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Introduction

Side channel attacks (SCAs) [KJJ99]
Exploit correlations between measured physical values and operations and
operands processed in the circuit

Masking countermeasure [Cha+99; GP99]
Randomize all intermediate sensitive variables

Instruction set extensions (ISEs)
New masked instruction to accelerate masking and increase security

Contribution
A RISC-V ISE for flexible hardware/software protection of cryptosystems
masked at high orders
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Masking Countermeasure

Masking
▶ Mask x into (x ⊕m,m)

with m a random mask
▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage
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Masking Countermeasure

2-order masking
▶ Mask x into

(x ⊕m1 ⊕m2,m1,m2)
with m1,m2 random masks

▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage
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Masking Countermeasure

d-order masking
▶ Mask x into

(x⊕m1⊕· · ·⊕md ,m1, · · · ,md)

with m1, · · · ,md random
masks

▶ Apply a masked function F′

▶ Unmask to get y

Software masking
▶ Computation time increases

as O(d2)

▶ Micro-architectural leakage
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Instruction Set Extensions for Masking

Reference RV Masking
order

Flexbility at
design time

Flexbility at
run time

[Gro+16] ✓ {1, 2, 3, 4} ✓ ✗

[DGH19] ✓ 1 ✗ ✗

[Gao+21] ✓ 1 ✗ ✗

SKIVA [Kia+21] ✗ {1, 3} ✗ ✓

SME [MP21] ✓ {1, 2, 3} ✓ ✗

Our ISE ✓ {1, · · · , 31} ✓ ✓

7 / 17



Table of Contents

1 Introduction

2 State of the Art

3 Proposed Solution

4 Comparison to Previous Solutions

5 Conclusion and Future Prospects

8 / 17



Our Hardware/Software Masking Solution

A hardware masked ISE
Masked ISE with order dH fixed at synthesis time

Software usage of our hardware masking ISE
Secure composition over the masked instructions to mask at order:

d = s(dH + 1)− 1,

where s is a software multiplicative factor fixed at run time

Implementation results
Masked ISE at orders dH ∈ {1, 2, 3, 5, 7} and various total orders
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Our masked ISE

Masked Instructions
▶ Use share slicing representation (see [JS17])
▶ Verify PINI composability property (see [CS20])
▶ Easy masking of bit slicing implementations using USUBA (see

[MD19])

Instruction Format Latency Random bits
masked AND m.and rd, rs1, rs2 2 32(dH − 2)
masked OR m.or rd, rs1, rs2 2 32(dH − 2)

masked NOT m.not rd, rs1, rs2 1 0
masked XOR m.xor rd, rs1, rs2 1 0
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Unit for Masking

RS1 0 · · · dH · · · 30 − dH · · · 31

RS2 0 · · · dH · · · 30 − dH · · · 31

M-NOT M-NOT M-NOT M-NOT

M-AND XOR M-AND XOR

PRNG
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Integration into the CV32E40P Core
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Comparison to Previous Solutions

Encryption times in log scale for one AES block:
▶ SW-U-BW is unmasked and byte-wise
▶ SW-U-SW is unmasked and bit-sliced [MD19]
▶ SW-M-BW is masked and byte-wise [Cor+14]
▶ SW-M-BS is masked and bit-sliced [Bel+20]
▶ SW-M-SS is masked and uses share-slicing [JS17]
▶ HW-M-SKIVA is masked with SKIVA [Kia+21]
▶ HW-M-SME is masked with SME [MP21]
▶ HW-M-our is masked with our ISE
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Comparison to Previous Solutions

Area/frequency results on a Digilent Arty A7 FPGA board of the
CV32E40P with our and the various state-of-the-art ISEs
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Conclusion and Future Prospects

Our hardware/software masking solution
▶ Flexibility at design time and run time
▶ Speeds up masking with a small silicon cost
▶ Allow higher order masking
▶ Apply to various cryptosystems

Future Works
▶ Security evaluation using physical attacks
▶ Masked ISE optimized for AES and post-quantum cryptography
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End of Presentation

Thank you for your attention

Do you have any questions?
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Attack by Side Channel Observation

Available data
▶ Plaintexts and/or ciphertexts
▶ Physical measurements during

each encryption

Measured physical quantities
▶ Power consumption [KJJ99]
▶ Electromagnetic radiation

[QS01]
▶ . . .

Good book
Power Analysis Attacks: Revealing
the Secrets of Smart Cards
[MOP07].
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Bit Slicing

Bloc 0 Bloc 1 · · · Bloc 31

R0 b00 b10 · · · b310

R1 b01 b11 · · · b311
...

...
...

...
...

R127 b0127 b1127 · · · b31127

Principle
▶ Transposes k input blocks of l bits into l registers of k bits
▶ Express algorithms in terms of elementary boolean gates (e.g. AND,

XOR, OR, NOT)

Advantages
▶ High throughput
▶ Constant time implementation
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Masked Bit Slicing

First solution
Shares of one bit are placed into different registers [JS17; Bel+20]

Second solution: share slicing
Shares of one bit are placed into one slice of a physical register [JS17;
GR17]
▶ Avoids intermediate recombinations of shares
▶ Requires less memory words
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Overhead Comparison of Hardware Masking ISEs

dH ISE
Time Area & period overhead

Cycles Ov. FFs LUTs P

1

SME 1142 n.a. 1.5 1.6 1.6
Our SME 1152 0.5 1.4 1.5 1.0

Skiva 2816 4.0 n.a. n.a. n.a.
Our Skiva 13730 4.8 1.0 1.1 1.0

Our 5452 2.3 1.1 1.0 1.0

2
SME 1333 n.a. 1.9 1.9 1.7

Our SME 1271 0.5 1.8 1.8 1.1
Our 8673 3.7 1.1 1.0 1.0

3

SME 1524 n.a. 2.6 2.2 1.7
Our SME 1417 0.6 2.4 2.2 1.1

Skiva 9264 13.2 n.a. n.a. n.a.
Our Skiva 24787 17.0 1.0 1.1 1.0

Our 11010 4.7 1.2 1.0 1.0
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