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Abstract— In this paper, we aim at measuring a low-activity 

uranium contamination deposited on concrete surfaces of a 

nuclear facility and presenting varying enrichment levels. 

Considering this application field, CEA LIST has developed an 

original approach, combining gamma-ray spectrometry based on 

high-purity germanium (HPGe) measurements and specific 

Bayesian algorithms. This methodology gives access to an 

indirect surface activity estimation, assuming that the ratio 

between the number of alpha particles to be quantified and the 

number of detected gamma rays is known. The Bayesian 

approach characteristic property is able to inject a 

representation of the physical context in the form of a 

probabilistic a priori. It enables to improve the trade-off between 

the true detection rate (TDR) and the false alarm rate (FAR) at 

low count rates and takes benefit of a richer time-energy 

information structure than the algorithms used in conventional 

detection procedures. The performance evaluation and 

characterization of Bayesian statistical tests is performed using 

classical receiver operating characteristic (ROC) curves by 

comparison to frequentist hypothesis tests. Results indicate that 

the Bayesian approach has a superior detection performance for 

low-activity uranium contamination compared to the frequentist 

approach. The estimated gain is contained between 𝟑𝟎 % and 

𝟓𝟎 %, considering a variable or stable radiological background. 

The Bayesian approach offers the best trade-off between the 

TDR, FAR and the response time and is compatible with the 

user’s requirements.  

 

Index Terms— Bayesian hypothesis test, decommissioning, 

gamma-ray spectrometry, surface activity of uranium in 

concrete, receiver operating characteristic (ROC) curves. 

I. INTRODUCTION 

S any industrial facility, nuclear installations, have a finite   

lifetime. At the end of this activity period, decommissioning 

and dismantling operations come into play. Decommissioning, as a 

general concept, involves tasks such as dismantling of plant, 

decontamination of structures, nuclear waste management, etc. 
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Amongst the various technical challenges of decommissioning is to 

carry out accurate radioactivity measurements on a large range of 

wastes. In this paper, we focus on the detection of low-activity 

uranium contamination on concrete surfaces, presenting varying 

enrichment levels. Our surface activity limit will be taken as 

 500 Bq/0.1 m²/ 𝛺, 𝛺 =  2𝜋 × 𝑠𝑟, where 𝛺 is the solid angle of 

emission of the source. This choice is related to the maximal surface 

activity defined by the French Nuclear Safety Authority (ASN). 

Alpha, beta and gamma emissions are three distinct signatures [3-

5] for measuring a potential radiological contamination involving 

uranium isotopes; namely, uranium 234, 235 and 238 (U-234, U-235, 

U-238). Alpha emission has the advantage of being homogenous with 

the decommissioning criteria. However, the large linear energy 

transfer of alpha particles and concrete surface irregularities, leading 

to different source-detector distances, are severe limitations for 

accurately quantifying uranium activity. The beta and gamma 

measurement can be theoretically converted to alpha equivalent 

surface activity provided that we have prior knowledge of the 

isotopic uranium composition. However, for high U-235 enrichment 

(  5 %), beta activity is reduced and thus detection limits are 

increased for the same alpha activity. Compared to alpha and beta 

particles, gamma rays appear less affected by surface concrete states 

and enrichment level of U-235.  

Scintillators and semiconductors are two basic detectors used for 

gamma-ray spectrometry that enable the identification and/or 

quantification of radionuclides by analysis of the gamma-ray energy 

spectrum [6]. Detection limits increase with background signal and 

detector resolution. Gamma-ray spectrometry based on HPGe 

detector (HPGe) is the best available solution to detect low uranium 

activity because of its high energy resolution [7]. This figure of merit 

of HPGe, indeed, allows to define narrower regions of interest (ROI) 

around selected gamma-ray peaks in order to increase signal-to-noise 

ratio (SNR) for low activity measurement [2], [8, 9]. Nevertheless, 

high detection limits under low SNR (typically in the order of 1 over 

1s), are still observed with traditional algorithmic approaches, which 

forms a major limitation in the application field of nuclear 

decommissioning. 

To tackle the constraints of standard decision approaches, and the 

limitations encountered with low count rates in the context of 

radioactive detection, several methods have been proposed. Such 

methods included the use of Bayesian inference for nuclide ratio 

computation and source identification from high-resolution gamma-

ray spectra [7]. The development of a sequential Bayesian approach 

for the detection and identification of radioactive materials allowed to 

reduce uncertainties at low count rate [10, 11]. Recently, specific and 

performing frequentist hypothesis tests were used with bilateral, 

unilateral, and either absolute or relative properties for the detection 
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of low-activity uranium contamination on nuclear facilities’ concrete 

surfaces [2]. These tests allowed to perform a computation of the 

measurement statistical power, and thus to define the confidence 

interval of the true detection rate (TDR) and false alarm rate (FAR). 

A basic bilateral solution consists in introducing the relative test of 

Kolmogorov-Smirnov (KS) sensitive to any variation in the spectrum 

shape. We can, however, expect that the trade-off between TDR and 

FAR for the KS test will be degraded compared to those obtained for 

a unilateral test, the latter being only sensitive to an increase in the 

counting statistics. For example, the KS test yields a TDR =  55 % 

for an enrichment level of 1 %wt U-235 and an integration time     

t =  500 s at the above cited surface activity. For that reason, a 

second solution was proposed, using some prior knowledge of the 

expected signal. This enables to use the ROI of the signal using to 

define an absolute and unilateral test, based on the cumulative 

function of a Negative Binomial law (CNB). From these features, we 

could expect that the CNB test would give access to a better trade-off 

between TDR and FAR than the KS test. Considering the same 

enrichment level as KS (1 %wt U-235) and an integration time      

t =  500 s, a TDR= 94.6 % was indeed obtained. However, the 

absolute CNB test has the weakness of being impacted by any 

significant variation (   5 %) associated with the background signal 

intensity. Hence, it was necessary to introduce an alternative version 

of the test, taking into account the dispersion of the counting intensity 

[2]. To this aim, a relative and unilateral test, based on the cumulative 

function of a Beta Binomial law (CBB), was developed. The CBB 

test uses the same ROI as the CNB test, but also another ROI where 

no signal from the contamination is expected, called “control region.” 

Against a non-stationary background, the CBB test yielded a better 

trade-off between TDR and FAR, by 10% compared to the CNB test. 

Considering the same enrichment level as KS and CNB for an 

integration time t = 3000 𝑠, the CBB test yielded a TDR =  99.9 %.  

It thus appears that the CBB test gives access to an acceptable trade-

off between sensitivity to the uranium signal, and vulnerability to the 

characteristics of the radiological background. Nevertheless, in the 

presence of a very low SNR (in order of 10−1 over 1s), or of a 

background noise whose properties (intensity, shape) vary 

significantly, the previous approaches are strongly impacted. As a 

result, an acceptable trade-off between TDR and FAR can no longer 

be obtained within the time constraints related to decommissioning 

operations. Moreover, considering a nuclear facility with a total 

surface to assess of a hundred thousand square meters, a 

measurement time of 3000 𝑠/𝑚2, as required by such approaches, 

would result in a total investigation time of 20 years if a 100 % 

scanning is required. For these reasons, we are in need of alternative 

methods. The aim of this study is to introduce a new algorithmic 

approach, also based on statistical hypothesis tests, but reducing the 

measurement time while maintaining a sustainable trade-off between 

TDR and FAR. 

In this framework, a candidate approach consists in modeling the 

contamination detection scenario using a priori knowledge of the 

expected signal, this to define the conditions for rejecting the non-

contamination hypothesis. Roughly speaking, a statistical test is a 

mathematical procedure to decide, over a given acquisition time, 

whether we are: 

- only in presence of the background radiation previously 

recorded over a reference acquisition time (a scenario we refer 

to as the “null hypothesis,” labeled 𝐻0), 

- or whether an additional signal, in our case arising from 

uranium contamination, was detected (scenario named the 

“alternative hypothesis,” 𝐻1).  

The availability of a physical model of the gamma-ray source term 

associated with uranium surface contamination, as well as 

multichannel spectra at the output of the HPGe spectrometer, indeed 

allows to build a hypothesis test incorporating a physics model of the 

observed phenomenon. CEA LIST then developed original Bayesian 

hypothesis tests with either absolute or relative properties. These are 

competing with frequentist CNB (absolute) and CBB (relative) tests. 

The Bayesian Absolute Multivariate Poisson Mix (BAM) test 

corresponds to a Bayesian alternative to the CNB test, while the 

Bayesian Multivariate Poisson Mixing (BRM) test can be used 

instead of the CBB test. The Bayesian approach characteristic 

property constitutes a way to inject a representation of the physical 

context in the form of probabilistic a priori. In this study, the 

performance evaluation of Bayesian statistical tests will still be 

performed by using classical receiver operating characteristic (ROC) 

curves, as well as the study of the TDR variation as a function of the 

integration time against a preset FAR. Our Bayesian approach, 

moreover, was based on a priori vectors built from the coupling of 

experimental data, acquired in a real nuclear facility, and simulated 

data that were obtained by a Monte Carlo method. 

      The paper is organized as follows: Section II presents an outline 

of some relevant works on this topic; Section III covers the technical 

description of the radiation detection problem; Section IV describes 

the formulation of our Bayesian proposed approach, and summarizes 

the theoretical foundations of the CNB and CBB frequentist tests; 

Section V presents the parameterization of the Bayesian BAM and 

BRM tests; and Section VI details the simulation results and 

performance evaluation of the different hypothesis tests.  

II. RELATED WORK 

There are several significant contributions based on a Bayesian 

approach for detection and identification purposes in the frame of 

nuclear applications. We can identify two types of approaches 

reported in the scientific literature, each of them corresponding to 

dedicated applications.  

The first approach aims to perform a complete deconvolution of 

spectra containing a large set of isotopic signatures. The main 

purpose is then to detect and quantify the activities of several 

radionuclides. In this regard, Zähringer and Kirchner (2008) [12] 

applied a Bayesian approach for detecting underground explosions 

prohibited by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) 

in two specific cases: exclusion of Ba-140 when La-140 is measured, 

and identification of xenon isotopes (Xe-131m, Xe-133, Xe-133m 

and Xe-135). In both cases, the authors based their studies on the 

ratio calculation of radionuclide activity concentrations that are close 

to, or below the conventional detection limit. The results they 

obtained demonstrated that the Bayesian approach enabled to 

improve the gamma-ray spectrum analysis, as subsequently the 

decision-making process. Such results paved the way to an 

implementation of the Bayesian approach for xenon detection. Rivals 

et al. (2012) [13] developed a Bayesian method using specific priors 

for the detection of radioxenon isotopes in noble gas measurement 

stations of the International Monitoring System (also related to the 

Comprehensive Nuclear-Test-Ban Treaty Organization). Results 

showed that the detection capability benefited from the estimation of 

the radioactivity prior density probability, the confidence interval for 

the true radioactivity level, and the probability of no radioactivity 

being present. 

The second approach aimed at detecting, and identifying the 

presence of an unknown radiation source. Candy et al. (2008) [10, 

11] used such an approach for the detection and identification of 

radioactive contraband. The aim of their work was to improve the 

detection accuracy of nuclear contraband. Compared to conventional 

methods, the proposed solution enabled to discriminate more 

efficiently the signal from background level. The authors 



demonstrated that, in a Bayesian framework, exploiting a richer time-

energy information structure allowed to improve the detection limits 

of the radiation monitor in a low count rate configuration. From a 

different prospect, Bukartas et al. (2019) [14] used the likelihood of 

the Bayesian model to locate and estimate the activities of orphan 

radioactive sources, namely Cs-137, Ba-133 and I-131 in the activity 

range of 180–470 MBq, using a mobile gamma-ray spectrometer. 

Their results showed that the method allowed to simplify the search 

for lost gamma sources, as well as to quantify the source activity 

within 50 % of its real activity, and locate it within a 27 % spatial 

uncertainty. 

In this perspective, the availability of a physical model of uranium 

surface contaminations, as well as of high-resolution spectra from an 

HPGe detector, encouraged us to develop novel Bayesian hypothesis 

tests to compete with the frequentist ones presented in [2]. We recall 

that the main purpose of this study is to ensure, with an acceptable 

measurement integration time, an operational trade-off between TDR 

and FAR in the context of nuclear decommissioning.  

III. TECHNICAL DESCRIPTION OF THE RADIATION DETECTION 

PROBLEM  

Before we proceed to an application of the Bayesian approach to 

the detection problem at hand, and the study of its compared merits 

with respect to a frequentist approach, we need to describe formally 

the uranium gamma-ray peaks of interest, alpha/gamma transfer 

function, and the expected radiological background. Such a 

quantitative description forms the topic of the current section.   

A. The Gamma-Ray Signature of Uranium 

As we mentioned in our introduction, we aim at detecting low 

levels of uranium contamination inside nuclear facilities that are 

being dismantled. In order to identify the presence of uranium by 

means of a gamma-ray spectrometer, we take advantage of the 

prominent photon emission lines from the decay chains of U-235 and 

U-238. An extensive list including tens of such lines was taken from 

the Nucléide-Lara database [15], and ranges from 10 keV up to 

3 MeV. Nonetheless, the exploitability of any given emission line in 

the context of low SNR detection is governed by:  

- The full energy peak efficiency (FEPE) of the detector, which 

itself depends mainly on the energy of the line (decreasingly in 

the absence of any window), on the volume of the sensor 

(increasingly), and on the shielding effect from the entrance 

window protecting the crystal; 

- The amplitude of the continuum, or full energy peaks (FEP) 

adjacent to those of interest, from the radiological background. 

For the study of concept we present in this paper, we selected an 

n-type coaxial HPGe diode commercialized by ORTEC under 

reference GMX35P4 [16]. The spectrometer has a 35 % relative 

efficiency, which represents an acceptable trade-off between 

handiness and FEPE at high energy (>  1 MeV). It is mounted with a 

2 mm aluminium window to protect the crystal from irregularities 

that are to be expected when dealing with in-situ measurements. In 

such conditions, we recognized from prior acquisitions inside 

walls [2] that the gamma rays of interest for our detection case can be 

narrowed down to: 

- From the U-235 chain, one main line at 185.7 keV, and one 

additional triplet at {143.8;  163.4;  205.3} keV; 

- From the U-238 chain, one main line at 1001.0 keV. 

Moreover, let us consider the situation where the surface activity is 

in the vicinity of the detection limits stated in our introduction. In this 

case, we showed in [2] that all rays emitted with an energy superior 

to 1 MeV, will induce no significant count rate increase above the 

radiation background inside walls. As a consequence, we shall be 

able to use the entire spectral range above 1 MeV as a uranium 

signal-free control region when implementing relative detection tests 

(cf. Section IV below). As it will be discussed with further details 

throughout Sections IV to VI, the definition of selective ROI inside 

the detection spectrum over 𝑋 = [0 − 3000] keV, is key to improve 

the trade-off between TDR and FAR when dealing with low 

contamination-to-background scenarios. From the abovementioned 

arguments, such ROI will be centered on the main useful lines from 

U-235 and U-238. To set the spectral width of the ROI, we used the 

resolution calibration of the spectrometry chain that was carried out 

with a Eu-152 source. All analyses done, the ROI for uranium 

detection read as follows: 

- 𝑍1 = [140 − 148 ] keV, 𝑍2 = [160 − 166] keV, 𝑍3 =
[182 − 188] keV, 𝑍4 = [202 − 208] keV, and 𝑍5 =
[998 − 1004] keV for the signal regions in absolute and 

relative detection tests ; 

- 𝑊 = ]1004 − 3000] keV for the control region in relative 

detection tests.  

B. Simulation of the Detector Response to the Minimum Surface 

Activities to be Detected 

We state here the two decommissioning criteria that serve as 

minimum surface activities to be detected (MSAD) in presence of a 

uranium contamination: 

- MSAD1: 2000 Bq/m2/2π ; 

- MSAD2: 500 Bq/0.1 m2/2π. 

In order to assess quantitatively the performance of the dedicated 

algorithms that will be described throughout Section IV, we must 

primarily have knowledge of the spectral response, expected from a 

contamination corresponding to either MSAD1 or MSAD2, at the 

detector level. The first step is thus to build a transfer function 

relating the emission rates 𝜐𝛾 (expressed in 𝑠−1) of the five lines 

listed in Subsection III.A to MSAD1 and MSAD2. Now, the total 

activity 𝐴U of the uranium contamination is expressed as the sum of 

the activities of the three main isotopes: 𝐴U = 𝐴 U234 + 𝐴 U235 + 𝐴 U238 . 

Consequently, the transfer function will not only depend on the 

intensity 𝐼𝛾 of the line with respect to the decay of its mother isotope, 

but also on the level of enrichment (expressed as a mass fraction, 

wt%) in U-235. Under the assumption that secular equilibrium exists 

between U-238 and Pa-234m, whose decay gives rise to the        

1001.0 keV gamma-ray, abaci of 𝜐𝛾 were constructed for both 

MSAD, and mass fractions in U-235 varying between 0.7 and 

8 wt%. Fig. 1. a) presents an example of such abaci for a uranium 

surface activity corresponding to MSAD2.  

 
 

      (a) 



 
(b) 

Fig. 1.  Abacus of gamma-ray surface emission rate as a function of 

enrichment for a uranium contamination with a total surface activity of 

500 Bq/(0.1 m2) (a), and Simulation study diagram of homogenous surface 

activities MSAD1 and MSAD2 (b). 

 

The next step is to determine the spectral count rate (s−1) expected 

at the output of the spectrometry chain from a uranium contamination 

of a given surface activity, and enrichment level. To this end, we 

built a numerical model of the HPGe diode using the MCNP6.1 

software [17]. The simulated spectral response of the detector is 

provided by tally 8 in photon-electron (PE) mode of the code. This 

macroscopic response was then calibrated experimentally through a 

series of measurements of uranium reference samples whose U-235-

enrichment varied between 0.7 and 8 wt%. To this end, spectra were 

acquired on 8192 channels, for an energy range lying between 0 and 

3 MeV approximatively. The signal was shaped using a symmetrical 

trapezoidal filter with a 2 s rise time and a 4 s plateau time. The 

procedure for this efficiency calibration was detailed in previous 

work [2], and showed noticeably that simulated and experimental 

FEP agreed in amplitude within two standard deviations for U-235, 

and three standard deviations for U-238. This agreement between 

simulated and experimental with uranium samples was also 

consolidated for several source-detector distances between 10 cm 

and 1 m.  These distances correspond to lower and upper boundaries 

in target measurement configurations as we shall see below. As a 

result, and for any distance between 10 cm and 1 m, we used 

directly, and without any experimental calibration coefficient the 

tally 8 output 𝑌(𝐸𝛾) from MCNP6.1. This allowed us to compute the 

expected count rate 𝑆(𝐸𝛾) (s−1) under the FEP centered on energy 

𝐸𝛾 as: 

                        𝑆(𝐸𝛾) = 𝑌(𝐸𝛾) ∙ 𝜐𝛾 (𝐴U, wt% U235 )                    (1)                             

The measurement protocol is simulated as realistically as possible 

by modelling the source term as a photon source homogeneously 

spread on the surface of a concrete block. The block dimensions are 

taken as 100 ×  100 ×  25 cm3. The photon flux corresponding to 

MSAD1 is generated over the entire square surface of the block, 

whereas the flux associated with MSAD2 is generated over a 0.1 m2 

square at the center of the previous one.  

In both cases, the HPGe diode model is located so that its 

symmetry axis intersects horizontally the center of the photon source. 

As far as the distance 𝑑 between the crystal front surface and the 

center of the surface source is concerned, we have set, following 

standard measurement protocol, 𝑑 =
𝑎√2

2
, where 𝑎 is the length of 

side of the square emission surface that must be enclosed within the 

viewing cone of the detector. These settings lead to source-detector 

distances 𝑑 = 70.71 cm, and 𝑑 = 22.36 cm for MSAD1 and 

MSAD2 respectively. It should be noted, at this point, that the fact 

that MCNP6.1 tally 8 outputs could be used without further 

correction to compute the expected spectral count rates at the detector 

level, was only validated experimentally for “point-like,” bulk 

uranium sources. In order to ascertain that this calibration result holds 

in the presence of a homogenously and extensively dispersed source, 

there exists a need for the manufacturing and characterization of 

uranium surface sources. Such sources would have to be laid down 

over a concrete bearing, and protected by as thin an entrance window 

as possible. As the homogeneity and radioactivity of said reference 

samples should be at least as metrogically reliable as the ones of the 

uranium sources that we used, this was left as an outlook in the 

course of the present study. Once we have shown that the influence 

of the U-235-enrichment levels was accounted for, we can indeed 

rely on the robustness of the particle-transport code to yield expected 

spectral responses. The latter are indeed accurate enough to 

investigate the interest of a Bayesian approach to large-surface 

decommissioning using gamma-ray spectrometry. 

Regarding the U-235-enrichment levels that are simulated, we 

subdivided the decommissioning problem into three subunits (SU) of 

the same nuclear facility to be dismantled. A uranium contamination 

in any of these subunits would have an average expected level, 

determined from prior knowledge of the nuclear process that was 

taking place when the plant was in operation, or on the basis of 

previous sample measurements. For the sake of demonstration, we set 

these average enrichments to be 0.62 wt%, 2.03 wt%, and 6.84 wt% 

for SU1, SU2, and SU3 respectively. The spectral responses of the 

detector to these enrichments, estimated numerically, will represent 

the a priori signatures of uranium contaminations inside one SU 

when implementing Bayesian statistical tests (Sections IV to VI). 

Now, the enrichments are likely to vary widely around their average 

values. Consequently, instead of these a priori signatures, we used 

typical U-235 mass fractions to build tested spectra when simulating 

a real-time measurement inside the plant. These typical enrichments 

read as: Natural (0.7 wt%) and 1 wt% for SU1, 1 wt% and 3 wt% 

for SU2, and 3 wt%, and 8 wt% for SU3.  

The simulation-based study of the main FEP response to the 

gamma-ray at 185.7 KeV ray shows that:  

- For a photon emission rate, and measurement geometry 

corresponding to MSAD1, 𝑆(185.7 KeV) varies between 

0.01 𝑠−1 (Nat wt%) and 0.03 s−1 (8 wt%) ; 
- For a photon emission rate, and measurement geometry 

corresponding to MSAD2, 𝑆(185.7 KeV) varies between 

0.03 s−1 (Nat wt%) and 0.06 s−1 (8 wt%).  

As the expected count rate for this line is in order of 10−2 𝑠−1, we 

see that the numerical study of the detection procedure that will be 

detailed throughout Section VI, will suppose integration times of the 

counting greater than or equal to 100 s. In the rest of this paper, the 

study of principle will be limited to the source terms, and 

measurement geometry corresponding to MSAD2, i.e., 500 Bq/

0.1 m2/2π to be detected within SU1, SU2, and SU3. Indeed, the 

purpose of this study is to indicate that, for a given minimum surface 

activity to be detected against natural background inside walls, and 

with a given measurement chain, some added value may be found in 

working within a Bayesian framework. Moreover, we privileged 

MSAD2 as a factor of merit in our investigations as the most relevant 

for the authorities in charge of supervising the decommissioning. 

This factor indeed encapsulates more features from the difficulties in 

dealing with “hot spots” than MSAD1, as an activity in the same 

order of magnitude is concentrated inside a ten-time smaller surface. 

C. Quantitative Study of Background Radiation Spectra 

The detection of low-level uranium contamination is to be 

performed within a closed environment, essentially made of concrete 

walls, floors, and ceilings. Now, in such an environment, the gamma-

ray background is dominated by the signatures of K-40, and the 



decay chains of U-238 and Th-232 [18]. It follows that we can expect 

some repeatability, at least as far as the normalized distributions (in 

other words, the shapes) of background spectra are concerned. Such 

an assumption with, however, need to be verified. 

In order to challenge these assumptions, a first measurement 

campaign was conducted inside the three SU to be decommissioned. 

For each of 𝑆𝑈𝑖, with 𝑖 ∈ {1; 2; 3}, acquisitions were carried out in 

two separate spots, the counting associated to these acquisitions being 

labeled 𝑚𝑆𝑈𝑖1 and 𝑚𝑆𝑈𝑖2 respectively. The empirical mean of 𝑚𝑆𝑈𝑖1 

and 𝑚𝑆𝑈𝑖2, for the three subunits, will serve:  

- First, as a reference when dealing with frequentist detection 

tests; 

- Second, as a prior signature of the background in the 

framework of Bayesian detection tests. 

To quantify the variability of the background radiation signal, 

inside a given 𝑆𝑈𝑖, and over a given spectral ROI, we introduce the 

relative deviation between both measured spots as: 

 

       ∀ 𝑖 ∈ {1; 2; 3},  𝜀𝑆𝑈𝑖[𝑅𝑂𝐼] =
𝑚𝑆𝑈𝑖1[𝑅𝑂𝐼]−𝑚𝑆𝑈𝑖2[𝑅𝑂𝐼]

𝑚𝑆𝑈𝑖2[𝑅𝑂𝐼]
              (2)                         

This factor of merit thus quantifies the amplitude variation 

between non-normalized countings 𝑚𝑆𝑈𝑖1[𝑅𝑂𝐼] and 𝑚𝑆𝑈𝑖2[𝑅𝑂𝐼]. If 

we want to study exclusively the variability of the background 

radiation signal in terms of shape, we shall use instead the relative 

deviation defined as:  

 

        ∀ 𝑖 ∈ {1; 2; 3},  𝜀′𝑆𝑈𝑖[𝑅𝑂𝐼] =
𝑚′𝑆𝑈𝑖1[𝑅𝑂𝐼]−𝑚′𝑆𝑈𝑖2[𝑅𝑂𝐼]

𝑚′𝑆𝑈𝑖2[𝑅𝑂𝐼]
          (3)                                           

 

where 𝑚′𝑆𝑈𝑖1[𝑅𝑂𝐼] and 𝑚′𝑆𝑈𝑖2[𝑅𝑂𝐼] are the normalized countings 

acquired inside 𝑆𝑈𝑖, and integrated over spectral range 𝑅𝑂𝐼.  
Let us note that other merit factors accounting for background 

vulnerability could have been selected, notably one using the 

summation of normalized (𝑚′𝑆𝑈𝑖1 and 𝑚′𝑆𝑈𝑖2) and non-normalized 

(𝑚𝑆𝑈𝑖1 and 𝑚𝑆𝑈𝑖2) countings in (3) and (2) respectively. The 

motivation for our choice comes from a practical implementation 

standpoint, envisioning a “two-step” process: 

- First, a reference background measurement is carried out 

inside a room, or an extended open area that is known to 

bear no contamination;  

- Second, a screening of unknown surfaces is carried out to 

find potential uranium contaminations under the 

assumption that the background does not vary significantly 

with respect to the reference measurement.  

     We have checked, moreover, that should we use the first 

campaign as the reference and the second one to compute the 

deviations, the orders of magnitude of the merit factors, especially the 

maximum absolute values of 𝜀𝑆𝑈𝑖 and 𝜀′𝑆𝑈𝑖 would not depart 

significantly from the ones we discuss below. These are the elements 

that we are interested in. 

Tables I and II below present respectively the relative deviations 

𝜀𝑆𝑈𝑖[𝑅𝑂𝐼] and 𝜀′𝑆𝑈𝑖[𝑅𝑂𝐼]. They were calculated as a function of SU 

and ROI, with the same notations as in Subsection III.A to denote the 

spectral ROI.  

 

TABLE I 

RELATIVE DEVIATIONS 𝜀𝑆𝑈𝑖[𝑅𝑂𝐼]  BETWEEN NON-NORMALIZED 

BACKGROUND COUNTINGS AS A FUNCTION OF SU AND ROI   

ROI \ SU SU1 SU2 SU3 

𝑋 − 0.6 % − 0.7 % − 0.2 % 

𝑍1 − 0.4 % − 1.6 %     1.0 % 

𝑍2 − 1.8 % − 0.2 % − 0.5 % 

𝑍3 − 0.1 % − 0.4 % − 1.8 % 

𝑍4 − 1.4 % − 0.5 %     0.1 % 

𝑍5      4.2 %     5.1 % − 2.7 % 

𝑊 <  0.1 % <  0.1 % <  0.1 % 

 
TABLE II 

RELATIVE DEVIATIONS 𝜀′𝑆𝑈𝑖[𝑅𝑂𝐼]  BETWEEN NORMALIZED BACKGROUND 

COUNTINGS AS A FUNCTION OF SU AND ROI   

ROI \ SU SU1 SU2 SU3 

𝑍1 1.0 % − 0.9 % 1.1 % 

𝑍2 − 1.2 % 0.6 % − 0.4 % 

𝑍3 0.7 % 0.3 % − 1.7 % 

𝑍4 − 0.8 % 0.2 % 0.3 % 

𝑍5 4.9 % 5.9 % − 2.6 % 

𝑊 <  0.1 % <  0.1 % <  0.1 % 

From Table I, we observe that the relative deviations do not 

exhibit any significant variation as a function of the SU nor the 

spectral ROI. The average value of 𝜀̅ = (−0.1 ± 1.1) % over the 

entire table. This led us to consider the value of 1 % as representative 

of the mean expected amplitude variation of background spectra 

during the measurements. From Table I, we can also identify the 

value of 5 % as representative of the maximum expected amplitude 

variation of the background between reference and current 

acquisitions.  

The same analysis was carried out with the data presented in 

Table II, and led to similar conclusions:  

- We denote no significant variation of 𝜀′ as function of the SU 

nor the spectral ROI; 

- The average value of 𝜀′̅ = (0.4 ± 1.3) % over the entire table. 

Hence the value of 1 % may also be taken as representative of 

the mean expected shape variation of background spectra 

during the measurements;  

- The value of 6 % may be identified as representative of the 

maximum expected shape variation of the background between 

reference and current acquisitions. 

Eventually, the comparison between Table I and Table II shows 

that, upon the basis of this first acquisition campaign, there is no 

justification to consider the gamma-ray background as more stable 

with respect to its shape than to its amplitude. As a consequence, we 

shall have no a priori reason to favor relative statistical tests (i.e., 

based on the normalized distributions of the reference and tested 

spectra) over their absolute counterparts (i.e., based on the non-

normalized versions of said spectra). Let us eventually underline the 

fact that, over all the acquisitions that were performed inside walls, 

the loss fraction due to dead time was always kept between 0.5 and 

1 %, while no summation peaks could be separated from the 

diffusion continuum. As a result, no correction of both effects was 

implemented. Should the measurement take place against a level of 

background radioactivity that departs from the target configuration 

(including an abnormally high-dose-rate natural background, or the 

presence of an artificial gamma-ray source such as Cs-137 or Co-60), 

our model would need to be consolidated with respect to count losses, 

or spectral distortions resulting from dead time and pile-up. As we 

are primarily looking for low-surface activity contaminations inside a 



conventional gamma-ray background, such refinements were left as 

an outlook in the course of this study. 

D. Generation of Random Tested Spectra and Receiver Operating 

Characteristics 

As we shall see with further details in Section IV, the detection 

procedure of a uranium surface contamination is bound to determine, 

after an observation time labeled 𝑡, whether: 

- The detector response is due solely to background radiations; 

- Or the response reveals the presence of an additional signal for 

U-235 and/or U-238.  

Given a preset time 𝑡, the conditions that lead to accept one of 

these two statements as true governs the trade-off between the FAR 

and TDR. However, parameter 𝑡 plays a critical role in said trade-off 

once a decision procedure has been formalized. Consequently, the 

first prerequisite to carry out a comparative study of competing 

procedures is to build a random generator of representative tested 

spectra where 𝑡 appears as a variable.  

In order to assess the accuracy of a detection procedure, at least to 

two spectra are needed: 

- one representing the signature of the radiation background 

only; 

- and one representing the joint signatures of background and 

uranium signals.  

To generate a uranium-free tested spectrum inside a given SU, we 

can use, as the time-independent probability density, either:  

- one of both spectra that were acquired inside the said SU, being 

identical to the one selected as the reference spectrum for the 

entire SU (in which case, the simulator does not account for 

any variation in the expectation of the background, but only for 

statistical fluctuations of countings due to the stochastic nature 

of radioactivity); 

- a random and uniform mixture of both spectra that were 

acquired inside the said SU, one of which only being selected 

as the reference spectrum for the entire SU (the simulator then 

accounts for amplitude and shape variations in the expectation 

of the background as quantified throughout Subsection III.C).  

In both cases, the reference background spectra that we analyzed 

in Subsection III.C will serve as time-independent expectations.  

As far as the generation of a tested spectrum with the presence of a 

uranium signal is concerned, we used, as the time-independent 

probability density, the sum of a so-constructed background 

expectation and the simulated signature of MSAD2 according to 

Subsection III.B.  

The numerical reconstruction of a radiation measurement is then 

performed in two steps: 

- First, the relevant expectation (with or without the addition of 

the time-normalized uranium signature) is multiplied by the 

time variable 𝑡;  

- Second, a random draw following a Poisson law [19] is carried 

out within the so-constructed time-dependent expectation 

vector.  

For every predetermined measurement configuration (including 

SU, background variability, uranium enrichment level, integration 

time 𝑡), a number of 𝑁 spectra is generated in the absence, and the 

presence of MSAD2, on the basis of which factors of merit FAR and 

TDR may be evaluated.  

As abovementioned, any parameterization of a chosen detection 

procedure will result in different FAR and TDR factors. The 

FAR/TDR trade-off quantifies the specificity (against background) 

and the sensitivity (with respect to MSAD2) of the detection 

procedure. To study the influence of any test parameterization on this 

trade-off, we used classical ROC curves [20]. For the record, ROC 

curves are performance graphs of a complete detection chain, from 

radiation sensor to decision procedure, in the form of a plot of TDR 

as a function of FAR. The underlying variable in such a graph then 

represents the parameterization of the detection procedure. An ideal 

detection chain would yield a ROC curve passing through points 

(0; 0)  − (0; 1)  − (1; 1), whilst a random response chain would 

yield a line crossing points (0; 0) and (1; 1). As a consequence, the 

closest the “elbow” of such a curve gets to the point of coordinates 

(0; 1) in the (FAR, TDR) space, the better trade-off between 

specificity and sensitivity the detection chain is likely to achieve.   

In the frame of this study, ROC curves were constructed using a 

Monte Carlo method: 𝑁 random draws are carried out in the absence 

of uranium, and the same number 𝑁 in the presence of uranium with 

the help of the abovedescribed generation procedure. For every 

parameterization of the detection procedure, we calculated: 

- the number of positives in the presence of uranium signal, 

corresponding to the number of true detections labeled 𝑁𝑇𝐷; 

- and the number of positives in the absence of uranium signal, 

corresponding to the number of  false alarms 𝑁𝐹𝐴.  

We eventually derived, for every parametrization of a given 

procedure, the couple (𝑇𝐷𝑅 =
𝑁𝑇𝐷

𝑁
; 𝐹𝐴𝑅 =

𝑁𝐹𝐴

𝑁
), to which a one 

standard-deviation uncertainty, related to repeatability, is attached as: 

 

(𝜎(𝑇𝐷𝑅) = √
1

𝑁
∙ 𝑇𝐷𝑅 ∙ (1 − 𝑇𝐷𝑅) ; 𝜎(𝐹𝐴𝑅) = √

1

𝑁
∙ 𝐹𝐴𝑅 ∙ (1 − 𝐹𝐴𝑅))  (4)                  

The construction of ROC curves, as well as the generation of 

random tested spectra, were performed using a Python-based 

platform. The number of iterations 𝑁 = 1000 is set so that 𝜎(𝑇𝐷𝑅) 

and 𝜎(𝐹𝐴𝑅) do not exceed 0.5 %. 
The building blocks and performance criteria of the study having 

been presented, the next section will be dedicated to the description 

of specific detection procedures that will operate over these blocks 

and will be qualified on the basis of these criteria.  

IV. MATHEMATICAL FORMULATION OF FREQUENTIST AND BAYESIAN 

STATISTICAL TESTS 

We dedicate this section to the formulation of the absolute and 

relative Bayesian tests that we introduce to detect U-235 and U-238 

inside a closed, concrete-based environment. As these tests, that form 

the core of this paper, are competing solutions with respect the 

frequentist tests discussed in our previous work [2], we shall first 

restate the essential features of the latter ones to allow quantitative 

comparisons. 

Now, depending on the way the spectral information is used 

(including the degree of modeling of hypothesis 𝐻1), and the external 

conditions of measurement (notably the stationarity or non-

stationarity of the radiological background, in amplitude as well as in 

shape), a variety of tests can be constructed, and different 

performance obtained. 

A. Frequentist Absolute (CNB) and Relative (CBB) Tests 

We start with a few definitions that will be useful for our 

discussion when dealing with the respective performance of statistical 

tests. 

A hypothesis test is absolute when it is sensitive to any variation 

of counting rate in the spectral ROI its formulation relies upon. Such 

tests are then vulnerable to amplitude variations of the background 

signal. On the contrary, a test is said relative when its result is only 

affected by a change in shape of the spectrum. On the other hand, 

hypothesis tests are classified on the ground of their laterality. The 



conformity of test data to the null hypothesis, at least when dealing 

with frequentist tests, is assessed through the calculation of a 

𝑝 −value, labeled 𝑝. This value is then compared to a decision 

threshold, labeled 𝛼, and directly related to the risk of false positive 

(or false alarm). In a bilateral test, the null hypothesis is rejected (and 

therefore a contamination is detected) whenever the modulus of the 

𝑝 −value is superior to 𝛼, whereas in a unilateral test it is rejected 

solely when the 𝑝 −value exceeds 𝛼. Consequently, unilateral tests 

provide a possibility to discriminate a significant increase from a 

significant decrease of counting in the spectral ROI, both having 

potentially different physical meanings. In our previous work [2], we 

showed that reaching an acceptable trade-off between TDR and FAR, 

within an integration time below 3000 𝑠/𝑚2 and a surface activity of 

2000 Bq/𝑚2/2π, was not achievable by means of a relative and 

bilateral statistical test. 

The test that we used was the classical Kolmogorov-Smirnov (KS) 

test [2], [25], suited to detect any change in the shape of the 

spectrum. In other words, this test enables its user to determine 

whether two statistical distributions, in this case the reference and 

tested spectra, are identically distributed. The number of counts 

associated to the reference and tested spectra are classified in 

histograms with regular energy bins Eγ ∈  [0 − 3MeV]. Here, the 

𝑝 −value equals the maximum of the absolute bin-to-bin difference 

between both spectra after these have been normalized. For a fixed 

𝛼 −risk level, the KS hypothesis test simply reads as:  

- If 𝑝 > 𝛼, then hypothesis 𝐻0 is rejected, and a uranium 

contamination is detected; 

- Otherwise, 𝐻0 is accepted. 

Facing the limitations that we have highlighted regarding relative 

and bilateral tests such as the KS test, we then studied the 

performance of two alternative frequentist tests that are both 

unilateral. 

The first one is a unilateral and absolute test, whose simplicity lies 

in the fact that its formulation only requires a total counting in the 

spectral ROI containing the main signatures of U-235 and U-238 (a 

region labeled 𝑍 according to the notation from Section III). We refer 

to this test as CNB [2] for it is, as we shall see, based on the 

cumulative (C) function of a negative binomial (NB) distribution. 

Let 𝑇𝑟𝑒𝑓 and 𝑇𝑡𝑒𝑠𝑡 be the acquisition times of the reference and test 

spectra respectively (the two needing not to be taken equal), 𝑚𝑟𝑒𝑓[𝑍] 

and 𝑚𝑡𝑒𝑠𝑡[𝑍] the counts recorded in region 𝑍 over the two previously 

defined measurement periods respectively. The counting 𝑚𝑟𝑒𝑓[𝑍] is 

supposed to follow a Poisson law, whose parameter 𝜌[𝑍] is supposed 

itself to be governed by a gamma distribution of parameters (𝑎; 𝑏). 

These parameters were set to represent the absence of any a priori on 

the counting intensity 𝜌[𝑍]. 
The a posteriori law of 𝜌[𝑍] knowing 𝑚𝑟𝑒𝑓[𝑍] is then a gamma 

distribution of parameters (𝑎 + 𝑚𝑟𝑒𝑓[𝑍] ; 𝑏 + 𝑇𝑟𝑒𝑓), and the 

posterior predictive law of  𝑚𝑡𝑒𝑠𝑡[𝑍], knowing 𝑚𝑟𝑒𝑓[𝑍]  and 

supposing 𝐻0 , is a negative binomial distribution of parameters 

(
𝑇𝑡𝑒𝑠𝑡

𝑏+𝑇𝑟𝑒𝑓+𝑇𝑡𝑒𝑠𝑡
 ; 𝑟 = 𝑎 + 𝑚𝑟𝑒𝑓). The cumulative function 𝐶[𝑍], 

associated to this negative binomial law, is calculated to be: 

 

                                𝐶[𝑍] = 1 − 𝐼𝑝(𝑚𝑡𝑒𝑠𝑡[𝑍], 𝑟)                          (5)                            

where 𝐼𝑝 denotes the regularized incomplete beta function of 

parameters 𝑚𝑡𝑒𝑠𝑡[𝑍] and 𝑟. The 𝑝 −value of the hypothesis test is 

eventually defined as: 

                                             𝑝 = 1 − 𝐶[𝑍]                                   (6)                              

Just as the KS test, the CNB test, under a given 𝛼 −risk, is 

expressed as:  

- If  𝑝 >  𝛼, then 𝐻0 is rejected, and a contamination is detected; 

- Otherwise, 𝐻0 is accepted. 

As a unilateral test, the CNB test remains at least as sensitive as a 

KS test with respect to the presence of an increase of counting in 

region 𝑍, while being more specific against any decrease of counting 

in the same region. Such a decrease would indeed be attributable to a 

variation of the radiological background amplitude between the 

reference and the test acquisitions. However, as it is an absolute test, 

its specificity may be impinged when the background increases 

significantly over 𝑍 between the two said acquisitions. Provided such 

an amplitude variation prevails over the shape variation of the 

spectrum (in other words, that the background change may be 

approached as a scaling factor over the entire spectrum), then it may 

prove useful to use a relative counterpart of this CNB test. 

The second detection procedure we implemented was therefore a 

unilateral and relative test we refer to as CBB [2], for being based on 

the cumulative (C) function of a beta binomial (BB) distribution. The 

CBB test, like the CNB test, relies upon two spectral acquisitions 

over 𝑇𝑟𝑒𝑓 and 𝑇𝑡𝑒𝑠𝑡 respectively. As a relative test, however, the CBB 

test does not only make use of region 𝑍 for uranium detection, but 

also of a second region where no significant signal from uranium is 

expected. The latter is named “control region,” and labeled 𝑊.  

Using the same notations as before, 𝑚𝑟𝑒𝑓[𝑊] is defined as the 

counting in the control region of the reference spectrum, and 

𝑚𝑡𝑒𝑠𝑡[𝑊], the counting in the same region of the tested spectrum. 

The CBB test relies on the introduction of a random variable 𝜌, 

following a beta distribution of prior-free parameters (𝑎; 𝑏). The 

counting 𝑚𝑟𝑒𝑓[𝑍] is no longer supposed to follow a Poisson 

distribution, but a binomial distribution of parameters (𝑚𝑟𝑒𝑓[𝑍] +

𝑚𝑟𝑒𝑓[𝑊] ; 𝜌). The a posteriori law of 𝜌, knowing 𝑚𝑟𝑒𝑓[𝑍] and 

𝑚𝑟𝑒𝑓[𝑊], is then a beta distribution of parameters (𝑎 +

𝑚𝑟𝑒𝑓[𝑍] ; 𝑏 + 𝑚𝑟𝑒𝑓[𝑊]). 

Under hypothesis 𝐻0, the 𝑚𝑡𝑒𝑠𝑡[𝑍] counting associated to the 

tested spectrum follows a binomial law of parameter 𝜌. The 

predictive posterior law of 𝑚𝑡𝑒𝑠𝑡[𝑍] knowing 𝑚𝑟𝑒𝑓[𝑍], 𝑚𝑟𝑒𝑓[𝑊] and 

𝑚𝑡𝑒𝑠𝑡[𝑊], is a beta binomial law, with a number of draws 𝑘𝑡𝑒𝑠𝑡 =

𝑚𝑡𝑒𝑠𝑡[𝑍] + 𝑚𝑡𝑒𝑠𝑡[𝑊] and parameters (𝑎 + 𝑚𝑟𝑒𝑓[𝑍] ; 𝑏 + 𝑚𝑟𝑒𝑓[𝑊]). 

Finally, the cumulative function associated to this beta binomial law 

is expressed as: 

 

𝐶[𝑍,𝑊] =
Β(𝑎+𝑚𝑟𝑒𝑓[𝑍]+𝑚𝑡𝑒𝑠𝑡[𝑍]+1,𝑏+𝑚𝑟𝑒𝑓[𝑊]+𝑚𝑡𝑒𝑠𝑡[𝑊]−1)∙𝐹𝑘2(𝑎⃗ ,𝑏⃗ ,𝑚𝑟𝑒𝑓[𝑍])

Β(𝑎+𝑚𝑟𝑒𝑓[𝑍],𝑏+𝑚𝑟𝑒𝑓[𝑊])∙Β(𝑚𝑡𝑒𝑠𝑡[𝑊],𝑚𝑡𝑒𝑠𝑡[𝑍]+2)∙(𝑚𝑡𝑒𝑠𝑡[𝑍]+𝑚𝑡𝑒𝑠𝑡[𝑊]+1)
      (7)                              

where 𝐵 is the beta function, and 𝐹𝑘2
(𝑎 , 𝑏⃗ , 𝑚𝑟𝑒𝑓[𝑍]) is explicited 

by means of a generalized hypergeometric function 𝐹23 , parametrized 

with 𝑎, 𝑏,𝑚𝑟𝑒𝑓[𝑍],𝑚𝑟𝑒𝑓[𝑊],𝑚𝑡𝑒𝑠𝑡[𝑍], and 𝑚𝑡𝑒𝑠𝑡[𝑊]. In the same 

manner as above, the 𝑝 −value is defined as:  

                                               𝑝 = 1 − 𝐶[𝑍,𝑊]                           (8)                                       

As previously, the CBB test under a given 𝛼 −risk is expressed as:  

- If  𝑝 >  𝛼, then 𝐻0 is rejected, and a contamination is detected; 

- Otherwise, 𝐻0  is accepted.  

In a nutshell, the CNB and CBB tests are both frequentist tests, 

founded upon the calculation of a 𝑝 −value, and comparison of this 

𝑝 −value to a rejection threshold of the null hypothesis. The 

determination of this threshold is based itself on the quantiles of a 



cumulative distribution function (CDF) built under the assumption 

that the null hypothesis is verified. We showed in previous work [2] 

that these detection procedures yield a significant improvement of the 

trade-off between TDR and FAR when compared to a KS test. As it 

was stated in Section I, however, the so-obtained gain may be 

deemed insufficient when facing very low SNR conditions. The most 

relevant option then appears to embed more uranium-specific, 

spectral information at the core of the detection method. So far, 

indeed, the only prior information used in the procedure lies within 

the definition of the spectral regions of interest 𝑍 and 𝑊. However, 

the availability of a physical model of the gamma-ray source term 

associated with a uranium surface contamination, as well as of 

multichannel spectra at the output of the HPGe spectrometer, allow 

further prior modeling of the alternative hypothesis 𝐻1. Practically 

speaking, such a modeling involves the exploitation of the signature 

from multiple energy channels across the spectrum in a bin-to-bin 

fashion. The difficulty that arises lies in the fact that the type of 

probability distribution underlying the counting becomes 

multivariate, and the quantiles of the cumulative distribution of such 

laws can no longer be obtained symbolically. As a consequence, if 

we aim at exploiting the posterior multivariate laws of both 

hypotheses 𝐻0 and 𝐻1, we are to turn to a Bayesian approach. Such 

an approach, indeed, does not require evaluating the cumulative 

function of a multivariate law, and subsequently deriving a 𝑝 −value. 

It is thus this line of thought that we shall follow in the following 

subsections, introducing two Bayesian statistical tests that, to our 

knowledge, are new in the field of nuclear data analysis.  

As mentioned above, one of these tests, the Bayesian Absolute test 

by Mixture of multivariate Poisson laws (BAM), represents an 

alternative to the CNB test, while the Bayesian Relative test by 

Mixture of multinomial laws (BRM) test can be used instead of the 

CBB test. 

B. Bayesian Absolute Test by Mixture of Multivariate Poisson Laws 

(BAM) 

The construction of a Bayesian statistical test, whether it is 

absolute or relative, requires some prior knowledge of the spectral 

signatures of both the radiological background, and an expected 

uranium contamination inside the investigated unit. On the one hand, 

and in agreement with the description from Section III, an a priori 

signature of the background is directly provided by the reference 

spectrum acquired over 𝑇𝑟𝑒𝑓. On the other hand, the prior spectrum 

from a uranium contamination is obtained via Monte Carlo 

simulations.  The keystone of the method is that the multichannel 

countings, obtained from the acquisitions over 𝑇𝑟𝑒𝑓 and 𝑇𝑡𝑒𝑠𝑡, are not 

seen as resulting directly from a sampling of the said a priori 

signatures. Instead, they are each seen as resulting from the sampling 

of a multinomial law with random parameters. These parameters are 

themselves supposed to follow a Dirichlet distribution (that faithfully 

captures the discrete bin-to-bin profile of experimental energy 

spectra) whose mathematical expectation is the one vector directly 

given by the abovementioned a priori spectral signatures. This 

introduction of a statistical level between the a priori and the 

measurement makes it possible to limit the detrimental impact on the 

detection procedure of small fluctuations in the background, as well 

as minor discrepancies between simulation and experiment. As far as 

the BAM test itself is concerned, the fact that it is an absolute 

statistical test comes from the use of a Poisson law assumption with a 

defined intensity parameter as underlying the counting model. This is 

actually the main characteristic the test shares with the frequentist 

CNB test described in Subsection IV.A. 

We note 𝒎𝒓𝒆𝒇 = (𝑚𝑟𝑒𝑓[1], … ,𝑚𝑟𝑒𝑓[𝐾]) and 𝒎𝒕𝒆𝒔𝒕 =

(𝑚𝑡𝑒𝑠𝑡[1], … ,𝑚𝑡𝑒𝑠𝑡[𝐾]) the multichannel counting vectors 

respectively associated with the acquisitions over 𝑇𝑟𝑒𝑓  and 𝑇𝑡𝑒𝑠𝑡, 

𝑚𝑟𝑒𝑓[𝑘] and 𝑚𝑡𝑒𝑠𝑡[𝑘] labeling the number of counts recorded in the 

𝑘𝑡ℎchannel, and 𝐾 the number of channels in the portion of the 

histograms that is used in the analysis. Moreover, we introduce 𝑚𝑟𝑒𝑓 

and 𝑚𝑡𝑒𝑠𝑡 as the total numbers of counts over the 𝐾 exploited 

channels of both energy spectra respectively.  

The mathematical law hypotheses upon which the procedure is 

founded are as follows:  

- The counting in the 𝑘𝑡ℎ channel of a histogram obtained in the 

presence of the sole background radiation follows a Poisson 

law of parameter 𝜆𝐵 ∙ 𝑥𝐵[𝑘] where: 

- the counting intensity 𝜆𝐵, associated with the background 

radiation, follows a gamma law of parameters (𝑎𝐵 ; 𝑏𝐵) ; 

- and vector 𝒙𝑩 follows a Dirichlet distribution, whose 

parameter vector is given by the product 𝜸𝑩 = 𝐾 ∙ 𝜈𝐵 ∙
𝒔𝑩, where vector 𝒔𝑩 represents the normalized a priori 

signature of the background, and scalar 𝜈𝐵 a weighting 

factor that quantifies the confidence of the user in said a 

priori. 

- In a symmetrical fashion, the counting in the 𝑘𝑡ℎ channel of a 

histogram obtained in the presence of the sole uranium 

contamination follows a Poisson law of parameter 𝜆𝑆 ∙ 𝑥𝑆[𝑘] 
where: 

- the counting intensity 𝜆𝑆, associated with the 

contamination, follows a gamma law of parameters 

(𝑎𝑆 ; 𝑏𝑆) ; 
- and vector 𝒙𝑺  follows a Dirichlet distribution whose 

parameter vector is given by the product 𝜸𝑺 = 𝐾 ∙ 𝜈𝑆 ∙ 𝒔𝑺, 

where vector 𝒔𝑺 represents the normalized a priori 

signature of the uranium, and scalar  𝜈𝑆 a weighting factor 

that traduces the confidence of the user in said a priori. 

When dealing with Bayesian statistical tests, one no longer aims at 

comparing a 𝑝 −value to a decision threshold, but at determining, 

given the data sets 𝒎𝒓𝒆𝒇 and 𝒎𝒕𝒆𝒔𝒕, which one of 𝐻0 or 𝐻1 is the 

most likely verified hypothesis. In other words, the quantity of 

interest may be represented by the ratio of posterior probabilities  

ℙ(𝐻0|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕)

ℙ(𝐻1|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕)
 . 

Now, the application of Bayes’ theorem leads to the following 

equality: 

                
ℙ(𝐻0|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕)

ℙ(𝐻1|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕)
=

ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻0)∙ℙ(𝐻0)

ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻1)∙ℙ(𝐻1)
             (9)                                 

In the framework of Bayesian statistics, probabilities ℙ(𝐻0) and 

ℙ(𝐻1) are called priors. There are set by the user on the basis of 

previous information about plan project, security rules, and operation 

history within the facility. As a consequence, the ratio 𝑟 expressed as: 

                                               𝑟 =
ℙ(𝐻1)

ℙ(𝐻0)
                                      (10)  

is a constant that represents, for the decommissioning team, the 

likeliness of a uranium contamination being present.  

By combing (9) and (10), we see that the detection procedure 

relies entirely on a ratio 𝜌 of likelihood functions, known as Bayes’ 

factor, and defined as: 

                             𝜌 =
ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|H1)

ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|H0)
∙ 𝑟                             (11)              



In addition, we recall that: 

                 ℙ(𝐻1|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕) = 1 − ℙ(𝐻0|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕)        (12)                                 

The combination of the last equations leads to a factorization of 

the posterior probability of 𝐻0, which is the quantity that will be 

eventually compared to a decision threshold: 

                                 ℙ(𝐻0|𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕) =
1

1+𝜌
                        (13) 

In a nutshell, we showed that the formulation of the statistical test 

requires solely the calculation of conditional joint probabilities 

ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻0) and ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻1). 

We shall now underline the procedure that we followed to 

compute these two probabilities: 

- First, we must calculate the joint likelihood of 𝒎𝒓𝒆𝒇, 𝒎𝒕𝒆𝒔𝒕, 𝒙𝑩, 

and 𝜆𝐵 under 𝐻0, and the joint likelihood of 𝒎𝒓𝒆𝒇, 𝒎𝒕𝒆𝒔𝒕, 𝒙𝑩, 

𝜆𝐵, 𝒙𝑺, and 𝜆𝑆 under 𝐻1; 

- Second, we must marginalize the first of these joint likelihoods 

with 𝒙𝑩, and 𝜆𝐵; 

- Third, we must marginalize the second of these joint 

likelihoods with 𝒙𝑩 and 𝒙𝑺 as well as with 𝜆𝐵 and 𝜆𝑆.  

The first marginalization leads straightforwardly to an expression 

of ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻0) that is explicited by means of the gamma 

function Γ. The derivation of ℙ(𝒎𝒓𝒆𝒇,𝒎𝒕𝒆𝒔𝒕|𝐻1) is more difficult to 

carry out. Indeed, marginalizing the joint likelihood with both 𝒙𝑩 and 

𝒙𝑺 requires integrating, and therefore developing a multivariate 

polynomial in 𝒙𝑩 and 𝒙𝑺. The best way around the complexity of 

such a development takes advantage of the moment structure of the 

Dirichlet distribution, and the term-by-term identification of the 

powers of the said polynomial to instantiations of function Γ. 

All calculations being made, Bayes’ factor may be explicited as: 

 

 𝜌 =
Γ(𝐾𝜈𝑆)

Γ(𝑎𝑆)
∙ (

𝑏𝑆

𝑇𝑡𝑒𝑠𝑡+𝑏𝑆
)
𝑎𝑆

∙
Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡+𝐾𝜈𝐵)

Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡+𝑎𝐵)
  ∙

                ∑
𝜔𝑗Γ(𝑗+𝑎𝑆)Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡−𝑗+𝑎𝐵)

Γ(𝑗+𝐾𝜈𝑆)Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡−𝑗+𝐾𝜈𝐵)

𝑚𝑡𝑒𝑠𝑡
𝑗=0 (

𝑇𝑟𝑒𝑓+𝑇𝑡𝑒𝑠𝑡+𝑏𝐵

𝑇𝑡𝑒𝑠𝑡+𝑏𝑆
)
𝑗

∙ 𝑟     (14) 

 

The calculation of coefficients (𝜔𝑗)1≤𝑗≤𝑚𝑡𝑒𝑠𝑡
is carried out in 

two steps. We first form a set of 𝐾 vectors denoted 

(𝑽𝒌)1≤𝑘≤𝐾 . The 𝑘𝑡ℎ element of this set 𝑽𝒌  is a vector of 

dimensions (𝑚𝑡𝑒𝑠𝑡[𝑘], 1), whose 𝑗𝑡ℎ coordinate is: 

  𝑉𝑘[𝑗] =  (
𝑚𝑡𝑒𝑠𝑡[𝑘]

𝑗
) ∙

Γ(𝑗+𝛾𝑆[𝑘])

Γ(𝛾𝑆[𝑘])
∙
Γ(𝑚𝑟𝑒𝑓[𝑘]+𝑚𝑡𝑒𝑠𝑡[𝑘]−𝑗+𝛾𝐵[𝑘])

Γ(𝑚𝑟𝑒𝑓[𝑘]+𝑚𝑡𝑒𝑠𝑡[𝑘]+𝛾𝐵[𝑘])
     (15) 

Second, we construct the discrete 𝐾 −convolution product of 

(𝑽𝒌)1≤𝑘≤𝐾, noted 𝜴 = (𝜔𝑗)1≤𝑗≤𝑚𝑡𝑒𝑠𝑡
, as: 

                                    𝜴 = 𝑽𝟏 ⊗ … ⊗ 𝑽𝑲                               (16)                  

 

where: ∀ (𝑚, 𝑛) ∈ ⟦1, 𝐾⟧2, ∀ 𝑞 ≥ 1, 
              (𝑉𝑚 ⊗ 𝑉𝑛)[𝑞] = ∑ 𝑉𝑚[𝑞] ∙ 𝑉𝑛[𝑝 − 𝑞]+∞

𝑞=−∞                       (17)                  

     In a similar fashion as we have found in Subsection IV.A, the 

BAM test under a given 𝛼 −risk is eventually expressed as: 

- If  
1

1+𝜌
< 𝜂𝛼  then 𝐻0 is rejected and a contamination is 

detected; 

- Otherwise, 𝐻0 is accepted. 

where the relation between the thereshold 𝜂𝛼  and the 𝛼 −risk must 

be established numerically via a Monte Carlo method. 

As it can be seen from (14), the probability ratio 𝑟 acts a scaling 

parameter that will not modify the trend of the ROC curve of the test, 

but the underlying value of 𝜂𝛼 yielding the best TDR/FAR trade-off 

ratio. In the absence of any prior knowledge of how likely the 

presence of a uranium contamination is, we chose non-informative 

priors ℙ(𝐻0) = ℙ(𝐻1) = 0.5, so that 𝑟 = 1 in the rest of the analysis.  

C. Bayesian Relative Test by Mixture of Multinomial Laws (BRM) 

The formulation of the BRM test is very close to the one the BAM 

test. Going from the absolute to the relative version of the statistical 

test is done in the same way as we have seen when describing the 

transition from the CNB to the CBB test, i.e., by removing the 

Poisson law assumption from the modelling of countings. 

Keeping the notations from Subsection IV.B, hypotheses 𝐻0 and 

𝐻1 admit the following reformulations: 

- 𝐻0 : spectra 𝒎𝒓𝒆𝒇 and 𝒎𝒕𝒆𝒔𝒕 are formed of countings resulting 

from two drawing experiments, with respectively 𝑚𝑟𝑒𝑓 and 

𝑚𝑡𝑒𝑠𝑡 trials, inside the same multinomial law of vector 

parameter 𝒙𝑩 as defined in the last subsection; 

- 𝐻1: spectrum 𝒎𝒓𝒆𝒇 is formed of countings resulting from a 

drawing experiment with 𝑚𝑟𝑒𝑓 trials inside the sole 

multinomial law of vector parameter 𝒙𝑩. Spectrum 𝒎𝑡𝑒𝑠𝑡, on 

the contrary, is formed of countings resulting from a drawing 

experiment with 𝑚𝑡𝑒𝑠𝑡 trials inside a mixture of two 

multinomial laws of respective vector parameters 𝒙𝑩  and 𝒙𝑺. 
The relative contributions to the mixture of the background 

radiation and uranium contamination are quantified through the 

introduction a random variable that is supposed to follow a beta 

distribution of parameters (𝑎;  𝑏). 

The explicitation of Bayes’ factor in this case is similar to the one 

derived in Subsection IV.B except this time, it is expressed by means 

of both the gamma function Γ and the beta function B: 

 

𝜌 =
Γ(𝐾𝜈𝑆)Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡+𝐾𝜈𝐵)

B(𝑎,𝑏)
∙ ∑

𝜔𝑗B(𝑗+𝑎,𝑚𝑡𝑒𝑠𝑡−𝑗+𝑏)

Γ(𝑗+𝐾𝜈𝑆)Γ(𝑚𝑟𝑒𝑓+𝑚𝑡𝑒𝑠𝑡−𝑗+𝐾𝜈𝐵)

𝑚𝑡𝑒𝑠𝑡
𝑗=0 ∙ 𝑟  (18) 

where, again, the probability ratio 𝑟 is set equal to 1.  

The calculation of coefficients (𝜔𝑗)1≤𝑗≤𝑚𝑡𝑒𝑠𝑡
is performed 

according to the same discrete convolution procedure as in the BAM 

test construction.  

Similar to BAM test, the BRM statistical test under a given 

𝛼 −risk reads as: 

- If  
1

1+𝜌
< 𝜂𝛼  then 𝐻0 is rejected and a contamination is 

detected; 

- Otherwise, 𝐻0 is accepted. 

V. PARAMETERIZATION OF THE BAM AND BRM STATISTICAL TESTS 

Contrary to the CNB and CBB frequentist tests, the 

implementation of the BAM and BRM statistical tests requires the 

setting of certain parameters. Said setting must be done with the aim 

of minimizing the acquisition time (and thus the decommissioning 

costs) while keeping the TDR/FAR as high as possible. In accordance 

with the aforementioned definitions of BAM and BRM, there are 

three parameters that we can be considered as key, namely the 

number of channels 𝐾 used for the test, and the weighting factors 𝜈𝑆 

and 𝜈𝐵. In the current section, we present the procedure that was 

followed to adjust the values of these parameters.  

A. Selection of the Number of Channels 𝐾 

As stated above, the construction of the BAM and BRM tests was 

built upon a discrete 𝐾 − convolution product. As a result, and as be 



𝜈𝑆 
𝜈𝐵 

inferred from Eq. (16) above, the computational complexity of these 

tests will depend essentially on the total number of counts in the 

selected ROI. Furthermore, one of the advantages of the Bayesian 

approach is that its effectiveness does not necessarily rely on the 

definition of adequate ROI (contrary to frequentist CNB and CBB 

tests). As a result, a rigorous study of the dependence of its 

performance as a function of 𝐾 is in order.   

To investigate the influence of parameter 𝐾 on the performance of 

the BAM and BRM tests, we considered two extreme cases:  

- First, we used the full spectrum with 𝐾 = 8192  channels; 

- Second, we retained the disjoint ROI: [140 − 210] ∪
[990 − 1010] keV, where the FEP of interest of uranium are 

expected, and amounting to 𝐾 = 90 channels.  

These settings are the reflection of two contradictory motivations. 

The first ROI aims at taking advantage of the full spectrum to exploit 

maximally any prior information on the uranium and background 

signals, with the potential disadvantage of increasing the execution 

time due to the number of counts recorded in the spectrum. The 

second ROI is restricted to regions surrounding the FEP of uranium 

in order to limit the execution time, with the potential downside of 

limiting the a priori information on the background that is available 

for the detection procedure. In order to assess these settings 

quantitatively, we calculated the merit factor 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) 

(i.e., the elbow of the ROC curve), and the execution time/ROC for 

both extreme cases where 𝐾 =  8192 and 𝐾 = 90. Tables III and IV 

present the obtained results for an integration time 𝑇𝑡𝑒𝑠𝑡 =  100 s and 

an enrichment level of 1 wt%. 
TABLE III 

ESTIMATION OF THE FACTORS OF MERIT FOR THE BAM TEST ACCORDING TO 

THE NUMBER OF SELECTED CHANNELS 𝐾. 

 
BAM test 𝐾 =  8192 𝐾 =  90 

Execution time/ROC 11.7 s 1.85 s 

𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) 0.76 ± 0.01 0.78 ±0.01 

  
TABLE IV 

ESTIMATION OF THE FACTORS OF MERIT FOR THE BRM TEST ACCORDING TO 

THE NUMBER OF SELECTED CHANNELS 𝐾. 

BRM test 𝐾 =  8192 𝐾 =  90 

Execution time/ROC 24.3 s 1.89 s 

𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) 0.76 ± 0.01 0.76 ± 0.01 

 

From Tables III and IV, we observe that, for 𝐾 =  90, the BAM 

and BRM tests yield a factor of merit 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) equal 

to, or higher than the one obtained using the full spectrum (𝐾 =
 8192) with a five- to ten-times lesser execution time. 

Regarding the comparison of the execution times associated to the 

CNB, CBB, BAM and BRM tests run over 𝐾 =  90 channels, 

Table V presents the values that we obtained for an integration 

time 𝑇𝑡𝑒𝑠𝑡 = 100 𝑠, and a simulated enrichment level of 1 wt%. 

TABLE V 

EXECUTION TIMES FOR CNB, CBB, BAM AND BRM TESTS, 𝑇𝑡𝑒𝑠𝑡 = 100 𝑠 

AND 𝐾 = 90.  

Statistical test Execution time/test 

CNB 6.88 ms 

CBB 13.5 ms 

BAM 1.85 s 

BRM 1.89 s 

 

We observe that the execution times of the CNB and CBB tests are 

much lesser than the ones of the BAM and BRM. This result directly 

follows from discrete convolution product that is used by two latter. 

This being said, we notice that the execution time for the four tests 

will remain negligible (below 2 %) when compared to a minimum 

acquisition time in the order of 100 s. 

We conclude that the selection of a number of channels 𝐾 = 90 is 

the most appropriate to our study in spite of the potential loss of a 

priori information on the background signal it involves (which we 

have shown to be limited so far). The latter issue will be addressed by 

tuning weighting factor 𝜈𝑆 and 𝜈𝐵 as it will be detailed in the next 

subsection. 

Eventually, one may note that the execution time/ROC could be 

reduced by using a more powerful machine. The decision of using a 

spectral region limited to our ROI instead of the full spectrum thus 

depends on our prototype architecture, and may be subject to future 

change.  

B. Selection of Weighting Factors ν𝑆 and ν𝐵 

The weighting factors 𝜈𝑆 and 𝜈𝐵 reflect the user's confidence in the 

uranium signal and background signal a priori. These factors thus 

constitute other parameters, that are specific to the BAM and BRM 

Bayesian tests, and that play a crucial role in both the construction 

and performance of these tests. Furthermore, the selection of these 

factors allows us to account for the limitation of the available prior 

information on the radiation background. This limitation itself results 

from the use of restricted ROI in the vicinity of the FEP of uranium. 

In practice, any value of 𝜈𝑆 and 𝜈𝐵 above 1 may be selected. In 

order to select optimal values for these weighting factors, we studied 

systematically their respective influence on the performance of the 

BAM and BRM tests, using a random sampling of the {𝜈𝑆; 𝜈𝐵} 2D-

space without any law hypothesis. To this end, we varied 𝜈𝑆 and 𝜈𝐵 

separately and in a similar way, according to ranges 𝜈𝐵 ∈
{1; 5; 10;  50; 100}, 𝜈𝑆 ∈ {1; 5; 10;  50; 100}. As in the previous 

subsection, the performance of a test was quantified using the merit 

factor 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅). The evolution of this factor was 

investigated as a function of 𝜈𝑆 and 𝜈𝐵 for a number of channels 𝐾 =
 90, an integration time 𝑇𝑡𝑒𝑠𝑡 = 100 𝑠 and an enrichment level of 

1 wt%. The results are synthetized in Tables VI and VII below. 

TABLE VI 

ESTIMATION OF THE FACTOR OF MERIT FOR THE BAM TEST ACCORDING TO 

WEIGHTING FACTORS 𝜈𝑆 AND 𝜈𝐵. 

 

 

 

 

 

 

 

 

                                    BAM test 

1 5 10 50 100 
1 0.78±0.01 0.76±0.01 0.75±0.01 0.73±0.01 0.74±0.01 

 

5 0.75±0.01 0.74±0.01 0.75 ±0.01 0.76±0.01 0.75±0.01 

10 0.74±0.01 0.74±0.01 0.75±0.01 0.74±0.01 0.74±0.01 

 

50 0.74±0.01 0.76±0.01 0.74±0.01 0.76±0.01 0.74±0.01 

100 0.75±0.01 0.76 ±0.01 0.76±0.01 0.78±0.01 0.74±0.01 



𝜈𝑆 
𝜈𝐵 

TABLE VII 

ESTIMATION OF THE FACTOR OF MERIT FOR THE BRM TEST ACCORDING TO 

WEIGHTING FACTORS 𝜈𝑆 AND 𝜈𝐵. 

 

Let us first analyze the results associated with the BAM test in 

Table VI. We introduce the notation 𝑀(𝜈𝐵, 𝜈𝑆) =
𝑚𝑎𝑥𝑅𝑂𝐶(𝜈𝐵,𝜈𝑆)

(𝑇𝐷𝑅 − 𝐹𝐴𝑅) to refer to every entry in Table VI. The 

one-sigma uncertainty associated with every value of 𝑀(𝜈𝐵, 𝜈𝑆) is 

noted 𝑢(𝑀(𝜈𝐵, 𝜈𝑆)) = 𝑢 (𝑚𝑎𝑥𝑅𝑂𝐶(𝜈𝐵,𝜈𝑆)
(𝑇𝐷𝑅 − 𝐹𝐴𝑅)). Eventually, 

we label 𝑀̅ the empirical mean of all factors 𝑀(𝜈𝐵, 𝜈𝑆) in Table VI, 

and 𝜎(𝑀) the empirical dispersion of the said factors around the 

mean 𝑀̅. We observe that: 

         ∀ (𝜈𝐵, 𝜈𝑆) ∈ {1; 5; 10;  50; 100} × {1; 5; 10;  50; 100}     (19) 

[𝑀(𝜈𝐵, 𝜈𝑆) ± 𝑢(𝑀(𝜈𝐵, 𝜈𝑆))] ⊆ [𝑀̅ ± 𝜎(𝑀)]       

In other words, as far as the BAM test is concerned, all considered 

settings of weighing factors 𝜈𝐵 and 𝜈𝑆 are equivalent with respect to 

the trade-off between FAR and TDR. 

Carrying out the same statistical analysis with the results 

associated with the BRM test, we observe conversely that all 

considered settings are not equivalent with respect to the trade-off 

between FAR and TDR. In fact, we note from the factors presented in 

Table VII that the closer the values of 𝜈𝐵 and 𝜈𝐵 are to each other, the 

higher 𝑀(𝜈𝐵, 𝜈𝑆) will be. In order to corroborate this observation, we 

performed once again the above described analysis while restricting 

its domain to the cases where 𝜈𝑆 = 𝜈𝐵 (i.e., with the sole factors that 

belong to the diagonal of Table VII). In this situation, we thus have:  

 

                    ∀ (𝜈𝐵, 𝜈𝑆) ∈ {1; 5; 10;  50; 100}2 / 𝜈𝑆 = 𝜈𝐵         (20) 

[𝑀(𝜈𝐵, 𝜈𝑆) ± 𝑢(𝑀(𝜈𝐵, 𝜈𝑆))] ⊆ [𝑀̅ ± 𝜎(𝑀)] 

From the perspective of the merit figure  𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅), it 

then follows that all symmetrical settings of  𝜈𝑆 and  𝜈𝐵 are 

equivalent.  

Now, on the basis of the discussion in Subsection III.C, we remind 

that: 

- The background signal is likely to vary in shape and amplitude; 

- The priors form only responses to average expected 

enrichments so that, in practical cases, the uranium signal may 

depart from this prior due to a significantly different mass 

fraction in U-235. 

As a consequence, the choice of the lowest weighting factors 𝜈𝑆 =
𝜈𝐵 = 1 is favored. This setting indeed does not impinge the 

performance of the Bayesian tests, while remaining conservative with 

respect to potential discrepancies between tested spectra and a priori 

signatures. 

To conclude this section, we should note that modelling a nuclear 

counting with a Poisson distribution requires more assumptions to be 

valid than describing it with a binomial distribution. One of such 

conditions is that the number of observed decays in the population of 

unstable nuclei be large enough, and thus that the measurement time 

is above a certain limit. This should lead to some discrepancies 

between the behaviors of BAM and BRM as the measurement test 

𝑇𝑡𝑒𝑠𝑡 keeps decreasing. However, preliminary studies have shown 

that when 𝑇𝑡𝑒𝑠𝑡 is the order of several tens of seconds, both Bayesian 

tests exhibit random behaviors. In other words, the ROC curve 

becomes a straight line between points (0; 0) and (1; 1) in the 

TDR/FAR space. This is due to the fact that the signal in the spectral 

ROI for uranium detection is then too tenuous to be of use. 

Consequently, the study of such discrepancies was left as an outlook 

in the course of this work. 

 

VI. SIMULATION RESULTS AND DISCUSSION 

In this section, we evaluate the respective performance of the 

Bayesian and frequentist approaches by using ROC curves. Besides, 

we study the effect of the radiological background variations, both in 

amplitude and in shape, on the performance reached by any statistical 

test. 

A. Comparative Study between Bayesian and Frequentist Tests: 

Stable Radiological Background  

In order to investigate the effectiveness of the Bayesian approach 

to address uranium detection with low count rates, we carried out a 

comparative study of BAM and BRM with frequentist tests by using 

ROC curves. The study is based on the simulation of expected 

scenarios corresponding to different enrichment levels encountered 

within the three SU described in Subsection III.B, and the calculation 

merit figure 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅). We conducted this study on the 

basis of the following configurations: 

- Bayesian and frequentist hypothesis tests: BAM, BRM, CNB, 

CBB; 

- Enrichment levels: Nat wt%, 3 wt%, 8 wt% ; 

- SU of nuclear facility: SU1, SU2, SU3; 

- Source-detector distance: 𝑑 = 22.36 𝑐𝑚 for 500 Bq/0.1 m2/
2𝜋 (MSAD2); 

- Number of channels: 𝐾 = 90; 

- Weighting factors:  𝜈𝑆 = 𝜈𝐵 = 1; 

- Integration times: 𝑡 ∈ {300; 500; 1000; 3000; 5000} 𝑠; 

- Number of iterations: 𝑁 = 1000 ; 

- Radiological background: stable, varied in shape and amplitude 

(Subsection VI.B). 

     Fig. 2 to 4 present the results obtained for an integration times 𝑡 ∈
 {3000;  5000} s, and U-235-enrichments lying between natural level 

and 8 wt%. 

 BRM test 

         1          5         10 50        100 

1 0.76±0.01 0.73±0.01 0.68±0.01 0.64±0.01 0.61±0.01 

 

5 0.59±0.01 0.74±0.01 0.75±0.01 0.70±0.01 0.70±0.01 

 

10 0.27±0.01 0.74±0.01 0.75±0.01 0.70±0.01 0.68±0.01 

 

50 0 0.57±0.01 0.58±0.01 0.76±0.01 0.74±0.01 

 

100 0 0.12±0.01 0.54±0.01 0.74±0.01 0.76±0.01 

 



  
(a)                                                                                                                             (b) 

Fig. 2.  ROC curves for an enrichment level of Nat wt% and integration times: (a) t = 3000 s, (b) t = 5000 s. 

  
(a)                                                                                                                            (b) 

Fig. 3.  ROC curves for an enrichment level of 3 wt% and integration times: (a) t = 3000 s, (b) t = 5000 s. 

     
(a)                                                                                                                             (b) 

Fig. 4.  ROC curves for an enrichment level of 8 wt% and integration times: (a) t = 3000 s, (b) t = 5000 s. 



From Fig. 2 to 4, we observe that:  

- The ROC curves for BAM and BRM Bayesian tests traduce a 

more statistically efficient behavior than the ones we drew for 

CNB and CBB frequentist tests. Indeed, these yield a factor 

of merit 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) closer to the point of 

coordinates (0; 1) in the (FAR, TDR) space, as it can be seen 

in Fig. 3. In this regard, the BAM and BRM Bayesian tests 

show a superior performance by up to 50 % when compared 

to the CNB and CBB frequentist tests. As an illustration, 

taking the example of the BAM test, we obtained for both 

enrichment levels Nat wt% and 8 wt% at t = 5000 s, figures 

of merit equal to  (0.63 ± 0.01) (Fig. 2. b) and (0.92 ± 0.01) 

(Fig. 4. b). These advantageously compare to (0.19 ± 0.03) 
(Fig. 2. b) and (0.40 ± 0.01) (Fig. 4. b) as yielded by the 

CNB test; 

- The ROC curves for the absolute BAM and relative BRM 

tests traduce almost the same detection performance. The 

difference in their merit figures is indeed about 2 %, in 

contrast with the 7 % discrepancy we observe between the 

same figures for the absolute CNB and relative CBB tests. 

Moreover, BAM only shows a slightly higher performance 

than BRM when the enrichment is less than 3 wt%; 

- The ROC curves of BAM and BRM show a large increase in 

the merit figure 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 − 𝐹𝐴𝑅) when the enrichment 

level gets higher, and/or the integration time is augmented. 

For example, with an enrichment level of 8 wt%, BAM 

yields a merit figure of (0.85 ± 0.01) at t =  3000 s (Fig. 4. 

a), compared to a figure of (0.92 ± 0.01) (Fig. 4. b) at  t =
5000 s.  

Eventually, we can conclude that the comparison between 

Bayesian and frequentist tests with a stable radiological background 

shows that BAM and BRM provide a significantly higher trade-off 

between specificity and sensitivity than CNB and CBB. Not only 

do they show an almost identical detection behavior, but their 

behaviors come close to the one of an ideal detection test when the 

enrichment level is high (above 8 wt%), and the integration time is 

long (above 5000 𝑠). 

B. Comparative Study between Bayesian and Frequentist Tests: 

Radiological Background Varied in Shape and Amplitude 

In this section, we present the results of variability study on the 

background radiation signal with respect to shape and amplitude, 

comparing the effect of these variations on both Bayesian and 

frequentist tests. The following presentation focuses on the extreme 

enrichments levels Nat wt% and 8 wt%, and integration times 𝑡 ∈
 {3000;  5000} 𝑠. 

 

 
(a) 

 
(b) 

Fig. 5.  ROC curves in the case of a varied background for an enrichment 

level of Nat wt% and integration times: (a) t = 3000 s, (b) t = 5000 s. 

 
(a) 



 
(b) 

Fig. 6.  ROC curves in the case of a varied background for an enrichment 

level of   8 wt% and integration times: (a) t = 3000 s, (b) t = 5000 s. 

From Fig. 5 and 6, we observe that:  

- The detection performance of the BAM and BRM Bayesian 

tests is still superior by approximately 30 % (with respect to 

CNB), and 37 % (with respect to CBB) to ones yielded by 

frequentist tests. However, the figure merits 𝑚𝑎𝑥𝑅𝑂𝐶(𝑇𝐷𝑅 −
𝐹𝐴𝑅) are less than the ones we obtained with a stable 

background (Subsection VI.A). For example, for an 

enrichment level of 8 wt% and t = 5000 s, we obtained with 

the BAM test a factor of merit equal to (0.64 ±  0.01) (Fig. 

6. b), to be compared to (0.92 ±  0.01) with a stable 

background (Fig. 4. b); 

- In the meantime, the CNB and CBB frequentist tests retain 

the same detection performance as in the context of a stable 

radiological background. We found that, for an enrichment 

level of 8 wt% and t = 3000 s, the CNB test yields a factor 

of merit of (0.33 ±  0.02) (Fig. 6. a) equal to the one we get 

from Fig. 4a (0.32 ±  0.02); 
- Regarding the absolute and relative nature of the statistical 

tests, the detection performance of BAM and BRM conserved 

the same behavior as in the case of the stable radiological 

background. The discrepancies between their factors of merit 

are indeed negligible within 1 %, in particular when 

considering high enrichment levels (from 3 wt%); 

- Similarly, the background signal variation does not affect the 

respective behaviors of the CNB and CBB frequentist test. 

The difference between their factors of merit indeed remains 

more significant, as high as about 8 % when considering Fig. 

6. a. 

We can conclude that the variability of the background radiation 

signal, in both shape and amplitude, does affect the detection 

performance of the BAM and BRM Bayesian test. This 

performance that remains, however, remains far superior to the one 

attained with the CNB and CBB frequentist tests. In addition, the 

absolute BAM and relative BRM tests conserve equivalent 

detection behaviors. This confirms our indication in Subsection 

III.C that there is no reason to favor relative statistical tests over 

their absolute counterparts in the specific detection task that we are 

addressing. 

C. Comparative Study between Bayesian and Frequentist Tests: 

TDR as a Function of Integration Time  

The driving goal of this work is not only to detect a low-activity 

uranium contamination, but also to do so with an integration time 

of the measurement that is compatible with project management. 

Based upon the last subsections, we can translate this objective into 

optimizing the TDR/FAR trade-off while minimizing the 

integration time. In this subsection, we thus compare the 

performance of the Bayesian and frequentist tests at hand with 

respect to the TDR variation of the integration time against a preset 

FAR. The study is performed considering a stable background, as 

well as a background that varied between reference and test 

acquisitions. The fixed FARs that we chose to tolerate are 0.5 and 

0.25. These respectively represent risks of 50 % and 25 % of 

processing a non-contaminated concrete surface as nuclear waste. 

Fig. 7 to 10 present the results obtained for U-235-enrichment 

levels Nat wt% and 8 wt%. 

 
(a) 

 
                                                                       (b) 

Fig. 7.  TDR versus the integration time for: FAR =  0.5, enrichment level 

of Nat wt%, and stable (a) and varied (b) radiological background in shape 

and amplitude. 

 
(a) 



 
                                                                    (b) 

Fig. 8.  TDR versus the integration time for: FAR =  0.25, enrichment level 

of Nat wt%, and stable (a) and varied (b) radiological background in shape 

and amplitude. 

 
(a) 

 
(b) 

Fig. 9.  TDR versus the integration time for: FAR =  0.5, enrichment level 

of 8 wt%, and stable (a) and varied (b) radiological background in shape 

and amplitude. 

 

 
(a) 

 
(b) 

Fig. 10. TDR versus the integration time for: FAR =  0.25, enrichment level 

of 8 wt%, and stable (a) and varied (b) radiological background in shape 

and amplitude. 

From Fig. 7 to 10, we observe that:  

- The BAM and BRM Bayesian tests yield a higher TDR than 

the CNB and CBB frequentist tests, either with FAR = 0.5 or 

FAR = 0.25, and for a stable as well as a varied radiological 

background. As an illustration, for t = 3000 s, FAR = 0.5, 

and an enrichment level of 8 wt%, BAM provides TDRs 

equal to 1 (Fig. 9. a) and (0.98 ± 0.004) (Fig. 9. b) for stable 

and varied radiological backgrounds respectively, while its 

absolute frequentist counterpart CNB yields TDRs between 

0.6 and 0.85; 

- In the cases of FAR = 0.5 and FAR = 0.25, with an 

enrichment level of 8 wt%, and whether the background 

signal is stable or varied, the absolute BAM and relative 

BRM tests have almost the same detection performance. The 

difference between their TDR is indeed about 2 %, against 

7 % when the absolute CNB and the relative CBB tests are 

compared to each other; 

- For FAR = 0.5, an integration time t = 5000 𝑠 and whether 

the background signal is stable or varied, the BAM and BRM 

tests yield TDRs superior to 0.95, to be compared to 0.80 

with the CNB and CBB tests. For example, for an enrichment 

level of 8 wt% and a varied background signal, the BAM and 

CNB tests provide TDRs equal to (0.98 ± 0.004) and 

(0.82 ± 0.01) respectively (Fig. 9. b); 

- For FAR = 0.25, enrichment level of 8 wt% and a stable 

background signal, the detection performance of the BAM 

and BRM tests is superior to 0.98, compared to 0.50 with the 

CNB and CBB tests. For t = 5000 s , the BAM and CNB 

yield a TDRs equal to 1 and (0.63 ± 0.02) respectively (Fig. 

10. a); 

- For FAR = 0.25, enrichment level of 8 wt% and a varied 

background signal, the detection performance of the BAM 

and BRM tests is slightly reduced. For t = 5000 s, as an 

illustration, the BAM and CNB tests provide TDRs equal to 

(0.87 ± 0.01) and (0.54 ± 0.02) respectively (Fig. 10. b). 

From these observations, we can conclude that the BAM and 

BRM Bayesian tests do present themselves as a promising 

alternative to frequentist detection procedures. With an application 

to nuclear decommissioning in view, the combination of high-

resolution gamma-ray spectrometry and Bayesian statistics seems 

to pave the way, in particular, to a powerful “second level” 

detector. 

We recall that a “first level” detector is used to characterize the 

surface to be dismantled before applying any other detector, and 

within a scalable response time. By contrast, a “second level” 

detector is operated to confirm the suspicion of a contamination 

that was detected in the first place by a lower response time 

detector (whether that is a beta counter, a gross alpha counter…). 



For the purpose of this study, we shall consider that a “first level” 

detector must respond with a 2.5 % beta risk (i.e., a TDR above 

0.975) within 1 to 10 min, whereas a “second level” detector will 

have to respond with the same beta risk within approximately 1 
hour. From Fig. 9, we observe that the defining conditions of a 

“second level” detector are fulfilled when the FAR is set equal to 

0.5, which will represent our default setting for such a deployment 

concept. Fig. 9 and 10, however, tend to show that, even with the 

implementation of high-performance statistical tests, the gamma-

ray spectrometry setup that we have described is not suited to play 

the part of a “first level” detector. 

VII. CONCLUSION AND FUTURE WORK 

This research work introduces a reliable method to detect low 

levels of radioactivity against a standard radiological background. 

The originality of the paper stems from using absolute (BAM) and 

relative (BRM) Bayesian hypothesis tests with high-resolution, 

gamma-ray spectra. These tests are competing with absolute and 

relative frequentist procedures that were used in the study to 

benchmark our original algorithms. Key to this benchmark is the 

trade-off between FAR, TDR, and the integration time of the 

measurement that is to be minimized. The driving goal is to 

develop a technological solution that is compatible with operational 

requirements in a large-scale decommissioning project.  

     The comparative study of BAM and BRM with frequentist 

tests was based on a minimum surface activity to detected of 

500 Bq/0.1 m2/2π within three subunits of a single facility. To 

simulate the online implementation of the uranium detection 

procedure, we first selected the number of channels and the 

weighting factors that parametrize the Bayesian algorithms. We 

then benchmarked the performance of frequentist and Bayesian 

tests in a variety of scenarios, involving different U-235-

enrichments, and non-stationary radiological backgrounds.   

The results of the study show that, against a stationary 

background, BAM and BRM give access to a significantly better 

TDR/FAR trade-off than to the one yielded by frequentist 

hypothesis tests. Said trade-off even comes close, within 1 %, to 

the behavior of an ideal detection test when the enrichment level is 

high (above 8 wt%), and the integration time is long (above 

5000 s). Varying the radiological background between reference 

and test acquisitions, we observe a degradation of said trade-off 

with BAM and BRM, although to a much lesser extent than with 

frequentist detection algorithms. The absolute and relative versions 

of the Bayesian method, additionally, were shown to display almost 

identical detection behaviors as soon as uranium enrichment levels 

were increased above 3 wt%. Eventually, the evolution of TDR as 

a function of integration time, against a FAR set equal to 0.5, 

suggests that the assessed technological solution is suitable as a 

“second level” detector in the context of large surface 

decommissioning.  

     The promising results that were obtained encourage us to 

envision several outlooks of this research work. The first one lies in 

the design, assembly, and deployment of a multi-detector gamma-

ray spectrometer, monitoring independently several spots inside a 

wide surface area. Another perspective is the definition and 

calibration of alternative Bayesian algorithms. One of such 

algorithms would present itself as a synthesis of the BAM and 

BRM tests. Its formulation would allow us, by means of a tunable 

coefficient, to adjust the detection behavior of the procedure 

between the two extreme features of an absolute and a relative 

statistical test. A second Bayesian algorithm would enable us to 

account for the interdependence between counts in nearby 

channels. On a more methodological level, the performance metric 

that we have used ultimately relies upon a notion of contamination 

signal to radiological background that is analogous to a classical 

SNR. This choice was justified from a nuclear engineering 

standpoint, for the selection of any technological solution in this 

field is essentially based on a TDR/FAR ratio, or a detection limit 

against a given SNR. However, whenever one wishes to compare 

hypothesis tests in a broader scope, as they succeed or fail in 

capturing the absolute or relative features of a spectral signal that 

can be modeled with Poisson or binomial distributions, they would 

turn to a more universal metric, such as the chi-square test [21]. 

Such a metric will thus be considered in future work, especially to 

benchmark novel Bayesian algorithms to BAM and BRM. 

Eventually, and as it was stated in the article, there is a need for 

the manufacturing and characterization of homogenously-dispersed 

uranium sources according to metrology standards. Such a task is 

currently being undertaken in the framework of a partnership with 

Laboratoire National Henri Becquerel (LNHB, CEA List). Once 

available, the calibrated samples will allow us to consolidate the 

interpretation of simulation-based ROC curves, and TDR as a 

function of time in the challenging context of large-surface 

decommissioning.  
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