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The problem of damage in heterogeneous materials has received particular attention in recent years. The numerical models currently used in the simulation of damage require an internal length that is not currently related to a characteristic length of the material components. However, understanding damage regarding the size of the heterogeneities of the material is of crucial importance, particularly in civil engineering. The Fiber Bundle Model has been widely used to qualitatively address the issue of damage in heterogeneous media by studying the statistics of failure events during damage. The so-called ZIP model derives from Fiber Bundle Model to mimic crack propagation. In this work, a spatial correlation of tensile strength of fibers is added to the ZIP model to highlight the role of heterogeneity size in statistics of failure events during crack propagation. The addition of spatial correlation into the ZIP model modifies the distribution of failure events. Indeed, for a simulated material without spatial correlation, failure events follow two regimes. By adding a spatial correlation to the material, a transitional regime appears. The influence of spatial correlation on fiber rupture avalanche strongly depends on the ratio between the sizes of the shapes of the stress field and of the heterogeneities.

Introduction

Both the understanding and the modeling of the damage and failure of materials with the characteristic size of the heterogeneities close to the structural size is of great importance in many applications: for civil engineering structures, the strength of concrete is a major issue [START_REF] Bazant | Asymptotic Prediction of Energetic-Statistical Size Effect from Deterministic Finite-Element Solutions[END_REF] [ [START_REF] Giry | Stress-based nonlocal damage model[END_REF] among many others, the unstable rock failure in geotechnical works [START_REF] Manouchehrian | Influence of material heterogeneity on failure intensity in unstable rock failure[END_REF]] [Tang et al., 2017] [Lu et al., 2013], defects in wood structures [START_REF] Riggio | Application of imaging techniques for detection of defects, damage and decay in timber structures on-site[END_REF] or the damage into paper sheets [START_REF] Niskanen | Damage width: a measure of the size of fracture process zone[END_REF]] [Niskanen et al., 1999] [Krasnoshlyk et al., 2018]. The cracking process into heterogeneous materials is different from a media assumed homogeneous. Therefore, understanding the effects of the heterogeneity size on the crack propagation is a major scientific issue.

Particularly, the propagation of cracks in quasi-brittle materials is due to the succession of apparitions, nucleations and stops of microcracks [Bazant, 1994]. This microscopic behaviour initiates the progressive development of cracks. These microcracks are localized into the neighbourhood of the resulting macrocrack, the so-called Fracture Process Zone (FPZ). Thus, the comprehension how the propagation and stopping phases of microcracks are distributed is an important issue in understanding material damage evolution in terms of macrocrack trajectories and global dissipated energy.

In the field of concrete mechanics for which the heterogeneity size is close to the structural one, one can find two main classes of material modeling. On the one hand, the so-called mesoscopic approach requires a geometrical representation of the largest aggregates [La [START_REF] Borderie | Approche mésoscopique du comportement du béton[END_REF] among many others. On the other hand, continuous damage models [START_REF] Mazars | Size effect and continuous damage in cementitious materials[END_REF] with a regularization technique to avoid mesh dependencies and to model material size effects, introduce an internal length using non-local integral approach [START_REF] Giry | Stress-based nonlocal damage model[END_REF] [START_REF] Pijaudier | Non local Damage Theory[END_REF], or using the gradient enhanced media approach [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] [START_REF] Poh | Localizing gradient damage model with decreasing interactions[END_REF]. So far, this length is poorly related to the characteristic size of the material. For example, Bažant and Pijaudier-Cabot [START_REF] Bazant | Measurement of characteristic length of nonlocal continuum[END_REF]] have proposed for the integral non local approach to set the internal length 3 times the maximum aggregate size. However, this proposition was based on experiments performed on a single concrete and a single boundary value problem. Furthermore, back analysis experiences usually show that there is a minimum value to dissipate the right amount of energy. More recently, Giry et al. [START_REF] Giry | Stress-based nonlocal damage model[END_REF] and Vandoren and Simone [START_REF] Vandoren | Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-enhanced damage models[END_REF] have proposed a variable internal length related to both the characteristic size of the material and the stress field. However, the relation between the internal length of the model and the material characteristic sizes is still lacking.

Thus, the aim is to better understand and describe relationships between the internal length of regularized damage models currently used in numerical codes and a physical characteristic length of the material. Indeed, heterogeneities in materials are generally of different sizes (gravel, sand, fines, and hydrates for concrete or flocs and fibers in paper). The largest one is con-sidered, since this has the greatest impact on crack propagation. However, the characteristic size of the largest heterogeneities can be, for example, either its size or the distance between them. Thus, the relevant length(s) with the main influence on the macroscopic failure of the material still remains an open question. To do so for a qualitative analysis, the Fiber Bundle Model has been chosen which aims to study crack propagation statistics. Peirce's investigations [Peirce, 1926] mentioned for the first time the Fiber Bundle Model. In 1945, Daniel published his work in which he presented the Fiber Bundle Model as a statistical problem [Daniels, 1945]. This work remains, however, the initial publication of the Fiber Bundle model problem. This model is relevant to study breakdown phenomena in materials both in the study of the bundle strength [START_REF] Phoenix | The asymptotic strength distribution of a general fiber bundle[END_REF] and the study of the distribution of the number of fibers that fail simultaneously into the breakdown process [START_REF] Hemmer | The Distribution of Simultaneous Fiber Failures in Fiber Bundles[END_REF]. In order to integrate the crack propagation into the Fiber Bundle Model, Delaplace proposes the so-called ZIP model which imposes to the bundle an exponential gradient of the strain field to mimic the propagation of a cohesive crack [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF].

If some randomness has already been modeled with Fiber Bundle Model by means of a random breaking stress on each fiber, a cracking process in a heterogeneous material with a characteristic length has not yet been investigated. In this present work, based on the Delaplaces work [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF], we are interested in the effects of the characteristic length of the material, introduced by a spatially correlated material property field in the ZIP model, on the size of the Fracture Process Zone (FPZ). The originality of the present contribution relies in the development of a qualitative 1D numerical model of fracture accounting for spatially correlated breaking stresses to mimic material heterogeneities and analyze the impact on cracking process.

In this contribution, the ZIP model and the modeling of spatial correlated tensile strengths of fibers are described first. The influence of the spatial correlation size of fibers regarding the size of the stress field is investigated. For consistency, a comparison with the published results for uncorrelated tensile strengths of fibres was successfully carried out. Finally, the highlight of different regimes in avalanche distribution is proposed. In particular, we introduce a new "transitional regime" in which the size of the heterogeneities has to be taken into account.

Numerical Modelling of heterogeneities and the fracture process

We propose to model the FPZ into heterogeneous media by means of the ZIP model first introduced by Delaplace and coworkers [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF] to simulate a heterogeneous media, the fiber tensile strength is introduced as an autocorrelated random field.

Fiber Bundle Model

The basic idea of the Fiber Bundle Model (FBM) as a statistical problem initiated by Daniel [Daniels, 1945] is to consider that the material is made of a large bunch of fibers ensuring cohesion and that the traction on each fiber yields to their breakage representing the damage of the material. The geometry mainly used is presented in Figure 1-a: The material is considered to be a collection of N fibers all oriented in the same direction. They do not interact directly with each other. Each fiber is attributed a linear elastic behavior perfectly brittle. The stiffness is identical for all fibers. The breaking threshold is defined as a randomly determined limit deformation. A forcecontrolled traction test is simulated (Figure 1-b). As the simulation progresses, the fibers lengthen and some of them reach their breaking point. When a fiber fails, the forces are spread uniformly over the remaining fibers (equal loadsharing). The remaining fibers are thus more stressed. When distributing the forces of the failing fiber, another one may reach its breaking point and in turn fails without a load increment. This phenomenon can be repeated in cascade a few times depending on the random distribution of the breaking thresholds. When ∆ fibers get broken at constant displacement and only through the redistribution of forces, this is called an "avalanche of size ∆". The method to determine the size of an avalanche in the case of the force-controlled traction test is presented in Figure 1-d. As avalanches of different sizes may occur during a simulation, an avalanche distribution graph, also called avalanche statistics, is drawn showing the number of avalanches produced according to their size (Figure 1-c).

The Figure 1-d shows the calculation of the avalanche size for a forcecontrolled traction. The force-displacement curve is represented for each step of simulation (a step corresponds to a fiber breakage). When an avalanche occurs, there is a plateau, the size of avalanche is determined by counting the number of broken fibers in the plateau. For the case of a displacementcontrolled traction, which is done in this work, the calculation of the avalanche size is explained on Figure 1-e. It shows the force F exerted on the beam for each step of the simulation. After the breakage of the k th fiber, the force decrease from the value F k to F k+1 . In this example, the simulation needs 5 fibers so that F recovers the F k value. Thus, the k th breakage triggers an avalanche of size 5.

Daniel's Fiber Bundle Model has been the basis of many works: On the one hand, the bundle strength has been extensively studied. Phoenix and Taylor [START_REF] Phoenix | The asymptotic strength distribution of a general fiber bundle[END_REF] have derived the asymptotic strength of the classic Fiber Bundle Model. The study has been generalized to more complex systems of bundles as the chain of bundles [START_REF] Smith | Asymptotic distributions for the failure of fibrous materials under series-parallel structure and equal loadsharing[END_REF] or a bundle constituted of several sub-bundles [Phoenix, 1975]. In the latest case, the introduction of a slack specific to each sub-bundle induces the failure properties of fibers are probabilistic dependant in a sub-bundle. The Daniel's Fiber Bundle Model assumes the equal-load-sharing and Harlow and Phoenix have been the first to study effect of a local-load-sharing of fiber [START_REF] Harlow | Approximations for the strength distribution and size effect in an idealized lattice model of material breakdown[END_REF]: when a fiber fails, the load is distributed equally among "the nearest" surviving fibers. On the other hand, some works have shown the interest of studying the avalanche statistics for different systems. [START_REF] Hemmer | The Distribution of Simultaneous Fiber Failures in Fiber Bundles[END_REF] have studied the avalanche's distribution of a bundle with steadily increase of the force applied to the bundle. [START_REF] Pradhan | Crossover behavior in burst avalanches: Signature of imminent failure[END_REF] have studied the change of slope of avalanche distribution at the imminent failure of a fiber bundle. The avalanche distribution has been studied on more complex systems. For instance, Delaplace and coworkers [START_REF] Delaplace | Damage cascade in a softening interface[END_REF] worked on a fiber bundle model connected to an elastic block.

A limitation of the classic Fiber Bundle Model is that the damage is spread over all the bundle and not located in the vicinity of a crack as in quasibrittle material. In order to take into account of crack propagation, Delaplace proposed the ZIP model where fibers are lengthen with an exponential gradient modeling the opening of a cohesive crack [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF]]. An other type of fiber length gradient has been investigated by [START_REF] Kun | Damage process of a fiber bundle with a strain gradient[END_REF]. They mimics the three-points bending of a bar constituted of two rigid blocks linked by a fiber bundle.

ZIP Model

The ZIP model aims to study the statistical damage of the propagation of a cohesive crack into a Fiber Bundle Model. It has been first introduced by Delaplace [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF]. The model consists in a collection of N fibers connected between a semi-infinite 1D beam on the top side and to a rigid frame on the bottom side. The distance δ f between two consecutive fibers is fixed to 1. Then the length of the ZIP model is L = δ f .N . The number of fibers N is taken to be sufficiently large for convergence of results. A normal displacement is applied at one point of the beam as if a wedge pushes to the right and deforms the beam (Figure 2). The position of each fiber i is given by x i and its elongation is given by y i . For the sake of simplicity, the shape of the beam deformation is chosen as exponential giving the deflection of the beam, y, according to the x-axis:

y(x) = exp( u(t) -x ξ ) (1)
u(t) is a time-dependent displacement imposed by the wedge and ξ is the characteristic length of the deformation field of the beam considered as the characteristic size of the gradient of the stress field applied to the fibers. Fibers are considered as perfectly elastic brittle. We call κ the stiffness of the fibers,chosen arbitrarily equal to 1. The breaking strength f c i of each fiber is defined such that f c i = κ.y c i with y c i the maximum elongation, chosen randomly, of the i th fiber. In the case of Delaplace, the breaking strength follows a uniform distribution in the interval [0 -1] and is not spatially correlated, in contrary to our following consideration.

Each fiber is stretched by the beam deformation and exerts a force f i (u) on the beam. The total force exerted by fibers on the beam is the sum of all contributions of fibers:

F (u) = i=1 f i (u) = κ i=1 y i (u) (2)
The exponential shape of the beam induces three parts in the system. In the "broken area" (1 in Figure 2), all fibers are broken as the beam is sufficiently deformed. This zone can be referred as the macro-crack. Since the shape of the deformed beam requires that the displacement of the beam tends towards zero for large x, the fibers far from the wedge are not influenced by the beam motion and broken fibers are scarce enough to neglect their influence on the Fig. 2 Schematic representation of the ZIP model with N fibers. The unit of distance is taken as the inter-fiber space δ f . The wedge position is u(t) and deforms progressively the beam following an exponential law with a characteristic size ξ (Equation 1). The present work adds a correlation of size b to the tensile strength of fibers total force F (u). This zone is called the safe area (3 in Figure 2). Thus, between both the broken and safe areas, fibers contribute to the total force F (u) and are likely to break. This zone is the active area (2 in Figure 2). The numerical calculations consider only the fibers in the active area. The size of the active area at the right side of the wedge is determined considering arbitrarily that the fibers which are not influenced by the beam motion are deformed less than 10 -6 . Giving the characteristic length of the deformation of the beam ξ, we derive the size of the active area at the right side of the wedge as 6ξln(10). Then, ξ is considered as the characteristic length of the active area.

At each step k of the simulation, the wedge is advanced by an amount just sufficient to break a single fiber, the one with the closest load to the failure threshold. Since the simulation is a displacement-controlled traction, there is no local stress redistribution when a link breaks. Thus, there is no increment of displacement at constant force but a force drop for a constant displacement (Figure 1-e).

Modeling of fiber tensile strength using Karhunen-Loève expansion

We consider here a ZIP model with spatially correlated fiber tensile strength represented by an autocorrelated random process.

In this work, the Karhunen-Loève (KL) decomposition is used to generate an autocorrelated random process. As a first step, an arbitrary stationary Gaussian process is considered here.

Let G = {G(x), x ∈ Ω} be a stationary Gaussian process, representing the fiber tensile strength, indexed on the support Ω = R of average µ G , standard deviation σ G , and covariance function C G . This process can be written as follows:

G(x) = µ G + σ G G(x) ∀x ∈ Ω (3) With G = { G(x),
x ∈ Ω} a stationary Gaussian random process of zero mean, standard deviation 1 and covariance function

C G = C G /σ 2 G .

Karhunen-Loève decomposition of a stationary Gaussian process

The idea of the KL decomposition [Loève, 1977] is based on the spectral decomposition of the auto covariance function C G of a random process G:

Ω C G(x, x ).e j (x )dΩ x = λ j .e j (x) ∀j ∈ N * (4)
with eigenfunctions (e j ) j∈N * associated with the family of eigenvalues (λ j ) j∈N * from the covariance function C G.

Hence, the decomposition coefficients ( Xj ) j∈N * are independent copies of a standard Gaussian random variable [START_REF] Sudret | Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report[END_REF].

G(x) = +∞ j=1 λ j e j (x) Xj ∀x ∈ Ω (5) 
The process G can be thus written introducing (5) into (3):

G(x) = µ G + σ G +∞ j=1 λ j e j (x) Xj ∀x ∈ Ω (6)
Numerically, process G is approximated by Ĝ after truncating (6) to M terms: Ĝ

(x) = µ G + σ G M j=1 λ j e j (x) Xj ∀x ∈ Ω (7) 
Since Ĝ(x) is a continuous process, the fiber tensile strength is determined considering x as an integer:

f c i = Ĝ(x = i) ∀i ∈ [1; N ] (8)

Autocorrelation function

The numerical implementation of KL decomposition brings some difficulties when eigenfunctions and eigenvalues of the autocorrelation functions have not an analytical expression. Therefore, two choices are offered: either to implement a discrete resolution of the decomposition of KL, the resolution being made by considering the matrix of covariance that one reverses, which is timeconsuming, or by considering only models with an analytical solution. The second solution is the pragmatic choice made in this work.

An exponential autocorrelation function R G is arbitrarily chosen to implement the autocorrelated random field into the ZIP model:

R G(z) = C G = exp(- |z| b ) z ∈ [-L, L] (9) 
b is the spatial autocorrelation length, considered as a characteristic size of the material heterogeneity. R G(z) = C G is a standard process. L = δ f N is the size of the process, here the length of the ZIP model.

Ghanem and Spanos [START_REF] Ghanem | Spectral techniques for stochastic finite elements[END_REF] obtain the following results for the exponential autocorrelation:

λ j = 2 b( 1 b 2 + ω 2 j ) e j (x) = E j cos(ω j x) when j is even O j sin(ω j x)
when j is odd (10)

E j = (L + sin (2ω j L) 2ω j ) -1/2 O j = (L - sin (2ω j L) 2ω j ) -1/2 (11) 
ω j are solutions of:

b -1 -ω tan ωL = 0 f or j even ω + b -1 tan ωL = 0 f or j odd (12) 
Note that terms of Karhunen-Loève decomposition are organized by increasing wavenumber ω j .

Effects of spatial correlation between tensile strengths of fibers on avalanche distribution

A parametric study is made by varying the spatial autocorrelation length b and the characteristic length of the deformation field of the beam ξ. All simulations were carried out by setting the number of fibers N to 5.10 5 fibers and taking a number of terms M in the Karhunen-Loève decomposition equal to 10 6 . These values were determined after a numerical convergence study which is presented in Appendix. The random process G follows a Gaussian probability law of mean 1 and standard deviation 0.05, arbitrary choice that may correspond to what is known for several materials. With this distribution, some fibers are able to have, with a very small probability, a negative tensile strength. Any fiber with negative value of tensile strengths would have been replaced by a new draw to ensure positive tensile strengths of all fibers. In this work, we study the impact of the ratio b/ξ between the characteristic size b of material heterogeneity and the characteristic size ξ of the gradient of the stress field imposed to the fibers. b varies on a range from 10 to 100. The number of fibers in heterogeneities N b is given by the ratio b/δ f = N b . The influence of N b is not studied in the present work. Since δ f = 1, N f varies on a range from 10 to 100 and we assume these values represent "small" heterogeneities.

Figure 3 displays the Cumulated Distribution Functions (CDFs) of avalanches for the ranges of ξ and b simulated (ξ = 10; 100; 1000; 10000 and b = 10; 50; 100). A curve for uncorrelated fiber strengths is added for the sake of comparison with respect to the results from Delaplace et al. [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF].

Figure 3-a shows the curves for several values of ξ at b = 100. The CDF for uncorrelated fiber strengths is clearly similar from CDFs for ξ equal to 10 and 10 2 but different from CDFs for ξ equal to 10 3 or 10 4 . Thus, the spatial correlation has an influence on crack statistics only when the characteristic size of the beam ξ is larger than the autocorrelation size b. Indeed, the fracture process is completely constrained by the beam shape and it is only if the autocorrelation size b is smaller than ξ that the spatial correlation has an impact. If ξ is close to b, the size of the stress field is of the same size than material heterogeneities. Thus, the fracture process evolves into a single heterogeneity which can be considered as a "homogeneous" media since numerical avalanches occur in a zone where the strengths are strongly correlated.

Figure 3-b shows in more details the influence of b at a constant high value of ξ = 10000. As b increases, curves are further and further from the uncorrelated fiber strength case. Thus, given that b remains lower than ξ, the influence of spatial correlation increases with b.

Figure 3-c is similar to Figure 3-a but for a lower value of b. The results show that the spatial correlation effect is less pronounced at b = 10 than at b = 100. Nevertheless, the behavior of the curves is similar to the one at b = 100. Indeed, for ξ equal to b, the curve is near to the uncorrelated fiber strength case and for higher ξ, curves are slightly different.

Figure 3-d shows the influence of b at a constant low value of ξ = 10 2 . It confirms the previous results. Even if the curves for b equal to 50 or 100 are related to large spatial autocorrelation, the size of active area ξ is not large enough to allow an influence of the spatial correlation. Whereas for b = 10, ξ is large enough and there is a difference with the case of uncorrelated fiber strengths.

A schematic graph showing the effects of spatial correlation regarding the two characteristic sizes b and ξ is represented (Figure 3-e). It is based on the distance between CDFs for spatially correlated and uncorrelated tensile strengths of fibers, at a given ξ. For mind representation, the material can be considered as a succession of occurrences with an average size b of two phases statistically distributed over a domain of size ξ (boxes in Figure 3-e) It highlights four zones: -When b ξ, the two phases are represented with a large number of occurrences. Each occurrence "sees" a quasi constant stress field, as a classic Fiber Bundle Model, which does not depend on the relative position of fibers, thus the effects of the spatial correlation disappear.

-As b increases up to an optimum value, the spatial correlation effect is naturally increasing. -When b is larger than ξ, the autocorrelation length has no more influence since all avalanches occur in a strongly correlated zone where all fibers have more or less the same strength. -Between the optimum value and ξ, the larger b, the smaller the influence of the correlation.

Our results are qualitatively consistent with the size effect law proposed by Bažant [Bazant, 1984] in the particular case of concrete. Indeed, we may refer the resulting homogeneous material at ξ b to the relevant use of Linear Elastic Fracture Mechanic (LEFM) for large structures, whereas we have to take into account a size effect when structure size (ξ in our case) tends to the internal length (here the characteristic size b). Then in this case no internal length is taken into account because the heterogeneities are out of the simulation.

Asymptotic case of zero spatial correlation

In order to compare the ZIP model with spatially correlated tensile strengths of fibers with the existing work from Delaplace et al. [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF], simulations have been performed with a bundle of N = 5.10 5 fibers using an uncorrelated random process with b = 1 (white noise) for different ξ (10 2 , 10 3 and 10 4 ).

Given that for the exponential model used in these simulations (Equation 7), b cannot be equal to 0 to simulate uncorrelated tensile strengths of fibers. As the inter-fibers distance is equal to 1 and to avoid too long simulation, the b equal to the unit distance has been chosen as representative of negligible spatial correlation.

Figure 4-a shows the CDF of simulated avalanches for fibers strengths considered as uncorrelated with b = 1. It is worth noting that ξ does not affect significantly the CDF. Comparing with Figure 3-a and 3-c where ξ has an influence on curves, this highlights that spatial correlation effects result of a conjugated influence of b and ξ.

Most works on fiber bundle model display results using distributions of avalanches. Indeed Delaplace et al. [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF] and Baxevanis et al. [START_REF] Baxevanis | Interface crack propagation in porous and time-dependent materials analyzed with discrete models[END_REF] in the case of visco-elastic behavior have shown that results from simulations at different ξ follow a single master curve representing distribution with dimensionless axis. In figure 4-b showing the distribution with Delaplaces dimensionless axis, curves follow a single master curve with two linear regimes. The comparison between our results and the master curves by Delaplace et al. [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF] have been also plotted. The slopes are the same as in Delaplace et al.: a slope of -1.5 for small scale highlights random walk statistics and the slope of -2 for large scales identified as an uncorrelated regime of breaking events in the course of fracture [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF]. Note that the only parameter which changes with spatially uncorrelated tensile strengths of fibers in the our work and the Delaplaces results is the number of fibers in the simulation. Indeed our results have been carried out with a fixed number of 5.10 5 fibers for all the range of ξ tested, although the number of fibers varies in Delaplaces work with respect to ξ. That shows a choice of 5.10 5 fiber in a simulation is large enough to have in this case (b = 1), consistent results with literature [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF].

The structural size influences the transitional regime

This part aims at detailing the influence of the autocorrelation length b on the distribution of avalanches. Figure 5 shows the avalanche distribution as described previously because of the relevance of the single master curve. It has been previously shown that without spatial correlation, the distribution highlights two linear regimes for small and large scales. Figure 5-a represents the distribution for avalanches simulated with b = 10. Considering only curves where ξ is greater than b, i.e. where spatial correlation has an effect on statistics, we notice that the distribution actually shows three regimes. It follows at the small and large scales the two asymptotes as for uncorrelated fiber strengths corresponding to the two linear regimes (I and III on Figure 5-a) highlighted by Delaplace et al. [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF]. However, for intermediate scales, the master curve is non linear and asymptotically tends towards the two previous linear master curves. This highlights a transitional regime (II). Zooming on this transitional part of the curve, this regime can be characterized by its boundary scale respectively by the points of detachment and reattachment of the master curve to the asymptotes of linear regimes I and III. Delaplace et al. have interpreted the intersection point of their results as an indicator of the size of the process zone. In the present work, with spatial correlation it is no more a characteristic point but a zone delimited by two characteristic points of detachment and reattachment. It is reasonable to think this transition zone (size and position) is related to the size of the process zone.

Thus the master curve displays three characteristic points: the intersection point between the asymptotes studied by Delaplace et al. (which is no more rigorously on the curve), and two new specific points due to the addition of spatial correlation: the points of detachment and reattachment of the master curve to the linear curves. In this work, the large avalanches are the less frequent events and are not totally converged. We can obtain the real curve averaging results over a range of points, that is why points are more spaced for the large avalanches. As points are more spaced, it is difficult to get a good accuracy on reattachment point. Nevertheless, the point of intersection of the asymptotes and the reattachment point seems close and in this work, we have chosen arbitrarily to get the both to study the boundary between regimes II and III. Therefore only the point of intersection of asymptotes A (of abscissa ∆ a /ξ) and the detachment point D (of abscissa ∆ d /ξ), boundaries of the transitional regime, have been investigated carefully. Figure 5-c displays the evolution of the characteristic points according to the characteristic size of the active zone for b=10 and b=100 respectively. For the case b = 10, the intersection point of asymptotes varies linearly according to ξ, as this was already found by [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF].

Another original result of this contribution is the linear variation of the detachment point ∆ d according to ξ. For the case b = 100 (Figure 5-b), the same behavior is observed: the variation of the intersection of the asymptotes and the detachment point is linear. There is no detachment point for low values of ξ because there is no transitional regime if ξ is too close to b. Nevertheless, the intersection point of the asymptotes can be calculated. We can notice the change of regime for ξ < b, the intersection point of the asymptotes is the same for ξ equal 10 or 100.

Case 1: ξ tends to infinity. The shape of the stress field is very spread. But, judging Figure 5-c, when ξ goes to infinity, the first regime spread out over all scales. This configuration in the ZIP model becomes similar to the Fiber Bundle Model with a infinite number of fibers, with similar results (an unique slope equal to -1.5 into the avalanche distribution). Thus, when ξ is infinite, the avalanche simulation is the same at b = 10 or at b = 100, showing the independence of results from b at this case. This configuration can be met into cracking at the crack initiation. [START_REF] Zietlow | Measurement of the intrinsic process zone in rock using acoustic emission[END_REF]] have measured the Fracture Process Zone by acoustic emission on unnotched rock sample. Their results shows the first recorded acoustic events are less localized than the last ones before the peak in the load history curve of samples. Thus, crack initiation corresponds to a large FPZ. Judging the ZIP results, we can say that at crack initiation, the size of the FPZ is not correlated to the size of heterogeneities.

Case 2: ξ has a finite value. Here, there is the presence of the three regimes which depend on the heterogeneities b. We notice that the increasing of b induces the shift of the intersection of the asymptotes curves to the large scales. This boundary corresponds to the size beyond an uncorrelated regime [START_REF] Delaplace | Avalanche Statistics of Interface Crack Propagation in Fiber Bundle Model: Characterization of Cohesive Crack[END_REF]. Thus, the increases of the heterogeneity sizes allows a correlation between breaking events up to greater scales. Moreover, an increase of b induces the shift of the detachment point to the small scales. Then, an increasing b disrupts the regime of random walk (regime I) for smaller scales. During the crack propagation, for instance in the three points bending test, a crack tip induces a localized shaped of the stress field, corresponding to a finite value of ξ. Thus, ZIP model highlights the correlation between the FPZ and the size of heterogeneities during the crack propagation.

Conclusion

In this work, the influence of heterogeneities on the crack propagation statistics in a quasi-brittle material has been studied. The objective was to highlight the influence of the spatial correlation of fiber strengths on the avalanche distribution. The ZIP model and the autocorrelated random fields have been combined using the Karhunen-Loève decomposition.

-The avalanche distribution is clearly sensitive to the autocorrelation length.

-A new transitional regime appears into the avalanche distribution.

-Provided that the characteristic size of the shape of the stress field is finite, the transitional regime is present only if the characteristic size of the shape of the stress field is larger than the size of the heterogeneities.

Material heterogeneities have an influence only when they are small enough regarding the stress field. The asymptotic behavior of the model is consistent with the previous studies. First, the linear variation of the intersection point of the asymptotes has been found again. Furthermore, the addition of an internal length into the ZIP model enables the determination of a more physically sound behavior of the avalanche distribution.

From the transitional regime makes, (i) the characteristic size of heterogeneities modifying the distribution of cracking events, may be characterized, (ii) the relevance of non-correlated heterogeneous material models with regard to cracking may be established. Indeed, the size of heterogeneities does not affect neither small nor large scales (regimes I and III). It modifies, however the range of intermediate scales (regime II). Knowing both the material (b) and the imposed stress field (ξ), the ZIP model determines the scales where a modification is necessary in respect to the uncorrelated heterogeneous material model.

7 Appendix: Numerical convergence study of avalanches statistics

Numerical convergence of Karhunen-Loève decomposition

The convergence study has been carrying out on dimensionless avalanche distribution as presented in Figure 6, with N = 5.10 5 , ξ = 10000 and b = 10. For each point of avalanche distribution, its residual depending on M is calculated and represented on the following graph: M and M terms in Karhunen-Loève decomposition such as M = 10M . The dimensionless avalanche distribution with M terms in Karhunen-Loève decomposition is the set of points (X(∆), Y M (∆)) as:

X(∆) = log( ∆ ξ ) ; Y M (∆) = log(ξ 1.5 p(∆)) (13) 
with ∆ the size of avalanche counted by number of broken fibers, ξ the characteristic length of the deformation field of the beam and p(∆) the probability of an avalanche of size ∆.

The residual Res M (∆) of the avalanche distribution is defined as:

Res M (∆) = |Y M (∆) -Y M (∆)| (14) 
In Figure 6, the residual of the dimensionless avalanche distribution is plotted for different values of M . With M = 10 6 , the residual is under 0.1 for all the range of ∆ calculated. Thus, we consider that simulation is converged depending the number of terms for M = 10 6 .

The number M seems very large, but given that the autocorrelation size b (= 10) is so small in front of the size of the simulation i.e. the number of fibers N (= 5.10 5 ) and the Karhunen-Loève is a spectral decomposition into modes with increasing wavenumber, the decomposition has to go up to modes which are of the size of b. Then, the KL decomposition has to go up to high frequencies to capture all the spatial correlation between tensile strength of fibers.

Influence of the number N of fibers

A similar convergence study depending on N has been conducted on dimensionless avalanche distribution, with ξ = 10 5 and b = 10. Two simulations have been carried out at N = 5.10 5 and N = 5.10 6 considering respectively M = 10 6 and M = 10 7 , numbers of terms necessary to get the numerical convergence depending the Karhunen-Loève decomposition for each case.

The residual is calculated as the absolute difference between the two dimensionless avalanche distributions simulated:

Res N (∆) = |Y N =5.10 6 (∆) -Y N =5.10 5 (∆)| (15)
On Figure 7 is plotted the residual of the dimensionless avalanche distribution for N = 5.10 5 . The residual is under 0.1 except for the two largest 
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 1 Fig. 1 (a) Schematic representation of the fiber bundle model at a step where the force F is applied to the clamped bundle. Broken fibers at this step create a displacement u*. (b) forcedisplacement curve. The displacement u* from the step is represented. (c) Distribution of the simulated avalanches : Number of avalanches n ∆ classified by their size ∆ d) Calculation of the avalanche size for a force-controlled traction. e) Calculation of the avalanche size for a displacement-controlled traction.

Fig. 3

 3 Fig. 3 Cumulative Distribution Functions CDF(∆) of simulated avalanches of size ∆ counted by number of broken fibers over N = 5.10 5 fibers with M = 10 6 terms in Karhunen-Loève expansion (a) For the highest simulated value of spatial autocorrelation size b (= 10 2 ). (b) For the highest simulated value of ξ (= 10 4 ). (c) For the lowest simulated value of spatial autocorrelation size b (= 10). (d) For the lowest simulated value of spatial autocorrelation size b (= 10 2 ). (e) Schematic representation of importance of spatial correlation effects according to b and ξ, the filled line represents the tendencies highlighted from the graphs; the dotted line represents the global trend, the boxes at the right represent the appearance of the simulated material.

Fig. 4

 4 Fig. 4 Results of simulated avalanches over N = 5.10 5 fibers (a) Cumulative Distribution Function (CDF) of simulation of tensile strengths of fibers at b = 1, value of assumed negligible correlation. (b) Avalanche distribution associated to the CDF compared with results of Delaplace et al. (2001). p(∆) is the probability of an avalanche of size ∆ (number of broken fibers).

Fig. 5

 5 Fig. 5 Results of simulated avalanches over N = 5.10 5 fibers with M = 10 6 terms in Karhunen-Loève expansion. Avalanche distribution (a) at a low value of spatial autocorrelation size b (= 10) (left) and zoom on transient regime (right), (b) at a high value of spatial autocorrelation size b (= 100) (left) and zoom in on transitional regime (right). (c) Characteristic points vs. characteristic size of the active zone ξ for b = 10 and b = 100. p(∆) is the probability of an avalanche of size ∆ (number of broken fibers).
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 6 Fig. 6 Residual Res M (∆) of the dimensionless avalanche distribution with N = 5.10 5 , ξ = 10000 and b = 10 plotted for different number of terms M Karhunen-Loève decomposition

Fig. 7

 7 Fig. 7 Residual Res N (∆) for N = 5.10 5 of the dimensionless avalanche distribution with ξ = 10000 and b = 10
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