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A RISC-V Instruction Set Extension for Flexible Hardware/Software
Protection of Cryptosystems Masked at High Orders

Fabrice Lozachmeur1 and Arnaud Tisserand2

Abstract— The paper presents an instruction set extension for
the CV32E40P RISC-V processor core to protect cryptosystems
against side channel attacks using masking at high orders. A
first masking order is fixed in hardware at synthesis time. Then
a higher masking order is obtained using software composition
over the hardware one. The solution has been implemented,
validated and evaluated in FPGA.

Index Terms— hardware security; side-channel attack; coun-
termeasure; processor instruction set extension

I. INTRODUCTION
Implementations of cryptosystems, even mathematically

strong ones, are likely to leak information through the
observation of side channels (e.g., computation time, power
consumption, electromagnetic radiation). Side channel at-
tacks (SCAs) [1] exploit potential correlations, even tiny
ones, between measured physical values and operations and
operands processed in the circuit to recover sensitive data.

In both hardware and software implementations of cryp-
tosystems, masking is a widely studied countermeasure
against SCAs [2], [3]. It consists in randomizing intermediate
values, see Sec. II-A. But the amount of randomness, called
masking order, required against recent SCAs is increasing.
For instance, [4] presents some key recovery for an order-5
masked AES implementation in less than 10 traces. More-
over, masking at a high order leads to important overheads
in area, computation time and memory/program sizes.

Dedicated hardware masked accelerators are used in some
applications such as smart cards, but they are not flexible
enough to adapt the security level without changing the
hardware. Then software implementation is still key for
long term security (e.g., security updates in programs and
firmwares).

Instruction set extensions (ISEs) have been proposed in
many research and commercial processors to accelerate soft-
ware cryptographic codes in the past. Recently, a few ISEs
support a masking protection in hardware but mainly for low
orders and for the AES cryptosystem (see Sec. II-E).

In this work, we propose a flexible hardware and software
solution for efficient and secure implementation of various
cryptosystems using masking protections at various high
orders. A first masking level is obtained in hardware, then
a higher level is obtained with software combination. The
hardware masking is implemented in a new ISE of a RISC-
V processor (see Sec. II-D). The circuit designer fixes the
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masking order to be implemented in hardware at synthesis
time depending on performance/cost constraints. The soft-
ware masking uses secure composability in combination to
the hardware one from the masked ISE to reach various
higher orders at run time (see Sec. III).

Sec. II recalls related background elements and previous
works. Our contribution is detailed in Sec. III. Sec. IV
compares our solution to previous ones. A conclusion and
future prospects are given in Sec. V.

II. STATE OF THE ART
A. Masking Countermeasure

Masking [2], [3] consists in randomizing all the intermedi-
ate sensitive variables processed in a cryptographic algorithm
in order to break statistical dependencies between secret
data and leakage measurements. Boolean masking at order d
represents a sensitive variable x by d+1 shares, denoted xi

for 0 ≤ i ≤ d, such that x = x0 ⊕ x1 ⊕ . . . ⊕ xd, where
any subset of d shares is statistically independent from x. In
practice, there are d random values for the shares x1 to xd

and the first share x0 is x XORed with all the random values.
Order-d masking protects against attackers able to use up to
d probes (observation of a variable in the algorithm), see [5]
for details. Masking and unmasking transformations only
require XOR operations and high-quality random numbers,
but computing on masked values is more complex.

Software masking at a high order d leads to significant
overheads in computation time (which increases as O(d2),
see [5]), executable code size, memory and throughput from
a high-quality random number generator (RNG). More, pure
software protections are very limited due to leaks in the
micro-architecture of the processor. For example, [6] shows
that bit-interaction leakages between instructions in ARM
M0/M3 cores are devastating for high-order masking. Then
providing some masking level in hardware is relevant.

To mask a complex circuit, one common solution is to
mask sub-circuits and compose them. However, a simple di-
rect composition of masked sub-circuits is rarely secure [7].
Several compositional properties have been proposed to
ensure a high protection. Refresh operations, as proposed
in [8], avoid shares recombination problems by inserting new
random values during the masked computations. Inserting the
minimum number of refresh operations required to ensure
a high security is not simple, it also needs a higher RNG
throughput. The PINI property, introduced in [9], guarantees
direct composability and allows a simple implementation of
linear functions (e.g., XOR for addition in GF(2)). Masking
other gates (e.g., AND for multiplication in GF(2)) is more



complex. [10] presents a PINI masked AND gate called
HPC3 with some protection against leakages due to glitches
(a flip-flop is added to filter glitches).

B. Bit Slicing

Bit slicing (BS) was introduced to accelerate software im-
plementations of unprotected cryptosystems in general pur-
pose processors without cryptographic accelerator, see [11]
for a historic BS implementation of the DES block cipher.
BS transposes k input blocks of l bits into l registers (or
slices) of k bits where register j contains the j-th bit of
each input block. For AES, blocks are l = 128 bits wide.
The cryptographic algorithm is then expressed as a circuit
composed of elementary boolean gates (e.g. AND, XOR,
OR, NOT). All bits in a slice (from various independent
blocks) are processed in parallel using the corresponding
bitwise logic instruction. The open-source tool Usuba [12]
generates BS implementations from a C code.

[13], [14] mask a BS implementation by distributing the
shares into different registers. Tornado [15] uses Usuba to
generate a BS code which is then masked by inserting
refresh operations. As several independent input blocks are
processed in parallel for BS, the shares of one bit are
distributed over numerous memory words [16].

C. Share Slicing

Other solutions (e.g., [16], [14]) use share slicing which
places all the shares of a masked bit into one slice of a
physical register. For instance, at order-3 (4 shares), there are
8 slices in a 32-bit register. Share-slicing avoids intermediate
recombinations of shares during load/store operations [6] and
requires less memory words than BS for the shares of one
masked bit (this avoids some cache misses).

D. RISC-V Processor(s)

RISC-V is a family of processors specified as open and
free instruction set architectures to allow easy implemen-
tations and extensions. Several RISC-V cores have been
proposed with various characteristics and purposes. They
usually come with complete open source software tools.

We use the CV32E40P a 4-stage in-order 32-bit core
from the OpenHW Group. Adding ISEs to this core and to
its software tools is simple. The new instructions must be
integrated in the assembler and the simulator. Intrinsics are
be used for programming in C language.

E. Instruction Set Extensions

General purpose processors are rarely efficient for imple-
menting cryptography. In the past, many ISEs have been pro-
posed, on various processors, mainly to speed up unprotected
AES (SHA support is more recent).

Cryptographic ISEs with embedded SCA protections are
quite recent. The added masked instructions help to reduce
the masking overhead by replacing some (possibly long)
sequences of instructions by a very few dedicated ones.

[17] presents a masked ISE for the V-scale RISC-V core
and order d ∈ {1, 2, 3, 4} fixed at synthesis time. This

solution is limited to small orders since the size of register
file is multiplied by d+ 1. It uses domain-oriented masking
(DOM) [18], then users have to insert refresh operations.

[19] presents a masked ISE at order-1 for a RISC-V core
with a SCA protection during memory accesses.

[20] presents Skiva an ISE for the LEON3 core (SPARC
V8 instruction set). Skiva instructions accelerate masking at
orders 1 or 3 and BS implementations. It also combines
masking and fault detection protections.

[21] presents a masked ISE at order-1 for the SCARV
RISC-V core using the DOM representation [18]. The reg-
ister file is divided in 2 parts (one part for each share). This
solution is limited to small orders (order-d would divide the
register file into d+ 1 parts).

[22] presents SME a masked ISE for the SCARV RISC-
V core with order d ∈ {1, 2, 3} fixed at synthesis time. It
integrates the official RISC-V scalar cryptographic extension
for AES [23].

III. PROPOSED SOLUTION

Previous masked ISEs have only been implemented for
orders d ≤ 4. Or the solution was designed for a single
small order [19], or there is flexibility at synthesis time [17],
[20], [21] but the size of the register file is multiplied by
d+ 1 (even more in some cases) leading to a huge area.

Below, we propose a hardware/software masking solution
for much higher orders where a large flexibility is possible
at design time and run time for various cost/performance
trade-offs. A first masking level is performed in hardware
in a masked ISE where the hardware order, denoted dH, is
fixed at synthesis time. We have FPGA implementations for
dH up to 31. Then a higher order can be obtained in soft-
ware using simple and secure composition over the masked
instructions. In practice, our hardware/software solution can
reach multiple orders of the form:

d = s(dH + 1)− 1, (1)

where s is a software multiplicative factor combined over dH.
Finally, our ISE can be used for various cryptosystems.

A. Instruction Set Extension and Unit for Masking

Our ISE is composed of masked instructions adapted to
the share slicing representation introduced in Sec. II-C. Tab. I
presents our 4 masked instructions: AND, OR, NOT, XOR.

The original arithmetic and logic unit (ALU) of the
CV32E40P cannot be used for masking since operations may
lead to shares recombination as explained in [6].

TABLE I
SUMMARY OF THE 4 MASKED INSTRUCTIONS IN OUR ISE.

Instruction Format Latency Random bits
masked AND m.and rd, rs1, rs2 2 32(dH − 2)
masked OR m.or rd, rs1, rs2 2 32(dH − 2)

masked NOT m.not rd, rs1, rs2 1 0
masked XOR m.xor rd, rs1, rs2 1 0
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Fig. 1. Architecture of our masked ALU.

We designed the masked ALU described in Fig. 1. The
source registers RS1 and RS2 (from the register file) are
divided into several blocks where each block contains the
dH + 1 bits of a share. For instance, at order 3, there are
4 shares per variable and 8 blocks in a 32-bit register. The
result of the masked ALU is written into the register file.

We use PINI gates, see [24], to maintain security by direct
composition. The masked XOR is a standard XOR since it
is linear in GF(2). For AND, OR and NOT gates, we used
secure solutions from the literature. The masked AND uses
the HPC3 gate from [10], it requires one clock cycle since a
flip-flop is inserted to avoid glitch leakage. The masked NOT
inverts one bit of the dH+1 bits in a share. The masked OR
uses the masked AND where its operands and result pass
through masked NOT gates according to de Morgan’s laws.

A FSM controls the internal multiplexers of the masked
ALU depending on the decoded operation. It also controls
the pipeline for multi-cycle instructions.

A pseudo-random number generator (PRNG) provides
random values for the shares and the refresh operations.
It uses a single round of the Keccak permutation specified
in [25]. The permutation parameters are the smallest to
ensure the state size is large enough to provide enough
random bits at each clock cycle. The PRNG is regularly re-
seeded using a hardware true RNG (TRNG) outside of the
core (not discussed in this paper, see [26] for instance).

B. Integration into the CV32E40P Core

As the CV32E40P core was designed to be modified and
extended, the integration of our masked ISE was simple.
The core was modified as depicted in Fig. 2. The modified
instruction decoder deals with the instructions from Tab. I.
To avoid shares recombination problems, we designed a
masking datapath confined to the masked ALU. This requires
to extended the pipeline register ID/EX with 2 new 32-bit
registers only accessible from the masked ALU. The masked
ALU presented above is added to the core. According to
the decoded instruction, either the masking datapath or the
normal datapath is activated.
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Fig. 2. Simplified schematic of the modified core with our protection. Red
parts are added or modified for the masking ISE.

C. FPGA Implementation Results

We implemented, on a Digilent Arty A7 FPGA board us-
ing Vivado 2019.2 from AMD-Xilinx, the modified core with
our masked ISE for all hardware masking orders dH from
1 up to 31 (dH is fixed at synthesis time). An extract of
the corresponding results is presented in Fig. 3 (on next
page) for a few hardware orders (labeled HW-M-our where
M stands for masked). The encryption time per AES block is
obtained for all total (hardware and software) orders between
1 and 31. Fig. 3 includes software results for a masked bit-
sliced version (SW-M-BS) on the CV32E40P without ISE.

The area overheads are limited. For instance with dH =
7, less than 48% more LUTs and 30% less flip-flops are
required (many previous solutions require a register file
dH times larger). Other area results for 1 ≤ dH ≤ 31
corroborate this trend in Fig. 5. The period obtained for all
implemented dH is close to the original one (the critical path
is not in our ISE). Finally, left side of Fig. 3 illustrates the
flexibility at design time and run time of our solution.

D. Software Usage of our Hardware Masking ISE

We use Usuba [12] to generate a BS implementation in C.
The elementary operations are replaced by intrinsics for our
masked instructions. The computation starts by translating
the input blocks into share-slicing representation using shifts,
logic operations and values from the PRNG. After all the
computations in the masked domain, the output block is
translated back to the standard representation using shifts
and logic operations. We coded all these translations in C
functions. The final C code is compiled.

The easy and secure composability in the software com-
bination above the hardware masking comes from the PINI
property. The total order obtained in hardware and software
is given by Eq. 1 and leads to a high flexibility at design time
and run time. For instance in an area constrained application,
an order-1 hardware masking can be implemented in the
circuit and used in software for various s leading to a total
order in {1, 3, 5, 7, 9, 11, . . .}. In a high security application,
a larger order-5 circuit can be implemented and then used in
software at a total order in {5, 11, 17, 23, 29}.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Total masking order

0

1

2

3

4

E
n

cr
yp

ti
on

ti
m

e
(c

lo
ck

cy
cl

es
×

1
0

6
)

SW-M-BS
HW-M-our dH = 1

HW-M-our dH = 2

HW-M-our dH = 3

HW-M-our dH = 5

HW-M-our dH = 7

FFs LUTs P

1.0

1.1

1.2

1.3

1.4

A
re

a
an

d
p

er
io

d
ov

er
h

ea
d

Fig. 3. Artix XC7A35 FPGA implementation results for our masked ISE at hardware masking orders dH ∈ {1, 2, 3, 5, 7} and various total orders (with
software masking over the hardware one).

IV. COMPARISON TO PREVIOUS SOLUTIONS

As the cores and FPGAs used in previous works are
different from ours, direct comparisons are not relevant. We
have implemented several state of the art solutions and our
solutions, all for AES, in the CV32E40P without ISE for
software solutions (labeled SW-. . . ) and with an ISE for
hardware solutions (labeled HW-. . . ). The second field in
labels is M or U for masked or unmasked.

SW-U-BW is unmasked and byte-wise (each state byte
is placed in a register). SW-U-BS is unmasked and bit-
sliced generated by Usuba [12]. SW-M-BW is masked and
byte-wise from [7]. SW-M-BS is masked and bit-sliced
generated by Tornado [15]. SW-M-SS is masked and uses
share-slicing from [16]. To compare with hardware solutions,
we have also implemented two recent hardware masked
ISEs in the CV32E40P: SME from [22] (HW-M-SME) and
Skiva from [20] (HW-M-SKIVA). Our hardware solutions
are labeled HW-M-our and only contains hardware masking
(d = dH for d in {1, 2, 3, . . . 31}) for the evaluations below.

Fig. 4 presents timing comparisons for all these solu-
tions using the same experimental setup. Our ISE (HW-M-
our) outperforms masked bit-slicing solutions in software: a
speedup of 9 at order 3, 13.8 at order 7, 23.6 at order 15
and 27.0 at order 23. Other masking solutions in software,
SW-M-BW and SW-M-SS, are slower. Our results confirm
that bit-slicing speeds up computations: SW-U-BS is faster
than SW-U-BW. Regarding hardware solutions, our ISE is
slightly faster than Skiva but slower than SME (since SME
is optimized for AES).

Fig. 5 presents area results for all hardware solutions: HW-
M-SKIVA, HW-M-SME and ours with dH in {1, 2, 3, . . . 31}.
Our solutions for order-1 and 3 have an area close to Skiva
(but we are faster). Our solutions for order-1, 2 and 3 are
much smaller than SME (but we are slower). It seems that
SME would not fit into small FPGAs for high orders while
our can. Our solution has a limited impact on area even
for high hardware orders. The impact on frequencies of our
solution is very small (the critical path is not in the ISE).

Tab. II shows that our implementation results of Skiva and
SME are consistent with the results presented in the related
papers. Our extension is faster than Skiva by a factor between
2 and 3. We are slower than SME (dedicated for AES), but
SME will not scale up to high orders in area.

A strong interest in our solution is its hardware/software

TABLE II
OVERHEAD COMPARISON OF HARDWARE MASKING ISES FROM STATE

OF THE ART AND OUR HARDWARE ONES.

dH ISE Time Area & period overhead
Cycles Ov. FFs LUTs P

1

SME 1142 n.a. 1.5 1.6 1.6
Our SME 1152 0.5 1.4 1.5 1.0

Skiva 2816 4.0 n.a. n.a. n.a.
Our Skiva 13730 4.8 1.0 1.1 1.0

Our 5452 2.3 1.1 1.0 1.0

2
SME 1333 n.a. 1.9 1.9 1.7

Our SME 1271 0.5 1.8 1.8 1.1
Our 8673 3.7 1.1 1.0 1.0

3

SME 1524 n.a. 2.6 2.2 1.7
Our SME 1417 0.6 2.4 2.2 1.1

Skiva 9264 13.2 n.a. n.a. n.a.
Our Skiva 24787 17.0 1.0 1.1 1.0

Our 11010 4.7 1.2 1.0 1.0

flexibility to reach much higher masking orders than previous
solutions with a small silicon cost.

V. CONCLUSION

We proposed a flexible masking solution in hardware and
software. A masked instruction set extension was added to
the CV32E40P RISC-V core where a first masking order is
fixed at synthesis time. Our masked hardware solution offers
much higher orders than previous ones in a limited silicon
area. Our extension can then be used in software to reach
higher orders using secure composability over the hardware
masking. Our solution offers flexibility at design time, to
meet various performance and budget constraints, and at run
time to increase security over time.

We plan to add new masked instructions to reduce the
number of independent blocks required in share-slicing so-
lutions. Other future works include security evaluation using
physical attacks and the optimization of the masked instruc-
tion set extension for AES and post-quantum cryptography.
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