
HAL Id: hal-04132943
https://hal.science/hal-04132943v1

Submitted on 19 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bivariate estimation-of-distribution algorithms can find
an exponential number of optima

Benjamin Doerr, Martin S Krejca

To cite this version:
Benjamin Doerr, Martin S Krejca. Bivariate estimation-of-distribution algorithms can find an ex-
ponential number of optima. GECCO ’20: Genetic and Evolutionary Computation Conference, Jul
2020, Cancún (on line), Mexico. pp.796-804, �10.1145/3377930.3390177�. �hal-04132943�

https://hal.science/hal-04132943v1
https://hal.archives-ouvertes.fr

Bivariate Estimation-of-Distribution Algorithms Can Find an
Exponential Number of Optima∗

Benjamin Doerr
Laboratoire d’Informatique (LIX), CNRS, École
Polytechnique, Institut Polytechnique de Paris

Palaiseau, France
lastname@lix.polytechnique.fr

Martin S. Krejca
Hasso Plattner Institute

Potsdam, Germany
firstname.lastname@hpi.de

ABSTRACT

Finding a large set of optima in a multimodal optimization land-
scape is a challenging task. Classical population-based evolutionary
algorithms (EAs) typically converge only to a single solution. While
this can be counteracted by applying niching strategies, the number
of optima is nonetheless trivially bounded by the population size.

Estimation-of-distribution algorithms (EDAs) are an alternative,
maintaining a probabilistic model of the solution space instead of
an explicit population. Such a model is able to implicitly represent
a solution set that is far larger than any realistic population size.

To support the study of how optimization algorithms handle
large sets of optima, we propose the test function EqalBlocks-
OneMax (EBOM). It has an easy to optimize fitness landscape,
however, with an exponential number of optima. We show that
the bivariate EDA mutual-information-maximizing input clustering
(MIMIC), without any problem-specific modification, quickly gen-
erates a model that behaves very similarly to a theoretically ideal
model for that function, which samples each of the exponentially
many optima with the same maximal probability.

CCS CONCEPTS

• General and reference → Empirical studies; Experimentation;

KEYWORDS

Estimation-of-distribution algorithms; probabilistic model building;
empirical study

ACM Reference Format:

Benjamin Doerr and Martin S. Krejca. 2020. Bivariate Estimation-of-
Distribution Algorithms Can Find an Exponential Number of Optima.
In Genetic and Evolutionary Computation Conference (GECCO ’20), July
8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3377930.3390177

∗Author-generated version

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3390177

1 INTRODUCTION

A key feature of evolutionary algorithms (EAs) is their applicabil-
ity to a wide range of optimization problems. EAs require little
problem-specific knowledge and generally provide the user with a
good solution. Since many real-world optimization problems are
multimodal [1, 11, 23], it is desirable for an EA to return multiple
solutions. This way, the user also gains precious insight into their
problem.

Unfortunately, classical population-based EAs tend to converge
to a single solution, due to strong selection operators and due to a
long-known phenomenon called genetic drift [4]. In order to coun-
teract this behavior, different techniques have been introduced,
commonly subsumed under the term niching [15, 16, 23]. These
techniques maintain diversity in the population and assist in find-
ing and keeping multiple good solutions. While this approach is
useful for increasing the number of different solutions, it still lim-
its the insights gained about the underlying problem, as the only
information the EA returns is the solutions themselves. As such, it
only provides information about areas of the search space that it
has visited and does not propose further promising regions.

A different algorithmic approach that aims to additionally incor-
porate information about the entire search space is the framework
of estimation-of-distribution algorithms (EDAs; [20]). Instead of an
explicit set of solutions, EDAs maintain a probabilistic model of the
search space. This model acts as a solution-generating mechanism
and reflects information about which parts of the search space seem
more favorable than others. An EDA evolves its model based on
samples drawn from it. This way, the model is refined such that it
generates better solutions with higher probability. In the end, an
EDA returns the best solutions found as well as its model.

EDAs are commonly classified by the power of their model [20].
This results in the following trade-off: an EDA with a simple model
performs an update quickly but may be badly suited to accurately
represent the distribution of good solutions. In contrast, the update
of an EDA with a complex model is computationally expensive,
but the model is better capable of representing good solutions. The
complexity of a model is determined by how many dependencies
it can detect among different problem variables. For example, a
univariate EDA assumes independence of all problem variables,
whereas a bivariate EDA can represent dependencies among pairs of
variables. We go into detail about these types of EDAs in Section 1.1.

While increasing the complexity of an EDA’s model is useful for
finding optima in a larger class of problems [19], it is not evident that
an increased model complexity is also useful for finding multiple
optima or representing them adequately in the model. In fact, EDAs
have been designed specifically with the intention of being used for

https://doi.org/10.1145/3377930.3390177
https://doi.org/10.1145/3377930.3390177
https://doi.org/10.1145/3377930.3390177

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Martin S. Krejca

multimodal optimization. Peña et al. [22] introduce the unsupervised
estimation of Bayesian network algorithm (UEBNA), which uses
unsupervised learning in order to generate the Bayesian network of
its model. The algorithm is tested against other EDAs and evaluated
(mostly) on bisection problems on graphs with many symmetries
that only have a low number of optima (two to six). Interestingly,
for the larger problems, even UEBNA is not able to find all optima.
Thus, the test functions seem to be hard, and the experiments do
not only show how many optima the algorithm can find but also
how well it copes with hard problems.

A similar setting has been considered by Chuang and Hsu [3],
who introduce an EDA that is also specifically tailored toward
multimodal optimization. However, they evaluate their results only
on trap functions with a low number of optima (two to four). Thus,
the focus of their work is arguably also more on the hardness of
the problem than on finding many optima.

Hauschild et al. [10] consider the hierarchical Bayesian optimiza-
tion algorithm and analyze how well its model reflects the problem
structure of two hard test functions. They show that the structure
is best reflected during the middle of the run and that it is then
simplified toward the end. This makes sense, as the model aims
to reflect best how to generate optimal solutions. This does not
need to coincide with how the entire structure can be reflected. For
example, if the problem has a single solution, it suffices to have a
simple model that only generates this solution in a straightforward
way. Again, the focus of the authors is rather based on the hardness
of the problem (its structure) instead of representing many optima.

Overall, to the best of our knowledge, there are no results dedi-
cated to finding many different optima on a function easy enough
so that finding an optimum at all is not already a challenge.

In this work, we introduce the test function EqalBlocksOne-
Max (EBOM, Section 2.3), which has an exponential number of
optimal solutions. It is easy in the sense that all local optima are
also global optima. We are interested in how well the underlying
structure of the optima can be detected by an algorithm.

Univariate EDAs apparently are not suitable to return a model
that represents the exponential number of optima of EBOM. EAs
can find at most as many different optima as the size of their popu-
lation. Depending on the actual size, this may be a large number
but will be polynomial for any reasonable run time of the algorithm.
This is still insignificant to the total number of optima of EBOM.

We show that mutual-information-maximizing input clustering
(MIMIC; [2]), arguably the simplest bivariate EDA, is represents
the structure of EBOM well. It builds a model that behaves very
similarly to an ideal model for EBOM, which creates all optimal
solutions with the maximal probability possible. Our experiments
(Section 3) show that, for almost all input sizes we consider, MIMIC
samples about 1 · 104 to 4.5 · 104 optima per run and never samples
an optimum twice. As EBOM can be described by a bivariate model,
our results suggest that bivariate EDAs are well suited to reasonably
capture the set of all optima for functions they can optimize.

Following, we discuss different types of EDAs in order to explain
how common probabilistic models look like and why univariate
models are unsuited for representing multiple optima. In Section 2,
we present MIMIC, the definition of EBOM, and what an ideal
model for EBOM is. In Section 3, we explain our test setup and
discuss our results. We conclude our paper in Section 4.

1.1 Types of EDAs

A common way of classifying EDAs is with respect to how they
decompose a problem [20]. Such a decomposition is typically based
on representing a probability distribution over the search space as a
product of various probabilities that may share dependencies. This
information is stored compactly by a probabilistic graphical model
(PGM; [12]). As the name suggests, PGMs use graphs for storing
information about probability distributions, where variables are
represented as nodes and dependencies as edges. The arguably best
known type of PGM are Bayesian networks (BNs).

A BN can be represented as a directed acyclic graph. A directed
edge from 𝑥 to 𝑦 represents that 𝑦 is dependent on (at least) 𝑥 . Each
node stores a probability distribution conditional on the outcomes
of all of its predecessors. A solution according to the probability
distribution of the BN can be sampled by traversing the graph in
a topological order, always determining the outcome of an input
variable based on the outcome of its predecessors. The larger the
in-degree of a node in a BN can become, the more costly it is to
represent the model, as the conditional probability distribution for
each node can grow quite large. Thus, the number of dependencies
in the models of EDAs are usually restricted.

1.1.1 Univariate EDAs. The BN of a univariate EDA is an inde-
pendent set. That is, each node represents a probability distribution
based solely on a single variable. Hence the name uni-variate. Ex-
amples of univariate EDAs are the compact genetic algorithm [8]
and the univariate marginal distribution algorithm [17].

When optimizing functions over bit strings, the probability of
each binary input variable tends to either 0 or 1 rather quickly [6, 7],
forcing the model to put its probability mass onto a single solution.
Thus, univariate EDAs are ill-suited to represent multiple solutions
at once. For more theoretical investigations on this topic, please
refer to a recent survey by Krejca and Witt [13].

1.1.2 Bivariate EDAs. In a bivariate EDA, each problem variable
can be dependent on at most one other variable. Examples of bivari-
ate EDAs are mutual-information-maximizing input clustering [2]
and the bivariate marginal distribution algorithm [21].

Recently, Lehre and Nguyen [14] showed that MIMIC may have
a huge advantage over univariate EDAs on deceptive functions, but
this may be a consequence of a suboptimal parameter choice [5].

Since a bivariate model can store simple dependencies, it is capa-
ble to represent multiple solutions at once. Further, the model can
still be built somewhat efficiently, as there is at most a quadratic
number of possible dependencies to consider when building the
model. Thus, we focus on bivariate EDAs in this work.

1.1.3 Multivariate EDAs. This type is used as an umbrella term
for any type of EDA that is able to represent some form of de-
pendency. While the models of such EDAs can perform well on
deceptive, hard functions, creating a model can be computationally
expensive, as potentially many dependencies need to be checked. Ex-
amples of multivariate EDAs are the extended compact genetic algo-
rithm [9] and the hierarchical Bayesian optimization algorithm [18].

2 PRELIMINARIES

In this section, we introduce some notation that we use throughout
the paper as well as the algorithm and the test function that we
consider in our analysis in Section 3.

Bivariate EDAs Can Find an Exponential Number of Optima GECCO ’20, July 8–12, 2020, Cancún, Mexico

2.1 Notation

Let N denote the set of all natural numbers, including 0. For
𝑎, 𝑏 ∈ N, let [𝑎..𝑏] B [𝑎, 𝑏] ∩ N denote the set of all natural
numbers from 𝑎 to 𝑏 (including both bounds). As a special case
of that notation, for 𝑏 ∈ N, let [𝑏] B [1..𝑏] denote the set of all
positive natural numbers up to 𝑏. For an 𝑛 ∈ N, let id𝑛 denote the
identity function over [𝑛].

For a logical proposition 𝑃 , let1{𝑃} denote the indicator function
of the truth value of 𝑃 , that is, 1{𝑃} = 1 if 𝑃 is true, and it is 0
otherwise.

We consider pseudo-Boolean optimization, that is, optimization
of functions 𝑓 : {0, 1}𝑛 → R, where 𝑛 ∈ N. We call such a function
fitness function. We call a bit string 𝑥 ∈ {0, 1}𝑛 an individual and
𝑓 (𝑥) the fitness of 𝑥 . If not stated otherwise, let 𝑓 always denote a
fitness function, and let 𝑛 always denote its dimension.

2.2 Mutual-Information-Maximizing Input

Clustering (MIMIC)

Mutual-information-maximizing input clustering (MIMIC; [2]) is a
bivariate estimation-of-distribution algorithm (EDA). The Bayesian
network of the probabilistic model of MIMIC can be represented as a
directed path over 𝑛 nodes, where each of the nodes corresponds to
one of the 𝑛 bit positions of 𝑓 . Further, MIMIC has two parameters,
𝜆, 𝜇 ∈ N with 𝜆 ≥ 𝜇, that represent how many individuals are
generated and selected each iteration, respectively.

Initially, the model represents the uniform distribution. It is re-
built each iteration in the following way: first, 𝜆 individuals are
generated according to the current model, and 𝜇 individuals are
selected according to some selection mechanism. We call the re-
sulting (multi-)set 𝑆 . A path is constructed greedily based on the
entropy of the distribution of the bits at the different positions in 𝑆 .

The first node of the new path is a position with the lowest
entropy, that is, a position with the largest number of 1s or 0s.
Each subsequent node is chosen with respect to the lowest entropy
conditional on the distribution of the current last node in the path.
This way, the new path represents a model that best reflects the
distributions of pairs of positions observed in 𝑆 . We now go into
detail about our implementation of MIMIC (Algorithm 1).

2.2.1 Probabilistic model and sampling. For our implementation
of MIMIC, we describe the probabilistic model via a permutation 𝜋

(over [𝑛]) and an𝑛×2 matrix of probabilities. Bit strings are sampled
bit by bit in the order of 𝜋 . For a position 𝑖 ∈ [2..𝑛] and a bit value
𝑏 ∈ {0, 1}, an entry 𝑃𝜋 (𝑖),𝑏 denotes the probability to sample a 1
at position 𝜋 (𝑖), given that the bit at position 𝜋 (𝑖 − 1) is 𝑏. Note
that entries in 𝑃 always denote the probability to sample a 1. For
the position 𝜋 (1) (which does not have a predecessor in 𝜋), we
set 𝑃𝜋 (1),0 = 𝑃𝜋 (1),1. Thus, either entry denotes the probability to
sample a 1 without a prior.

For a bit string 𝑥 ∈ {0, 1}𝑛 , we write 𝑥 ∼ sample𝜋 (𝑃) to denote
that 𝑥 is being sampled with respect to the probabilistic model con-
sisting of 𝜋 and 𝑃 . More formally the sampling procedure creates 𝑥
such that, for any bit string 𝑦 ∈ {0, 1}𝑛 ,

Pr[𝑥 = 𝑦] = (𝑃𝜋 (1),0)𝑦𝜋 (1) · (1 − 𝑃𝜋 (1),0)1−𝑦𝜋 (1)

Algorithm 1: MIMIC [2] with parameters 𝜇 and 𝜆, 𝜇 ≤ 𝜆,
and a selection scheme select𝜇 , optimizing a fitness function
𝑓 : {0, 1}𝑛 → R with 𝑛 ≥ 2.

1 𝑡 ← 0;
2 𝜋 (𝑡) ← id𝑛 ;
3 𝑃 (𝑡) ← (12)𝑖∈[𝑛],𝑏∈{0,1} ;
4 repeat

5 𝑂 (𝑡) ← ∅;
6 for 𝑖 ∈ [𝜆] do
7 𝑥 (𝑖) ∼ sample𝜋 (𝑡)

(
𝑃 (𝑡)

)
;

8 𝑂 (𝑡) ← 𝑂 (𝑡) ∪ {𝑥 (𝑖) };
9 𝑆 (𝑡) ← select𝜇 (𝑂 (𝑡) , 𝑓);

10 𝐼 ← [𝑛];
11 𝜋 (𝑡+1) (1) ← arg min𝑖∈𝐼 ℎ[𝑆 (𝑡) ; 𝑖];
12 𝐼 ← 𝐼 \ {𝜋 (𝑡+1) (1)};
13 for 𝑏 ∈ {0, 1} do 𝑃

(𝑡+1)
𝜋 (𝑡+1) (1),𝑏 ← 𝛾1 [𝑆 (𝑡) ;𝜋 (𝑡+1) (1)];

14 for 𝑗 ∈ [2..𝑛] do
15 𝜋 (𝑡+1) (𝑗) ← arg min𝑖∈𝐼 ℎ[𝑆 (𝑡) ; 𝑖 | 𝜋 (𝑡+1) (𝑗 − 1)];
16 𝐼 ← 𝐼 \ {𝜋 (𝑡+1) (𝑗)};
17 for 𝑏 ∈ {0, 1} do

𝑃
(𝑡+1)
𝜋 (𝑡+1) (𝑗),𝑏 ← 𝛾1𝑏 [𝑆 (𝑡) ;𝜋 (𝑡+1) (𝑗) | 𝜋 (𝑡+1) (𝑗 − 1)];

18 restrict all values of 𝑃 (𝑡+1) to the interval [1
𝑛 , 1 − 1

𝑛];
19 𝑡 ← 𝑡 + 1;
20 until termination criterion met;

·
∏

𝑖∈[2..𝑛] :
𝑦𝜋 (𝑖)=0

(1 − 𝑃𝜋 (𝑖),𝑦𝜋 (𝑖−1)) ·
∏

𝑖∈[2..𝑛] :
𝑦𝜋 (𝑖)=1

𝑃𝜋 (𝑖),𝑦𝜋 (𝑖−1) .

2.2.2 Selection. Given a population 𝑂 ⊆ {0, 1}𝑛 of individuals
and a fitness function 𝑓 , we write select𝜇 (𝑂, 𝑓) to denote a selection
mechanism that selects 𝜇 individuals from 𝑂 . In this paper, we use
truncation selection, that is, we sort the individuals in 𝑂 by fitness
and then select the 𝜇 best individuals (breaking ties uniformly at
random).

2.2.3 Building the probabilistic model. When constructing a
new probabilistic model, MIMIC makes use of the unconditional
and conditional (empirical) entropy of a set of bit strings. These
mathematical functions make use of the relative occurrences of bit
values. To this end, for a population 𝑆 ⊆ {0, 1}𝑛 , a position 𝑖 ∈ [𝑛],
and a bit value 𝑏 ∈ {0, 1}, let the frequency of 𝑏 at position 𝑖 in 𝑆 be

𝛾𝑏 [𝑆 ; 𝑖] = 1
|𝑆 |

∑︁
𝑥∈𝑆

1{𝑥𝑖 = 𝑏}.

Further, for a population 𝑆 ⊆ {0, 1}𝑛 , two positions 𝑖, 𝑗 ∈ [𝑛], and
two bit values 𝑏1, 𝑏2 ∈ {0, 1}, we define the conditional frequency
of 𝑏1 at position 𝑖 in 𝑂 conditional on the value 𝑏2 at position 𝑗 by

𝛾𝑏1𝑏2 [𝑆 ; 𝑖 | 𝑗] =
{ 1

2 if 𝛾𝑏2 [𝑆 ; 𝑗] = 0,
1

|𝑆 | ·𝛾𝑏2 [𝑆 ;𝑗]
∑
𝑥∈𝑆 1{𝑥𝑖 = 𝑏1 ∧ 𝑥 𝑗 = 𝑏2} else.

Note that the case 𝛾𝑏2 [𝑆 ; 𝑗] = 0 means that the event we condition
on has a probability of 0, which is not well defined. In order to

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Martin S. Krejca

represent our lack of knowledge in this case, we choose 1
2 as the

value for the respective probability, which corresponds to a uniform
distribution.

We now define the (empirical) entropy functions that MIMIC
utilizes. To this end, we define that 0 · log2 (0) = 0. For a population
𝑆 ⊆ {0, 1}𝑛 and a position 𝑖 ∈ [𝑛], the entropy at position 𝑖 in 𝑆 is

ℎ[𝑆 ; 𝑖] = −
∑︁

𝑏∈{0,1}
𝛾𝑏 [𝑆 ; 𝑖] · log2 (𝛾𝑏 [𝑆 ; 𝑖]).

Further, for a population 𝑆 ⊆ {0, 1}𝑛 and two positions 𝑖, 𝑗 ∈ [𝑛],
the entropy at position 𝑖 in 𝑂 conditional on position 𝑗 is

ℎ[𝑆 ; 𝑖 | 𝑗] = −
∑︁

(𝑏1,𝑏2) ∈{0,1}2
𝛾𝑏1𝑏2 [𝑆 ; 𝑖 | 𝑗] · 𝛾𝑏2 [𝑆 ; 𝑗] · log2 (𝛾𝑏1𝑏2 [𝑆 ; 𝑖 | 𝑗]).

Given these definitions and a population 𝑆 ⊆ {0, 1}𝑛 of selected
individuals, MIMIC builds a new model by constructing a new
permutation 𝜋 ′ and updating the probabilities in 𝑃 with respect
to 𝜋 ′. The permutation 𝜋 ′ is built in the following iterative and
greedy fashion, breaking ties uniformly at random: for the first
position, an index with the lowest entropy in 𝑆 is chosen. Each
subsequent position is determined by an index with the lowest
entropy in 𝑆 conditional on the previous index in 𝜋 ′.

Each time that a new position 𝑖 is determined for 𝜋 ′, the proba-
bilities 𝑃𝑖,0 and 𝑃𝑖,1 are updated. If 𝑖 = 𝜋 ′ (1), both 𝑃𝑖,0 and 𝑃𝑖,1 are
set to the relative number of 1s at position 𝑖 in 𝑆 , that is 𝛾1 [𝑆 ; 𝑖].
If 𝑖 ≠ 𝜋 ′ (1), that is, there is a preceding position 𝑗 in 𝜋 ′, for a bit
value 𝑏, the probability 𝑃𝑖,𝑏 is set to the relative number of 1s at
position 𝑖 in 𝑆 that also have a value of 𝑏 at position 𝑗 . Note that
this is equivalent to setting 𝑃𝑖,𝑏 to 𝛾1𝑏 [𝑆 ; 𝑖 | 𝑗].

In order to circumvent the model from sampling only 0s or
only 1s at some position, we make sure that no probability is 0
or 1. We enforce this after building 𝜋 ′ and updating 𝑃 by increasing
probabilities less than 1

𝑛 to 1
𝑛 and by decreasing probabilities greater

than 1− 1
𝑛 to 1− 1

𝑛 . We may also say that we restrict 𝑃 to the interval
[1
𝑛 , 1 − 1

𝑛].
Note that restricting the probabilities makes it necessary to de-

fine a value for the first case in the definition of 𝛾𝑏1𝑏2 , since it can
happen that 𝛾𝑏2 [𝑆 ; 𝑗] = 0 in 𝑆 , but the corresponding probability is
not 0, as it is restricted to [1

𝑛 , 1− 1
𝑛]. In such a case, it is possible to

sample 𝑏2 with the new model, making it necessary to define the
probability 𝑃𝑖,𝑏2 .

2.3 EqalBlocksOneMax (EBOM)

Many benchmark functions test an algorithm’s capability of finding
an optimal solution at all. Hence, they are commonly composed of
deceptive or otherwise hard landscapes with many dependencies.
In order to reduce the probability of finding an optimal solution by
pure chance, the number of optima of such a function is usually
small. For EDAs, it is not only interesting how fast they find good
solutions but also how well their probabilistic model represents the
distribution of good solutions in the search space.

To this end, we introduce the test function EBOM. It represents
a fairly simple hill-climbing landscape, similar to that of the well-
known OneMax function (the sum of all bit values in an individual),
but features an exponential number of optima. Thus, finding a single
optimal solution is easy, but exploiting the structure of EBOM

and being able to generate a large number of different optima is
challenging.

2.3.1 Definition. Given a bit string of length 𝑛, EBOM oper-
ates on blocks of size 2 and returns the number of blocks that are
either 00 or 11. Let 𝑛 be even. For each 𝑗 ∈ [𝑛2], let the pair of
positions 2 𝑗 − 1 and 2 𝑗 denote block 𝑗 . For an individual 𝑥 ∈ {0, 1}𝑛 ,
we say that block 𝑗 is correct if the bits in block 𝑗 have identical
values. The objective of EBOM is to maximize the number of correct
blocks. Formally, for all 𝑥 ∈ {0, 1}𝑛 ,

EBOM(𝑥) =
𝑛/2∑︁
𝑗=1
1{𝑥2𝑗−1 = 𝑥2𝑗 }.

Consequently, EBOM has a maximal fitness of 𝑛
2 and 2𝑛/2 dif-

ferent optima, since there are two possibilities for each of the 𝑛
2

blocks to be correct.

2.4 An Ideal Model of MIMIC for EBOM

We are interested in a model of MIMIC that generates each optimal
solution of EBOM with the same maximal probability. We call such
a model ideal.

The permutation 𝜋 of an ideal model is such that, for each block
𝑗 ∈ [𝑛2] of EBOM, the positions 2 𝑗 − 1 and 2 𝑗 are adjacent in 𝜋 (but
in any order). In the following, assume without loss of generality
that 𝜋 (2 𝑗 − 1) < 𝜋 (2 𝑗), that is, position 2 𝑗 − 1 occurs before 2 𝑗 in 𝜋 .
For the probability matrix 𝑃 of an ideal model, the probabilities of
position 2 𝑗 − 1 are both 1

2 , and the probabilities of position 2 𝑗 are
1− 1

𝑛 (conditional on a prior 1) and 1
𝑛 (conditional on a prior 0). Note

that, when sampling a solution with an ideal model, the bit sampled
at position 2 𝑗 is sampled conditional on the bit at position 2 𝑗 − 1.
Due to the choice of 𝑃 , this probability is maximized. Choosing 1

2 as
the value of both probabilities of position 2 𝑗 −1 further ensures two
things: (1) The bit at position 2 𝑗 −1 is sampled independently of the
bit at position 2 𝑗 − 2.1 (2) Block 𝑗 is 00 or 11 with equal probability.
Overall, an ideal model has maximal equal probability to sample an
optimum. We now discuss features that help in assessing whether
a model is close to an ideal model or not.

In an ideal model, the probability that a generated bit string
is one of the 2𝑛/2 optima is 2𝑛/2

(1
2 (1 − 1

𝑛)
)𝑛/2 =

((1 − 1
𝑛)𝑛

)1/2.
Using that lim𝑛→∞ (1 − 1

𝑛)𝑛 = 1
e , the probability of MIMIC to

sample an optimal solution, given an optimal model, is roughly
1/√𝑒 ≈ 60.65 %. However, note that the probability of 1/√e of
sampling an optimum is, by itself, not indicative of an ideal model.
This probability is also achieved by any other model which is like
an ideal model but has the following difference: for each block 𝑗

(defined as above), the probabilities at position 2 𝑗 − 1 are equal but
not necessarily 1

2 . Given such a model, the probability to sample any
optimum is still 1/√e. However, the probability to sample a specific
optimum may differ from optimum to optimum. Consequently, we
also consider a second indicator for an ideal model.

The property of an ideal model that each optimum has the same
probability of being sampled makes it unlikely that such a model
creates duplicate solutions in 𝑚 ∈ N+ independent tries. More
formally, for an optimal model, since each optimum is equally
1For this to hold, it suffices that both probabilities of position 2𝑗 − 1 are the same;
they do not have to be 1

2 .

Bivariate EDAs Can Find an Exponential Number of Optima GECCO ’20, July 8–12, 2020, Cancún, Mexico

likely, the probability that all optima are distinct when sampling 𝑚
optimal solutions is (2𝑛/2)!/(2𝑚𝑛/2 · (2𝑛/2 −𝑚)!) , by the birthday
paradox. This probability is at least (1−𝑚/2𝑛/2)𝑚 ≥ 1−𝑚2/2𝑛/2, by
Bernoulli’s inequality, which is close to 1 as long as𝑚2 = 𝑜 (2𝑛/2).

We conclude from these insights that a good model of MIMIC
should sample optima with a probability of roughly 1/√e and that
it should not sample duplicates, with high probability.

3 RESULTS

In this section, we show that MIMIC creates models in reasonable
time that behave similarly to an ideal model for EBOM. We first
explain our setup, then we discuss our results.

3.1 Algorithm Setup

We use MIMIC as seen in Algorithm 1 with truncation selection
(with uniform tie-breaking) and with 𝜆 = ⌊12𝑛 ln𝑛⌋ and 𝜇 = ⌊𝜆/8⌋.
Our choice for 𝜆 is based on a grid search for the exponent of the
𝑛-factor in the interval [0.5, 1] with a step size of 0.1. The exponent
of 1 was the first with that MIMIC found an optimum in all runs
of our test setup (see also Section 3.2). For 𝜇, we chose a constant
fraction of 𝜆, which is common for EDAs.

3.2 Test Setup

We are interested in determining how well MIMIC is capable of gen-
erating a probabilistic model that implicitly captures an exponential
number of optima of EBOM. Consequently, we use our insights
from Section 2.4 in order to determine how good a model of MIMIC
is. To this end, we let MIMIC run for a number of iterations 𝐼 , which
we explain below, and we determine

(1) the probabilistic model (that is 𝜋 and 𝑃) in each iteration,
(2) with what probability optimal solutions are created in each

iteration, and
(3) how many distinct optima are created in 𝐼 iterations.
Our choice of 𝐼 is as follows: let𝑇 denote the number of iterations

until MIMIC samples an optimum for the first time. Then we let the
algorithm run for 𝑇 more iterations, that is, 𝐼 = 2𝑇 . Since MIMIC
may fail finding an optimum in a reasonable time, we abort a run
if the number of iterations exceeds 50 000 iterations. However, we
chose 𝜆 and 𝜇 such that all of our tests were successful. That is,
MIMIC always found an optimum, and we let the algorithm run
for 2𝑇 iterations.

We consider MIMIC for values of 𝑛 from 50 to 200 in steps of 10.
For each value of 𝑛, we start 100 independent runs. For each run, we
record the number of iterations until the first optimum is sampled
(that is,𝑇), the set of all optima that are found in each of the 2𝑇 total
iterations (which may include duplicates), the number of optima
found in each of these iterations, as well as the probabilistic model
in each iteration. Note that with this data we are able to compute
the information above we are interested in.

3.2.1 Visualization. We depict our results in Figures 1 to 4 and
in Tables 1 and 2. In these plots, we visualize:

(1) the total number of iterations and fitness evaluations,
(2) how the probabilistic model evolves during a run,
(3) the number of optima found as well the number of runs that

only found distinct optima, and

Table 1: The probabilities of the first 10 positions (occurring

in 𝜋) of MIMIC optimizing EBOM for one of the runs with

𝑛 = 200, at iteration 2𝑇 . For a discussion of this table, please

refer to Section 3.3.2.

position 𝑖 𝑃𝑖,0 𝑃𝑖,1

17 0.662052 0.662052
18 0.005 0.995
90 0.636872 0.610266
89 0.005 0.995
41 0.649587 0.58435
42 0.005 0.995
49 0.68438 0.546488
50 0.005 0.995
104 0.582677 0.613208
103 0.005 0.995

.

.

.

(4) the probability of sampling an optimum during an iteration.
For each figure, we plot the data of all 100 runs (per 𝑛) simulta-

neously in a concise manner: we depict the median of the data as a
point and connect the medians with a solid line. Further, we depict
the mid 50 % (that is, ranks 25 to 75 when ordering the runs) as a
shaded area bounded by a dotted line. We provide more information
about the visualization in the discussion of our results.

3.3 Discussion

In this section, we discuss the results depicted in Figures 1 to 4 and
in Tables 1 and 2.

3.3.1 Run time. Figure 1 shows the run time of each of the 100
runs per 𝑛 with respect to the number of iterations (Figure 1a)
and with respect to the number of fitness function evaluations
(Figure 1b).

The number of iterations depicted is the number of iterations of
each run until an optimum was found for the first time. That is, the
number of iterations corresponds to 𝑇 , as explained in Section 3.2.
For each change in the number of iterations (for example, at 𝑛 = 70),
there is one value of 𝑛 that has a high variance (the shaded area),
and many runs take either the number of iterations of the previous
value of 𝑛 or an extra iteration. Except for these transitions, the
run time of MIMIC is enormously consistent, with the mid 50 %
all taking the same number of iterations. Overall, the number of
iterations slightly increases with 𝑛.

The number of fitness function evaluations provides a better
picture on how long MIMIC takes for a run. Note that the numbers
shown in Figure 1b are the numbers from Figure 1a times 𝜆, as
MIMIC performs 𝜆 fitness evaluations in each iteration. The reason
that the curve is not constant when the number of iterations stays
the same for different values of 𝑛 is that we chose 𝜆 = ⌊12𝑛 ln𝑛⌋,
which grows in 𝑛. Thus, depending on how 𝑇 grows in 𝑛, the total
run time of MIMIC on EBOM is at least in the order of 𝑛 ln𝑛.

3.3.2 Probabilistic model. Figure 2 and Tables 1 and 2 show-
case information about the probabilistic model of MIMIC and its
quality with respect to an ideal model (see also Section 2.4). For a

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Martin S. Krejca

60 80 100 120 140 160 180 200

3

4

5

6

7

=

nu
m

be
ro

fi
te

ra
tio

ns
un

til
op

tim
um

MIMIC

(a) The number of iterations it took each of the 100 runs per 𝑛

until an optimum was found for the first time (that is,𝑇).

60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

9

·104

=

nu
m

be
ro

f�
tn

es
se

va
lu

at
io

ns
un

til
op

tim
um

MIMIC

(b) The number of fitness evaluations it took each of the 100 runs

per 𝑛 until an optimum was found for the first time (that is, 𝜆𝑇).

Figure 1: Two depictions of the run time of MIMIC optimizing EBOM. For information about the type of plot used, please refer

to Section 3.2.1. For a discussion of these plots, please refer to Section 3.3.1.

60 80 100 120 140 160 180 200

0

5 · 10−2

0.1

0.15

0.2

0.25

100
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

=

de
vi

at
io

n
fro

m
0.

5

maximum deviation
mean deviation
minimum deviation

Figure 2: Depicted are the maximum, mean, and minimum

of the deviation of the central probabilities in 𝑃 from 0.5 in

iteration 2𝑇 . The numbers over the plot with the triangles

denote the number of runs (out of 100) that have a correct

permutation in their model. For a discussion of this plot,

please refer to Section 3.3.2.

60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

·104

74 99

100 100 100

100 100 100 100

100 100 100 100

100
100

100

=

nu
m

be
ro

fu
ni

qu
e

op
tim

a

MIMIC

Figure 3: The number of distinct optima that MIMIC found

when optimizing EBOM. An optimum is distinct if it was

only sampled once during a single run. The number over

each data point states how many of the 100 runs sampled

exclusively distinct optima. For a discussion of these plots,

please refer to Section 3.3.3.

Bivariate EDAs Can Find an Exponential Number of Optima GECCO ’20, July 8–12, 2020, Cancún, Mexico

Table 2: The probabilities of the positions 1 and 2 (occurring

in 𝜋) of MIMIC optimizing EBOM for one of the runs with

𝑛 = 200, over all iterations. For a discussion of this table,

please refer to Section 3.3.2.

iteration 𝑃1,0 𝑃1,1 𝑃2,0 𝑃2,1

1 0.5 0.5 0.5 0.5
2 0.533825 0.454897 0.428928 0.587039
3 0.311688 0.665446 0.542926 0.485564
4 0.51094 0.458128 0.256098 0.789337
5 0.141582 0.828571 0.535533 0.478152
6 0.474968 0.453086 0.115023 0.903664
7 0.465116 0.519018 0.0794045 0.943806
8 0.465385 0.478368 0.0381406 0.98
9 0.450299 0.486737 0.00945626 0.995
10 0.440618 0.480589 0.005 0.995
11 0.005 0.995 0.442663 0.462725
12 0.005 0.995 0.470277 0.424279
13 0.406593 0.460972 0.005 0.995
14 0.455733 0.421111 0.005 0.995

comparison to make sense, it is important that the permutation 𝜋

of a model of MIMIC is close to that of an ideal model – ideally,
𝜋 would correspond to a permutation of an ideal model. To this
end, we say that a permutation 𝜋 is correct if, starting from the
first position, its positions occur in pairs of two such that (1) the
positions in each pair differ by exactly 1 and that (2) the maximum
of the positions of each pair is an even number. Note that the set
of all correct permutations corresponds exactly to that of all ideal
models.2

In Table 1, we show an excerpt of the model from one out of the
100 runs of MIMIC on EBOM in the last iteration, that is, 2𝑇 . In
total, we mention 10 entries from the model (out of 200). The first
column depicts the bit positions as they occur in the permutation 𝜋 .
We see that all entries occur as they would in a correct permutation,
suggesting that the entire permutation is correct. Note that the
order of the positions per pair appears randomly, which makes
sense, as the order does not matter for sampling a block in EBOM
correctly.

The other two columns of Table 1 show the two probabilities
of the position from the first column. We see that, for each pair of
positions (as defined above), the first position has its probabilities
close to 0.5 and second one has its probabilities at the borders of the
interval [1

𝑛 , 1 − 1
𝑛]. Further, the probabilities at the borders are at

the correct end for maximizing the probability of sampling a block
in EBOM correctly. That is, the probability 𝑃𝑖,0 is at 1

𝑛 (making it
likely to sample a 0 when the previous position sampled at 0), and
the probability 𝑃𝑖,1 is at 1 − 1

𝑛 . Overall, the results from Table 1
already suggest that MIMIC builds a model close to an ideal one.

In Figure 2, we have a closer look at how closely the model
of MIMIC in iteration 2𝑇 resembles an ideal model. In order for
such a comparison to make sense, we first analyze how well the
permutation of such a model deviates from the permutation of an

2Property (2) is necessary, since EBOM defines its block with respect to position 1. For
example, positions 1 and 2 form a block in EBOM, but positions 2 and 3 do not.

ideal model. Out of all of our runs, each run produced a correct
permutation in iteration 2𝑇 . We depict these numbers in Figure 2
over the curve in the middle, with the triangles. Thus, the only way
for a model of MIMIC to deviate from an ideal model is in how
largely the probabilities in 𝑃 deviate from those of an ideal model.

When comparing probabilities of 𝑃 to that of an ideal model,
we group the probabilities into those that should be close to 0.5
(the central probabilities) and into those that should be close to the
borders (the border probabilities). We may also use the respective
adjective for a position in order to indicate that both of the probabil-
ities are central or border. We group the probabilities with respect
to the blocks in 𝜋 . In order to determine which position of each
block is central and which is border, we look at the probability with
the highest deviation from 0.5 (breaking ties uniformly at random).
The position with the probability that has the highest deviation is
considered border, the other position is considered central.

We then calculate the absolute distance of each probability to its
ideal value. For the central probabilities, we calculate their distance
to 0.5 (regardless of whether the probability is conditional on a 0
or a 1). For the border probabilities conditional on a 0, we calculate
their distance to 1

𝑛 , and for those conditional on a 1, we calculate
their distance to 1 − 1

𝑛 . Afterward, for the two groups of central
and border probabilities, we calculate, for each of the positions
per run and value of 𝑛, the maximum, mean, and minimum of the
deviations of each probability.

The results of these calculations for the central probabilities
are depicted in Figure 2. The arguably most interesting result is
the maximum deviation among all positions of a single run. This
value seems to decrease with increasing 𝑛. However, a deviation
of about 0.2 can still be considered rather large. We discuss in the
following sections how this affects the quality of the model.

The deviations for the border probabilities are not depicted, as
the maximum over all runs and all values of 𝑛 was in the order of
10−6. This suggests that the border probabilities are always very
close to the borders in iteration 2𝑇 .

Since we only looked at the model of MIMIC in iteration 2𝑇 ,
Table 2 provides an excerpt of how the probabilities of the first
block evolve over the iterations. We depict data from one of the
runs with 𝑛 = 200. From iteration 10 to 11 and from 12 to 13, we see
that the probabilities of the positions 1 and 2 change their statuses
of being central or border. This makes sense, as we already briefly
discussed, as the order of the positions in a block does not matter for
sampling a correct block. Given a correct block, it is then random
which position MIMIC determines to be the first in its permutation
(and, thus, central) and which it chooses next (being border). Thus,
we conclude that MIMIC does not converge to a single model that
is close to an ideal model but instead switches between different
models from iteration to iteration.

3.3.3 Similarity to an ideal model. Since the results so far sug-
gest that the model of MIMIC is close to an ideal model except for
the deviation of the central probabilities (see Section 3.3.2), we now
consider how well the model reflects the two properties of an ideal
model that we describe in Section 2.4. We start with the probability
to sample an optimum in each iteration.

Figure 4 shows how many of the solutions of the 𝜆 solutions
sampled during each iteration are optima. We chose to depict this

GECCO ’20, July 8–12, 2020, Cancún, Mexico Benjamin Doerr and Martin S. Krejca

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

iteration

re
la

tiv
e

nu
m

be
ro

fo
pt

im
a

sa
m

pl
ed

n = 110

MIMIC
1√
e

(a) The relative number of optima in an iteration for 𝑛 = 110.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

0.1

0.2

0.3

0.4

0.5

0.6

iteration

re
la

tiv
e

nu
m

be
ro

fo
pt

im
a

sa
m

pl
ed

𝑛 = 200

MIMIC
1√
e

(b) The relative number of optima in an iteration for 𝑛 = 200.

Figure 4: Depicted are how the relative number of optima sampled evolves over the number of iterations for MIMIC optimizing

EBOM. The horizontal line at the top shows the value 1/√e ≈ 60.65 %, which is roughly the probability of sampling an optimum

in a single iteration, given an ideal model of MIMIC for EBOM (see Section 2.4). For a discussion of these plots, please refer to

Section 3.3.3.

ratio for the cases of 𝑛 = 110 and 𝑛 = 200, which are cases where
all of the mid 50 % of the runs used the same number of iterations
(see also Figure 1a). This data can be interpreted as the probability
of sampling an optimum in each iteration. Following our ideas
discussed in Section 2.4, we also depict the value 1/√e in both plots,
which represents the probability to sample an optimum, given an
ideal model.

Both Figures 4a and 4b show that the empirical ratio is surpris-
ingly close to the ideal value. This suggests that the model behaves
similarly to an ideal model in terms of consistently sampling optima,
despite the central probabilities sometimes deviating somewhat
largely from 0.5 (see Figure 2). The fact that some data points show
a ratio that is slightly higher than the theoretical optimum is due
to the variance in the randomness of the algorithm.

Figure 3 shows how many of the optima that MIMIC found per
run were distinct as well as how many runs only found distinct
optima. Except for the cases 𝑛 = 50 and 𝑛 = 60, MIMIC found
exclusively distinct optima per run. This result is remarkable and
suggests that MIMIC builds a very general model that is capable of
sampling a huge variety of different solutions.

We now argue that it is not unlikely for the cases 𝑛 = 50 and
𝑛 = 60 to have runs that failed to only find distinct optima. In
Section 2.4 we derived a lower bound on how likely it is to have
no duplicate in𝑚 samples. In a similar fashion, one can derive an
upper bound (using that, for 𝑎 ≤ 𝑏, 𝑎!/(𝑎 −𝑚)! ≲ (𝑎 − 𝑚

2)𝑚 and
that, for 𝑥 ∈ [0, 1], (1 − 𝑥)𝑚 ≈ e−𝑥𝑚) of roughly e−𝑚2/2𝑛/2+1 . Thus,
a lower bound of having a duplicate in 𝑚 tries is roughly at least
1 − e−𝑚2/2𝑛/2+1 . For 𝑛 = 60, using that 4 out of 6 iterations are used
for sampling optima and that about 1.7 · 104 solutions are created
in a run (retrieved from the data used for Figure 1), we get that
the probability for a run to have a duplicate optimum is about 6 %,

which means that we would expect about 6 failures. For 𝑛 = 70, the
probability to have a duplicate optimum drops already below 1 %.3

Overall, the results from Figures 3 and 4 suggest that the model
of MIMIC behaves similarly to an ideal model. We thus consider it
to actually be similar to an ideal model.

4 CONCLUSION

We showed for the test function EBOM that MIMIC efficiently
generates a probabilistic model that behaves similarly to an ideal
model. Since EBOM exhibits an exponential number of optima, this
suggests that MIMIC is capable of implicitly storing a large range
of different solutions in its model. Our experiments show that the
model that MIMIC generates over time
• has a permutation and border probabilities (almost) as in an

ideal model, that the model
• does not create duplicate optimal solutions with increasing

input size, and that it
• samples optima in each iteration with a probability that is

close to the theoretical optimum of 1/√e.
Looking at sample data about the probabilistic model further sug-
gests that the model is built such that it can generate an exponential
number of optima. This is impressive, as MIMIC was not modified in
any way and since this model is generated in a reasonable amount
of time.

For future research, it is interesting to see if MIMIC also builds
good models on more complicated functions with multiple optima,
such as vertex cover on bipartite graphs. Further, since MIMIC has a
very restricted type of bivariate model (namely, a path), considering
other bivariate EDAs with a greater range of models, such as the
bivariate marginal distribution algorithm ([21]; working on trees),

3This estimation makes the assumption that the model is ideal in 4 out of 6 iterations.
However, data similar to that depicted in Figure 4 suggests that it takes at least one
iteration until the model samples optima consistently.

Bivariate EDAs Can Find an Exponential Number of Optima GECCO ’20, July 8–12, 2020, Cancún, Mexico

would provide insights into whether the restriction of MIMIC’s
model to a path is a hindrance or not.

ACKNOWLEDGMENTS

This work was supported by COST action CA15140 and by a pub-
lic grant as part of the Investissement d’avenir project reference
ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard
Monge Program for optimization, operations research and their
interactions with data sciences.

REFERENCES

[1] Ignasi Belda, Sergio Madurga, Teresa Tarragó, Xavier Llorà, and Ernest Giralt.
2007. Evolutionary computation and multimodal search: A good combination to
tackle molecular diversity in the field of peptide design. Molecular Diversity 11
(2007), 7–21. https://doi.org/10.1007/s11030-006-9053-1

[2] Jeremy S. De Bonet, Charles Lee Isbell Jr., and Paul A. Viola.
1996. MIMIC: finding optima by estimating probability densi-
ties. In Proc. of NIPS ’96. 424–430. http://papers.nips.cc/paper/
1328-mimic-finding-optima-by-estimating-probability-densities

[3] Chung-Yao Chuang and Wen-Lian Hsu. 2010. Multivariate multi-model approach
for globally multimodal problems. In Proc. of GECCO ’10. 311–318. https://doi.
org/10.1145/1830483.1830544

[4] Kenneth Alan De Jong. 1975. An analysis of the behavior of a class of genetic
adaptive systems. Ph.D. Dissertation. USA. University of Michigan.

[5] Benjamin Doerr and Martin S. Krejca. 2020. The univariate marginal distribution
algorithm copes well with deception and epistasis. In Proc. of EvoCOP ’20. To
appear.

[6] Benjamin Doerr and Weijie Zheng. 2019. Sharp bounds for genetic drift in EDAs.
CoRR abs/1910.14389 (2019). https://arxiv.org/abs/1910.14389

[7] Tobias Friedrich, Timo Kötzing, and Martin S. Krejca. 2016. EDAs cannot be
balanced and stable. In Proc. of GECCO ’16. 1139–1146. https://doi.org/10.1145/
2908812.2908895

[8] Georges R. Harik., Fernando G. Lobo, and David E. Goldberg. 1999. The compact
genetic algorithm. IEEE Transactions on Evolutionary Computations 3, 4 (1999),
287–297. https://doi.org/10.1109/4235.797971

[9] Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. 2006. Linkage learning
via probabilistic modeling in the extended compact genetic algorithm (ECGA). In
Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications.
Springer, 39–61. https://doi.org/10.1007/978-3-540-34954-9_3

[10] Mark Hauschild, Martin Pelikan, Claudio F. Lima, and Kumara Sastry. 2007.
Analyzing probabilistic models in hierarchical BOA on traps and spin glasses. In

Proc. of GECCO ’07. 523–530. https://doi.org/10.1145/1276958.1277070
[11] Cem Hocaoǧlu and Arthur C. Sanderson. 1997. Multimodal function optimization

using minimal representation size clustering and its application to planning
multipaths. Evolutionary Computation 5, 1 (1997), 81–104. https://doi.org/10.
1162/evco.1997.5.1.81

[12] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles
and techniques. The MIT Press.

[13] Martin Krejca and Carsten Witt. 2020. Theory of estimation-of-distribution
algorithms. In Theory of Evolutionary Computation: Recent Developments in
Discrete Optimization. Springer, Chapter 9, 405–442. https://doi.org/10.1007/
978-3-030-29414-4, available online under https://arxiv.org/abs/1806.05392.

[14] Per Kristian Lehre and Phan Trung Hai Nguyen. 2019. On the limitations of
the univariate marginal distribution algorithm to deception and where bivariate
EDAs might help. In Proc. of FOGA ’19. 154–168. https://doi.org/10.1145/3299904.
3340316

[15] Samir W. Mahfoud. 1996. Niching methods for genetic algorithms. Ph.D. Disserta-
tion. USA. University of Illinois at Urbana-Champaign.

[16] Brad L. Miller and Michael J. Shaw. 1996. Genetic algorithms with dynamic
niche sharing for multimodal function optimization. In Proc. of CEC ’96. 786–791.
https://doi.org/10.1109/ICEC.1996.542701

[17] Heinz Mühlenbein and Gerhard Paaß. 1996. From recombination of genes to the
estimation of distributions I. Binary parameters. In Proc. of PPSN IV. 178–187.
https://doi.org/10.1007/3-540-61723-X_982

[18] Martin Pelikan and David E. Goldberg. 2001. Escaping hierarchical traps with
competent genetic algorithms. In Proc. of GECCO ’01. 511–518. https://dl.acm.
org/doi/10.5555/2955239.2955318

[19] Martin Pelikan and David E. Goldberg. 2003. Hierarchical BOA solves Ising spin
glasses and MAXSAT. In Proc. of GECCO ’03. 1271–1282. https://doi.org/10.1007/
3-540-45110-2_3

[20] Martin Pelikan, Mark Hauschild, and Fernando G. Lobo. 2015. Estimation of
distribution algorithms. In Springer Handbook of Computational Intelligence.
Springer, 899–928. https://doi.org/10.1007/978-3-662-43505-2_45

[21] Martin Pelikan and Heinz Mühlenbein. 1999. The bivariate marginal distribution
algorithm. In Advances in Soft Computing. Springer, 521–535. https://doi.org/10.
1007/978-1-4471-0819-1_39

[22] José Peña, Jose Lozano, and Pedro Larranaga. 2005. Globally multimodal problem
optimization via an estimation of distribution algorithm based on unsupervised
learning of Bayesian networks. Evolutionary Computation 13 (2005), 43–66.
https://doi.org/10.1162/1063656053583432

[23] Gulshan Singh and Kalyanmoy Deb. 2006. Comparison of multi-modal opti-
mization algorithms based on evolutionary algorithms. In Proc. of GECCO ’06.
1305–1312. https://doi.org/10.1145/1143997.1144200

https://doi.org/10.1007/s11030-006-9053-1
http://papers.nips.cc/paper/1328-mimic-finding-optima-by-estimating-probability-densities
http://papers.nips.cc/paper/1328-mimic-finding-optima-by-estimating-probability-densities
https://doi.org/10.1145/1830483.1830544
https://doi.org/10.1145/1830483.1830544
https://arxiv.org/abs/1910.14389
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1145/2908812.2908895
https://doi.org/10.1109/4235.797971
https://doi.org/10.1007/978-3-540-34954-9_3
https://doi.org/10.1145/1276958.1277070
https://doi.org/10.1162/evco.1997.5.1.81
https://doi.org/10.1162/evco.1997.5.1.81
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1007/978-3-030-29414-4
https://arxiv.org/abs/1806.05392
https://doi.org/10.1145/3299904.3340316
https://doi.org/10.1145/3299904.3340316
https://doi.org/10.1109/ICEC.1996.542701
https://doi.org/10.1007/3-540-61723-X_982
https://dl.acm.org/doi/10.5555/2955239.2955318
https://dl.acm.org/doi/10.5555/2955239.2955318
https://doi.org/10.1007/3-540-45110-2_3
https://doi.org/10.1007/3-540-45110-2_3
https://doi.org/10.1007/978-3-662-43505-2_45
https://doi.org/10.1007/978-1-4471-0819-1_39
https://doi.org/10.1007/978-1-4471-0819-1_39
https://doi.org/10.1162/1063656053583432
https://doi.org/10.1145/1143997.1144200

	Abstract
	1 Introduction
	1.1 Types of EDAs

	2 Preliminaries
	2.1 Notation
	2.2 Mutual-Information-Maximizing Input Clustering (MIMIC)
	2.3 EqualBlocksOneMax (EBOM)
	2.4 An Ideal Model of MIMIC for EBOM

	3 Results
	3.1 Algorithm Setup
	3.2 Test Setup
	3.3 Discussion

	4 Conclusion
	Acknowledgments
	References

