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Abstract

We consider the problem of detecting multiple changes in multiple independent

time series. The search for the best segmentation can be expressed as a min-

imization problem over a given cost function. We focus on dynamic program-

ming algorithms that solve this problem exactly. When the number of changes

is proportional to data length, an inequality-based pruning rule encoded in the

PELT algorithm leads to a linear time complexity. Another type of pruning,

called functional pruning, gives a close-to-linear time complexity whatever the

number of changes, but only for the analysis of univariate time series.

We propose a few extensions of functional pruning for multiple indepen-

dent time series based on the use of simple geometric shapes (balls and hy-

perrectangles). We focus on the Gaussian case, but some of our rules can be

easily extended to the exponential family. In a simulation study we compare

the computational efficiency of different geometric-based pruning rules. We

show that for small dimensions (2, 3, 4) some of them ran significantly faster

than inequality-based approaches in particular when the underlying number of

changes is small compared to the data length.

Keywords: Multivariate time series, multiple change point detection, dynamic

programming, functional pruning, computational geometry
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Introduction

A National Research Council report [1] has identified change point detection

as one of the “inferential giants” in massive data analysis. Detecting change

points, either a posteriori or online, is important in areas as diverse as bioin-

formatics [2, 3], econometrics [4, 5], medicine [6, 7, 8], climate and oceanog-

raphy [9, 10, 11, 12], finance [13, 14], autonomous driving [15], entertainment

[16, 17, 18], computer vision [19] or neuroscience [20]. The most common and

prototypical change point detection problem is that of detecting changes in

mean of a univariate Gaussian signal and a large number of approaches have

been proposed to perform this task (see among many others [21, 22, 23, 24, 25]

and the reviews [26, 27]).

Penalized cost methods. Some of these methods optimize a penalized cost func-

tion (see for example [22, 28, 29, 11, 30, 31]). These methods have good sta-

tistical guarantees [21, 32, 22] and have shown good performances in bench-

mark simulations [33] and on many applications [34, 35]. From a computational

perspective, they rely on dynamic programming algorithms that are at worst

quadratic in the size of the data, n. However using inequality-based and func-

tional pruning techniques [30, 11, 31] the average run times are typically much

smaller allowing to process very large profiles (n > 105) in a matter of seconds

or minutes. In detail, for one time series:

• if the number of change points is proportional to n both PELT (inequality-

based pruning) and FPOP (functional pruning) [11, 31] are on average

linear.

• if the number of change points is fixed, FPOP is quasi-linear (on simula-

tions) while PELT is quadratic [31].

Multivariate extensions. In this paper we focus on the multivariate problem

assuming the cost function or log-likelihood of a segment (denoted C) can be
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decomposed as a sum over all p dimensions. Informally that is

C(segment) =

p∑
k=1

C(segment, time series k) .

In this context, the PELT algorithm can easily be extended for multiple time

series. However, as for the univariate case, it will be algorithmically efficient

only if the number of change points non-neglectible compare to n. In this paper,

we study the extension of functional pruning techniques (and more specifically

FPOP) to the multivariate case.

At each iteration, FPOP updates the set of parameter values for which a

change position τ is optimal. As soon as this set is empty the change is pruned.

For univariate time series, this set is a union of intervals in R. For multi-

parametric models, this set is equal to the intersection and difference of convex

sets in Rp [36]. It is typically non-convex, hard to update, and deciding whether

it is empty or not is not straightforward.

In this work, we present a new algorithm, called Geometric Functional Prun-

ing Optimal Partitioning (GeomFPOP). The idea of our method consists in ap-

proximating the sets that are updated at each iteration of FPOP using simpler

geometric shapes. Their simplicity of description and simple updating allow for

a quick emptiness test.

The paper has the following structure. In Section 1 we introduce the pe-

nalized optimization problem for segmented multivariate time series. We then

review the existing pruned dynamic programming methods for solving this prob-

lem. We define the geometric problem that occurs when using functional prun-

ing. The new method, called GeomFPOP, is described in Section 2 and based

on approximating intersection and exclusion set operators. In Section 3 we in-

troduce two approximation types (sphere-like and rectangle-like) and define the

approximation operators for each of them. We then compare in Section 4 the

empirical efficiency of GeomFPOP with PELT on simulated data.
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1. Functional Pruning for Multiple Time Series

1.1. Model and Cost

We consider the problem of change point detection in multiple time series

of length n and dimension p. Our aim is to partition time into segments, such

that in each segment the parameter associated to each time series is constant.

For a time series y we write y = y1:n = (y1, . . . , yn) ∈ (Rp)n with yki the

k-th component of the p-dimensional point yi ∈ Rp in position i in vector

y1:n. We also use the notation yi:j = (yi, . . . , yj) to denote points from index

i to j. If we assume that there are M change points in a time series, this

corresponds to time series splits intoM+1 distinct segments. Each segmentm ∈

{1, . . . ,M+1} is generated by independent random variables from a multivariate

distribution with the segment-specific parameter θm = (θ1m, . . . , θpm) ∈ Rp. A

segmentation with M change points is defined by the vector of integers τ =

(τ0 = 0, τ1, . . . , τM , τM+1 = n). Segments are given by the sets of indices {τi +

1, . . . , τi+1} with i in {0, 1, . . . ,M}.

We define the set St of all possible change point locations related to the

segmentation of data points between positions 1 to t as

St = {τ = (τ0, τ1, . . . , τM , τM+1) ∈ NM+2|0 = τ0 < τ1 < · · · < τM < τM+1 = t} .

Usually the number of changes M is unknown, and has to be estimated. Many

approaches to detecting change points define a cost function for segmentation

using the opposite log-likelihood (times two). Here the opposite log-likelihood

(times two) linked to data point yj is given by function θ 7→ Ω(θ, yj), where

θ = (θ1, . . . , θp) ∈ Rp. Over a segment from i to t, the parameter remains the

same and the segment cost C is given by

C(yi:t) = min
θ∈Rp

t∑
j=i

Ω(θ, yj) = min
θ∈Rp

t∑
j=i

(
p∑

k=1

ω(θk, ykj )

)
, (1.1)

with ω the atomic likelihood function associated with Ω for each univariate time

series. This decomposition is made possible by the independence hypothesis be-

tween dimensions. Notice that function ω could have been dimension-dependent
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with a mixture of different distributions (Gauss, Poisson, negative binomial,

etc.). In our study, we use the same data model for all dimensions.

We consider a penalized version of the cost by a penalty β > 0, as the zero

penalty case would lead to segmentation with n segments. Summing over all

segments we end up with a penalty that is linear in the number of segments.

Such choice is common in the literature ([37],[11]) although some other penalties

have been proposed ([38],[22],[39]). The optimal penalized cost associated with

our segmentation problem is then defined by

Qn = min
τ∈Sn

M∑
i=0

{C(y(τi+1):τi+1
) + β} . (1.2)

The optimal segmentation τ is obtained by the argminimum in Equation (1.2).

1.2. Functional Pruning Dynamic Programming Algorithm

The idea of the Optimal Partitioning (OP) method [29] is to search for the

last change point defining the last segment in data y1:t at each iteration (with

Q0 = 0), which leads to the recursion:

Qt = min
i∈{0,...,t−1}

(
Qi + C(y(i+1:t) + β

)
.

Functional description. In the FPOP method we introduce a last segment pa-

rameter θ = (θ1, . . . , θp) in Rp and define a functional cost θ 7→ Qt(θ) depending

on θ, that takes the following form:

Qt(θ) = min
τ∈St

(M−1∑
i=0

{C(y(τi+1):τi+1
) + β}+

t∑
j=τM+1

Ω(θ, yj) + β
)
.

As explained in [31], we can compute the function Qt+1(·) based only on the

knowledge of Qt(·) as for each integer t from 0 to n− 1. We have:

Qt+1(θ) = min{Qt(θ),mt + β}+Ω(θ, yt+1) , (1.3)

for all θ ∈ Rp, with mt = minθ Qt(θ) and the initialization Q0(θ) = 0, so that

Q1(θ) = Ω(θ, y1). By looking closely at this relation, we see that each function
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Qt is a piece-wise continuous function consisting of at most t different functions

on Rp, denoted qit:

Qt(θ) = min
i∈{1,...,t}

{
qit(θ)

}
,

where the qit functions are given by explicit formulas:

qit(θ) = mi−1 + β +

t∑
j=i

Ω(θ, yj) , θ ∈ Rp , i = 1, . . . , t.

and

mi−1 = min
θ∈Rp

Qi−1(θ) = min
j∈{1,...,i−1}

{
min
θ∈Rp

qji−1(θ)

}
. (1.4)

It is important to notice that each qit function is associated with the last change

point i − 1 and the last segment is given by indices from i to t. Consequently,

the last change point at step t in y1:t is denoted as τ̂t (τ̂t ≤ t− 1) and is given

by

τ̂t = Argmin
i∈{1,...,t}

{
min
θ∈Rp

qit(θ)

}
− 1.

Backtracking. Knowing the values of τ̂t for all t = 1, . . . , n, we can always re-

store the optimal segmentation at time n for y1:n. This procedure is called

backtracking. The vector cp(n) of ordered change points in the optimal seg-

mentation of y1:n is determined recursively by the relation cp(n) = (cp(τ̂n), τ̂n)

with stopping rule cp(0) = ∅.

Parameter space description. Applying functional pruning requires a precise

analysis of the recursion (1.3) that depends on the property of the cost function

Ω. In what follows we consider three choices based on a Gaussian, Poisson, and

negative binomial distribution for data generation. The exact formulas of these

cost functions are given in Appendix A.

We denote the set of parameter values for which the function qit(·) is optimal

as:

Zi
t =

{
θ ∈ Rp|Qt(θ) = qit(θ)

}
, i = 1, . . . , t.

The key idea behind functional pruning is that the Zi
t are nested (Zi

t+1 ⊂ Zi
t)

thus as soon as we can prove the emptiness of one set Zi
t , we delete its associated
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qit function and do not have to consider its minimum anymore at any further

iteration (proof in next Section 1.3). In dimension p = 1 this is reasonably easy.

In this case, the sets Zi
t (i = 1, . . . , t) are unions of intervals and an efficient

functional pruning rule is possible by updating a list of these intervals for Qt.

This approach is implemented in FPOP [31].

In dimension p ≥ 2 it is not so easy anymore to keep track of the emptiness

of the sets Zi
t . We illustrate the dynamics of the Zi

t sets in Figure 1 in the

bi-variate Gaussian case. Each color is associated with a set Zi
t (corresponding

to a possible change at i − 1) for t equal 1 to 5. This plot shows in particular

that sets Zi
t can be non-convex.

Figure 1: The sets Zi
t over time for the bi-variate independent Gaussian model on time series

without change y = ((0.29, 1.93), (1.86,−0.02), (0.9, 2.51), (−1.26, 0.91), (1.22, 1.11)). From

left to right we represent at time t = 1, 2, 3, 4, and 5 the parameter space (θ1, θ2). Each Zi
t is

represented by a color. The change 1 associated with quadratics 2 is pruned at t = 3. Notice

that each time sequence of Zi
t with i fixed is a nested sequence of sets.

1.3. Geometric Formulation of Functional Pruning

To build an efficient pruning strategy for dimension p ≥ 2 we need to test the

emptiness of the sets Zi
t at each iteration. Note that to get Zi

t we need to com-

pare the functional cost qit with any other functional cost qjt , j = 1, . . . , t, j ̸= i.

This leads to the definition of the following sets.

Definition 1. (S-type set) We define S-type set Si
j using the function Ω as

Si
j =

{
θ ∈ Rp |

j∑
u=i+1

Ω(θ, yu) ≤ mj −mi

}
, when i < j
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and Si
i = Rp. We denote the set of all possible S-type sets as S.

To ease some of our calculations, we now introduce some additional nota-

tions. For θ = (θ1, . . . , θp) in Rp, 1 ≤ i < j ≤ n we define p univariate functions

θk 7→ skij(θ
k) associated to the k-th time series as

skij(θ
k) =

j∑
u=i+1

ω(θk, yku), k = 1, . . . , p . (1.5)

We introduce a constant ∆ij and a function θ 7→ sij(θ):
∆ij = mj −mi ,

sij(θ) =

p∑
k=1

skij(θ
k)−∆ij ,

(1.6)

where mi and mj are defined as in (1.4). The sets Si
j for i < j are also described

by relation

Si
j = s−1

ij (−∞, 0] . (1.7)

In Figure 2 we present the level curves for three different parametric models

given by s−1
ij ({w}) with w a real number. Each of these curves encloses an

S-type set.

At time t = 1, . . . , n we define the following sets associated to the last change

point index i− 1:

past setPi

Pi = {Su
i , u = 1, . . . , i− 1} .

future setF i(t)

F i(t) = {Si
v, v = i, . . . , t} .

We denote the cardinal of a set A as |A|. Using these two sets of sets, the Zi
t

have the following description.

Proposition 1. At iteration t, the functional cost Qt(·) defines the subsets Zi
t

(i = 1, . . . , t), each of them being the intersection of the sets in F i(t) minus the

union of the sets in Pi.

Zi
t = (∩S∈Fi(t)S) \ (∪S∈PiS) , i = 1, . . . , t. (1.8)
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Figure 2: Three examples of the level curves of a function sij for bi-variate time series {x, y}.

We use the following simulations for univariate time series : (a) x ∼ N (0, 1), y ∼ N (0, 1), (b)

x ∼ P(1), y ∼ P(3), (c) x ∼ NB(0.5, 1), y ∼ NB(0.8, 1).

Proof. Based on the definition of the set Zi
t , the proof is straightforward. Pa-

rameter value θ is in Zi
t if and only if qit(θ) ≤ qut (θ) for all u ̸= i; these inequalities

define the past set (when u < i) and the future set (when u > i). By convention

we assume that, in case i = t, ∩S∈Fi(t)S = Rp.

Corollary 1. The sequence ζi = (Zi
t)t≥i is a nested sequence of sets.

Indeed, Zi
t+1 is equal to Zi

t with an additional intersection in the future set.

Based on Corollary 1, as soon as we prove that the set Zi
t , is empty, we delete its

associated qit function and, consequently, we can prune the change point i−1. In

this context, functional and inequality-based pruning have a simple geometric

interpretation.
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Functional pruning geometry. The position i − 1 is pruned at step t + 1, in

Qt+1(·), if the intersection set of ∩S∈Fi(t)S is covered by the union set ∪S∈PiS.

Inequality-based pruning geometry. The inequality-based pruning of PELT is

equivalent to the geometric rule: position i− 1 is pruned at step t+1 if the set

Si
t is empty. In that case, the intersection set ∩S∈Fi(t)S is empty, and therefore

Zi
t is also empty using equation (1.8). This shows that if a change is pruned

using inequality-based pruning it is also pruned using functional pruning. For

the dimension p = 1 this claim was theoretically proved in [31].

The construction of set Zi
t using proposition 1 is illustrated in Figure 3 for a

bi-variate independent Gaussian case: we have the intersection of three S-type

sets and the subtraction of three S-type sets.

-1

0

1

2

-2 0 2 4

y¹

y
²

Figure 3: Examples of building a set Zi
t with |Pi| = |Fi(t)| = 3 for the Gaussian case in 2-D

(µ = 0, σ = 1). The green disks are S-type sets of the past set Pi. The blue disks are S-type

sets of the future set F i(t).

2. Geometric Functional Pruning Optimal Partitioning

2.1. General Principle of GeomFPOP

Rather than considering an exact representation of the Zi
t , our idea is to

consider a hopefully slightly larger set that is easier to update. To be specific,

for each Zi
t we introduce Z̃i

t , called testing set, such that Zi
t ⊂ Z̃i

t . If at time t

Z̃i
t is empty thus is Zi

t and thus change i − 1 can be pruned. From 1 we have

that starting from Z = Rp the set Zi
t is obtained by successively applying two

types of operations: intersection with an S-type set S (Z ∩ S) or subtraction
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of an S-type set S (Z \ S). Similarly, starting from Z̃ = Rp we obtain Z̃i
t by

successively applying approximation of these intersection and subtraction oper-

ations. Intuitively, the complexity of the resulting algorithm is a combination

of the efficiency of the pruning and the easiness of updating the testing set.

A Generic Formulation of GeomFPOP. In what follows we will generically de-

scribe GeomFPOP, that is, without specifying the precise structure of the testing

set Z̃i
t . We call Z̃ the set of all possible Z̃i

t and assume the existence of two

operators ∩Z̃ and \Z̃ . We have the following assumptions for these operators.

Definition 2. The two operators ∩Z̃ and \Z̃ are such that:

(1) the left input is a Z̃-type set (that is an element of Z̃);

(2) the right input is a S-type set;

(3) the output is a Z̃-type set;

(4) Z̃ ∩ S ⊂ Z̃ ∩Z̃ S and Z̃ \ S ⊂ Z̃ \Z̃ S.

We give a proper description of two types of testing sets and their approxi-

mation operators in section 3.

At each iteration t GeomFPOP will construct Z̃i
t+1 from Z̃i

t , Pi and, F i(t)

iteratively using the two operators ∩Z̃ and \Z̃. To be specific, we define SF
j

the j-th element of F i(t) and Sj
P the j-th element of Pi, we use the following

iteration:  A0 = Z̃i
t , Aj = Aj−1 ∩Z̃ SF

j , j = 1, . . . , |F i(t)| ,

B0 = A|Fi(t)| , Bj = Bj−1 \Z̃ Sj
P , j = 1, . . . , |Pi| ,

and define Z̃i
t+1 = B|Pi|. Using the fourth property of Definition 2 and Propo-

sition 1, we get that at any time of the algorithm Z̃i
t contains Zi

t .

The pseudo-code of this procedure is described in Algorithm 1.

The select(A) step in Algorithm 1, where A ⊂ S, returns a subset of A in

S. By default, select(A) := A.
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Algorithm 1 Geometric update rule of Z̃i
t

1: procedure updateZone(Z̃i
t−1,Pi,F i(t), i, t)

2: Z̃i
t ← Z̃i

t−1

3: for S ∈ select(F i(t)) do

4: Z̃i
t ← Z̃i

t ∩Z̃ S

5: end for

6: for S ∈ select(Pi) do

7: Z̃i
t ← Z̃i

t \Z̃ S

8: end for

9: return Z̃i
t

We denote the set of candidate change points at time t as τt. Note that for

any (i − 1) ∈ τt the sum of |Pi| and |F i(t)| is |τt|. With the default select()

procedure we do O(p|τt|) operations in Algorithm 1. By limiting the number of

elements returned by select() we can reduce the complexity.

Remark 1. For example, if the operator A 7→ select(A), regardless of |A|,

always returns a subset of constant size, then the overall complexity of GeomF-

POP is at worst equal to that of PELT with
∑n

t=1O(p|τt|) time complexity.

Using this updateZone() procedure we can now informally describe the Ge-

omFPOP algorithm. At each iteration the algorithm will

(1) find the minimum value for Qt, mt; and the best position for last change

point τ̂t (note that this step is standard: as in the PELT algorithm we

need to minimize the cost of the last segment defined in equation 1.1);

(2) compute all sets Z̃i
t using Z̃i

t−1, Pi, and F i(t) with the updateZone()

procedure.

(3) Remove changes such that Z̃i
t is empty.

To simplify the pseudo-code of GeomFPOP, we also define the following

operators:
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(1) bestCost&Tau(t) operator returns two values: the minimum value of Qt,

mt, and the best position for last change point τ̂t at time t (see Section

1.2);

(2) getPastFutureSets(i, t) operator returns a pair of sets (F i(t), Pi) for

change point candidate i− 1 at time t;

(3) backtracking(τ̂ , n) operator returns the optimal segmentation for y1:n.

The pseudo-code of GeomFPOP is presented in Algorithm 2.

Algorithm 2 GeomFPOP algorithm

1: procedure GeomFPOP(y,Ω(·, ·), β)

2: m0 ← 0, Q0(θ)← 0 , τ0 ← ∅, {Z̃i
i−1}i∈{1,...,n} ← Rp

3: for t = 1, . . . , n do

4: Qt(θ)← min{Qt−1(θ),mt−1 + β}+Ω(θ, yt)

5: (mt, τ̂t)← bestCost&Tau(t)

6: for i− 1 ∈ τt do

7: (Pi,F i(t))← getPastFutureSets(i, t)

8: Z̃i
t ← updateZone(Z̃i

t−1,Pi,F i(t), i, t)

9: if Z̃i
t = ∅ then

10: τt ← τt\{i− 1}

11: end if

12: end for

13: τt ← (τt−1, t− 1)

14: end for

15: return cp(n)← backtracking(τ̂ , n)

3. Approximation Operators

The choice of the geometric structure and the way it is constructed directly

affects the computational cost of the algorithm. We consider two types of testing

set Z̃ ∈ Z̃, a S-type set S̃ ∈ S (see Definition 1) and a hyperrectangle R̃ ∈ R

defined below.
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Definition 3. (Hyperrectangle) Given two vectors in Rp, l̃ and r̃ we define the

set R̃, called hyperrectangle, as:

R̃ = [l̃1, r̃1]× · · · × [l̃p, r̃p] .

We denote the set of all possible sets R̃ as R.

To update the testing sets we need to give a strict definition of the operators

∩Z̃ and \Z̃ for each type of testing set. To facilitate the following discussion, we

rename them. For the first type of geometric structure, we rename the testing

set Z̃ as S̃, the operators ∩Z̃ and \Z̃ as ∩S and \S and Z̃-type approximation

as S-type approximation. And, likewise, we rename the testing set Z̃ as R̃,

the operators ∩Z̃ and \Z̃ as ∩R and \R and Z̃-type approximation as R-type

approximation for the second type of geometric structure.

3.1. S-type Approximation

With this approach, our goal is to keep track of the fact that at time t =

1, . . . , n there is a pair of changes (u1, u2), with u1 < i < u2 ≤ t such that

Si
u2
⊂ Su1

i or there is a pair of changes (v1, v2), with i < v1 < v2 ≤ t such that

Si
v1 ∩ Si

v2 is empty. If at time t at least one of these conditions is met, we can

guarantee that the set S̃ is empty, otherwise, we propose to keep as the result

of approximation the last future S-type set Si
t , because it always includes the

set Zi
t . This allows us to quickly check and prove (if S̃ = ∅) the emptiness of

set Zi
t .

We consider two generic S-type sets, S and S̃ from S, described as in (1.5)

by the functions s and s̃:

s(θ) =

p∑
k=1

sk(θk)−∆ , s̃(θ) =

p∑
k=1

s̃k(θk)− ∆̃ .

Definition 4. For all S and S̃ in S we define the operators ∩S and \S as:

S̃ ∩S S =

∅ , if S̃ ∩ S = ∅ ,

S̃ , otherwise .

S̃ \S S =

∅ , if S̃ ⊂ S ,

S̃ , otherwise .
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As a consequence, we only need an easy way to detect any of these two

geometric configurations: S̃ ∩ S and S̃ ⊂ S.

In the Gaussian case, the S-type sets are p-balls and an easy solution exists

based on comparing radii (see Appendix B for details). In the case of other

models (as Poisson or negative binomial), intersection and inclusion tests can

be performed based on a solution using separative hyperplanes and iterative

algorithms for convex problems (see Appendix C). We propose another type of

testing set solving all types of models with the same method.

3.2. R-type Approximation

Here, we approximate the sets Zi
t by hyperrectangles R̃i

t ∈ R. A key insight

of this approximation is that given a hyperrectangle R and an S-type set S

we can efficiently (in O(p) using proposition 3) recover the best hyperrectangle

approximation of R∪S and R\S. Formally we define these operators as follows.

Definition 5. (Hyperrectangles Operators ∩R, \R ) For all R, R̃ ∈ R and S ∈ S

we define the operators ∩R and \R as:

R∩R S = ∩{R̃|R∩S⊂R}R̃ ,

R \R S = ∩{R̃|R\S⊂R}R̃ .

We now explain how we compute these two operators. First, we note that

they can be recovered by solving a 2p one-dimensional optimization problems.

Proposition 2. The k-th minimum coordinates l̃k and maximum coordinates

r̃k of R̃ = R∩R S (resp. R̃ = R \R S) is obtained as

l̃k or r̃k =


min
θk∈R

or max
θk∈R

θk ,

subject to εs(θ) ≤ 0 ,

lj ≤ θj ≤ rj , j = 1, . . . , p ,

(3.1)

with ε = 1 (resp. ε = −1).

To solve the previous problems (ε = 1 or −1), we define the following char-

acteristic points.

15



Definition 6. (Minimal, closest and farthest points) Let S ∈ S, described by

function s(θ) =
∑p

k=1 s
k(θk)−∆ from the family of functions (1.6), with θ ∈ Rp.

We define the minimal point c ∈ Rp of S as:

c =
{
ck
}
k=1,...,p

, with ck = Argmin
θk∈R

{sk(θk)} . (3.2)

Moreover, with R ∈ R defined through vectors l, r ∈ Rp, we define two points of

R, the closest point m ∈ Rp and the farthest point M ∈ Rp relative to S as

m =
{
mk
}
k=1,...,p

, with mk = Argmin
lk≤θk≤rk

{
sk(θk)

}
,

M =
{
Mk

}
k=1,...,p

, with Mk = Argmax
lk≤θk≤rk

{
sk(θk)

}
.

Remark 2. In the Gaussian case, S is a ball in Rp and

• c is the center of the ball;

• m is the closest point to c inside R;

• M is the farthest point to c in R.

Figure 4: Three examples of minimal point c, closest point m and farthest point M for

bi-variate Gaussian case: (a) R ⊂ S; (b) R ∩ S ̸= ∅; (c) R ∩ S = ∅.

Proposition 3. Let R̃ = R∩R S (resp. R \R S), with R ∈ R and S ∈ S. We

compute the boundaries (l̃, r̃) of R̃ using the following rule:

16



(i) We define the point θ̃ ∈ Rp as the closest point m (resp. farthest M). For

all k = 1, . . . p we find the roots θk1 and θk2 of the one-variable (θk) equation

sk(θk) +
∑
j ̸=k

sj(θ̃j)−∆ = 0 .

If the roots are real-valued we consider that θk1 ≤ θk2 , otherwise we write[
θk1 , θk2

]
= ∅.

(ii) We compute the boundary values l̃k and r̃k of R̃ as:

• For R∩R S (k = 1, . . . , p):[
l̃k, r̃k

]
=
[
θk1 , θk2

]
∩
[
lk, rk

]
. (3.3)

• For R \R S (k = 1, . . . , p):

[
l̃k, r̃k

]
=


[
lk, rk

]
\
[
θk1 , θk2

]
, if

[
θk1 , θk2

]
̸⊂
[
lk, rk

]
,[

lk, rk
]
, otherwise .

If there is a dimension k for which
[
l̃k, r̃k

]
= ∅, then the set R̃ is empty.

The proof of Proposition 3 is presented in Appendix D.

4. Simulation Study of GeomFPOP

In this section, we study the efficiency of GeomFPOP using simulations of

multivariate independent time series. For this, we implemented GeomFPOP

(with S and R types) and PELT for the Multivariate Independent Gaussian

Model in the R-package ’GeomFPOP’ (https://github.com/lpishchagina/

GeomFPOP) written in R/C++. By default, the value of penalty β for each

simulation was defined by the Schwarz Information Criterion proposed in [21]

(β = 2p log n).

Overview of our simulations. First, as a quality control we made sure that

the output of PELT and GeomFPOP were identical on a number of simulated

profiles. Second, we studied cases where the PELT approach is not efficient,
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that is when the data has no or few changes relative to n. Indeed, it was

shown in [11] and [31] that the run time of PELT is close to O(n2) in such

cases. So we considered simulations of multivariate time series without change

(only one segment). By these simulations we evaluated the pruning efficiency

of GeomFPOP (using S and R types) for dimension 2 ≤ p ≤ 10 (see Figure

5 in Subsection 4.1). For small dimensions (2 ≤ p ≤ 4) we also evaluated

the run time of GeomFPOP and PELT and compare them (see Figure 6 in

Subsection 4.2). In addition, we considered another approximation of the Zi
t

where we applied our ∩R and \R operators only for a randomly selected subset

of the past and future balls. In practice, this strategy turned out to be faster

computationally than the full/original GeomFPOP and PELT (see Figure 7 in

Subsection 4.3). For this strategy we also generated time series of a fixed size

(106 data points) and varying number of segments and evaluated how the run

time vary with the number of segments for small dimensions (2 ≤ p ≤ 4). Our

empirical results confirmed that the GeomFPOP (R-type : random/random)

approach is computationally comparable to PELT when the number of changes

is large (see Figure 9 in Subsection 4.3.2).

4.1. The Number of change point Candidates Stored Over Time

We evaluate the functional pruning efficiency of the GeomFPOP method

using simulations with 104 data points (without change, i.e. i.i.d Np(0, Ip)).

For such signals, PELT typically does not pruned (e.g. for t = 104, p = 2 it

stores almost always t candidates).

We report in Figure 5 the percentage of candidates that are kept by GeomF-

POP as a function of n, p and the type of pruning (R or S). Regardless of the

type of approximation and contrary to PELT, we observe that there is some

pruning. However when increasing the dimension p, the quality of the pruning

decreases.

Comparing Figure 5 left and the right we see that for dimensions p = 2

to p = 5 R-type prunes more than the S-type, while for larger dimensions the

S-type prunes more than the R-type. For example, for p = 2 at time t = 104 by
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GeomFPOP (R-type) the number of candidates stored over t does not exceed 1%

versus 3% by GeomFPOP (S-type). This intuitively makes sense. One the one

hand the R-type approximation of a sphere gets worst with the dimension. On

the other hand with R-type approximation every new approximation is included

in the previous one. For small dimensions this memory effect outweight the

roughness of the approximation.

Figure 5: Percentage of candidate change points stored over time by GeomFPOP with R (left)

or S (right) type pruning for dimension p = 2, . . . , 10. We simulated 100 i.i.d Gaussian data

Np(0, Ip) and report the average.

Based on these results we expect that R-type pruning GeomFPOP will be

more efficient than S-type pruning for small dimensions.

4.2. Empirical Time Complexity of GeomFPOP

We studied the run time of GeomFPOP (S and R-type) and compared it

to PELT for small dimensions (p = 2, 3, 4). Run times were limited to three

minutes and were recorded for simulations (without change, i.e i.i.d Np(0, Ip)).

The results are presented in Figure 6. We observe that GeomFPOP is faster

than PELT only for p = 2. For p = 3 run times are comparable and for

p = 4 GeomFPOP is slower. This lead us to consider a randomized version of

GeomFPOP (see next subsection).
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Figure 6: Run time of GeomFPOP (S and R types) and PELT using multivariate time series

without change points. The maximum run time of the algorithms is 3 minutes. Averaged over

100 data sets.

4.3. Empirical Time Complexity of a randomized GeomFPOP

R-type GeomFPOP is designed in such a way that at each iteration we need

to consider all past and future spheres of change i. In practice, it is often

sufficient to consider just a few of them to get an empty set. Having this in

mind, we propose a further approximation of the Zi
t where we apply our ∩R and

\R operators only for a randomly selected subset of the past and future sets. In

detail, we propose to redefine the output of the select() function in Algorithm

1 on any sets Pi and F i(t) as:

• select(Pi) returns one random set from Pi.

• select(F i(t)) returns the last set Si
t and one random set from F i(t).

Thus, we consider the following geometric update rule:

• (random/random) At time t we update hyperrectangle:

(1) by only two intersection operations: one with the last S-type set Si
t

from F i(t), and one with a random S-type set from F i(t);

(2) by only one exclusion operation with a random S-type set from Pi.
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In this approach at time t we do no more than three operations to update the

testing set Z̃i
t for each (i− 1) ∈ τt. According to the Remark 1, even with large

values of p, the overall complexity of GeomFPOP should not be worse than that

of PELT. We investigated other randomized strategies but this simple one was

sufficient to significantly improve run times. The run time of our optimization

approach and PELT in dimension (p = 2, . . . , 10, 100) are presented in Figure 7.

As in Subsection 4.2, run times were limited to three minutes and were recorded

for simulations of length ranging from 210 to 223 data points (without change,

i.e i.i.d Np(0, Ip)).

Although the (random/random) approach reduces the quality of pruning (see

Appendix E), it gives a significant gain in run time compared to PELT in small

dimensions. To be specific, with a run time of five minutes GeomFPOP, on

average, processes a time series with a length of about 8×106, 106 and 2, 5×105

data points in the dimensions p = 2, 3 and 4, respectively. At the same time,

PELT manages to process time series with a length of at most 6, 5 × 104 data

points in these dimensions.

Figure 7: Run time of the (random/random) approach of GeomFPOP (R-type) and PELT

using p-variate time series without change points (p = 2, . . . , 10, 100). The maximum run

time of the algorithms is 3 minutes. Averaged over 100 data sets.
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4.3.1. Empirical complexity of the algorithm as a function of p

We also evaluate the slope coefficient α of the run time curve of GeomF-

POP with random sampling of the past and future candidates for all considered

dimensions. In Figure 8 we can see that already for p ≥ 7 α is close to 2.

Figure 8: Run time dependence of (random/random) approach of GeomFPOP (R-type) on

dimension p.

4.3.2. Run time as a function of the number of segments

For small dimensions (2 ≤ p ≤ 4) we also generated time series with 106 data

points with increasing number of segments. We have considered the following

number of segments: (1, 2, 5)×10i(for i = 0, . . . , 3) and 104. The mean was equal

to 1 for even segments, and 0 for odd segments. In Figure 9 we can see the run

time dependence of the (random/random) approach of GeomFPOP (R-type) and

PELT on the number of segments for this type of time series. Interestingly, the

run time of GeomFPOP (random/random) is comparable to PELT even when

the number of segment is large. For smaller number of segments (as already

observed) GeomFPOP (random/random) is an order of magnitude faster.
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Appendix A. Examples of Likelihood-Based Cost Functions

We define a cost function for segmentation as in (1.1) by the function Ω(·, ·)

(the opposite log-likelihood (times two)). In Table A.1 is the expression of

this function linked to data point yi = (y1i , . . . , y
p
i ) ∈ Rp for three examples of

Parametric Multivariate Models.

Table A.1: Likelihood-based cost function for the Gaussian, Poisson and Negative Binomial

models. We suppose that the over-dispersion parameter ϕ of the Negative Binomial distribu-

tion is known.

Distribution Ω(θ, yi)

Gaussian
∑p

k=1(y
k
i − θk)2

Poisson 2
∑p

k=1

{
θk − log

(
(θk)y

k
i

yk
i !

)}
Negative Binomial −2

∑p
k=1 log

(θk)y
k
i (1− θk)ϕ

yki + ϕ− 1

yki



Appendix B. Arrangement of Two p-balls

We define two p-balls, S and S′ in Rp using their centers c, c′ ∈ Rp and

radius R, R′ ∈ R+ as

S = {x ∈ Rp, ||x− c||2 ≤ R2} and S′ = {x ∈ Rp, ||x− c′||2 ≤ R′2},

where ||x− c||2 =
∑p

k=1(x
k − ck)2, with x = (x1, ..., xp) ∈ Rp, is the Euclidean

norm. The distance between centers c and c′ is defined as d(c, c′) =
√
||c− c′||2.

We have the following simple results:

S ∩ S′ = ∅ ⇐⇒ d(c, c′) > R+R′ ,

S ⊂ S′ or S′ ⊂ S ⇐⇒ d(c, c′) ≤ |R−R′| .
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Appendix C. Intersection and Inclusion tests

Remark 3. For any Si
j ∈ S its associated function s can be redefine after

normalization by constant j − i+ 1 as:

s(θ) = a(θ) + ⟨b, θ⟩+ c,

with a(·) is some convex function depending on θ, b = {bk}k=1,...,p ∈ Rp and

c ∈ R.

For example, in the Gaussian case, the elements have the following form:

a : θ 7→ θ2 , bk = 2Ȳ k
i:j , c = Ȳ 2

i:j −∆ij ,

where Ȳ k
i:j =

1
j−i+1

∑j
u=i+1 y

k
u and Ȳ 2

i:j =
1

j−i+1

∑j
u=i+1

∑p
k=1(y

k
u)

2.

Definition 7. For all θ ∈ Rp and S1, S2 ∈ S with their associated functions, s1

and s2, we define a function h12 and a hyperplane H12 as:

h12(θ) := s2(θ)− s1(θ) , H12 := {θ ∈ Rp|h12(θ) = 0} .

We denote by H+
12 := {θ ∈ Rp|h12(θ) > 0} and H−

12 := {θ ∈ Rp|h12(θ) < 0}

the positive and negative half-spaces of H12, respectively. We call H the set of

hyperplanes.

For all S ∈ S and H ∈ H we introduce a half-space operator.

Definition 8. The operator half-space is such that:

(1) the left input is an S-type set S;

(2) the right input is a hyperplane H;

(3) the output is the half-spaces of H, such that S lies in those half-spaces.

Definition 9. We define the output of half-space(S,H) by the following rule:

(1) We find two points, θ1, θ2 ∈ Rp, as:

θ1 = Argmin
θ∈S

s(θ),

θ2 =


Argmin

θ∈S
h(θ), if θ1 ∈ H+,

Argmax
θ∈S

h(θ), if θ1 ∈ H−.
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(2) We have:

half-space(S,H) =


{H+}, if θ1, θ2 ∈ H+,

{H−}, if θ1, θ2 ∈ H−,

{H+, H−}, otherwise.

Lemma 1. S1 ⊂ H−
12 ⇔ ∂S1 ⊂ H−

12, where ∂(·) denote the frontier operator.

The proof of Lemma 1 follows from the convexity of S1.

Lemma 2. S1 ⊂ S2 (resp. S2 ⊂ S1) ⇔ S1, S2 ⊂ H−
12 (resp. S1, S2 ⊂ H+

12).

Proof. We have the hypothesis H0 : {S1 ⊂ S2}, then

∀θ ∈ ∂S1

s1(θ) = 0 ,

s2(θ) ≤ 0 ,

[by Definition 1]

[by H0]
⇒ θ ∈ H−

12 ⇒ ∂S1 ⊂ H−
12.

Thus, according to Lemma 1, S1 ⊂ H−
12.

We have now the hypothesis H0 : {S1, S2 ⊂ H−
12}, then

∀θ ∈ S1

s1(θ) ≤ 0,

h12(θ) < 0,

[by Definition 1]

[by H0, Definition 1]
⇒ θ ∈ S2 ⇒ S1 ⊂ S2.

Similarly, it is easy to show that S2 ⊂ S1 ⇔ S1, S2 ⊂ H+
12.

Lemma 3. S1 ∩ S2 = ∅ ⇔ H12 is a separating hyperplane of S1 and S2.

Proof. We have the hypothesis H0 : {S1 ⊂ H+
12, S2 ⊂ H−

12}. Thus, H12 is a

separating hyperplane of S1 and S2 then, according to its definition, S1∩S2 = ∅.

We have now the hypothesis H0 : {S1 ∩ S2 = ∅} then

∀θ ∈ S1

s1(θ) ≤ 0 ,

s2(θ) > 0 ,

[by Definition 1]

[by H0, Definition 1]
⇒ θ ∈ H+

12.

∀θ ∈ S2

s1(θ) > 0 ,

s2(θ) ≤ 0 ,

[by H0, Definition 1]

[by Definition 1]
⇒ θ ∈ H−

12.

Consequently, H12 is a separating hyperplane of S1 and S2.

Proposition 4. To detect set inclusion S1 ⊂ S2 and emptiness of set intersec-

tion S1 ∩ S2, it is necessary:

(1) build the hyperplane H12;
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(2) apply the half-space operator for couples (S1, H12) and (S2, H12) to know

in which half-space(s) S1 and S2 are located;

(3) check the conditions in the Lemmas 2 and 3.

Appendix D. Proof of Proposition 3

For the proof of Proposition 3 we need the following remark.

Remark 4. With set S ∈ S the maximum and minimum values for each coor-

dinate in S are obtained on the axis going through minimal point c.

Proof. Let c = {ck}k=1,...,p is the minimal point of S, defined as in (3.2). In

the intersection case, we consider solving the optimization problem (3.1) for the

boundaries l̃k and r̃k, removing constraint lk ≤ θk ≤ rk. If R intersects S, the

optimal solution θk belongs to the boundary of S due to our simple (axis-aligned

rectangular) inequality constraints and we get

sk(θk) = −
∑
j ̸=k

sj(θj) + ∆ . (D.1)

We are looking for minimum and maximum values in θk for this equation with

constraints lj ≤ θj ≤ rj (j ̸= k). Using the convexity of sk and sj , we need

to maximize the quantity in the right-hand side. Thus, the solution θ̃j for

each θj is the minimal value of
∑

j ̸=k s
j(θj) under constraint lj ≤ θj ≤ rj and

the result can only be lj , rj or cj . This decomposition in smaller problems is

made possible thanks to our problem setting with independence. Looking at all

coordinates at the same time, the values for θ̃ ∈ Rp corresponds to the closest

point m = {mk}k=1,...,p. Having found θk1 and θk2 using θ̃ the result in (3.3)

is obvious considering current boundaries lk and rk.

In exclusion case, we remove from R the biggest possible rectangle included

into S ∩ {lj ≤ θj ≤ rj , j ̸= k}, which correspond to minimizing the right hand

side of (D.1), that is maximizing
∑

j ̸=k s
j(θj) under constraint lj ≤ θj ≤ rj

(j ̸= k). In that case, the values for θ̃ correspond to the greatest value returned

by
∑

j ̸=k s
j(θj) on interval boundaries. With convex functions sj , it corresponds

to the farthest point M = {Mk}k=1,...,p.
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Appendix E. Optimization Strategies for GeomFPOP(R-type)

In GeomFPOP(R-type) at each iteration, we need to consider all past and

future spheres of change i. As it was said in Section 4, in practice it is often

sufficient to consider just a few of them to get an empty set. Thus, we propose

to limit the number of operations ∩R no more than two:

• last. At time t we update hyperrectangle by only one operation, this is

an intersection with the last S-type set Si
t from F i(t).

• random. At time t we update the hyperrectangle by only two operations.

First, this is an intersection with the last S-type set Si
t from F i(t), and

second, this is an intersection with other random S-type set from F i(t).

The number of operations \R we limit no more than one:

• empty. At time t we do not perform \R operations.

• random. At time t we update hyperrectangle by only one operation: ex-

clusion with a random S-type set from Pi.

According to these notations, the approach presented in the original GeomFPOP

(R-type) has the form (all/all). We show the impact of introduced limits on

the number of change point candidates retained over time and evaluate their

run times. The results are presented in Figures E.10 and E.11.

Even though the (random/random) approach reduces the quality of pruning

in dimensions p = 2, 3 and 4, it gives a significant gain in the run time com-

pared to the original GeomFPOP (R-type) and is at least comparable to the

(last/random) approach.
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