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Abstract: In an electric distribution system, the management of peak demands is becoming increas-
ingly difficult. Every method we have to flatten the consumption curve greatly reduces the energy
generation costs, CO2 emissions, and congestion in the generation, transmission, and distribution
systems. Therefore, we can act on consumers’ consumption, especially when we know that some
consumers can be interested in reducing their consumption levels for monetary compensations. This
can be done by reporting a part of consumption or shifting it. For this, a new profession called aggre-
gation is born to manage the flexible consumers and meet the network requirements. To maximize
their revenues, aggregators need to own an intelligent system to manage their portfolio of flexible
consumers. They should optimize the way they modify the load curve of their flexible assets by
respecting the system requirements and a set of consumer constraints. In this article, we address
this task by proposing a Mixed Integer Linear Programming (MILP) formulation for two different
modes: The economic mode (Evaluation of the potential of the portfolio to generate benefits. The
aggregator uses this mode to make bids on the energy market) and the dispatch mode (to be used in
an operational situation to respect the bids already submitted). Experimentation studies on real and
random in-stances (>1000 instances) demonstrate the effectiveness of the proposed MILP.

Keywords: demand response; aggregation; load deformation; smart grids; energy transition

1. Introduction

The energy transition promotes intermittent and de-centralized sources of power gen-
eration that are usually variable and hard to control since their production is independent
of the system’s needs. At the same time, it is accompanied by a reduction in conventional
generation capacity (nuclear and coal) [1,2], which de facto reduces the traditional levers
of flexibility in the system. These two phenomena radically complicate the crucial task of
maintaining a permanent balance between production and consumption in the electricity
system, especially during peak periods [3].

In the past, energy providers have tried to encourage customers to consume more
power at night by using reduced nightly prices. Flexible consumers are very different
because the decision-making process shifts from the consumers to the operators meaning we
can have a much more significant impact on the consumption curve and start coordinating
consumers [4].

To meet this challenge, flexibility in demand (i.e., consumers convinced to reduce their
consumption under some constraints) can be mobilized on a larger scale than was previ-
ously the case and made available to the system [5]. That is the role of the aggregator [6,7],
who remotely controls flexible demand at least in part. The aim is to help power systems
during peak demand hours or contingencies [7].

The aggregator monitors the consumers’ consumption in real-time and modulates it
in an acceptable manner (for instance, asking to postpone or bring forward a portion of the
consumption of electric heaters or cold rooms, asking to rearrange specific production sched-
ules, etc.). The aggregation of many such modulations twists the general consumption
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profile on the demand side [8,9], making it possible to quickly remedy an unexpected
fluctuation in intermittent generation (wind or solar).

The literature contains a significative amount of proposals in the context of DR
(e.g., [10–12]). However, the aggregation of flexible demands still raises a few problems [13].
Unlike conventional generation means, electricity demand is located among many agents,
spread across various voltage levels. They do not have access to the price signals from
electricity markets (spot or adjustment) for the most part. They also have heterogeneous
consumption characteristics, with widely varying constraints in terms of flexibility poten-
tial (volume, duration, and accepted frequency of modulations). It is generally accepted
that system operators cannot directly manage these constraints and their diversity [14,15].
The aggregator, therefore, acts as an interface between, on one side, the demand units
or consumers (offering flexibility) and, on the other side, the system operators and/or
electricity market participants.

To meet its commitments to the system operator and/or market participants, the
aggregator will have to solve a problem whose structure is similar to optimizing a fleet
of conventional power plants [16–18], with a much higher level of complexity [19], how-
ever. This involves complying with instructions received and supplying the modulation
profiles actually sold while respecting the customers’ constraints. This needs to be done as
economically as possible so that the aggregation business is profitable [20].

The size of the problem (number of flexible demand units to manage) and the diversity
of constraints to be taken into account are two significant challenges. The storage capacity
inherent to such flexibility introduces arbitrage options that are hard to grasp. Lastly, the
calculations must be done in a very short computation time.

The availability of a computational tool capable of taking these specificities into
consideration influences the commercial capacity of the aggregator and is critical for its
business model [21].

In [22], a blockchain-enabled transactive energy platform entitled Electron Volt Ex-
change was introduced. The integration of blockchain allows a secured process for handling
individual bids (prosumers) and collective bids (aggregators). The authors in [22] also
model the flexible resources with a single form of equation in order to represent various
flexible resources. However, this method of modeling does not take into consideration the
operational constraints of flexible assets.

Unlike the work done in [23], for individual households equipped with various
domestic loads, which aims to build an advanced solution to schedule the day-ahead power
consumption, we propose in this article a solution able to aggregate the flexibility of many
assets under industrial constraints in order to sell this flexibility on the electricity market.

In this article, we propose also a novel manner to represent the deformation of the
load profile of a given asset. With our proposal, we can, at the same time, interrupt an asset
and report its consumption.

This paper presents an exact approach for aggregating consumer flexibilities in an
electric distribution system. We propose an optimization approach allowing, firstly, the
aggregator to gather flexibility and generate bids on the energy market. Once the bids
are accepted by the energy market (as submitted or modified), the aggregator has a target
on volume to be respected (a volume to be interrupted or a volume to be added for each
time slot). Our approach, secondly, allows the aggregator to find the best sequence of
deformations to be chosen to respect his engagement.

2. Flexible Consumers

A flexible consumer is a consumer who accepts that an aggregator acts on his con-
sumption by respecting a set of rules that he has defined. Sometimes, this flexible consumer
offers several interruptible resources (such as an electric heater, a cold room, etc.). Pumping
stations and water treatment plants are an example of flexible assets. These facilities could
be selected by our method to deform their load curve (by interrupting them or by shifting
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a part of their electrical consumptions). The aim will be to minimize the cost of electricity
while ensuring operational limits.

To consider the specificities of each of those resources, separately modeling each of
them is required.

A flexible or interruptible resource is a unit that consumes energy and is subject
to several technical constraints. To correctly model this resource, a certain number of
constraints linked to its functioning, and valid on all the time horizons, must be taken into
consideration, such as:

• Ramp-up power rates.
• Ramp-down power rates.
• Response time when a deformation profile is activated.
• Power consumption on each time slot.
• Maximal power on each time slot: so we cannot increase the consumption beyond

this maximum.
• Minimal power on each time slot: so we cannot go below this minimum.
• The minimal duration of interruption: The deformation profile, if applied, must last at

least for a minimum time.
• The maximal duration of interruption.
• Delay between two interruptions: It is the time to wait between two consecutive interruptions.

For some specific periods, the following constraints must be respected:

• The maximal number of interruptions done during the period: for example, interrupt-
ing a cold room more than five times during ten consecutive hours is banned.

• The maximal interruption duration: For example, stopping a cold room for more than
five consecutive hours is banned.

• Maximal cumulated interrupted volume: The cumulated volume (energy) to be inter-
rupted must not exceed a maximum value.

Some constraints involving a set of resources over a predefined period must also be
respected, such as:

• Exclusive activation between a set of resources: this is useful for some consumers who
do not want to interrupt more than one resource at the same time.

• The maximal number of interruptions on a set of resources.
• The maximal duration of interruption on a set of resources.
• The maximal cumulated interrupted volume on a set of resources.

3. Deformation Profiles

In this article, the choice of modeling flexible consumers with “deformation profiles”
was made. These contract-based deformations can be applied to the consumption of any
interruptible resource over any time slot. Another advantage of this representation is that
the consumption of an energy asset can be interrupted and shifted easily.

In an actual situation, flexible assets have power consumption for every time step that
is called the nominal consumption. Flexible assets behave precisely like any fixed demand
when no deformation profiles are applied. To adjust the consumption, deformation profiles
can be applied.

This section will define deformation profiles under their raw form. This form is called
a “normalized deformation profile”. Normalized deformation profiles can be seen as shapes
applied to the nominal consumption. The basic rules are:

• Not more than one deformation profile can be active on a flexible resource at the
same time.

• There is a downtime after applying a deformation profile during which no other
deformations can be applied.

• When deformation is applied on a flexible resource, the customer should be paid to
compensate for the inconvenience caused.
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Deformation profiles exist in small numbers under their raw form (normalized de-
formation profiles). The strength of those normalized deformation profiles is that their
durations can be stretched from two periods to as many periods as we like, and they can be
started and stopped at any given time.

Each normalized deformation profile is defined on a normalized period of one unit.
When a normalized profile is activated, it can be stretched between a minimum duration
and a maximum duration of interruption for a flexible resource. The normalized period is
split up into several segments. For each segment, we have:

1. The start of the segment: UnitStartTime UnitStartTime ∈ [0, 1].
2. The end of the segment: UnitStartTime UnitEndTime ∈ [0, 1].
3. The value “ValueStart” at the beginning of the segment in percentage.
4. The value “ValueEnd” at the end of the segment in percentage.
5. The type of the segment: Action or Reaction.

Depending on the normalized duration of each segment, the values at the beginning
and the end of the segment, the effective duration of the applied profile (non-standardized,
in minutes), the different methods of applying the profiles for each time step t included in
the deformation interval are defined as follows:

1. A value V(t) is calculated as a linear interpolation between ValueStart and ValueEnd of
the segment after stretching.

2. If the segment is of type Action and if V(t) ≥ 0: in this case, the consumption C(t)
will be increased:

C(t) = C(t) + max(Pmax(t)− C(t); 0) ∗V(t)

3. If the segment is of type Action and if V(t) ≤ 0: in this case, the consumption C(t)
will be decreased:

C(t) = C(t) + max(C(t)− Pmin(t); 0)∗V(t)

4. If the segment is of type Reaction, the interrupted energy during the Action period will
be compensated during the Reaction period as follows:

C(t) = C(t) + InterruptedEnergy ∗ V(t)/durationO f SegmentA f terStretching

Let us introduce some examples to illustrate the notion of normalized deformation
profile and how to apply it on a flexible resource.

Example 1. In a 3 h model, a flexible resource has a nominal consumption of 100 kW for the first
hour, 105 kW for the second hour, and 103 kW for the third hour (see Figure 1).

A normalized deformation profile will be applied, with an action segment of 100% reduction
and a reaction segment of 30% increasing (see Figure 2). We can either apply this deformation
starting from the first or second period. If we use it during the first period, the consumption is
first reduced by 100%, which causes a drop of 100 kW in consumption. Afterward, the second part
will catch up to 30% of the lost power so that the customer will consume an extra 30 kW during
the second period. The resulting consumption of the customer is thus (0 kW; 135 kW; 103 kW) as
illustrated in Figure 3. Similarly, if we apply it during the second period, the consumption would be
(100 kW; 0 kW; 134.5 kW) as illustrated in Figure 4.

Example 2. As we said, every normalized deformation profile can be stretched over time. Consider
the normalized deformation profile of example 1; Action: (−100%), Reaction: (30%). If we stretch
this over four periods, the profile becomes Action: (−100%; −100%), Reaction: (30%; 30%).

Example 3. Consider the normalized deformation profile of example 1; Action: (−100%), Reaction:
(30%). If we stretch this over five periods, the profile becomes Action: (−100%; −100%, −100%),
Reaction: (30%; 30%).
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4. Flexibility Aggregation and Price Signals

As mentioned before, some consumers’ consumption can be anticipated, postponed,
or canceled. These specific actions may have value in the electricity market and can bring
solutions to meet network requirements [24]. One of the primary roles of an aggregator is
to predict the electricity market prices correctly and then use those prices to evaluate his
portfolio of interruptible assets. This evaluation results in a sequence of interruptions to
maximize the global profit (revenues by selling interrupted volumes on the market minus
the cost of reported consumption minus incentive remuneration for the consumer).

It is not very challenging to forecast electricity prices, mainly when it covers a small
time horizon (1 to 10 days). In this article, the electricity prices are an input provided by an
industrial partner. Some used instances are based on historical prices, while others include
forecasted ones.

Two optimization modes are distinguished: On the one hand, the Economic mode is
for a short-term period (typically 10 days with 1 h as time step) in which the aggregator
will look at the sequence of calls to the interruptible assets that will maximize the difference
between the immediate income of the deformation (reselling the non-delivered energy
to the client with the spot market price), the loss of medium-term value from the use of
“available stock” of calls to deformation, and the loss of the cashback to the holder of the
interruptible assets. The economic mode allows the aggregator to estimate the monetary
value of his portfolio at a given time t. If the aggregator has a good tool to predict electricity
market prices and electricity consumption, he can estimate the future economic value of
his portfolio. Based on the obtained results, the aggregator can make deals on the market
and then make profits.

On the other hand, the Dispatch mode deals with a very short-term horizon (typically
one day with 5 min as a time step) in which the aggregator will try to use the flexibility
available in the portfolio to achieve a deformation target. Potential deviations from this rule
will be penalized. Once the aggregator makes deals on the market with the Transmission
System Operator (TSO), the objective is to keep promises. When the aggregator makes
the deals, his portfolio can change (some assets become non-interruptible or interruptible,
prices change, constraints change, etc.). In this case, the aggregator should use the dispatch
mode to find the best solution, with the available interruptible resources, to meet the target
he promises with minimum penalties and maximum profit.

The optimization model for the economic and dispatch modes will be presented in the
next section, and a non-exhaustive list of constraints will be given.

5. Problem Formulation: MILP

The aggregator needs to solve the flexibility aggregation problem (by finding a se-
quence of calls to flexibility assets) w.r.t. a set of constraints negotiated with flexible
consumers (owners of flexible assets). The final objective of an aggregator is to maximize
the profit by selling a maximum interrupted volume of electricity on the market and, at the
same time, by minimizing the induced costs (remunerations of consumers and the cost of
shifted consumption).

The first thing is to ensure that not more than one deformation can be active simulta-
neously. After that, a set of constraints must be respected, such as the minimum waiting
time between two interruptions (example: a waiting time must be respected between two
consecutive interruptions of a cold room) or the maximum duration of the interruption
or the maximum volume of interruption (some assets need a minimum volume to be in
standby mode). Another kind of constraint must sometimes be respected: constraints
coupling several assets during an interval of time. For instance, during a given time slot, it
is required to interrupt only one flexible asset (exclusive constraint), or a maximum number
of calls must be respected, etc.

In this article, the choice of modeling all the constraints as coupling constraints was
made. A coupling constraint can involve one (unary) or n flexible assets (n-ary).
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The problem was formulated as a Mixed Integer Linear Programming Model (MILP).
Input data of this latter are the following:

• T: Set of time steps covering the time horizon.
• T_PROFILE: Duration in time steps for stretched deformation profile. This set contains

unique elements.
• SUB_PERIOD: List of sub-periods. Each sub-period is defined over a set of time periods.
• MAP_SUB_T (s, t): s is a sub-period, and t is a time step. This map is defined if the t is

a part of the sub-period s.
• RESOURCE: Set of flexible assets to interrupt.
• MIN_OFFTIME (res): Minimum waiting time between two interruptions for the

flexible asset res.
• RICH_DEFORMATION_PROFILE: A set of enriched deformation profiles (stretched

deformation profiles). Each one (called rdp) is linked to only one asset. Each rdp has
a duration. An enriched deformation profile is computed for a flexible resource, a
normalized deformation profile, and a duration.

• MAP_RESOURCE_RDP (res, rdp): is defined iif the asset res is linked to the deformation
profile rdp. A rdp is related to only one resource, but a resource can be linked to many rdp.

• RDP_DURATION (rdp): Duration of the rdp.
• DEVIATION (rdp, t, t_profile): The impact, in volume, on each time step, if rdp is

activated (the effect might be negative or positive) starting from t.
• ALLOW (rdp, t): Binary parameter. It has one if rdp can be activated starting from t.
• OPP_VALUE (rdp, t): The revenue we can get if rdp is activated starting from t.
• COUPLING_CNSTR: Set of coupling constraints.
• MAP_COUPLING_RES (cc, res): Is defined iif the asset res is involved in the coupling

constraint cc.
• SUB_MAX_NUM_CALLS (s, cc): Gives the value of maximum calls for the constraint

cc during the subperiod s.
• SUB_MAX_DUR_CALLS (s, cc): Gives the maximum allowed duration for all resources

belonging to coupling constraint cc and during the sub period s.
• SUB_MAX_VOL_CALLS (s, cc): Gives the maximum allowed volume to be interrupted

for all assets belonging to the coupling constraint cc and during the sub period s.
• IS_EXCLUSIVE (s, cc): Binary parameter. One of the coupling constraints cc is exclu-

sive: It means that only one asset could be activated during the sub period s of the
coupling constraint cc or 0 otherwise.

• EXCLU_IMPACT (rdp, t, rdp2, tt) is defined if different assets linked to deformations
rdp and rdp2, respectively, are mutually exclusive when activated on t (tt, respectively).
This parameter will ensure that for an exclusive constraint cc, only one asset can be
called at each time belonging to the sub-period of cc.

For the dispatch mode, we have additional parameters:

• TARGET_VOL_T(t): The target volume to be interrupted/consumed (negative or
positive) for each time step.

• Penalties: The penalty used in our work is defined as a linear piecewise function for
each time step with increasing slopes (so this function is convex).

• SEGM: Set of segments. Each segment represents a part of the penalty function
(see Table 1).

• SEGM_PENALTY_UP_T(t, segm): Gives the penalty in EUR/kWh associated with the
segment segm for the period t. This is the penalty to be used for the excess volume.

• SEGM_PENALTY_LO_T(t, segm): Gives the penalty in EUR/kWh associated with the
segment segm for the period t. This is the penalty to be used for the missing volume.
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Table 1. Illustration of an example for penalties calculation.

Segment Threshold Penalty Description

1 0.1 0 If the gap to the target = 0.1→ penalty = 0.1 × 0 = 0

2 0.5 5 If the gap to the target = 0.5→ penalty = 0.1 × 0 + 0.4 × 5.

3 2 20
If Gap to the target = 1.8→ penalty = 0.1 × 0 + 0.4 × 5 +
1.3 × 20. In fact, the gap is dispatched on three segments

(1.8 = 0.1 + 0.5 + 1.3)

The list of decision variables involved in our model is:

• CALL (rdp, t): Binary variable; its value will be set to 1 if the rdp is activated (the asset’s
load associated to the rdp is chosen to be deformed), 0 otherwise.

• MISMATCH_UP (t): Excess volume to the target by time step.
• MISMATCH_LO (t): Missing volume to the target by time step.
• SEG_MISM_UP (t, segm): The excess volume by time step and segment. This is

important to ensure that we apply the correct penalty factor by segment.
• SEG_MISM_LO (t, segm): The missing volume by time step and segment.

Set of constraints:

(1) ∀t, CALL(rdp, t) ≤ ALLOW(rdp, t)
For each time step t, we cannot choose a flexible asset to interrupt if this is not allowed.

(2) ∑ CALL(rdp, t) ≤ SUB_MAX_NUM_CALLS(s, cc)
For each coupling constraint cc, the number of activations of deformations for all
periods belonging to the sub-period of cc must be less than the bound.

(3) ∑
(

CALL(rdp, t) ∗ RDP_DURATION(rdp) ∗ INTERSEC_RDP_SUB
(

s, tpro f ile, t
))
≤

SUB_MAX_DUR_CALLS(s, cc)
For each coupling constraint cc, the maximum duration of interruptions defined for
the constraint cc and for the sub period s must be respected. INTERSEC_RDP_SUB
gives the intersection ratio between a time step t and a subperiod s.

(4) ∑ (CALL(rdp, t) ∗ DEVIATION(rdp, t, t_pro f ile)) ≤ SUB_MAX_VOL_CALLS(s, cc)
The maximum volume defined for the sub period s of the coupling constraint cc must
be respected.

(5) RDP_DURATION(rdp) ∗ (1− CALL(rdp, t)) ≥
∑ rdp2, tt

exclu_impact(rdp, t, rdp2, tt)

CALL(rdp2, tt)

For an exclusive constraint cc, only one flexible asset could be called during the
sub-period of cc.

(6) ∑ res, rdp2, tt
tt ≥ t + RDPDURATION(rdp)

tt < t + RDPDURATION(rdp) + MINOFFTIME(res)
MAPRESOURCERDP(res, rdp)

MAPRESOURCERDP(res, rdp2)
ALLOW(rdp2, tt) = 1

CALL(rdp2, tt) ≤ 1− CALL(rdp, t)

This constraint aims to respect the minimum waiting time between two activations of
a flexible asset.

(7) ∑ rdp, tt
MAP_RESOURCE_RDP(res, rdp)

ALLOW(rdp, tt)
tt ≤ t

tt > t− RDP_DURATION(rdp)

CALL(rdp, t) ≤ 1

For each time step and each flexible asset, only one rdp can be activated. For the
dispatch mode, some additional equations must be taken into consideration:
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(8) ∑rdp,tt CALL(rdp, tt) ∗∑ t_pro f ile
t_pro f ile = t− tt + 1

DEVIATION(rdp, tt, t_pro f ile) =

TARGET_VOL_T(t) + MISMATCH_UP(t)−MISMATCH_LO(t)
This constraint aims to respect the target volume. The two variables MISMATCH_UP
and MISMATCH_LO represent the gap to the target (UP for the excess volume and
LO for the lack volume). They are penalized in the objective function to be minimized.

(9) ∑segm SEG_MISM_UP(t, segm) = MISMATCH_UP(t)
The sum of excess volume on all time steps and all segments should equal the sum of
the entire extra volume. Using this constraint and the objective function, the excess
volume will be dispatched correctly between segments (and respect the penalty linear
piecewise function).

(10) ∑segm SEG_MISM_LO(t, segm) = MISMATCH_LO(t)
The sum of lack volume on all time steps and all segments should be equal to the sum
of the entire lack volume.

Objective Functions:
For the economic mode, revenues of the aggregator should be maximized:

max ∑
rdp, t

allow(rdp, t) = 1

OPP_VALUE(rdp) ∗ CALL(rdp, t)

For the dispatch mode, revenues should be maximized, and penalties should be minimized:

max ∑
rdp, t

allow(rdp, t) = 1

OPP_VALUE(rdp) ∗ CALL(rdp, t)

−∑
t

(
∑

segm
SEGM_PENALTY_UP(t, segm) ∗ SEG_MISM_UP(t, segm)

+ ∑
segm

SEGM_PENALTY_LO(t, segm) ∗ SEG_MISM_LO(t, segm)

)

6. Experimental Results

The problem to solve in this work belongs to the NP-Hard problems since it can be
simplified (by eliminating some constraints) to a classic knapsack optimization problem [25].
The search space is enormous since we can interrupt a resource at any time and for any
duration we want. We also treat a list of constraints varying from dealing with one
flexible asset (such the minimum waiting time between two consecutive interruptions),
to constraints coupling the time (such that the maximum number of interruptions in a
given period should not exceed a bound), to constraints coupling several assets and other
constraints coupling assets and time.

The experimental tests aim to ensure that the computational time of the proposed
approach is acceptable compared to the performance needed by the aggregator. This latter
has to face the quick changes of prices, and he must be rapid to evaluate the economic
potential of his portfolio of flexible assets and then make bids on the market. The aggregator
also needs to be very reactive when he needs to respect the engagements done on the market
by using the dispatch mode.

Therefore, experimental tests aim to verify if the proposed approach can be used in an
operational context.

To reach this goal, and for each of two optimization modes (economic and dispatch),
an aggregator (an industrial partner) gave us more than 1000 instances of real and possible
real portfolios (from small to large size: 50 to 1000 flexible assets) with a combination of
real constraints (simple and coupling constraints).

A horizon of 10 days with hourly periods for the economic mode (240 time steps) and
one day with a 5 min time step for the dispatch mode (288 time steps) were considered.
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Horizons were defined w.r.t. the real needs of the aggregator regarding the electricity
market structure.

The proposed MILP was written in GAMS [26] and solved using the IBM CPLEX
solver on a machine with a 2 GHz processor and 16 GB RAM.

Table 2 gives the results of the experiments done for the economic mode. Six sets of in-
stances were considered. Each one is composed of 250 instances with different compositions.
For example, set 1 contains 250 instances with several assets varying from 56 to 246 and
many possible deformations ranging from 20,540 to 91,928. The number of profiles directly
gives the number of binary variables of the model (a maximum of 91,928 binary variables
for the set 1; the number of continuous variables is not counted). As seen in Table 2, Cplex
solved all instances to the optimality (MILP gap of 0.01%) in an acceptable time.

Table 2. Some results for the economic mode.

Set of
Instances Min Assets Max Assets Min #

Profiles
Max #

Profiles
Mean Time—

MILP

1 56 246 20,540 91,928 46 s

2 51 241 28,992 124,111 44 s

3 51 246 18,320 92,319 22 s

4 51 250 25,537 133,438 62 s

5 502 994 185,891 366,132 132 s

6 501 997 245,885 523,899 215 s

The results also show that, in all cases, the computational time of the proposed model
did not exceed 5 min, even with a vast number of possible deformations (a huge number of
binary variables), which is reasonable to be integrated into an operational context.

As shown in Figure 5, the computational effort increased with the number of possible
deformations. This is easily explainable because the number of decision variables depends
directly on the number of possible deformations. Other tests were done to see the limits of
the proposed approach. If 1.5 million possible deformations are exceeded, GAMS/CPLEX
cannot handle the generated problem (memory heap exception even if we have 16 GB
available on the PC we used).
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Table 3 gives the result for the dispatch mode. Cplex can take more than 15 min to solve
a problem containing a massive number of possible deformations. In an operational context,
the proposed approach can be used when having a small or a medium number of flexible
assets (and therefore a small or a medium number of possible deformations). Another
solution is to increase the acceptable gap to optimality or to use a more powerful computer.

Table 3. Some results for the dispatch mode.

Set of
instances Min Assets Max Assets Min #

Profiles
Max #
Profiles

Mean Time—
MILP

1 50 250 26,038 473,758 157 s

2 50 250 185,083 1,111,575 634 s

3 500 1000 283,576 613,296 672 s

Figure 6 presents an example of a solution found for an instance of the dispatch mode.
The X axis represents the time, and the Y axis represents the interrupted volume in kWh.
Each sequence of blocks, having the same color in this picture, represents a flexible asset
and its deformation, over the time, in terms of interrupted volume.
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For example, the sequence of blocks having the orange color (we put an arrow on
it on the picture) represents a flexible asset, chosen by our method, to be interrupted.
For each time step (15 min), we can see the corresponding interrupted volume. In this
example, even if the target is a volume to be interrupted, sometimes the solution proposes
to activate flexible assets with an additional consumption (>0). This is an opportunity for
the aggregator to respect the target and therefore to minimize penalties.

7. Conclusions and Perspectives

In this article, the problem of flexibility aggregation in an electric system was explained.
First, an efficient method to model the deformation of the load curve of flexible assets was
proposed. Second, a MILP model to solve the efficient integration of flexible assets into the
power market was introduced.

For the economic mode, using the MILP model in a real context is possible regarding
the experimental results and the performances needed by aggregators. For the dispatch
mode, the situation is more crucial. Aggregators need to have a powerful optimization
engine to solve the problem in a very short time (<5 min: the time step duration). The ex-
perimental results have shown that this is possible when the number of flexible consumers
is small or medium. To remedy this problem, the aggregator can increase the gap to the
optimality in the Cplex solver or use a more powerful computer.

In future works, we will develop an efficient heuristic to tackle this problem (or a
metaheuristic if necessary). The complexity of the problem, combined with the requirement
for it to be solved in a very short time, demands the use of optimization techniques that are
properly suited to the structure of the problem. However, these techniques must remain
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sufficiently generic in order to cover a very broad range of business cases (technical profiles
and constraints) and not to limit the commercial potential to simple industrial cases. The
heuristic will be compared to the exact results of the MILP.

It is important to note that the potential of the proposed approach goes beyond the
issue of flexible demand management. It would certainly be conceivable to extend it to
the “controllable” management of wind farms subject to market price, given the high
degree of similarity between the deformation capacity of wind power generation and that
of consumption. In the longer term, it might also be used for optimizing decentralized
storage capacity. Generally speaking, we can use our work to aggregate distributed energy
resources such wind turbines, solar panels, batteries, etc.
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