
A RISC-V Instruction Set Extension for Flexible
Hardware/Software Protection of Cryptosystems

Masked at High Orders

Fabrice Lozachmeur1 and Arnaud Tisserand2

1Thales LAS France SAS, Lab-STICC, Université Bretagne Sud, Lorient, France.

2CNRS, Lab-STICC, hosted at ENSTA Bretagne, Brest, France.

MWSCAS, August 7, 2023

1 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

2 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

3 / 17



Introduction

Side channel attacks (SCAs) [KJJ99]
Exploit correlations between measured physical values and operations and
operands processed in the circuit

Masking countermeasure [Cha+99; GP99]
Randomize all intermediate sensitive variables

Instruction set extensions (ISEs)
New masked instruction to accelerate masking and increase security

Contribution
A RISC-V ISE for flexible hardware/software protection of cryptosystems
masked at high orders

4 / 17



Introduction

Side channel attacks (SCAs) [KJJ99]
Exploit correlations between measured physical values and operations and
operands processed in the circuit

Masking countermeasure [Cha+99; GP99]
Randomize all intermediate sensitive variables

Instruction set extensions (ISEs)
New masked instruction to accelerate masking and increase security

Contribution
A RISC-V ISE for flexible hardware/software protection of cryptosystems
masked at high orders

4 / 17



Introduction

Side channel attacks (SCAs) [KJJ99]
Exploit correlations between measured physical values and operations and
operands processed in the circuit

Masking countermeasure [Cha+99; GP99]
Randomize all intermediate sensitive variables

Instruction set extensions (ISEs)
New masked instruction to accelerate masking and increase security

Contribution
A RISC-V ISE for flexible hardware/software protection of cryptosystems
masked at high orders

4 / 17



Introduction

Side channel attacks (SCAs) [KJJ99]
Exploit correlations between measured physical values and operations and
operands processed in the circuit

Masking countermeasure [Cha+99; GP99]
Randomize all intermediate sensitive variables

Instruction set extensions (ISEs)
New masked instruction to accelerate masking and increase security

Contribution
A RISC-V ISE for flexible hardware/software protection of cryptosystems
masked at high orders

4 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

5 / 17



Masking Countermeasure

Masking
▶ Mask x into (x ⊕m,m)

with m a random mask
▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m m

F′

Unmasking

6 / 17



Masking Countermeasure

Masking
▶ Mask x into (x ⊕m,m)

with m a random mask
▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m m

F′

Unmasking

6 / 17



Masking Countermeasure

Masking
▶ Mask x into (x ⊕m,m)

with m a random mask
▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m m

F′

Unmasking

6 / 17



Masking Countermeasure

Masking
▶ Mask x into (x ⊕m,m)

with m a random mask
▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m m

F′

Unmasking

6 / 17



Masking Countermeasure

2-order masking
▶ Mask x into

(x ⊕m1 ⊕m2,m1,m2)
with m1,m2 random masks

▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m1 ⊕m2 m1 m2

F′

Unmasking

6 / 17



Masking Countermeasure

d-order masking
▶ Mask x into

(x⊕m1⊕· · ·⊕md ,m1, · · · ,md)

with m1, · · · ,md random
masks

▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m1 ⊕ · · · ⊕md m1 · · · md

F′

· · ·

Unmasking

6 / 17



Masking Countermeasure

d-order masking
▶ Mask x into

(x⊕m1⊕· · ·⊕md ,m1, · · · ,md)

with m1, · · · ,md random
masks

▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage

x

y

F

Masking Rand

x ⊕m1 ⊕ · · · ⊕md m1 · · · md

F′

· · ·

Unmasking

6 / 17



Instruction Set Extensions for Masking

Reference RV Masking
order

Flexbility at
design time

Flexbility at
run time

[Gro+16] ✓ {1, 2, 3, 4} ✓ ✗

[DGH19] ✓ 1 ✗ ✗

[Gao+21] ✓ 1 ✗ ✗

SKIVA [Kia+21] ✗ {1, 3} ✗ ✓

SME [MP21] ✓ {1, 2, 3} ✓ ✗

Our ISE ✓ {1, · · · , 31} ✓ ✓

7 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

8 / 17



Our Hardware/Software Masking Solution

A hardware masked ISE
Masked ISE with order dH fixed at synthesis time

Software usage of our hardware masking ISE
Secure composition over the masked instructions to mask at order:

d = s(dH + 1)− 1,

where s is a software multiplicative factor fixed at run time

Implementation results
Masked ISE at orders dH ∈ {1, 2, 3, 5, 7} and various total orders

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Total masking order

0

1

2

3

4

E
n

cr
yp

ti
on

ti
m

e
(c

lo
ck

cy
cl

es
×

1
0

6
)

SW-M-BS
HW-M-our dH = 1

HW-M-our dH = 2

HW-M-our dH = 3

HW-M-our dH = 5

HW-M-our dH = 7

FFs LUTs P

1.0

1.1

1.2

1.3

1.4

A
re

a
an

d
p

er
io

d
ov

er
h

ea
d

9 / 17



Our Hardware/Software Masking Solution

A hardware masked ISE
Masked ISE with order dH fixed at synthesis time

Software usage of our hardware masking ISE
Secure composition over the masked instructions to mask at order:

d = s(dH + 1)− 1,

where s is a software multiplicative factor fixed at run time

Implementation results
Masked ISE at orders dH ∈ {1, 2, 3, 5, 7} and various total orders

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Total masking order

0

1

2

3

4

E
n

cr
yp

ti
on

ti
m

e
(c

lo
ck

cy
cl

es
×

1
0

6
)

SW-M-BS
HW-M-our dH = 1

HW-M-our dH = 2

HW-M-our dH = 3

HW-M-our dH = 5

HW-M-our dH = 7

FFs LUTs P

1.0

1.1

1.2

1.3

1.4

A
re

a
an

d
p

er
io

d
ov

er
h

ea
d

9 / 17



Our Hardware/Software Masking Solution

A hardware masked ISE
Masked ISE with order dH fixed at synthesis time

Software usage of our hardware masking ISE
Secure composition over the masked instructions to mask at order:

d = s(dH + 1)− 1,

where s is a software multiplicative factor fixed at run time

Implementation results
Masked ISE at orders dH ∈ {1, 2, 3, 5, 7} and various total orders

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Total masking order

0

1

2

3

4

E
n

cr
yp

ti
on

ti
m

e
(c

lo
ck

cy
cl

es
×

1
0

6
)

SW-M-BS
HW-M-our dH = 1

HW-M-our dH = 2

HW-M-our dH = 3

HW-M-our dH = 5

HW-M-our dH = 7

FFs LUTs P

1.0

1.1

1.2

1.3

1.4

A
re

a
an

d
p

er
io

d
ov

er
h

ea
d

9 / 17



Our masked ISE

Masked Instructions
▶ Use share slicing representation (see [JS17])
▶ Verify PINI composability property (see [CS20])
▶ Easy masking of bit slicing implementations using USUBA (see

[MD19])

Instruction Format Latency Random bits
masked AND m.and rd, rs1, rs2 2 32(dH − 2)
masked OR m.or rd, rs1, rs2 2 32(dH − 2)

masked NOT m.not rd, rs1, rs2 1 0
masked XOR m.xor rd, rs1, rs2 1 0

10 / 17



Unit for Masking

RS1 0 · · · dH · · · 30 − dH · · · 31

RS2 0 · · · dH · · · 30 − dH · · · 31

M-NOT M-NOT M-NOT M-NOT

M-AND XOR M-AND XOR

PRNG

seed

M-NOT M-NOT

RD 0 · · · dH · · · 30 − dH · · · 31

· · ·

· · ·

· · ·

m
as

ke
d

A
LU

FSM

stall

op

11 / 17



Integration into the CV32E40P Core

IF ID EX WB

in
st

ru
ct

io
n

in
te

rf
ac

e

fetch decoder

RF

ALU

masked
ALU

controller

LSU

da
ta

in
te

rf
ac

e

12 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

13 / 17



Comparison to Previous Solutions

Encryption times in log scale for one AES block:
▶ SW-U-BW is unmasked and byte-wise
▶ SW-U-SW is unmasked and bit-sliced [MD19]
▶ SW-M-BW is masked and byte-wise [Cor+14]
▶ SW-M-BS is masked and bit-sliced [Bel+20]
▶ SW-M-SS is masked and uses share-slicing [JS17]
▶ HW-M-SKIVA is masked with SKIVA [Kia+21]
▶ HW-M-SME is masked with SME [MP21]
▶ HW-M-our is masked with our ISE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Masking order

103

104

105

106

107

E
n

cr
yp

ti
on

ti
m

e
(c

lo
ck

cy
cl

es
)

x9.0

x13.8

x23.6
x27.0

SW-U-BW

SW-U-BS

SW-M-BW

SW-M-BS

SW-M-SS

HW-M-SME

HW-M-SKIVA

HW-M-our

14 / 17



Comparison to Previous Solutions

Area/frequency results on a Digilent Arty A7 FPGA board of the
CV32E40P with our and the various state-of-the-art ISEs

4000

6000

8000

10000

12000

L
U

T
s

CORE

CORE+SKIVA

CORE+SME

CORE+our

2000

4000

6000

F
F

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Masking order in hardware

60

70

F
m
a
x

15 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

16 / 17



Conclusion and Future Prospects

Our hardware/software masking solution
▶ Flexibility at design time and run time
▶ Speeds up masking with a small silicon cost
▶ Allow higher order masking
▶ Apply to various cryptosystems

Future Works
▶ Security evaluation using physical attacks
▶ Masked ISE optimized for AES and post-quantum cryptography

17 / 17



Conclusion and Future Prospects

Our hardware/software masking solution
▶ Flexibility at design time and run time
▶ Speeds up masking with a small silicon cost
▶ Allow higher order masking
▶ Apply to various cryptosystems

Future Works
▶ Security evaluation using physical attacks
▶ Masked ISE optimized for AES and post-quantum cryptography

17 / 17



End of Presentation

Thank you for your attention

Do you have any questions?

18 / 17



Bibliography I

[Bel+20] Sonia Belaïd et al. “Tornado: Automatic Generation of Probing-Secure Masked Bitsliced
Implementations”. In: Proc. Annual International Conference on Theory and Applications of
Cryptographic Techniques (EUROCRYPT). Springer, May 2020, pp. 311–341. DOI:
10.1007/978-3-030-45727-3_11.

[Cha+99] Suresh Chari et al. “Towards Sound Approaches to Counteract Power-Analysis Attacks”. In: Proc.
Annual Cryptology Conference (CRYPTO). Springer, Aug. 1999, pp. 398–412. DOI:
10.1007/3-540-48405-1_26.

[Cor+14] Jean-Sébastien Coron et al. “Higher-Order Side Channel Security and Mask Refreshing”. In: Proc.
Fast Software Encryption (FSE). Springer, Mar. 2014, pp. 410–424. DOI:
10.1007/978-3-662-43933-3_21.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. “Trivially and Efficiently Composing Masked
Gadgets With Probe Isolating Non-Interference”. In: Transactions on Information Forensics and
Security (TIFS) (Feb. 2020), pp. 2542–2555. DOI: 10.1109/TIFS.2020.2971153.

[DGH19] Elke De Mulder, Samatha Gummalla, and Michael Hutter. “Protecting RISC-V against Side-Channel
Attacks”. In: Proc. Design Automation Conference (DAC). ACM, June 2019, pp. 1–4. DOI:
10.1145/3316781.3323485.

[Gao+21] Si Gao et al. “An Instruction Set Extension to Support Software-Based Masking”. In: Transactions on
CHES (Aug. 2021), pp. 283–325. DOI: 10.46586/tches.v2021.i4.283-325.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power Analysis The Duplication Method”.
In: Proc. International Workshop on Cryptographic Hardware and Embedded Systems (CHES).
Springer, Aug. 1999, pp. 158–172. DOI: 10.1007/3-540-48059-5_15.

[GR17] Dahmun Goudarzi and Matthieu Rivain. “How Fast Can Higher-Order Masking Be in Software?” In:
Proc. Annual International Conference on Theory and Applications of Cryptographic Techniques
(EUROCRYPT). Springer, Apr. 2017, pp. 567–597. DOI: 10.1007/978-3-319-56620-7_20.

https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1145/3316781.3323485
https://doi.org/10.46586/tches.v2021.i4.283-325
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-56620-7_20


Bibliography II

[Gro+16] Hannes Gross et al. “Concealing Secrets in Embedded Processors Designs”. In: Proc. International
Conference on Smart Card Research and Advanced Applications (CARDIS). Springer, Nov. 2016,
pp. 89–104. DOI: 10.1007/978-3-319-54669-8_6.

[JS17] Anthony Journault and François-Xavier Standaert. “Very High Order Masking: Efficient
Implementation and Security Evaluation”. In: Proc. International Workshop on Cryptographic
Hardware and Embedded Systems (CHES). Springer, Sept. 2017, pp. 623–643. DOI:
10.1007/978-3-319-66787-4_30.

[Kia+21] Pantea Kiaei et al. “Custom Instruction Support for Modular Defense Against Side-Channel and
Fault Attacks”. In: Proc. International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE). Springer, Apr. 2021, pp. 221–253. DOI: 10.1007/978-3-030-68773-1_11.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”. In: Proc. Annual
Cryptology Conference (CRYPTO). Springer, Aug. 1999, pp. 388–397. DOI:
10.1007/3-540-48405-1_25.

[MD19] Darius Mercadier and Pierre-Evariste Dagand. “Usuba: High-Throughput and Constant-Time
Ciphers, by Construction”. In: Proc. Conference on Programming Language Design and
Implementation (PLDI). ACM, June 2019, pp. 157–173. DOI: 10.1145/3314221.3314636.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. 1st ed. Springer, 2007. ISBN: 978-0-387-38162-6. DOI:
10.1007/978-0-387-38162-6.

[MP21] Ben Marshall and Dan Page. SME: Scalable Masking Extensions. IACR Cryptology ePrint Archive.
Oct. 2021. URL: https://eprint.iacr.org/2021/1416.

[QS01] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis (EMA): Measures and
Counter-measures for Smart Cards”. In: Proc. International Conference on Research in Smart Cards
(E-smart). Springer, Sept. 2001, pp. 200–210. DOI: 10.1007/3-540-45418-7_17.

https://doi.org/10.1007/978-3-319-54669-8_6
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-030-68773-1_11
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1145/3314221.3314636
https://doi.org/10.1007/978-0-387-38162-6
https://eprint.iacr.org/2021/1416
https://doi.org/10.1007/3-540-45418-7_17


Attack by Side Channel Observation

Available data
▶ Plaintexts and/or ciphertexts
▶ Physical measurements during

each encryption

Measured physical quantities
▶ Power consumption [KJJ99]
▶ Electromagnetic radiation

[QS01]
▶ . . .

Good book
Power Analysis Attacks: Revealing
the Secrets of Smart Cards
[MOP07].

i ∈ [1,N]

pi Enc ci

k

ALICE

EVE

t
·····

·······
·····

···

Trace Mi

3 / 6



Bit Slicing

Bloc 0 Bloc 1 · · · Bloc 31

R0 b00 b10 · · · b310

R1 b01 b11 · · · b311
...

...
...

...
...

R127 b0127 b1127 · · · b31127

Principle
▶ Transposes k input blocks of l bits into l registers of k bits
▶ Express algorithms in terms of elementary boolean gates (e.g. AND,

XOR, OR, NOT)

Advantages
▶ High throughput
▶ Constant time implementation

4 / 6



Masked Bit Slicing

First solution
Shares of one bit are placed into different registers [JS17; Bel+20]

Second solution: share slicing
Shares of one bit are placed into one slice of a physical register [JS17;
GR17]
▶ Avoids intermediate recombinations of shares
▶ Requires less memory words

5 / 6



Masked Bit Slicing

First solution
Shares of one bit are placed into different registers [JS17; Bel+20]

Second solution: share slicing
Shares of one bit are placed into one slice of a physical register [JS17;
GR17]
▶ Avoids intermediate recombinations of shares
▶ Requires less memory words

5 / 6



Overhead Comparison of Hardware Masking ISEs

dH ISE
Time Area & period overhead

Cycles Ov. FFs LUTs P

1

SME 1142 n.a. 1.5 1.6 1.6
Our SME 1152 0.5 1.4 1.5 1.0

Skiva 2816 4.0 n.a. n.a. n.a.
Our Skiva 13730 4.8 1.0 1.1 1.0

Our 5452 2.3 1.1 1.0 1.0

2
SME 1333 n.a. 1.9 1.9 1.7

Our SME 1271 0.5 1.8 1.8 1.1
Our 8673 3.7 1.1 1.0 1.0

3

SME 1524 n.a. 2.6 2.2 1.7
Our SME 1417 0.6 2.4 2.2 1.1

Skiva 9264 13.2 n.a. n.a. n.a.
Our Skiva 24787 17.0 1.0 1.1 1.0

Our 11010 4.7 1.2 1.0 1.0

6 / 6


	Introduction
	State of the Art
	Proposed Solution
	Comparison to Previous Solutions
	Conclusion and Future Prospects
	Appendix
	References


