8 and Z p2q tmax ď 0. By (5.6), we have

T `" ż tmax 0 1 tZ p2q s ą0u p1 ´Lp2q ps, Z p2q s qq 2 ds. Recall from (3.2) that L p2q pt, xq " L X p2q pC ´1 f ptq,η ´1 f pxqq f pη ´1 f pxqq , with C f ptq :" ş t 0 ds f pX p2q s q 2 , η f pxq :" ş x 0 dr f prq . Therefore T `" ż C ´1 f ptmaxq 0 1 tX p2q r ą0u pf pX p2q r q ´LX p2q pr, X p2q r qq 2 dr " ż τ 0 1 τ 0 1 ´C´1 f ptmaxq 1 tXsą0u pLps, X s qq 2 ds. If t max " 8 (i.e. δ ě 2), τ 0 1 ´C´1
f pt max q " t ˚. If t max ă 8 and Z p2q tmax ď 0, the process Z p2q stays negative after t max , which is equivalent with saying that X is always negative between t ˚and τ 0 1

´C´1

f pt max q. Hence, in both cases, T ´1 `p L p2q,`p t, yq ¯dy.

`" ş τ 0 1 τ 0 1 ´C´1 f ptmaxq 1 
By construction, p Z p2q,`i s the process p p Z t , t P r0, T `qq, hence for all x ě 0, the process R p2q,`p xq coincides with R `pxq up to time T `.

On the other hand, the process R p2q,`p xq is deduced from Rpxq by a time-change: define τ p2q,t :" inf ! s ě 0 :

ż s 0 1 tRup0qă0u du ą t ) " inf ! s ě 0 : ż s 0 1 t p Z p2q u ą0u du ą t
) .

Then we have for any x ě 0 and 0 ď t ă T `, 8

(5.16) R p2q,t

pxq " R τ p2q,t pxq.

Recall that we want to show that pR t p0q, t ě 0q is distributed as p´γ have point of monotonicity when δ ě 2, see [START_REF] Perman | Perturbed Brownian motions[END_REF]. We deduce that Lpτ ´r a , ´yq " Lpτ ´x b , yq. l When δ P p0, 2q, the killed BESQ δ flow loses this property. There will be exceptional times when a flow line starting at 0 will exit the boundary 0. This comes from the fact that in the case δ P p0, 2q, the PRBM has points of monotonicity, see [START_REF] Perman | Perturbed Brownian motions[END_REF]. Still the flow satisfies a weaker form of the flow property stated in Proposition A.5. We need some preliminary results.

The following proposition shows that, for δ P p0, 2q the killed BESQ δ flow is naturally embedded in its non-killed version.

Proposition A.2. Let δ P p0, 2q and S " pS r,x paq, x ě rq rPR,aě0 be a non-killed BESQ δ flow. Define a flow ΠpSq :" p r S r,x paq, x ě rq rPR,aě0 where for r P R and a ě 0, r S r,x paq is equal to S r,x paq for x ě r up to the time inftr 1 ą r : S r,r 1 paq " 0u, and is equal to 0 afterwards. Then ΠpSq is a killed BESQ δ flow. We call ΠpSq the killed version of S.

Remark. Note that when a " 0, at times r when the flow line pS r,x p0q, x ě rq starts an excursion away from 0, the flow line p r S r,x p0q, x ě rq traces the same excursion then gets absorbed at 0 when coming back.

Proof. The flow lines of ΠpSq have the required distribution by construction so we need to check the regularity of ΠpSq imposed in Definition 2.2. Assumption (i) is clear. We prove (ii). The map a Þ Ñ r S r,x paq is nondecreasing. Indeed, if r S r,x paq ą 0, then r S r,x paq " S r,x paq ď S r,x pa 1 q " r S r,x pa 1 q for all a 1 ě a. And obviously r S r,x paq ď r S r,x pa 1 q if r S r,x paq " 0. We show the right-continuity. The case r S r,x paq ą 0 is immediate from the same arguments, using the right-continuity of a Þ Ñ S r,x paq. Suppose now that r S r,x paq " 0. We can suppose x ą r. By construction, there exists r 1 P pr, xs such that S r,r 1 paq " 0. Since b Þ Ñ S r,r 1 pbq is piecewise constant, we would have S r,r 1 pbq " 0 for b ą a small enough, which implies S r 1 ,r pbq " 0 for the same set of b, hence r S r,r 1 pbq " 0. The right-continuity is therefore proved. Finally, we check condition (iii). We suppose r S r 1 ,r pa 1 q ą a. In particular, r S r 1 ,r pa 1 q ą 0 so r S r 1 ,r pa 1 q " S r 1 ,r pa 1 q hence by construction r S r 1 ,x pa 1 q " S r 1 ,x pa 1 q ě S r,x paq " r S r,x paq for all x before r S r,¨p aq hits 0 when it will get absorbed. The case r S r 1 ,r pa 1 q ă a is dealt with similarly. l Conversely, for δ P p0, 2q, a non-killed BESQ δ flow can also be constructed from its killed version. Recall the definition of the dual flow in Proposition 2.7.

Proposition A.3. Let δ P p0, 2q and r S be a killed BESQ δ flow. The dual of r S is a non-killed BESQ 2´δ flow, from which we can construct its killed version by Proposition A.2. Let S denote the dual of the latter. Then S is a non-killed BESQ δ flow, and r S is the killed version of S.

Proof. We start with a lemma.

Lemma A.4. Let δ P p0, 2q. Let S be a non-killed BESQ δ flow. Then the dual of S is the killed version of the dual of ΠpSq, i.e. S ˚" ΠpΠpSq ˚q.

Remark. The coalescence property does not hold in full generality if we let r " x for killed BESQ δ flows when δ P p0, 2q. Indeed, at times when a flow line starts at r an excursion away from 0, flow lines which are already absorbed at 0 will stay stuck at 0, while the flow line starting at r will leave 0.

Corollary A.6. Let δ, δ 1 P R. A general Jacobi(δ, δ 1 ) flow satisfies the following properties almost surely: ' (Almost perfect flow property) If r ď s ď t, v P r0, 1s and Y r,s pvq ą 0, then Y s,t ˝Yr,s pvq " Y r,t pvq. ' (Coalescence) If r, r 1 ă s, v, v 1 P r0, 1s and Y r,s pvq " Y r 1 ,s pvq, then Y r,t pvq " Y r 1 ,t pvq for all t ě s.

Proof. Proposition A.5 stays true for BESQ δ,δ 1 b flows by construction (for a P r0, f prqs and r, r 1 P r0, d f q there) then we use Theorem 4.6 to prove the corollary when r, r 1 ě 0. It is true for all r, r 1 by stationarity. l Appendix B. A Girsanov theorem for Jacobi flows Let δ P R. Consider a general Jacobipδ, 0q flow Y, driven by the martingale measure M given by Definition 4.1 under some measure P. Fix T ą 0, and restrict to the time interval r0, T s. Call Y T the collection pY s,t , 0 ď s ď t ď T q. Let δ 1 P R. We want to relate the Jacobi(δ, δ 1 ) flow to the Jacobi(δ, 0) flow. We will use in this section the notation M s pAq :" MpA ˆr0, ssq for s ě 0 and A a Borel set of r0, 1s.

For v P r0, 1s, let F T v be the σ-field generated by pM s pAq, s P r0, T s, A Borel set of r0, vsq. Observe that F T :" pF T v , v P r0, 1qq forms a filtration. We define m T v :" e uniformly to f on L, we have that f n ˝X n converges uniformly to f ˝X on r0, Ms. Let C fn ptq :" ş t 0 ds f n pX n s q 2 for t P r0, j n q and C f ptq :" ş t 0 ds f pXsq 2 for t ě 0. Notice that the range of C fn and of C f is R `by our assumption (i). Dominated convergence implies that C f n ptq converges to C f ptq for all t P r0, Ms. Fix t P p0, Mq and set x :" C f ptq. Let t n :" C ´1 fn pxq. Since C f n pvq ´Cf n puq ě ε 2 pv ´uq for v ě u in r0, Ms, we have |C f n ptq ´x| ě ε 2 |t ´tn |. We deduce that t n Ñ t, i. are increasing continuous functions on R `, it implies the uniform convergence on any compact set of R `. By composition of η f n ˝X n and C ´1 fn , we deduce that ΥpX n , f n q converges to ΥpX , f q uniformly on any compact. l Proof of Lemma 5.7. First, for any t ě 0, a.s., 1 ´Lp2q pt, xq ą 0 for all x P tZ p2q t`u , u ě 0u. Let us prove this statement. Because Z p2q accumulates some local time at each level that it crosses, if L p2q pt, xq " 1, it implies that the process Z p2q will never visit x again. Hence necessarily, the only possibility to have L p2q pt, xq " 1 for some x P tZ p2q t`u , u ě 0u is to have x " Z p2q t . So we need to show that for all t ě 0, a.s., L p2q pt, Z p2q t q ă 1. Let ε P p0, 1q. We have by the occupation times formula, for any s ă t and M ě 0, ş t s 1 tL p2q pu,Z p2q u qě1´ε, |Z t`¨, 1 ´Lp2q pt, ¨qq is well-defined. Notice that by continuity of Z p2q , it implies that ΥpZ p2q s`¨, 1 ´Lp2q ps, ¨qq is well-defined on a neighborhood of t.

Let us go back to the proof of the continuity and fix t ě 0. Let t 1 ă t ă t 2 and x 2 :" inftx : L p2q pt 2 , xq " 1u. We suppose that t 1 and t 2 are close enough to t so that x 2 ą sup tuět 1 u Z p2q u (such t 1 and t 2 exist a.s. from what we just proved). Let pt n q n be a sequence which converges to t. We can suppose that t n P pt 1 , t 2 q for all n for simplicity. We apply Lemma 3.7 with X u :" Z p2q t`u ´Zp2q t , f pxq :" 1 ´Lp2q pt, x `Zp2q t q, I " p´8, x 2 ´Zp2q t q, and X n , f n , I n defined similarly by replacing t by t n . Let us check the assumptions of Lemma 3.7. In the notation of that lemma, (i) and (ii) are verified since all processes start at 0, j n " 8 and f pxq " f n pxq " 1 for x Ñ ´8. Assumption (iii) comes from the uniform continuity of Z p2q on compact sets. Let K be a compact set of R `. Take ℓ `P R such that inf pt 1 ,t 2 q Z p2q `ℓ`ą sup uět 1 Z p2q u and sup pt 1 ,t 2 q Z p2q `ℓ`ă x 2 (we can suppose that t and t 2 are close enough so that ℓ `exists). Then for all s ě 0, Z p2q t`s ´Zp2q t ď ℓ `. Indeed, Z p2q t`s ´Zp2q t ď sup uět 1 Z p2q u ´inf pt 1 ,t 2 q Z p2q ď ℓ `. The same lines replacing t by t n imply that for all s ě 0, Z p2q tn`s ´Zp2q tn ď ℓ `for all n. Similarly, take ℓ ´P R such that sup pt 1 ,t 2 q Z p2q `ℓ´ă inf uďt 2 `sup K Z p2q t 2 `u. We have that for all s P K, Z p2q t`s ´Zp2q t ě ℓ ´since Z p2q t`s ´Zp2q t ě inf uďt 2 `sup K Z p2q u ´sup t 1 ,t 2 Z p2q ě ℓ ´, similarly for t n . The compact set L " rℓ ´, ℓ `s satisfies assumption (iv). We deduce the convergence of ΥpZ p2q tn`¨, 1 ´Lp2q pt n , ¨qq towards ΥpZ p2q t`¨, 1 ´Lp2q pt, ¨qq (on an event of probability 1 which does not depend on the choice of pt n q n ). l

  pτ 0 1 p|B|q, |B r |q 2 ą t * where L |B| and τ p|B|q are naturally the local time and the inverse local time of |B|.
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 31 We denote by Ψp¨, f, cq the transformation with domain D f :" tpa, xq : a P r0, f pxqs, x P Iu defined as Ψp¨, f, cq :

Theorem 4 . 6 .

 46 Let δ, δ 1 P R. Let b ą 0 and Θ be a BESQ δ,δ 1 b flow. Then, the flow Y ìs a Jacobi(δ, δ 1 ) flow, restricted to the positive time-axis. It is the r0, 1s-valued pathwise unique solution, which is strong, of the following SDE. Let v P r0, 1s and s ě 0. Almost surely, for t ě s, (4.12) Y s,t pvq " v `2 ż t s M `pr0, Y s,r pvqs, drq `ż t s pδp1 ´Ys,r pvqq ´δ1 Y s,r pvqq dr

4 ż x 0 Θ

 40 r pvqs, drq`ż η f pxq 0 pδp1 ´Y0,r pvqq ´δ1 Y 0,r pvqq dr.Let ξ x pvq :" Θ 0,x pbvq f pxq . By (4.8) with gpu, rq :" 1 r0,Y 0,r pvqsˆr0,η f pxqs pu, rq (hence gp u f prq , η f prqq " 1 r0,Θ 0,r pbvqsˆr0,xs ), the first integral of the right-hand side of (4.13) is equal to (4.14) ż x 0 1 f prq pWpr0, Θ 0,r pbvqs, drq ´ξr pvqWpr0, f prqs, drqq . By a change of variables, the last term of the right-hand side in (4.13) is (4.15) ż η f pxq 0 δp1 ´Y0,r pvqq ´δ1 Y 0,r pvqdr " ż x 0 δp1 ´ξr pvqq ´δ1 ξ r pvq f prq dr.Let us verify (4.13). By (4.4), we have xf, f y x " 4 ş x 0 f psqds and xΘ 0,¨p bvq, f y x " 0,s pbvqds.
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 2 Figure 2. The flow Y . A forward flow line in the positive time-axis is a Jacobi(2{µ, 0) process. A backward flow line in the negative time-axis is a Jacobi(2 ´2{µ, 0) process absorbed at 0.

Proof.

  Let s, t P R. The case v " 1 is immediate so we can suppose v ă 1. By definition of Y , we haveY s,t pvq " S η ´1 f psq,η ´1 f ptq pvS 0,η ´1 f psq pbqq S 0,η ´1 f ptq pbq.By the duality (2.6) for S,S η ´1 f psq,η ´1 f ptq pcq " infta ě 0 : S η ´1 f ptq,η ´1f psq paq ą cu. Taking c " vS 0,η ´1 f psq pbq, we get

Figure 3 .

 3 Figure 3. Illustration of the two burglars Z p1q and Z p2q . Top: a PRBM with

Lemma 5 . 2 .

 52 Almost surely, for all r P R, (5.4) Ξ r " inftv P r0, 1s : Y r,x pvq " 1 for some x ă ru. Proof. By definition, Ξ r " Lpt ˚,η ´1 f prqq f pη ´1 f prqq , with η f psq :" ş s 0 dr f prq for s P I. By Definition 3.3, Y r,x pvq "

5. 4 .

 4 Contour function of a Fleming-Viot forest. Let δ ą 0 and b ą 0. Let X be the PRBM associated with µ " 2 δ , which we consider up to time τ 0 b when the local time at position 0 hits b.

´δ1 2p1´vq M T pr0,vsq´T 8 δ 12 has mean 1 .

 121 1´v v , v P r0, 1q.Theorem B.1. The process pm v , v P r0, 1qq is a F T -martingale. Introduce the measureQ on F T 1 such that dQ dP ˇˇF T v :" m T v , v P r0, 1q.Under Q, M has drift ´δ1 2 1 r0,1sˆr0,T s pu, xqdudx, and Y T is a general Jacobi(δ, δ 1 ) flow on r0, T s.Proof. We use the representation in (4.6): M T pr0, usq " Ă W T pr0, usq ´u Ă W T pr0, 1sq where Ă W is a white noise and we used the notation Ă W s pAq :" Ă WpA ˆr0, ssq for s ě 0 and Borel sets A. The random variable (Take this random variable as the Radon-Nikodym derivative of a new probability measure with respect to P on σp Ă W s pAq, 0 ď s ď T, A Borel set of r0, 1sq.

  e. C ´1 f n pxq Ñ C ´1 f pxq. Since M is arbitrary, it proves that C ´1 f n converges to C ´1 f pointwise on R `. Since C ´1 fn , C ´1 f

p2q u |ďM u du " ş xPr´M,M s ş t s 1

 1 tL p2q pu,xqě1´εu d u L p2q pu, xqdx ď 2Mεpt śq.Taking expectation, we deduce that t is an accumulation of points s such that PpL p2q ps, Z p2q s q ě 1 ´ε, |Z p2q s | ď Mq ď 2Mε, hence by continuity of s Ñ L p2q ps, Z p2q s q and of Z p2q , PpL p2q pt, Z p2q t q " 1, |Z p2q t | ă Mq ď 2Mε which proves the claim by making ε Ñ 0 then M Ñ 8. It implies that ΥpZ

  p2q

  r pvqs, drq "

	ş t 0 `Ă Wpr0, Y ‰ Ă Wpds, drq´pδ`δ 1 q piq 0,r pvqs, drq ż t ∆Y r dr. Ýpiq 0 ´Yp1q 0,r pvqq ´p1 tsďY p2q 0,r pvqu Ýp2q 0,r pvqq ´p1 tsďY p2q ´Yp2q 0,r pvqq p1 tsďY p1q 0,r pvqu 0,r pvqq´p1 tsďY p2q Wpr0, 1s, drq ˘for i " 1, 2. Then 0,r pvq Ă ∆Y t " 2 ż t r"0 ż 1 s"0 " p1 tsďY p1q 0,r pvqu ´Yp1q Since 0 ď Y p1q 0,r pvq, Y p2q 0,r pvq ď 1, dx∆Yy r " 4dr ş 1 s"0 " 0,r pvqu 0,r pvqq ‰ 2 ds and we observe that ş 1 s"0 ˇˇp1 tsďY p1q 0,r pvqu ´Yp1q 0,r pvqu ´Yp2q 0,r pvqq ˇˇ2 ds ď 2|∆Y

r |. Applying Itô's formula to φ k p∆Y t q gives that

  1 ´Lp2q pζ ´1psq, ¨qq, and r L p2q is the local time of the process r Z p2q , t " C f pζ ´1pt `sq ´ζ´1 psqq with and R s pxq " y, the process pR t`s pxqq tě0 has the law of pR t pyqq tě0 . It follows that conditionally on p F and has the same distribution as H. Then H is a (continuous) Lévy process hence of the form σγ t `β1 t with γ an p p FWe identify the parameters of the Bass-Burdzy flow in the following proposition.

	Hence, by definition of r ζ and a change of variables,	
	r ζp tq " by definition of ζ, which completes the proof. l ż t 0 du p1 ´r L p2q pu, r Z p2q u qq 2 " ż ζ ´1pt`sq ζ ´1psq	du p1 ´Lp2q pu, Z	p2q u qq 2	" t
	C f pvq :" Proposition 5.13. The parameters of the Bass-Burdzy flow are σ " 1, β 1 " δ 2 ´1 and 2 . β 2 " δ ż v 0 du p1 ´Lp2q pζ ´1psq, Z p2q ζ ´1psq`u qq 2 . Proof. We first show that σ " 1. Recall that p Z p2q t " Z p2q ζ ´1ptq . Since 1 t ζptq tÑ0 ÝÑ 1, one can deduce from Theorem 5.9 that ´1 ? a
	We get We can rewrite (5.9) as	t "	ż ζ ´1ps`tq ζ ´1psq	du p1 ´Lp2q pζ ´1psq, Z	p2q u qq 2	.
	r R t pR s pxqq " R t`s pxq R t pyq " r ż y r Z p2q r t dr 1 ´r L p2q p r t, rq ζ denote the ζ associated with r with Let r Z p2q , i.e., r ζpvq :" ż v 0 du p1 ´r L p2q pu, r Z p2q u qq 2 . Suppose for the time being that we know that	.
	(5.10) By Remark 5.8 applied to the stopping time ζ ´1psq, r ζ ´1ptq. r t " r Z p2q is distributed as Z p2q and is
	independent of σtZ on p F p2q s	p2q r , r ď ζ ´1psqu, thus independent of p F s . It implies that conditionally p2q
	R t pyq´y R as H is from R. In other words, H t`s ´Hs , t ě 0 is ´şt 0 1 t r Rspyqą0u ds " H is defined from r H t , where and r r independent of p F p2q s
	theorem.				p2q t q-Brownian motion, which yields the
	It remains to prove (5.10). We know from equation (3.2) that
	r L p2q pu, r Z p2q u q "	L p2q pC ´1 f puq, Z 1 ´Lp2q pζ ´1psq, Z p2q ζ ´1psq`C ´1 f puq q ´Lp2q pζ ´1psq, Z p2q ζ ´1psq`C ´1 f puq q	p2q ζ ´1psq`C ´1 f puq q	.

p2q s and R s pxq " y, for all t ě 0, H t`s ´Hs " r

  ˆ1 Lpt ˚, xq ´1 f pxq ˙dx (the upper boundary 1 is arbitrary). Using [26] Lemma 2.3, conditionally on Lpt ˚, 0q " ℓ, the processes x P R `Ñ Lpt ˚, xq and x P R `Ñ f pxq ´Lpt ˚, xq are independent, with distribution respectively BESQ δ ℓ and BESQ 0 1´ℓ . The integral Lpt ˚,xq dx tends in law to 8 by scaling. We deduce (5.15).

	ş τ 0 1 t ˚1tXsą0u pLps,Xsqq 2 ds. From the occupation times formula, we get that T `" ż 8 0 ˆ1 Lpt ˚, xq ´1 f pxq ˙dx ě ż 1 0 while the integral ş 1 0 1 0 ş 1 As in (5.14), we define for x ě 0, R p2q,t pxq :" ż x p Z p2q,t ż x dr 1 ´Lp2q,`p pζ p2q,`q´1 ptq, rq " p Z p2q,t	tXsą0u pLps,Xsqq 2 ds " f pxq dx is tight as ℓ Ñ 0 1

  `,δ t , t ě 0q. If we let γ be the Brownian motion driving the Bass-Burdzy flow pR t pxqq t,x , we haveWe check ζ p2q ˝αp2q,`˝p ζ p2q,`q´1 ptq " τ

					R t p0q " γ t	`δ 2	t	´ż t 0	1 tRsp0qă0u ds.
	By Tanaka's formula,		ż t
			minpR t p0q, 0q "	0	1 tRsp0qď0u dR s p0q	´1 2	L Rp0q pt, 0q
	where L Rp0q pt, 0q is the local time of R ¨p0q at time t at position 0. By (5.16), observing that R p2q,t p0q ď 0, R p2q,t p0q " ż τ p2q,t 0 1 tRsp0qď0u dR s p0q ´1 2 L Rp0q pτ p2q,t , 0q.
	We have L Rp0q pτ position 0. Using that p2q,t , 0q " L R p2q,`p 0q pt, 0q which is the local time of R ş τ p2q,t 0 1 tRsp0qď0u ds " ş τ p2q,t 0 1 tRsp0qă0u ds " t, we get p2q,`p 0q at time t at R p2q,t p0q " ż τ p2q,t 0 1 tRsp0qď0u dγ s `p δ 2 ´1qt ´1 2 L R p2q,`p 0q pt, 0q, 0 ď t ă T `.
	8 In fact, p Z	p2q,t	" Z	p2q,p	ζ p2q,`q´1 ptq " Z	p2q α p2q,`˝p ζ p2q,`q´1 ptq where α p2q,`i s the inverse of	ş u 0 1 tZ p2q s ą0u ds.
	We notice that L p2q,`p s, xq " L p2q pα p2q,s ş α p2q,`˝p ζ p2q,`q´1 ptq 0 1 tZ p2q s ą0u ds p1´L p2q ps,Z p2q s qq 2 " , xq, x ě 0. Hence R p2q,t by noticing that p2q,t ş pζ p2q,`q´1 ptq 0 ds p1´L p2q,`p s,Z ş ζ p2q ˝αp2q,`˝p ζ p2q,`q´1 ptq pxq " R ζ p2q ˝αp2q,`˝p ζ p2q,`q´1 ptq pxq. 0 1 t p Z p2q u ą0u du " p2q,s qq 2 " t.

By strong solution, we mean that for instance S r,r`h paq is measurable with respect to σtW p¨, rr, ssq : r ď s ď r `hu. This terminology will be used elsewhere with the same remark.

The process is absorbed if it hits 1. If Θ is killed, then the process is also absorbed if it hits 0.
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By Dambis-Dubins-Schwarz theorem, there exists a standard Brownian motion B p`q " pB p`q t , t ě 0q such that ż τ p2q,t 0 1 tRsp0qă0u dγ s " B p`q t , 0 ď t ă T `.

By Skorokhod's lemma, The process ´γ`,δ coincides with R p2q,`p 0q up to time T `. We now prove that R `p0q is distributed as ´γ`,δ . Fix M ą 0 and a functional F measurable and bounded. Notice that Lpt ˚, 0q is measurable with respect to the process pX s , s P r0, τ 0 1 sq looked below 0, which is independent of X `, see [START_REF] Perman | Perturbed Brownian motions[END_REF]. Therefore R `and Lpt ˚, 0q are independent, which implies that for all ℓ ą 0, ErF pR t p0q, t P r0, Msqs " ErF pR t p0q, t P r0, Msq | Lpt ˚, 0q ď ℓs.

We consider two cases. The first case is when T `ą M. In this case, R t p0q " R p2q,t p0q " ´γ`,δ t , for t P r0, Ms. The second case is when T `ď M, which has probability going to 0 under Pp¨| Lpt ˚, 0q ď ℓq when ℓ Ñ 0 by (5.15). We deduce that ErF pR t p0q, t P r0, Msqs " ErF p´γ `,δ t , t P r0, Msqs which is what we wanted to prove. l

Appendix A. Perfect flow property

Recall the definition of a BESQ δ in Definition 2.2. We establish some flow properties for the BESQ δ flow.

Proposition A.1. Let S be either a non-killed BESQ δ flow with δ ą 0 or a killed BESQ δ flow with δ ď 0. The flow S satisfies the perfect flow property: almost surely, for every r ď x ď y, S r,y " S x,y ˝Sr,x .

Proof. The property is true when one of the inequalities in r ď x ď y is an equality since S z,z paq " a. Let a ě 0 and r ă x ă y. We first treat the case δ ą 0. By Proposition 2.4, we can set S " pS r,x paq, x ě rq a,rPR . We want to show that S r,y paq " S x,y ˝Sr,x paq. Let b :" S r,x paq. By definition of S, Lpτ r a , xq " b hence τ x b ě τ r a . If t ą infts ą τ r a : X s ą xu ": θ, then Lpt, xq ą b since a Brownian motion accumulates local time at any level that it visits. It implies that τ x b ď θ. If t P pτ r a , θq, one has Lpt, xq " Lpτ r a , xq " b. We conclude that Lpτ r a , yq " Lpτ x b , yq indeed (and τ x b " θ). We now deal with the case δ ď 0. To be consistent with our setting, we will actually consider a BESQ δ 1 flow with δ 1 ď 0, and rather take δ :" 2 ´δ1 which is now greater than 2. Then we can set S " pS ´r,´x paqq rďx,aě0 . We write S ´r,´x paq " Lpτ ´r a , ´xq ": b and see that τ ´x b ě τ ´r a . Again, if t ą infts ą τ ´r a : X s ă ´xu, then Lpt, ´xq ą b because the PRBM does not Proof. Let S ˚, resp. ΠpSq ˚, denote the dual of S, resp. ΠpSq. Write r S for ΠpSq. We have by definition, for any r ď x, S r,x paq :" inftb ě 0 : S ´x,´r pbq ą au, p r Sq r,x paq :" inftb ě 0 : r S ´x,´r pbq ą au.

Let r ă x and a ě 0. We first show that p r Sq r,x paq ě S r,x paq. Let b ą p r Sq r,x paq, hence r S ´x,´r pbq ą a. In particular, r S ´x,´r pbq ą 0 so that r S ´x,´r pbq " S ´x,´r pbq. Therefore S ´x,´r pbq ą a hence the inequality.

We suppose now that S r,s paq ‰ 0 for all s P pr, xq, and we want to show that S r,x paq " p r Sq r,x paq. We only have to prove that S r,x paq ě p r Sq r,x paq. Let b ą S r,x paq. Then S ´x,´r pbq ą a. If S ´x,´s pbq " 0 for some s P pr, xq, we would have by the perfect flow property S ´s,´r p0q ą a hence S r,s paq " 0, which is a contradiction. Therefore S ´x,´s pbq ‰ 0 for all s P pr, xq, hence S ´x,´r pbq " r S ´x,´r pbq so r S ´x,´r pbq ą a. We deduce that S r,x paq ě p r Sq r,x paq. Finally, we show that flow lines in S ˚are absorbed at 0. So we suppose that S r,s paq " 0 for some s P pr, xq, and we want to show that S r,x paq " 0. We have by definition, S ´s,´r pbq ą a for all b ą 0. Since b Ñ S ´s,´r pbq is piecewise constant, we must have S ´s,´r p0q ą a, therefore S ´x,´r p0q ą a by the perfect flow property. It implies that S r,x paq " 0. l We go back to the proof of the proposition. We use the notation of the proposition. By definition, S " pΠpp r Sq ˚qq ˚. By the lemma (using p r Sq ˚, which is a non-killed BESQ 2´δ flow in place of S in the statement of the lemma), we have ΠpSq " pp r Sq ˚q˚" r S. The fact that S is a non-killed BESQ δ flow comes from Proposition 2.7. l

We can now state a flow property for a general BESQ δ flow.

Proposition A.5. Let δ P R. A general BESQ δ flow S satisfies the following properties almost surely:

' (Almost perfect flow property) If r ď x ď y, a ě 0 and S r,x paq ą 0, then S x,y Sr,x paq " S r,y paq. ' (Coalescence) If r 1 , r ă x, 0 ď a, a 1 and S r,x paq " S r 1 ,x pa 1 q, then S r,y paq " S r 1 ,y pa 1 q for all y ě x.

Proof. These properties hold for non-killed BESQ δ flows and killed BESQ δ flows with δ ď 0 as a consequence of the perfect flow property, so we should only deal with δ P p0, 2q and killed BESQ δ flows. Write it r S and let rather S be the non-killed version of it (i.e. the flow such that ΠpSq " r S). Let r ď x ď y, a ě 0 and suppose b :" r S r,x paq ą 0. From the definition of ΠpSq, we have r S r,s paq " S r,s paq for all s from r to the hitting time of 0, hence we can apply the perfect flow property of S. After hitting 0, the flow line is absorbed. Let now r, r 1 ă x, 0 ď a, a 1 and suppose that b :" r S r,x paq " S r 1 ,x pa 1 q. If b ą 0, we can apply the almost perfect flow property to conclude that flow lines coalesce. If b " 0, both flow lines are absorbed at 0 (we use here the fact that r, r 1 ă x so that none are flow lines which are departing from 0 to trace an excursion W T pr0, 1sq which is independent of M to obtain that it is also the distribution of M under m T v ¨P. Notice that on r0, vs ˆr0, T s, the drift is just ´δ1 2 . We conclude that m T v is the Radon-Nykodim derivative on F T v of the probability measure under which M has drift ´δ1 2 1 r0,1sˆr0,T s pu, xq. Hence m T is a martingale, and M under Q has the required distribution (we could directly check that m T v is a F T v -martingale, by using the semimartingale decomposition of the bridge: M T pr0, usq " ? T p B u ´şu 0 ds 1´s M T pr0, ssq where p B is a standard F T -Brownian motion.). Plug the drift into (4.3) to conclude that a flow line from v P r0, 1s and s P r0, T s is a (possibly absorbed at 0) Jacobi(δ, δ 1 ) process up to the minimum between the hitting time of 1 and T . We set, under Q, Y T s,t p1q :" 1 for all 0 ď s ď t ď T , and absorb at 1 any flow line which hits 1.

Let v P r0, 1q. From the absolute continuity of Q with respect to P on F T v , one concludes that the almost perfect flow property of Corollary A.6 holds as long as the flow lines do not touch v. Making v tend to 1, this property is also true as long as they do not touch 1. With our convention, it is also true after the hitting time of 1. Hence Y T possesses the almost perfect flow property also under Q. We can similarly show that flow lines coalesce under Q in the sense of Corollary A.6.

Let us check the regularity conditions of Definition 4.3. Statement (i) is clear. We prove (ii). We already know that v P r0, 1s Ñ Y T s,t pvq is nondecreasing since flow lines coalesce. Again, for any v P p0, 1q, the right-continuity holds for any 0 ď s ď t ď T at any v P r0, 1q such that the flow line Y s,¨p vq did not hit v on rs, ts. Then, it holds if the flow line did not hit 1. Since Y s,t pvq " 1 if the flow line hit 1, we conclude that it is right-continuous at any v P r0, 1q. Condition (iii) is a consequence of the fact that flow lines coalesce and condition (iv) is satisfied by construction. l Appendix C. Proofs of Lemmas 3.7 and 5.7

Proof of Lemma 3.7. Fix M ě 0 and take a compact set L as in the statement of the lemma, for K " r0, Ms. By assumption, there exists ε P p0, 1q such that f n and f are contained in pε, ε ´1q on L for n large enough. Let t P r0, Ms. We have, since X pr0, Msq Y X n pr0, Msq Ă L Ă I n for n large enough, |η f pX t q ´ηf n pX n t q| ď ˇˇˇż The first term is bounded by || 1 f ´1 f n || L ||X || r0,M s . The second term is bounded by 1 ε ||X X n || r0,M s . Both terms go to 0 as n Ñ 8. It shows the uniform convergence of η f n ˝X n to η f ˝X on r0, Ms. Since |f pX t q ´f n pX n t q| ď |f pX t q ´f pX n t q| `|f pX n t q ´f n pX n t q|, that f is uniformly continuous on L, that X n converges uniformly to X on r0, Ms and f n converges