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We consider an economy with a continuum number of states of nature, von Neumann -Morgenstern utilities, where agents have different probability beliefs and where short sells are allowed. We know that no-arbitrage conditions, defined for finite dimensional asset markets models, are not sufficient to ensure existence of equilibrium in presence of an infinite number of states of nature. However, if we give conditions which imply the compactness of U, the individually rational utility set, we obtain an equilibrium. We give conditions which imply the compactness of U. This paper extends to the case of a continuum number of states no-arbitrage conditions in the literature.

Introduction

In the line of Hart's model, where the market is complete, there has been a large body of literature dealing with sufficient and necessary conditions ensuring the existence of equilibria. In finite dimension, one can refer, for instance to [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF], [START_REF] Werner | Arbitrage and the Existence of Competitive Equilibrium[END_REF], [START_REF] Nielsen | Asset market equilibrium with short-selling[END_REF], [START_REF] Page | On equilibrium in Hart's securities exchange model[END_REF]Wooders (1995, 1996), [START_REF] Allouch | An equilibrium existence result with short-selling[END_REF], [START_REF] Allouch | The geometry of arbitrage and the existence of competitive equilibrium[END_REF], Won and Yannelis (2008). In general, the existence of an equilibrium is granted under the existence of a common no-arbitrage price for every agent in the economy. When the number of assets is infinite, the usual assumption is to assume that the individually rational utility set is compact (see e.g. [START_REF] Cheng | Asset market equilibrium in infinite dimensional complete markets[END_REF], Brown and Werner (1995), Dana and Le Van (1996Van ( , 2000)), [START_REF] Dana | General Equilibirum in asset markets with or without short-selling[END_REF], Le [START_REF] Van | Asset market equilibrium in L p spaces with separable utilities[END_REF]). 1 More recently, this question is considered in a model with a countable number of stats of nature, Ha-Huy et al (2016) give sufficient conditions for the existence of equilibrium.

The purpose of the present paper is to extend the paper by Ha-Huy, Le [START_REF] Ha-Huy | Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and risk-averse expected utilities[END_REF] to the case of continuum number of states of nature.

The model

In this paper, we consider the case of a continuum of states, and we will present a similar result. Given a probability measure µ on [0, 1], we define [START_REF] Allouch | An equilibrium existence result with short-selling[END_REF] |f (s)| p µ(ds) < +∞}.

L p ([0, 1], µ) = {f : R → R µ -measurable | [0,
We have an economy with m agents, each agent i is represented by a probability measure µ i on [0, 1], endowment e i which is a µ i -measurable function on [0, 1], and an utility function u i : R → R satisfying:

U i (x i ) = u i (x i (s))µ i (ds). is real-valued for any x i ∈ L p ([0, 1], µ i ).
We give here the definition of equilibrium and quasi-equilibrium. Let q satisfy

1 p + 1 q = 1. Definition 2.1. 1. An equilibrium is a list ((x i * ) i=1,...,m , p * )) such that x i * ∈ X i for every i and p * ∈ L q + \ {0} and a) For any i, U i (x) > U i (x i * ) ⇒ 1 0 p(s) * x(s)ds > 1 0 p(s) * e i (s)ds b) m i=1 x i * = m i=1 e i .
2. A quasi-equilibrium is a list ((x i * ) i=1,...,m , p * )) such that x i * ∈ X i for every i and p * ∈ L q + \ {0}, we have (b) and a) For any i, U

i (x) > U i (x i * ) ⇒ 1 0 p(s) * x(s)ds ≥ 1 0 p(s) * e i (s)ds b) m i=1 x i * = m i=1 e i .
In this paper, we assume that µ i is continuous with respect to Lebesgue measure λ, and denote h i (s) = dµ i dλ , the density of µ i with respect to λ.

Remark 2.1. We show that assumption H4 in Le [START_REF] Van | Asset market equilibrium in L p spaces with separable utilities[END_REF] may not be satisfied in our model. Indeed, we have:

If H4 holds then ∀ a, ∃ b, b such that b < a < b. We have inf s u i (a)h i (s) > sup s u i (b)h i (s) (2.1) sup s u i (a)h i (s) < inf s u i (b )h i (s) (2.2) 
That is not always true. We mention here, for instance, three cases:

1. Suppose that inf s h i (s) = 0. Then the two inequalities above do not hold.

2. If u i (+∞) > 0, let a → +∞, then H4 condition is justified only if inf s h i (s) ≥ sup s h i (s). So, h i (s) = 1 for all s, or µ i = λ.

3. If u i (-∞) < +∞, by the same argument, H4 is verified only if µ i = λ.

The first assumption is: A0: µ i and µ j are equivalent, i.e. there exists h > 0 such that, for all measurable set ∆, we have h ≤ µ i (∆) µ j (∆) ≤ 1 h . With this assumption, the consumption sets of all agents are the same L p ([0, 1], µ), with µ = i µ i . From now on, for short, we will use L p instead of L p ([0, 1], µ).

Existence of equilibrium

We present here the first Lemma which is the Dunfort-Pettis criterion (Dunfort-Schwartz (1966)):

Lemma 3.1. A bounded, closed in σ(L 1 , L ∞ )-topology set B of L 1 is σ(L 1 , L ∞ )
compact if and only if for all > 0, there exists δ > 0 such that if µ(∆) < δ, then ∆ |x(s)|µ(ds) < for all x ∈ B. Lemma 3.2. Suppose that A is bounded and (v 1 , v 2 , . . . , v m ) is in the closure of U. Suppose that there exists a sequence {x n } ⊂ A such that there exists i such that lim n U i (x i n ) > v i , and for all j = i,

lim n U j (x j n ) = v j . Then (v 1 , v 2 , . . . , v m ) ∈ U.
The proof of Lemma 3.2 is given in the Appendix.

We now add another assumption.

A1: e = m i=1 e i ∈ L ∞ .

Theorem 3.1. Assume A0, A1 and b i = +∞ for any i.

(1) A is compact in σ(L 1 , L ∞ )-topology and U is compact. Moreover, for any p ≥ 1, there exists an equilibrium in L p .

(2) Add A1. If there exists an equilibrium in L p for some

1 ≤ p < +∞ then A is compact in σ(L 1 , L ∞ ) and U is compact.
The proof of Theorem 3.1 will be done by using several Lemmas. The proofs of which are given in Appendix.

Lemma 3.3. Assume A1, then there exists a constant C > 0, depending only on (p, x, e) such that, for any (x 1 , . . . , x m ) ∈ A, we have

1 0 |x i (s)|h i (s)ds ≤ C.
Lemma 3.4. Assume A1. The set U is bounded.

Lemma 3.5. Assume A0, A1 and b i = +∞ for any i. Then for any > 0, there exists

δ such that if µ(∆) < δ, then ∆ |x i (s)|h i (s)ds < for all (x 1 , x 2 , . . . , x m ) ∈ A. Corollary 3.1. Assume A0, A1 and b i = +∞ for any i. Then A is compact for the σ(L 1 , L ∞ )-topology.
Proof. We use Lemma 3.1 and Lemma 3.5. QED

We get the following proposition. Its proof is given in Appendix.

Proposition 3.1. Assume A0, A1 and b i = +∞ for any i. Then U is compact.

Now we are ready to prove Theorem 3.1. We proceed as follows. Since A is a compact set in L 1 , we first prove that there exists an equilibrium in L 1 . Second, we prove that this equilibrium allocation and the associated equilibrium price are in L ∞ . Since L ∞ belongs to L p for any p ≥ 1, the claim of Theorem 3.1 is therefore true.

It follows from Lemmas 3.1, 3.3, 3.4, and 3.5, and Proposition 3.1, that U is compact. Since U is compact there exists a quasi-equilibrium ((x i * ), p * ) (see [START_REF] Dana | General Equilibirum in asset markets with or without short-selling[END_REF]) with x i * ∈ L 1 , and p * belongs to L ∞ , the dual of L 1 . Since X i = L 1 , this quasi-equilibrium is actually an equilibrium.

The equilibrium allocation (x i * ) solves the problems: 

max 1 0 u i (x i (s))h i (s)ds s.t.
u i (x i * (s))h i (s)ds -ζ i 1 0 p * (s)x i * (s)ds ≥ 1 0 u i (x(s))h i (s)ds -ζ i 1 0 p * (s)x(s)ds for any x ∈ X i . Hence h i (s)u i (x i * (s)) = ζ i p * (s), ∀i. Since u i is strictly increasing, ζ i > 0. Let λ i = 1 ζ i , p * (s) = λ i u i (x i * (s))h i (s)
for all i, s. Now we prove that x i * ∈ L ∞ for all i. If not, there exists i such that ess sup s |x i (s)| = +∞. Without lost of generality, we can assume that for all M , µ({s|x i (s) > M }) > 0. Since e ∈ L ∞ , there exists j = i such that there exists a sequence of strictly positive measurable sets ∆ k satisfying x i (s) > M and x j (s)

< -M -e L ∞ m-1 for all s ∈ ∆ k .
Observe that for almost surely s, p * (s) = λ i u i (x i * (s))h i (s) = λ j ju j (x j * (s))h j (s). We have

h i (s) h j (s) = λ j λ i u j (x j * (s)) u i (x i * (s)) → λ j λ i b j a i = ∞.
Therefore, for any M > 0, there exists K such that if k > K we have h i (s) > M h j (s) for s almost surely belongs to ∆ k . This implies

∆ k h i (s)µ(ds) > M ∆t h j (s)µ(ds) ⇔ µ i (∆ k ) > µ j (∆ k ).
Let k converges to infinity. We have µ i (∆ k ) µ j (∆ k ) → ∞ and that violates A0.

Suppose that with 1 ≤ p < ∞, there exists an equilibrium (p * , (x i * )) with p * ∈ (L q ) * . The same arguments as those given above imply that x i * ∈ L ∞ for all i, and there exists λ i such that p * (s) = λ i u i (x i * (s)) for all i, s. Observe that

a i < u i (x) < b i for all x, so a i < inf s u i (x i (s)) ≤ sup s u i (x i * )(s) < b i .
The proof of Theorem 3.1 is now complete.

We now consider the case a i = 0 for any i. Theorem 3.2. Assume a i = 0 for any i. Then U is compact. For any p ≥ 1, there exists an equilibrium in L p .

We need the following Lemma in the proof.

Lemma 3.6. Assume A0 and A1 and a i = 0 for any i. Then U is compact.

Proof. See Appendix. QED

The proof the Theorem 3.2 is similar to the proof the Theorem 3.1.

APPENDIX

4.1 Proof of Lemma 3.2

For each M > 0, denote ∆ i = {s such that |x i (s)| < M }. Denote ∆ i,c the complement of ∆ i . Fix a j. Denote ∆ j , ∆ j,c like above. Let C > 0 upper bound A in L 1 , we know that ∆ i,c |x i (s)|h i (s)ds < C. Then we have:

M ∆ i,c h i (s)ds ≤ ∆ i,c |x i (s)|h i (s)ds < C so µ i (∆ i,c ) < C M or µ i (∆ i ) > 1 - C M .
Using the same argument, we have

µ j (∆ j ) > 1 - C M .
Denote ∆ = ∆ i ∩ ∆ j . µ i et µ j are equivalents, so for M big enough, we have µ i (∆), µ j (∆) > 0. Fix that M .

Choose η > 0 such that

a i < u i (x i (s))(1 + η) < b i (4.1)
for all i. Then we define the price q as follows: ∀i, j,

q(s) = p(s)(1 + η) = λ i u i (x i (s))(1 + η)h i (s) = λ j u j (x j (s))(1 + η)h j (s).
It follows from (4.1) that, for each i, there exist z i such that ∀s, q(s) = λ i u i (z i (s))h i (s).

Observe that a i < inf s u i (z i s ) ≤ sup(s)u i (z i (s)) < b i , so z i ∈ L ∞ . Observe that ∀s, p(s) < q(s).

Denote

x

+ : = x if x > 0 0 if x ≤ 0 x -: = -x i if x < 0 0 if x ≥ 0 Note that x = x + -x -, |x| = x + + x -and u(x) = u(x + ) + u(-x -) -u(0).
We have

λ i 1 0 u i (x i (s))h i (s)ds -λ i 1 0 u i (x i+ (s))h i (s)ds ≥ λ i 1 0 u i (x i (s))(x i (s) -x i+ (s))h i (s)ds
And

λ i 1 0 u i (z i (s))h i (s)ds -λ i 1 0 u i (-x i-(s))h i (s)ds ≥ λ i 1 0 u i (z i (s))(z i (s) + x i-(s))h i (s)ds.
Therefore,

λ i 1 0 u i (z i (s))x i-(s)h i (s)ds ≤ λ i 1 0 [u i (z i (s)) + u i (x i (s)) -u i (x i+ (s)) -u i (-x i-(s))]h i (s)ds -λ i 1 0 u i (z i (s))z i (s)h i (s)ds + λ i 1 0 u i (x i (s))x i+ (s)h i (s)ds -λ i 1 0 u i (x i (s))x i (s)h i (s)ds.
The inequality above implies

1 0 q(s)x i-(s)ds ≤ λ i [U i (z i ) + U i (x i ) -U i (x i ) -U i (0)] - 1 0 q(s)z i (s)ds + 1 0 p(s)x i+ (s)ds - 1 0 p(s)x i (s)ds = C i + 1 0 p(s)x i+ (s)ds
where

C i = λ i [U i (z i ) + U i (x i ) -U i (x i ) -U i (0)] - 1 0 q(s)z i (s)ds - 1 0 p(s)x i (s)ds. Hence, ∀i 1 0 (q(s) -p(s))x i-(s)ds ≤ C i + 1 0 p(s)x i (s)ds.

Thus we have

m i=1 1 0 (q(s) -p(s))x i-(s)ds ≤ m i=1 C i + m i=1 1 0 p(s)x i (s)ds = m i=1 C i + 1 0 p(s)e(s)ds =: C 1 .
We also have

m i=1 1 0 (q(s) -p(s))(x i+ (s) -x i-(s))ds = m i=1 1 0 (q(s) -p(s))x i (s)ds = 1 0 (q(s) -p(s))e(s)ds which implies m i=1 1 0 (q(s) -p(s))x i+ (s)ds = ∞ s=1 (q(s) -p(s))e(s)ds + m i=1 1 0 (q(s) -p(s))x i-(s)ds =: C 2 . Thus 1 0 (q(s) -p(s))|x i (s)|ds ≤ C 1 + C 2 =: C then η 1 0 p(s)|x i (s)|ds ≤ C.
Let µ i := inf s u i (x i (s)) > 0, and µ := min i µ i . Then

1 0 p(s)|x i (s)|ds ≥ µ 1 0 |x i (s)|h i (s)ds which implies ηµ 1 0 |x i (s)|h i (s)ds ≤ C. Therefore, A is a bounded set in L 1 .

Proof of Lemma 3.4

We use Lemma 3.3 and Jensen's inequality.

Proof of Lemma 3.5

Assume the contrary, A is not compact for the σ(L 1 , L ∞ )-topology. Then, from Lemma 3.1 there exists a sequence {x 1 n , x 2 n , . . . , x m n } n ⊂ A, an agent i, a sequence of measurable sets ∆ n such that µ i (∆ n ) → 0, and a constant > 0 such that ∀n,

∆n |x i n (s)|h i (s)ds > c Denote for all k, v k := lim sup n→∞ U k (x k (n)).
By Lemma 3.3, A is bounded in L 1 . We can suppose that, without loss of generality,

∆n |x i n (s)|h i (s)ds → c i > 0 when n → ∞. This implies ∆n x i+ n (s)h i (s)ds - ∆n x i- n (s)h i (s)ds → c i > 0.
The limits of these two integrals exist because

x i ∈ L 1 . We know that j =i x i n (s) = e(s) -x i n (s),. So, for every s, ∃j such that x j n (s) ≤ -x i n (s)-|e(s)| m-1
. There is a finite number of agents j = i. We can assume that, for simplicity, there exist i and j which satisfy the two following properties:

1. ∃ sequence of measurable sets ∆ n such that µ i (∆ n ) → 0, x i n (s) > 0 for all s ∈ ∆ n and lim n→∞ ∆n

x i n (s)h i (s)ds = c i .
2. For all s ∈ ∆ n

x j n (s) ≤ -

x i n (s) -|e(s)| m -1 .
With each M > 0, define the set E n ⊂ ∆ n as follows

E n = {s : x i n (s) > |e(s)| + M (m -1)}. (4.2) 
We have for all s ∈ E n

x j n (s) ≤ |e(s)| -x i n (s) m -1 < -M. (4.3) 
Because µ i (∆ n ) → 0 and e ∈ L ∞ , so for all M > 0, lim n En x i n (s)h i (s)ds = c i . Since µ i and µ j are equivalent, we can assume that lim n En x i n (s)h j (s)ds = c j . Observe that these limits do not depend on M . Define α := min(v k , v iu i (0)c i m-1 ) -1, (k = 1, . . . , m). Define A α the set of (x i ) ∈ L 1 satisfies U i (x i ) ≥ α ∀i and

x i = e. From the Lemma 3.3 we know that there exists C > 0 such that U j (x j ) < C for all (x 1 , . . . , x m ) ∈ A α . Note that our sequence {x i n } ∈ A α . Since b j = +∞ we can choose M very big such that

v j + u j (-M )c j m -1 > C.
Now consider the sequence (y 1 n , y 2 n , . . . , y m n ) defined as

y i n (s) := x i n (s) - x i n (s) -|e(s)| m -1 + M with s ∈ E n .
y j n (s) := x j n (s) +

x i n (s) -|e(s)| m -1 -M with s ∈ E n . Let y k n (s) = x k n (s) with every k = i, j or s / ∈ E n .
Note that i y i n = e, and y i n (s) ≤ x i n (s), y j n (s) ≥ x j n (s) for all s. We will prove that {U l (y l n } l=1,m is bounded below by α, but U j (y j n ) is not bounded above by C. That leads us to a contradiction. Indeed,

U i (y i n ) -U i (x i n ) = En (u i (y i n (s)) -u i (x i n (s))h i (s)ds ≥ En u i (x i n (s) - x i n (s) -|e(s)| m -1 + M )(- x i n (s) -|e(s)| m -1 + M )h i (s)ds ≥ En u i (M )(- x i n (s) m -1 )h i (s)ds + u i (M )( |e(s)| m -1 + M ) En h i (s)ds ≥ - u i (M ) m -1 En x i n (s)h i (s)ds + u i (M )( |e(s)| m -1 + M ) En h i (s)ds.
When n → ∞, the right hand side term in the inequality above tends to zero where left hand side term tends tou i (M )c i m-1 . Thus,

lim inf n→∞ U i (y i (n)) ≥ v i - u i (M )c i m -1 ≥ v i - u i (0)c i m -1 > α.
For n large enough, U k (y k n ) is bounded below by α, ∀k = j. Then we can estimate the limit of U j (y j n ) when n → ∞,

U j (y j n ) -U j (x j n ) = En (u j (y j n (s)) -u j (x j n (s)))h j (s)ds ≥ En u j (x j n (s) + x i n (s) -|e(s)| m -1 -M )( x i n (s) -|e(s)| m -1 -M )h i (s)ds U j (y j n ) -U j (x j n ) ≥ En u j (-M )( x i n (s) -|e(s)| m -1 -M ) ≥ u j (-M ) m -1 En x i n (s)h j (s)ds -M u j (-M )
En h i (s)ds.

Take the limit. Then:

lim inf n→∞ U j (y j (n)) ≥ v j + u j (-M )c j m -1 > C.
A contradiction.

Proof of Lemma 3.6

Suppose NA condition holds. From Lemma 3.3 and Lemma 3.4, we know that U is bounded. We will prove that U is closed. Suppose that (v 1 , . . . , v m ) belong to the closure of U and the sequence {x n } ⊂ A such that lim n U i (x i n ) = v i . If the sequence {x n } belongs to a compact set of the σ(L 1 , L ∞ )-topology, then, without loss of generality, we can suppose that lim n x i n = x i in that topology. Since U i is upper semi-continuous on a σ(L 1 , L ∞ ) compact set, U i (x i ) ≥ v i for all i. Thus (v 1 , . . . , v m ) ∈ U.

If the the sequence {x n } does not belong to a compact set, we can suppose that there exists c > 0, a measurable sets ∆ n such that for an agent i lim n→∞ ∆n |x i n (s)|h i (s)ds = c.

We can choose a pair (i, j) which satisfies the properties (4.2)-(4.3) in the proof of Lemma 3.5. Fix > 0. Choose M > 0 such that u i (M ) < (m -1) /c. By similar arguments as in Lemma 3.5, we can construct a sequence {y k n } such that:

lim inf n→∞ U i (y i n ) ≥ v i - u i (M )c i m -1 lim inf n→∞ U j (y j n ) ≥ v j + u j (-M )c j m -1 lim inf n→∞ U k (y k n ) = v k for all k = i, j
with c i , c j > 0 which do not depend on M .

So for n large enough, U i (y i n ) > v i -, and for all k = i, j, U k (y k n ) > v kwhereas lim n U j (y j n ) = v j + u j (-M )c j m-1 > v j + u j (0)c j m-1 > v j . Let → 0 and by applying the Lemma 3.2, we have (v 1 , v 2 , . . . , v m ) ∈ U.

Proof of Proposition 3.1

From Lemma 3.4, we know that A is compact. Since (U 1 (.), . . . , U m (.)) is upper semi-continuous on A, this implies U = (U 1 (A 1 ), . . . , U m (A m )) is compact.

Proof of Theorem 3.2

From Lemma 3.6 we get an equilibrium (p * , x * ). We use the same arguments as in Theorem 3.1.

1 0p

 1 * (s)x i (s)ds = 1 0 p * (s)e i (s)ds From Theorem V.3.1, page 91, in Arrow-Hurwicz-Uzawa (1958), for any i, there exists ζ i s.t.

[START_REF] Chichilnisky | Competitive Equilibrium in Sobolev Spaces without Bounds on Short Sales[END_REF] give a condition which implies the boundedness of the individually rational feasible set in

L 2 . Since the feasible set is closed, it is therefore weakly compact in L 2 .

We define the sequence {y k n } k=1,...,m as follows

And we have

, by choosing small enough, the sequence {y(n)} n will satisfy lim inf n U i (y j n ) > v i and lim inf n U j (y j n ) > v j . By induction we can have the sequence

Proof of Lemma 3.3

Take any NA price p. There exists (x i ), {λ i > 0} i such that for all i, s: p(s) = λ i u i (x i (s)h i (s)) almost surely. Since a i < inf s u i (x i (s)) ≤ sup s u i (x i (s)) < b i almost surely, we have x i ∈ L ∞ . Observe that p ∈ L ∞ .