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Anti-Windup Design for a Reaction-Diffusion Equation

This paper focuses on the anti-windup design for saturated one-dimensional linear reaction-diffusion equation. The considered open-loop system admits a finite number of unstable poles. We consider a scenario in which the system is controlled via a dynamic, finite-dimensional output feedback controller ensuring closed-loop exponential stability. Within this setting, a method is proposed to design a dynamic, finitedimensional anti-windup compensator to maximize the region of attraction and minimize the effect of external perturbations. More precisely, the sufficient conditions for the local exponential stability of the closed-loop system are derived and expressed in terms of a set of matrix inequalities. Using generalized sector conditions and proper change of variables, the conditions are then recast as an optimization problem solving linear matrix inequalities. A numerical example is provided to showcase the proposed method and highlight its effectiveness on the system performance.

I. INTRODUCTION

In various control engineering problems, the linearity of the modeled system is hindered by a nonlinear saturated control input. This constraint on the control input generates an inconsistency (also called a windup) described by an offset between the plant input and the unconstrained control signal. The main goal for introducing an anti-windup compensator is to compensate for this offset and therefore restore consistency within the closed-loop system. The early anti-windup technique was presented in [START_REF] Hanus | Conditioning technique, a general anti-windup and bumpless transfer method[END_REF] and then later extended to observer-based approaches in [START_REF] Astrom | Integrator windup and how to avoid it[END_REF], [START_REF] Walgama | Inherent observer property in a class of anti-windup compensators[END_REF]. There have been several advancements in different anti-windup schemes in the general context of finite-dimensional systems (see [START_REF] Grimm | Antiwindup for stable linear systems with input saturation: an LMI-based synthesis[END_REF], [START_REF] Kothare | Multiplier theory for stability analysis of anti-windup control systems[END_REF], [START_REF] Turner | A new perspective on static and low order anti-windup synthesis[END_REF] for some literature on this topic).

A popular approach is LMI-based, in which the saturation is treated as a sector nonlinearity and Lyapunov methods are used to derive linear matrix inequalities (LMIs) conditions that can guarantee the desired regions of attraction for the system origin and performance levels. The method can be briefly described as measuring the difference between the control signal before and after saturation and injecting it into the compensator system which then recovers the discrepancy, in a manner that satisfies the LMI conditions, and emits a signal into the controller state equation. In some applications, the compensator emits a second signal into the saturated control input directly. In the general context of infinite-dimensional systems, the notion of anti-windup compensation is yet to be explored. This work presents, 1 S. Shreim is with LAAS, CNRS, 31400 Toulouse, France.
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Infinite-dimensional systems emerge to be of utmost relevance when studying physical systems throughout all engineering domains such as quantum systems, fluid mechanical systems, wave propagation, diffusion phenomena. Furthermore, practical applications are subjected to delays, reactiondiffusion dynamics, thermodynamics, etc. Therefore, the control theory of infinite-dimensional systems remains a necessary area of research and its motivation has been well established (see more in [START_REF] Curtain | Introduction to infinite-dimensional systems theory: a state-space approach[END_REF], [START_REF] Meurer | Control of higher-dimensional PDEs: Flatness and backstepping designs[END_REF], [START_REF] Morris | Controller Design for Distributed Parameter Systems[END_REF]). The problem of output feedback control by means of an observer-based control, adaptive control or model predictive control has been previously presented in (see [START_REF] Curtain | Equivalence of input-output stability and exponential stability for infinite-dimensional systems[END_REF], [START_REF] Weiss | Optimizability and estimatability for infinite-dimensional linear systems[END_REF]) and output-feedback control extensions to PDEs (see e.g., [START_REF] Christofides | Robust output feedback control of quasi-linear parabolic PDE systems[END_REF], [START_REF] Wu | Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems[END_REF]).

In this work, we focus on the output feedback stabilization of a specific type of partial differential equation called the reaction-diffusion equation. The global stability of a reactiondiffusion equation has been investigated in previous papers [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]- [START_REF] Katz | Global stabilization of a 1D semilinear heat equation via modal decomposition and direct Lyapunov approach[END_REF], [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF], [START_REF] Shreim | Input-output stability of a reaction diffusion equation with in-domain disturbances[END_REF] and the extension to local stability in the case of saturated actuator was studied in [START_REF] Lhachemi | Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF]. We will use the regional, LMI-based anti-windup scheme presented in [START_REF] Tarbouriech | Nonstandard use of antiwindup loop for systems with input backlash[END_REF], [START_REF] Tarbouriech | Anti-windup design: an overview of some recent advances and open problems[END_REF] to achieve local exponential input-output stability for a class of distributed parameter systems. More precisely, a dynamic anti-windup compensator will be introduced to a stable closed-loop system consisting of a reaction-diffusion plant in feedback with a saturated dynamic controller of finite dimension. Unlike [START_REF] Shreim | Input-output stability of a reaction diffusion equation with in-domain disturbances[END_REF], where the control is placed at the boundary, the control input is in-domain and assumed to be known. Using Lyapunov methods, dead-zone nonlinearities and associated sector conditions, we tackle two main issues. The first is estimating the region of attraction for the closedloop system given in terms of linear matrix inequalities when the in-domain exogenous signal is considered to be null. The second is evaluating the performance level of each system by estimating the input-output stability (IOS) gain when the in-domain exogenous signal is different than zero and is energy-bounded. In the process of achieving these two goals, an optimization problem for the anti-windup design problem is presented which allows the optimization of the region of attraction and the stability gain. Finally, the efficiency of the proposed method is illustrated using numerical simulations which clearly demonstrate the benefits of the anti-windup compensator in a saturated control problem.

The remainder of this paper is organized as follows. Section II presents preliminary definitions and results and states the problem that we solve. Section III presents the main results pertaining to stability analysis and anti-windup design. Section IV solves the optimal design problem and Section V showcases the effectiveness of the proposed method through a numerical example.

Notation and basic notions: The symbol S n p denotes the set of real n × n symmetric positive definite matrices. The symbol N ⋆ denotes the set of strictly positive natural numbers. We use the notation He(A) = A + A ⊤ for square matrices. For a symmetric matrix A, positive definiteness (negative definiteness) and positive semidefiniteness (negative semidefiniteness) are denoted, respectively, by A > 0 and A ≥ 0 (A ≤ 0). Also, λ min (A) (respectively λ max (A)) denotes its smallest (respectively largest) eigenvalue. We use the equivalent notation for Euclidean vectors (x, y) = x ⊤ y ⊤ ⊤ . In partitioned symmetric matrices, the symbol ⋆ stands for symmetric blocks. For a vector z ∈ R n , ∥z∥ denotes its Euclidean norm. For U ⊂ R, f :

U ⊂ R - → V , we denote by 1 ∥f ∥ L 2 = ( U ∥f (z)∥ 2 dz) 1 2 f . The Fréchet derivative of f at z is denoted by Df (z). Given f : U ⊂ R - → V , we say that f ∈ L 2 if f is measurable and ∥f ∥ L 2 is finite.
For an interval2 U ⊂ R and a normed vector space V , the symbol C k (U ; V ) denotes the set of functions f : U → V that are k-times continuously differentiable, the symbol Lip(U ; V ) denotes the set of Lipschitz continuous functions f : U → V , and the symbol W1,1 (U, V ) denotes the subset of measurable integrable functions f : U → V with measurable integrable weak derivative. Let k a positive integer, the symbol H p (0, 1), denotes the set of functions

f : [0, 1] → R such that f, d dz f, . . . , d k-1 dz k-1 f are absolutely continuous on (0, 1) and d k dz k f ∈ L 2 . Let p ∈ C 1 ([0, 1]; R) and q ∈ C 0 ([0, 1]; R) with p, q > 0.
Let the Sturm-Liouville operator A : D(A) ⊂ L 2 (0, 1; R) -→ L 2 (0, 1; R) be defined by

Af := -(pf ′ ) ′ + qf (1) 
on the domain D(A) ⊂ L 2 (0, 1; R) given by D(A) := {f ∈ H 2 (0, 1) : f ′ (0) = f (1) = 0}. The set of eigenvalues λ n , n ≥ 1, constituting the spectrum of A, are simple, nonnegative, and form an increasing sequence with λ n -→ +∞ as n -→ +∞. Moreover the associated unit eigenvectors Φ n ∈ L 2 (0, 1; R n ) form an orthonormal basis and we also have

D(A) = {f ∈ H 2 (0, 1; R) : n≥1 λ 2 n |⟨f, Φ n ⟩| 2 < +∞} and Af = n≥1 λ n ⟨f, Φ n ⟩Φ n . Let p ⋆ , p ⋆ , q ⋆ , q ⋆ ∈ R be such that 0 < p ⋆ ≤ p(x) ≤ p ⋆ and 0 < q ⋆ ≤ q(x) ≤ q ⋆ for all x ∈ [0, 1]
, then it holds (see e.g., [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]), for all n ≥ 1,

0 ≤ π 2 (n -1) 2 p ⋆ + q ⋆ ≤ λ n ≤ π 2 n 2 p ⋆ + q ⋆ .
(

) 2 
Consider the following isomorphism ι defined by ι(Φ j ) = Φ j (•), where Φ j is the j-unit vector in R N . Having this isomorphism in mind we identify

L 2 (0, 1; R) with ℓ 2 (N * , R) and H 1 (0, 1; R) with ℏ 1 (N * , R) where ℓ 2 (N * , R) := {(w n ) n∈N * ∈ R N * : ∞ n=1 |w n | 2 < ∞}, and ℏ 1 (N * , R) := {(w n ) n∈N * ∈ R N * : ∞ n=1 λ n |w n | 2 < ∞}.

II. PROBLEM STATEMENT

We consider the stabilizability problem of a onedimensional linear reaction-diffusion equation by means of a distributed control input u. The system model is given for all t ≥ 0 and for z ∈ (0, 1):

w t (t, z) =(p(z)w z (t, z)) z + (q c -q(z))w(t, z) + b(z)u(t) + m(z)d(t) w z (t, 0) = w(t, 1) = 0 y(t) = w(t, 0). (3) 
The state-space of this system is L 2 (0, 1; R), and we assume that q c ∈ R and b, m ∈ L 2 (0, 1; R). The exogenous signal d ∈ Lip(R ≥0 ; R). We suppose that the control input is subject to a symmetric magnitude limitation ūl such that u := σ(v) = min(|v|, ūl )sign(v) where the input signal v is given by the output of the control system dynamics specified later. The dynamics are written in abstract form, and given an initial condition w 0 , the Cauchy problem is written as:

ẇ = -Aw + q c w + bu + md w(0) = w 0 . ( 4 
)
for the Sturm-Liouvile operator defined by [START_REF] Astrom | Integrator windup and how to avoid it[END_REF].

A. Partition of the System into Stable and Unstable parts

The Sturm-Liouville operator A consists of positive simple eigenvalues

(λ n ) n≥1 such that λ n → ∞, as n → ∞. Now, introduce the coefficients of projection w n = ⟨w(•), Φ n ⟩, b n = ⟨b, Φ n ⟩ and m n = ⟨m, Φ n ⟩ for n ∈ N ⋆ .
We have for all w(t, •) ∈ D(A) and for all t ≥ 0 and for n ∈ N ⋆ :

ẇn = (-λ n + q c )w n + b n u + m n d, y = i≥1 Φ i (0)w i . (5) 
Let N 0 ≥ 1 and δ > 0 be given such that -λ n +q c < -δ < 0 for all n ≥ N 0 + 1. We now introduce an arbitrary integer N ≥ N 0 which will be further constrained later. We design a finite-dimensional output feedback controller that will act on and modify the first N modes of the plant. First, we introduce the following vectors:

W N := w1 w2 . . . wN ⊤ , B1 := b1 b2 . . . bN ⊤ , B2 := m1 m2 . . . mN ⊤ , A0 = Diag(-λ1 + qc, . . . , -λN + qc)
and we focus on the following finite-dimensional truncation of (5):

Ẇ N = A0W N + B1u + B2d. (6) 
When d = 0, if q c > λ 1 , then system (6) is unstable. We assume that the pair (A 0 , B 1 ) is controllable. Definition 1: Let ξ > 0. We suppose that the Lipschitz continuous exogenous disturbance d is amplitude bounded if it belongs to the following set of functions S :=

d : R ≥0 → R : d 2 (t) ≤ ξ -1 , ∀t ≥ 0 .
Given N ≥ N 0 , consider the following state space representation for the continuous-time linear plant P:

Ẇ N = A0W N + B1σ(v) + B2d, ẇn = (-λn + qc)wn + bnσ(v) + mnd n ≥ N + 1, y = i≥1 Φi(0)wi. (7)
The closed-loop system is composed of the plant P with a linear time-invariant dynamic, finite-dimensional output feedback controller K c given by:

Ẋc = A c X c + B c y + Y aw v = C c X c (8) 
where X c ∈ R N is the state of the controller and

A c ∈ R N ×N , B c ∈ R N and C c ∈ R 1×N
and the term Y aw , related to the anti-windup setting, is considered to be null at this point. We assume that the control parameters A c , B c , C c , D c are given such that, for no saturation limitation and without disturbances, the origin of the closed-loop system ( 7) is globally exponentially stable (the design of such matrices is done in e.g., [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF]). The main objective of this work is to introduce and design an anti-windup compensator such that we meet the desired system performance levels in terms of stability gain and region of attraction. The general framework of the anti-windup compensator is presented next.

B. General Set-Up for the Anti-Windup

We introduce an anti-windup compensator to the overall system such that the output of the anti-windup plant is plugged into the dynamics of the control state X c . The extra input Y aw is given in the following simplified direct antiwindup system K a presented in [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF]Chapter 7] called the direct linear anti-windup design:

Ẋaw = A aw X aw + B aw (σ(v) -v) Y aw = C aw X aw + D aw (σ(v) -v), (9) 
where X aw ∈ R 2N is the anti-windup state such that the dimension of the anti-windup state is the sum of the dimensions of W N and X c and the output of the anti-windup plant Y aw is injected into the dynamics of the controller state.

The goal is to design suitable anti-windup parameters

A aw ∈ R 2N ×2N , B aw ∈ R 2N , C aw ∈ R N ×2N
and D aw ∈ R N so that the origin of system (10) achieves input-output stability with smaller IOS gain and larger region of attraction.

Let

X f := W N X c X aw ⊤ . For all ζ a ∈ ℏ 1 (N; R), we define the following norm: ∥ζ a ∥ H 1 a := X ⊤ f X f + n≥N +1 λ n w 2 n .
The deadzone nonlinearity is defined by ϕ(v) := σ(v) -v. Denoting C := (Φ 1 (0), Φ 2 (0), . . . Φ N (0)) and ỹ := i≥N +1 Φ i (0)w i , the interconnection of ( 7), [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF], and (9) can be formally written as (P, K c , K a ):

         Ẋf = A11X f + B11ϕ(KX f ) + B12d + B13 ỹ ẇn =(-λn + qc)wn + bnCcXc + bnϕ(KX f ) + mnd n ≥ N + 1 y = CW N + ỹ. ( 10 
)
where

A 11 := A0 B1Cc 0 BcC Ac Caw 0 0 Aaw =: A B 0 Aaw B11 :=   B1 Daw Baw   , B12 :=   B2 0 0   , B13 :=   0 Bc 0   , K :=   0 Cc 0   ⊤ . (11)
Using the Lipschitz continuity of σ, the wellposedness result follows from [17, 

(ζ a , d) ∈ W 1,1 (domζ a ; ℓ 2 (N ⋆ ; R)) ∩ C 0 (domζ a ; ℏ 1 (N ⋆ ; R)) × Lip(domd; R))
where domd = domζ a is an interval of R ≥0 including zero.

⋄

There are two main issues to tackle in system [START_REF] Khalil | Nonlinear Systems[END_REF]. The first issue is in the case when d = 0, where the goal is to optimize the region of attraction. The second issue is in the case when the energy bounded exogenous signal d ̸ = 0, where the goal is to minimize the effect of the disturbance signal on the input-output stability property. We are now able to formally state the problem we solve in this paper.

Problem 1: Given p ∈ C 2 ([0, 1]; R), q ∈ C 0 ([0, 1]; R) with p, q > 0 and q c ∈ R. Given the control pa-

rameters A c B c C c 0 .

Design the anti-windup parameters

A aw , B aw , C aw , D aw such that the following properties hold for (10):

• the origin of the closed-loop system is zero-input locally exponentially stable with region of attraction R a , • for some (solution independent) ψ a , υ a , ρ a > 0, for each strong solution pair (ζ a , d) ∈ R a ×S to the closed-loop system, the following bound holds for all t ∈ R ≥0 :

|y(t)| ≤ ψ a e -υat ∥ζ a (0)∥ H 1 a + ρ a t 0 d(θ) 2 dθ. ( 12 
)
Inequality [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF] corresponds to an input-output stability (IOS) bound for the closed-loop system. The main contribution of this paper is to design an anti-windup system K a in order to further minimize the effect of the gain ρ a for d ̸ = 0 and further maximize the region of attraction R a for d = 0. In the next section, we provide an explicit estimate of the IOS gain ρ a and the region of attraction R a .

III. INPUT-OUTPUT LYAPUNOV STABILITY ANALYSIS

This section presents sufficient conditions for the solution to Problem 1. The result relies on an exponential dissipation inequality. This is done by proving the following proposition:

Proposition 2: Assume there exist a Fréchet differentiable functional V :

ℏ 1 (N; R) - → R ≥0 and c 1 , c 2 , c 3 , c 4 , χ ∈ R >0 such that χ 2 < ξc 3 c 4 , ( 13 
)
where ξ is defined in Definition 1 and such that for each d ∈ S and ζ a ∈ ℏ 1 (N ⋆ ; R) satisfying V(ζ a ) ≤ c 4 , the following hold:

c1 ∥ζa∥ 2 H 1 a ≤ V(ζa) ≤ c2 ∥ζa∥ 2 H 1 a , (14) 
DV(ζ a ) ζa ≤ -c 3 V(ζ a ) + χ 2 d 2 , (15) 
where ζa = ( Ẋf , ẇn ) ∈ ℓ 2 (N ⋆ ; R) as defined in [START_REF] Khalil | Nonlinear Systems[END_REF].

Then, the origin of the closed-loop system (10) is zero-input exponentially stable with region of attraction containing {ζ, V(ζ) ≤ c 4 }. In particular, (12) holds with:

ψ a = 2c 2 c 1 , υ a = c 3 2 , ρ a = √ 2 χ √ c 1 . (16) 
Proof: Define R a = {ζ a , V(ζ a ) ≤ c 4 }. We consider a strong solution pair (ζ a (t), d(t)); i.e, ζ a ∈ R a and d ∈ S ∩ Lip(domd; R) for all t ∈ domζ a where domζ a is an interval of R ≥0 including zero. Now, consider the function 

W : dom ζ a - → R defined by W(t) = (V • ζ a )(t). Then, since V : ℏ 1 (N ⋆ ; R) is Fréchet differentiable everywhere and ζ a : domζ a - → ℏ 1 (N ⋆ ; R) is differentiable
W(t) ≤ e -c3t W(0)+χ 2 t 0 e -c3(t-θ) d(θ) 2 dθ, ∀t ∈ domζ a .
The latter, thanks to [START_REF] Meurer | Control of higher-dimensional PDEs: Flatness and backstepping designs[END_REF], ensures that the origin of the closed-loop system is locally exponentially stable with respect to the H 1 a -norm and with a region of attraction R a when d = 0. The rest of the proof follows the proof done in [19, Proposition 2].

A. Construction of the functional V

The result given next provides sufficient conditions for local exponential stability in the form of quadratic matrix inequalities.

Theorem 1: Suppose there exist

P ∈ S 4N p , T ∈ R >0 , G ∈ R 1×4N , A aw ∈ R 2N ×2N , B aw ∈ R 2N , C aw ∈ R 1×2N and α, β, , γ, τ 1 , τ 2 ∈ R >0 such that: Θa :=     A1 P B11 -G ⊤ T P B12 P B13 ⋆ α ′ ∥b∥ 2 L 2 -2T 0 0 ⋆ ⋆ α ′ ∥m∥ 2 L 2 -τ2 0 ⋆ ⋆ ⋆ -β     ≤ 0 (17) P K ⊤ -G ⊤ ⋆ ū2 l ≥ 0 (18) τ2ξ -1 -τ1 < 0 ( 19 
)
Γ n := λ n -λ n + q c + τ 1 + 3 α + β 2γ M ϕ ≤ 0, ∀n ≥ N + 1 (20) where α ′ = αγ, A 1 := He(P A 11 ) + τ 1 P + A 22 , A 22 := 0 0 0 0 α ′ ∥b∥ 2 C ⊤ c Cc 0 0 0 0 and M Φ := i≥N +1 Φi(0) 2
λi . Then, the parameters A aw , B aw , C aw , D aw solve Problem 1. In particular, [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF] holds with:

ρ a = √ 2τ2 √ min{λmin(P ),γp⋆,γq⋆} , v a = τ1 2 ψ a = 2 max{λmax(P ),γp ⋆ ,γq ⋆ } min{λmin(P ),γp⋆,γq⋆} . (21) 
Proof: The proof of the result hinges upon Proposition 2 with the following selection of the Lyapunov functional:

V : ℏ 1 (N ⋆ ; R) - → R ζ a → X ⊤ f P X f + γ n≥N +1 λ n w 2 n . (22) 
Condition ( 14) holds for c 1 := min{λ min (P ), γp ⋆ , γq ⋆ } and c 2 := max{λ max (P ), γp ⋆ , γq ⋆ } which are strictly positive. Now we show that under the assumptions of the result, ( 15) holds. In particular, let V(ζ a , d) := DV(ζ a ) ζa .

To this end, let V 1 (X f ) := X f ⊤ P X f . Then, one gets:

DV 1 (X f ) Ẋf = X f d ỹ ϕ ⊤ He(P A11) P B12 P B22 P B23 '⋆ 0 0 0 ⋆ ⋆ 0 0 ⋆ ⋆ ⋆ 0 X f d ỹ ϕ
.

Let G := G 1 G 2 ∈ R 1×2N × R 1×2N .
Note that, due to condition [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], for any

X f satisfying X ⊤ f P X f ≤ 1, it holds X f ∈ {X f ∈ R 4N ; |KX f -GX f | ≤ ūl }. Therefore, by using [20, Lemma 1.6, Page 43] with v 1 = KX f and v 2 = GX f , it holds ϕ(KX f ) ⊤ T (ϕ(KX f ) + GX f ) ≤ 0 (23) for all X f satisfying X ⊤ f P X f ≤ 1.
In particular ζ a ∈ R a , then we have that X ⊤ f P X f ≤ 1 and so ( 23) holds, and we get the following inequality

DV 1 (X f ) Ẋf -τ 2 d ⊤ d ≤ DV 1 (X f ) Ẋf -τ 2 d ⊤ d -2ϕT (ϕ(K a X f ) + GX f ). (24) 
Now, let V 2 (w n ) := γ n≥N +1 λ n w 2 n with γ > 0. Then

DV 2 (w n ) ẇn = 2γ n≥N +1 λ n ((-λ n + q c )w 2 n + b n σ(v)w n + m n dw n ).
Thus, bearing in mind that

V = V 1 + V 2 , using (24) 
for all ζ a ∈ R a , one gets:

V(ζa, d) + τ1V(ζa) -τ2d 2 ≤ π ⊤    He(P A11) + τ1P P B11 -G ⊤ T P B12 P B13 ⋆ -2T 0 0 ⋆ ⋆ -τ2 0 ⋆ ⋆ ⋆ 0       X f ϕ d ỹ    π + 2γ n≥N +1 λn[(-λn + qc + τ1)w 2 n + bnKX f wn + bnϕwn + mndwn] (25) 
The rest of the proof follows the proof done in [START_REF] Shreim | Input-output stability of a reaction diffusion equation with in-domain disturbances[END_REF]Theorem 4] with appropriate adjustments. Thus, for all ζ a ∈ R a and

d ∈ R, V(ζ a , d) + τ 1 V(ζ a ) -τ 2 d 2 ≤ π ⊤ Θ a π + 2γ n≥N +1 λ n -λ n + q c + τ 1 + 3 α + β 2γ M Φ w 2 n
where Θ a is defined in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. Therefore, due to the satisfaction of ( 17), [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], and (20), one gets, for all ∀ζ a ∈ R a , d ∈ R: [START_REF] Morris | Controller Design for Distributed Parameter Systems[END_REF] with χ = τ 2 , c 3 = τ 1 , and c 4 = 1. To conclude, observe that with the above selection of the parameters in Proposition 2, ( 19) matches [START_REF] Lhachemi | Local output feedback stabilization of a reaction-diffusion equation with saturated actuation[END_REF]. Hence, the result is established.

V(ζ a ) + τ 1 V(ζ a ) -τ 2 d 2 ≤ 0, which corresponds to

IV. COMPENSATOR DESIGN AND OPTIMIZATION ISSUES

Theorem 1 provides sufficient conditions for the solution to Problem 1. However, it turns out that the matrix Θ a in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF] is nonlinear in the decision variables P, A aw , B aw , C aw , G, and T . Thus, we transform the quadratic conditions found in Theorem 1 into linear matrix inequalities that can be exploited numerically in order to calculate the anti-windup parameters.

A. LMI-based Compensator Design

Using Theorem 1 and getting inspiration from [START_REF] Scherer | Multiobjective output-feedback control via LMI optimization[END_REF], we can use a change of variables and derive a sufficient condition, so that Problem 1 is numerically tractable, as stated in the following proposition.

Proposition 3: Assume there exist [START_REF] Shreim | Input-output stability of a reaction diffusion equation with in-domain disturbances[END_REF] and:

X, Y ∈ S 2N p , K ∈ R 2N ×2N , M ∈ R N ×2N , Q 1 ∈ R N ×1 , Q 2 ∈ R 2N ×1 , Z 1 , Z 2 ∈ R 1×2N , S, β, α ′ , α ′′ ∈ R >0 and τ 1 , τ 2 ∈ R >0 satisfying
Ξ :=      A2 B1 -Z B2 B3 ∥b∥ L 2 Π ⊤ C ⊤ ⋆ -1 α ′      ≤ 0 (26)   Y I Y C ⊤ 2 -Z ⊤ 1 ⋆ X C ⊤ 2 -Z ⊤ 2 ⋆ ⋆ ū2 l   > 0 ( 27 
)
where A 2 := He(A) + τ 1 and the following matrices are defined as:

A := AY + BM A K XA , X := Y I I X , Z := Z 1 Z 2 ; B 1 := B ′ 1 S + BQ 1 Q 2 , B 2 := B ′ 2 XB ′ 2 , B 3 := B ′ 3 XB ′ 3 and C 2 := 0 C c , Π := Y B B ⊤ . Then, I -Y X is nonsingular. Let U ; V ∈ R 2N ×2N be nonsingular matrices such that Y X + V U ⊤ = I and γ, α > 0 such that α ′ = αγ.
Assume moreover that (20) holds. Then, the anti-windup parameters defined by [START_REF] Tarbouriech | Nonstandard use of antiwindup loop for systems with input backlash[END_REF].

Aaw Baw Caw Daw = U X B 0 I -1 K L M E V -⊤ 0 0 I - XAY 0 0 0 (28) where B := 0 I ⊤ , E := Q 1 S -1 , L := Q 2 S -1 -XB ′ 1 , solve Problem 1 with
Proof: Let T = S -1 . First note that, due to (27),

I -Y X is nonsingular. Let Y := Y I V ⊤ 0 and P := X U U ⊤ X
, where X := U ⊤ (X -Y -1 ) -1 U . Since V is nonsingular, it follows that Y is so. Simple manipulations yield 

Θ ′ a := Diag(Y, S, I, I) ⊤ ΘaDiag(Y, S, I, I) =     A3 Y ⊤ P B11S -Y ⊤ G ⊤ Y ⊤ P B12 Y ⊤ P B13 ⋆ α ′ ∥b∥ 2 L 2 S 2 -2S 0 0 ⋆ ⋆ α ′ ∥m∥ 2 L 2 -τ2 0 ⋆ ⋆ ⋆ -β     with G := Z 1 Z 2 ⊤ Y -1 ∈ R 1×4N
Y ⊤ P B11S = B ′ 1 + BDaw X(B ′ 1 + BDaw) + U Baw S = B1; Y ⊤ P B12 = B2; Y ⊤ P B13 = B3; Y ⊤ G ⊤ = Z; Y ⊤ A22Y = Π ⊤ α ′ ∥b∥ 2 L 2 C ⊤ c CcΠ. (29) 
Thus, using Schur complement lemma, the following equivalence holds Θ ′ a < 0 ⇐⇒ Ξ < 0. Therefore, under ( 26), ( 17) holds. Moreover, notice that from (27), it holds X > 0. Hence, thanks to the second relationship in (29) and Y being nonsingular, it follows that P > 0.

In addition, again by relying on the nonsingularity of Y, multiplying the matrix in the left-hand side of ( 18) by Y ⊤ and Y on the right-hand side, we obtain that ( 18) is implied by (27). Therefore all the assumptions in Theorem 1 hold, thereby concluding the proof.

Remark 1: Notice here also that the matrix in ( 26) is nonlinear in the terms X, Y, τ 1 , α ′ . The nonlinear terms τ 1 X, τ 1 Y , 1 α ′ , become linear if τ 1 , α ′ are fixed by performing a line search on τ 1 , α ′ ∈ R ≥0 . By choosing γ = β, we can deduce the value of α from α ′ .

• Remark 2: It is worth to mention that, due to the specific construction of the Lyapunov functional in Theorem 1, our conditions are only sufficient.

•

B. Optimal compensator design

The minimization problem of the effect of the external perturbations on system (3) in closed loop with (8) and ( 9) boils down to designing the anti-windup with minimal ρ a in [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF]. Due to [START_REF] Tarbouriech | Nonstandard use of antiwindup loop for systems with input backlash[END_REF], such minimization can be achieved by solving the following optimization problem:

inf τ 2 + r -β s.t: (19), (20), (26), (27), X, Y ∈ S 2N p , -rI V ⊤ 0 ⋆ -Y I ⋆ ⋆ -X ≤ 0.
(30) Minimizing the value of r is equivalent to maximizing λ min (P ) with P as in Proposition 3. Indeed, it turns out that

P -1 = Y V ⋆ V ⊤ (Y -X -1 ) -1 V
and the last constraint in (30) is equivalent to P -1 -rI ≤ 0, i.e., λ min (P ) -1 ≤ r. Other optimization problems could be solved, as the maximization of the size of the region of attraction for the local exponential stability of the origin of (3) in closed loop with [START_REF] Katz | Finite-dimensional control of the heat equation: Dirichlet actuation and point measurement[END_REF] and [START_REF] Katz | Global stabilization of a 1D semilinear heat equation via modal decomposition and direct Lyapunov approach[END_REF].

Remark 3: The basic algorithm to design the anti-windup compensator is as follows. For the given system, we numerically solve the linear conditions ( 19), ( 26), (27) for N ≥ 1. Then, we confirm that (20) holds for the chosen N . If not, we increment N and repeat the procedure. The anti-windup parameters are then deduced using (28). •

V. NUMERICAL SIMULATION

In this section, we use the YALMIP package in MATLAB to solve the LMIs and derive a feasible solution to Problem 1. Consider (3) with b(z) = m(z) = p(z) = q(z) ≡ 1. We illustrate the result of Section IV using a modal approximation that captures the 50 dominant modes of the reactiondiffusion plant with an in-domain disturbance given by, for all t ≥ 0, d(t) = 0.5 sin(2t), so that Definition 1 hold with ξ = 1. The saturation limit is ūl = 1. Choose q c = 3 such that the open-loop plant is unstable with N 0 = 1. We consider a given output feedback controller rendering the closed-loop, system without saturation, exponentially stable. Following the algorithm described in Remark 3, (20) holds for a minimum dimension of the finite-dimensional controller N = 2 for which condition [START_REF] Tarbouriech | Stability and stabilization of linear systems with saturating actuators[END_REF] holds. For this selection of the controller, solving (30) gives: Aaw = 0.53 0.01 -0.18 5.17 

Figure 1 shows that the norm of the output of (10) with anti-windup converges to zero faster and smoother than that without anti-windup, imitating the linear behavior. Also, the effect of the disturbance on the steady-state reflects the bound in [START_REF] Lhachemi | Stability analysis of reaction-diffusion PDEs coupled at the boundaries with an ODE[END_REF] with ρ a = 1.3, ψ a = 21, ν a = 0.5. Furthermore, Figure 1 shows that the control input in the closed-loop system with anti-windup tends to saturate for a longer time. In addition, we notice that λ min(P ) with anti-windup = 0.34 > λ min(P ) without anti-windup = 0.9 which means the region of attraction is indeed maximized.

VI. CONCLUSION

In this paper, we designed an anti-windup compensator for a reaction diffusion equation with in-domain saturated control inputs. The proposed compensator allowed to compensate for the control saturation. Sufficient conditions for regional exponential stability and input-output stability were devised. A numerical affordable approach to the design of the compensator was propoed. The use of more general Lyapunov functionals and alternative anti-windup schemes are currently part of our research.
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 1 Fig.1. Left: time evolution of the output y with anti-windup (solid-blue line), without anti-windup (dashed-red line) and without saturation (dottedblack line). Right: time evolution of the saturated control signal u(t).
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  Theorem 1.6, Chapter 6, Page 189]:

		Proposition 1:	[17]	Let	d	be	Lipschitz
	continuous.	The	closed-loop	system	(10)	has
	a	unique	strong	solution	pair 3

  almost everywhere, it follows that Ẇ(t) = DV(ζ a (t)) ζa (t). Using[START_REF] Morris | Controller Design for Distributed Parameter Systems[END_REF], one gets, for all t ∈ domζ a , Ẇ(t) ≤ -c 3 W(t) + χ 2 d(t)

	2 . With (13),
	using a similar argument as [10, Lemma 9.2, page 347], one
	has that ζ

a cannot leave the set R a . Therefore, since W is continuous on dom ζ a , from comparison lemma [10, Page 102], we have:

In this paper, we only consider Lebesgue measurable functions.

If the interval is not open, derivative means right (or left)-derivative at the right (or left) end point.

A pair (ζa, d) is a strong solution pair to[START_REF] Khalil | Nonlinear Systems[END_REF] if ζa is differentiable almost everywhere and it satisfies its dynamics for a.e. t.

c ⋆ α ′′ -2S 0 0 0 ⋆ ⋆ α ′ ∥m∥ 2 L 2 -τ2 0 0 ⋆ ⋆ ⋆ -β 0 ⋆ ⋆ ⋆