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Abstract

We coordinate interconnected agents where the control input of each
agent is limited by the control input of others. In that sense, the sys-
tems have to share a limited resource over a network. Such problems can
arise in different areas and it is here motivated by a district heating ex-
ample. When the shared resource is insufficient for the combined need
of all systems, the resource will have to be shared in an optimal fash-
ion. In this scenario, we want the systems to automatically converge to
an optimal equilibrium. The contribution of this paper is the proposal
of a control architecture where each separate system is controlled by a
local PI controller. The controllers are then coordinated through a global
rank-one anti-windup signal. It is shown that the equilibrium of the pro-
posed closed-loop system minimizes the infinity-norm of stationary state
deviations. A proof of linear-domain passivity is given, and a numerical
example highlights the benefits of the proposed method with respect to
the state-of-the-art.

1 Introduction

In this paper we consider the problem of asymptotically coordinating a large
number of agents that share a central, limited resource towards an optimal
equilibrium. Such problems arise in many applications, e.g. optimal power
flow [1], the TCP protocol [2, 3] and buffer networks [4–6]. We consider the
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motivating example of a district heating network where unfair situations can
arise in peak load conditions; buildings close to heat sources stay warm but
peripheral buildings become cold. Coordinating central buildings to reduce
their heat load in these scenarios would yield a more fair heat distribution [7].
For a more detailed view on district heating systems and challenges in district
heating control, see e.g. [8, 9]. We consider a representation of such systems
given by a linear system with saturating control:

ẋ = −x+Bsat (u) + w. (1)

Here x ∈ (x1, . . . , xn) ∈ Rn represents deviations from reference levels for the
agents, w ∈ Rn is a constant disturbance acting on the system, u ∈ Rn repre-
sents the control actions of the agents and B ∈ Rn×n represents the intercon-
nection among the agents. The saturation function sat (·) represents the limited
nature of the resource in the system. A more detailed description of the system
will be given later. Problems of this form are addressed in [4], which shows
that feedback control on the form u = −BTx asymptotically minimizes the
cost xTx + vT v for (1) where v = sat (u). Furthermore [6] designs a controller
that asymptotically minimizes varying norms of u in the non-saturated formu-
lation of (1). We extend the asymptotically optimal control design of these
previous authors in three ways. First, we consider minimizing the cost function
∥x∥∞ = maxi |xi|, associated with worst-case fairness. In the district heating
example, this objective captures the deviation in the coldest building, which
for the specific application is more important than minimizing u. Secondly, we
approach scalability of the control strategy in another fashion. Indeed, [4, 6]
approach scalability by considering systems where B has a sparse structure, so
that with u = −BTx, each agent acts on a few measurements. We consider an-
other scalable control approach of rank-one coordination as utilized in [10, 11].
In this scenario, the signals from all the agents are combined into one scalar
value, and then redistributed to the agents. The advantage of rank-one schemes
is that they allow for implementations that scale well and maintain privacy
among the agents, as well as scalability, even when B is not sparse. We do this
for a specific set of systems (1) where B is an M-matrix, a property that was not
previously exploited in this context. Finally, we propose a control law where the
results rely only on the structure of B, thus making the implementation robust
to modeling errors. To solve the problem under consideration we propose a
controller where each agent maintains a local proportional-integral-controller,
and coordination is performed through a global rank-one anti-windup correc-
tion. Anti-windup techniques have a long-standing tradition of effective use in
combination with integral controllers to improve performance [12]. However,
recent results show a strong connection between anti-windup schemes and op-
timization [13, 14], opening the possibility of considering anti-windup loops for
optimal equilibrium coordination, in line with what we propose here.

In this article we provide several contributions: We propose the aforemen-
tioned controller for driving the system to an optimal equilibrium. We show
that under certain conditions on the disturbance w, such an equilibrium exists,
is unique, and is in fact uniquely optimal. Analytical proofs of convergence are
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left outside the scope of this work as we have not yet been able to demonstrate
them. However, we provide sufficient conditions for stability in the linear do-
main sat (u) = u. This leads us to formulate a stability conjecture, subject of
future work. A numerical experiment is included to show the effectiveness of
the proposed method.

The paper is organized as follows. The system and problem under consid-
eration are formally introduced in Section II, along with the proposed control
scheme. The existence of an equilibrium for this system is considered in Section
III, and the optimality of the system equilibrium is treated in Section IV. Section
V introduces a conjecture on the convergence properties of the proposed closed
loop, based on a proof of linear-domain stability under suitable conditions on
the PI gains. A numerical example is shown in Section VI. Finally conclusions
and future work are covered in Section VII.

Notation: If A is a matrix then denote Ai to be row i of A and Ai,j be the
element of A at row i and column j. Let 1 be a column vector of all ones with
dimensions taken from context, and thus 11T is a matrix of all 1’s. Denote
sat (·) to be the saturation function sat (u) = max (min (u, 1) ,−1) and denote
the dead-zone function dz (u) = u − sat (u). With a slight abuse of notation,
the dead-zone and saturation functions applied to vectors operate element-wise.
Let the superscript x0 denote the state x in an equilibrium point, and the
superscript x∗ to be the value of x which solves an optimization problem. Let
the infinite norm ∥·∥∞ of a vector v be defined as the maximum magnitude
element maxi |vi|.

2 System Description and Problem Formulation

2.1 System Description

Consider system (1) where xi ∈ R is the state of each agent i = 1, . . . , n and
ui ∈ R is the controller output of each agent. B ∈ Rn×n is an M-matrix
[15,16]. Such matrices have non-positive off-diagonal entries, thus capturing the
fact that each agent negatively impacts the others. Thus, if agent i increases
its control input it receives more resources and the other agents receive less
resources. Denote M = B−1. M-matrices have non-negative inverses in general
and we will assume that M is strictly positive, thus Mi1 > 0 for all i. Input
w denotes a constant, unknown disturbance affecting the system. In practice
the disturbance does not need to be constant, but sufficiently slowly varying.
Let us also introduce the index k as a maximizing argument of the following
expression

k ∈ K = argmax
i

∣∣∣∣dz (Miw)

Mi1

∣∣∣∣ , (2)

which is, in general, nonunique and characterizes the agent that is most affected
by the disturbance w.
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2.2 Problem Formulation

We address here the unfair allocation of resources when the agents try to reject
a constant disturbance that is too large to drive the system to the origin in view
of input saturation. We consider a notion of fairness as described in [17] where
”no individual can improve its performance without affecting at least one user
adversely” with regards to the deviations xi, which we formally describe below.

Definition 1. An equilibrium pair (x0, u0) is fair if there is no other equilibrium

pair (x†, u†) where ∥x†∥∞ < ∥x0∥∞, or ∥x†∥∞ = ∥x0∥∞ and |x†
i | < |x0

i | for
some i.

We therefore consider the following problem formulation.

Problem 1. Design a feedback controller driving system (1) from any suitable
initial condition to an equilibrium pair (x0, u0), such that x∗ = x0 and v∗ =
sat

(
u0

)
solves the optimization problem

minimize
x, v

∥x∥∞ (3a)

subject to − x+Bv + w = 0, (3b)

− 1 ≤ v ≤ 1 (3c)

uniquely.

As ∥x0∥∞ is minimized uniquely, this equilibrium must be fair by Definition
1.

2.3 Proposed Feedback Controller

We propose an individual PI controller for each agent. Each controller has an
integral state zi, and strictly positive gains pi (proportional gain) and ri (integral
gain). These gains can be tuned locally by the agents. We then introduce a
scalar communication signal exchanged among the agents, resulting in a rank-
one anti-windup correction term such that each controller adds the sum of all
agents’ dead-zones to their integrator input. The full closed-loop system can be
written as

ẋ = −x+Bsat (u) + w (4a)

ż = x+ β11Tdz (u) (4b)

u = −Px−Rz, (4c)

where P and R are diagonal, positive matrices gathering the controller gains pi,
ri, 11

Tdz (u) is the rank-one anti-windup signal and β is a positive, scalar anti-
windup gain. One advantage of the proposed structure is that, under normal
circumstances, each PI controller is completely disconnected from the other ones
and acts based on local information only. If saturation occurs, the central signal
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activated and a fairness-oriented coupling emerges from the anti-windup term.
Another advantage of the architecture (4) is that when coupling occurs, the
coupling signal is merely the sum of the dead-zones for each agent which can be
computed efficiently. The summation hides the individual signals, so that when
this central signal is redistributed to the agents, each agent does not know the
dead-zone values for any of the other individual agents. As such, this global
signal lends itself well to scalable and privacy-compliant implementations.

3 Closed-Loop Equilibria

In this section we characterize the equilibria of the proposed closed-loop system
(4). From (4), any equilibrium (x0, z0) solves the equations

0 = −x0 +Bsat
(
u0

)
+ w (5a)

0 = x0 + β11Tdz
(
u0

)
(5b)

u0 = −Px0 −Rz0. (5c)

It is not trivial to show whether a solution to (5) exists. This section studies
conditions for the existence and uniqueness of such solutions. Note that it is
sufficient to study pairs (x0, u0) satisfying (5a) and (5b), because the positive
definiteness of R implies its invertibility. Hence for any such state-control pair
(x0, u0) satisfying (5a) and (5b), z0 can be uniquely determined from (5c).

3.1 Existence of an Equilibrium Point

Recall that M = B−1. We provide below a necessary and sufficient condition
for (4) to admit an equilibrium.

Lemma 1. The closed-loop system (5) admits an equilibrium point (x0, z0), if
and only if

max
i

Miw − 1

Mi1
≤ min

j

Mjw + 1

Mj1
. (6)

Proof. Let us begin with showing that (6) is necessary for the existence of an
equilibrium point. (5a) and (5b) can be combined to

Mw + sat
(
u0

)
= −βM11Tdz

(
u0

)
. (7)

Thus
Miw + sat

(
u0
i

)
Mi1

= −β1Tdz
(
u0

)
, ∀i = 1, . . . , n. (8)

If (6) does not hold, then there exist i and j such that

Miw − 1

Mi1
>

Mjw + 1

Mj1
. (9)
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However, (8) implies that

Miw + sat
(
u0
i

)
Mi1

=
Mjw + sat

(
u0
j

)
Mj1

. (10)

As sat
(
u0
i

)
≥ −1 and sat

(
u0
j

)
≤ 1, (9) and (10) cannot simultaneously hold,

which establishes a contradiction thus proving that there is no equilibrium.
This proves that (6) is necessary for the existence of an equilibrium. For the
sufficiency, first recall the definition of k, given by (2). Then consider the
candidate equilibrium x0, u0 given by

x0 = 1
dz (Mkw)

Mk1
(11a)

u0
k = −sat (Mkw)−

dz (Mkw)

βMk1
(11b)

u0
i = −Miw +

Mi1

Mk1
dz (Mkw) , ∀i ̸= k. (11c)

We show below that when (6) holds, the candidate equilibrium (11) solves
(5). Consider 3 scenarios. (i): dz (Mkw) = 0, (ii): dz (Mkw) > 0 and (iii):
dz (Mkw) < 0. In scenario (i), x0 = 0, and u0 = −Mw. As dz (Mkw) = 0 in
this scenario, dz (Miw) = 0 for all i. Otherwise (2) would not be maximized by
k. This implies that sat

(
u0

)
= u0 = −Mw and dz

(
u0

)
= 0. It is thus easy to

verify that (5) holds. In scenario (ii), note that the left side of (6) is maximized
by index k and can be reformulated as

dz (Mkw)

Mk1
≤ Miw + 1

Mi1
∀i = 1, . . . , n. (12)

Returning to the candidate equilibrium and (11c) for i ̸= k,

u0
i = −Miw +

Mi1

Mk1
dz (Mkw) ≤ 1 (13)

where the inequality is derived from (12). Thus u0
i ≤ 1. In addition,

u0
i = −Miw +

Mi1

Mk1
dz (Mkw)

= −sat (Miw)− dz (Miw) +
Mi1

Mk1
dz (Mkw)

= −sat (Miw) +Mi1

(
dz (Mkw)

Mk1
− dz (Miw)

Mi1

)
≥ −1,

(14)

where the last inequality holds because k maximizes (2). This means that
−1 ≤ u0

i ≤ 1 for all i ̸= k. Thus

sat
(
u0
i

)
= u0

i = −Miw +
Mi1

Mk1
dz (Mkw) , ∀i ̸= k, (15)

6



and
dz (ui) = 0, ∀i ̸= k. (16)

For index k, (11b) provides

sat
(
u0
k

)
= −sat (Mkw) = −Mkw + dz (Mkw) (17)

and

dz
(
u0
k

)
= −dz (Mkw)

βMk1
. (18)

Combining (15), (16), (17) and (18) yields

sat
(
u0

)
= −Mw +M1

dz (Mkw)

Mk1
(19)

and

1Tdz
(
u0

)
= −dz (Mkw)

βMk1
. (20)

which allows us to easily verify that (x0, u0) from (11) solves (5) in scenario (ii).
An equal argument can be made for scenario (iii), which we omit for brevity.
This shows that given any scenario for dz (Mkw), the candidate equilibrium
(11) is valid when (6) holds. Thus (6) is both necessary and sufficient for the
existence of an equilibrium.

To interpret (6), note that it is satisfied when all entries wi are similar to
each other. For instance, w = s1 for any scalar s trivially satisfies the condition.
This makes it a sensible assumption when the disturbance w affects all agents
in a similar way. This is for instance the case in the district heating example,
where the outdoor temperature is likely to be quite similar for all the buildings
located in a specific area. To simplify our follow-up definitions, we will assume
that (6) holds with a strict inequality, as formulated below.

Assumption 1. The disturbance w satisfies (6) strictly, namely

max
i

Miw − 1

Mi1
< min

j

Mjw + 1

Mj1
. (21)

We assume the strict inequality to enforce uniqueness of the equilibrium,
which is studied in the next section.

3.2 Uniqueness of the Equilibrium

Lemma 1 shows that under Assumption 1, there is an equilibrium for the closed-
loop system. We study here conditions for this equilibrium to be unique. To
enforce the uniqueness of this equilibrium, we assume the following.

Assumption 2. Either dz (Mw) = 0, or the maximizing argument k given by
(2) is unique.
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If k is non-unique, an arbitrarily small perturbation of B or w would make it
so. In practical applications, w is expected to vary slowly over time. This makes
it unlikely that k would be non-unique for an extended period of time, but may
also cause k to shift between agents. The analysis of such scenarios requires to
study the transient behavior of the system, which is outside the scope of the
paper, but will be the subject of future work.

Lemma 2. If Assumptions 1 and 2 hold, then (11) is the unique equilibrium of
the closed-loop system (4).

Proof. Recall from the proof of Lemma 1 that for any equilibrium inducing
input u0, identity (7) must hold. Now denote

t = β1Tdz
(
u0

)
, (22)

which allows (7) to be rewritten as

sat
(
u0
i

)
= −Miw −Mi1t, ∀i = 1, . . . , n. (23)

Note that if t > 0, there must exist an i ∈ {1, . . . , n} such that sat
(
u0
i

)
= 1.

Similarly, if t < 0, there exists an i ∈ {1, . . . , n} such that sat
(
u0
i

)
= −1.

Also note that (21) implies that there cannot exist i and j such that Miw ≥ 1
and Mjw ≤ −1. This in turn implies that either dz

(
u0

)
≥ 0 or dz

(
u0

)
≤ 0,

where the inequality should be understood componentwise. Now, recalling that
k in (2) is unique by assumption, consider 3 scenarios; (i): dz (Mkw) = 0, (ii):
dz (Mkw) > 0 and (iii): dz (Mkw) < 0. In scenario (i), we see that dz (Miw) = 0
for all i = 1, . . . , n, as otherwise |dz (Miw) | > 0 for some i, implying that (2)
would be maximized by this i. Thus |Miw| ≤ 1 for all i. Through (23), we prove
next that this implies t = 0. Indeed, assume by an absurd argument that t > 0.
Then (23) yields sat

(
u0
i

)
= −Miw − Mi1t < −Miw ≤ 1 for all i = 1, . . . , n.

But if sat
(
u0
i

)
< 1 for all i, then dz

(
u0
i

)
≤ 0 for all i and thus t cannot be

positive. A parallel contradiction can be built for t < 0. Thus we conclude that
t = 0. In turn, t = 0 implies that dz

(
u0

)
= 0, because (22) shows that t is the

sum of the entries of dz
(
u0

)
= 0, multiplied by the positive scalar β. As the

entries of dz
(
u0

)
are either all positive or all negative, t can only be 0 if all of

the entries of dz
(
u0

)
are 0. This uniquely fixes u0 = −Mw, which is the same

as the candidate solution (11). This in turn uniquely fixes x0 through (5b), and
uniquely fixes z0 through (5c).

In scenario (ii), (23) implies t ≤ −dz(Mkw)
Mk1

, because otherwise sat
(
u0
k

)
< −1.

If t = dz(Mkw)
Mk1

then sat
(
u0
k

)
= −1. For i ̸= k,

sat
(
u0
i

)
= −Miw +

Mi1

Mk1
dz (Mkw)

= −sat (Miw)− dz (Miw) +
Mi1

Mk1
dz (Mkw)

= −sat (Miw) +Mi1

(
dz (Mkw)

Mk1
− dz (Miw)

Mi1

)
> −1.

(24)
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The last inequality holds because k uniquely maximizes (2) and Mi1 > 0 due to

non-negativity and invertibility of M . Thus we conclude that t = −dz(Mkw)
Mk1

, be-

cause otherwise sat
(
u0
i

)
> −1 for all i, contradicting the fact that t is negative.

For this scenario (ii), (21) can be written as

dz (Mkw)

Mk1
<

Miw + 1

Mi1
, ∀i ̸= k, (25)

Which can be combined with t = −dz(Mkw)
Mk1

to show that, for i ̸= k,

sat
(
u0
i

)
= −Miw +

Mi1

Mk1
dz (Mkw) < 1. (26)

Inequality (26) implies |sat
(
u0
i

)
| < 1 for all i ̸= k, and thus dz

(
u0
i

)
= 0 for all

i ̸= k. This implies
t = β1Tdz

(
u0

)
= βdz

(
u0
k

)
(27)

and thus

dz
(
u0
k

)
= −dz (Mkw)

βMk1
. (28)

Equations (26) and (28) uniquely determine u0, and, together with (11), x0 and
z0 are uniquely determined. For scenario (iii), a symmetric argument can be
followed, which is omitted for brevity, thus completing the proof.

4 Optimality

We proved in the previous section that under Assumptions 1 and 2, the proposed
closed-loop system has a unique equilibrium, given by (11). In this section, we
will prove that this equilibrium is also the unique, optimal solution to (3).

Theorem 1. If Assumptions 1 and 2 hold, then x∗ = x0 and v∗ = sat
(
u0

)
is

the unique solution to (3) where x0 and u0 are given by (11).

Proof. Lemma 2 proves that under Assumptions 1 and 2, (x0, u0) is a state-
input equilibrium pair. This means that (x∗, v∗) = (x0, sat

(
u0

)
) satisfies the

constraints (3b) and (3c) and is therefore feasible. What remains is only to show
that it is not only feasible but also uniquely optimal. Consider for establishing
a contradiction that there exists ξ ̸= 0, such that x† = x∗ + ξ, along with
v† = v∗ +Mξ is also feasible and provides a lower or equal cost than (x∗, v∗).
An equivalent rewriting of (3) using ξ is

minimize
ξ

∥1dz (Mkw)

Mk1
+ ξ∥∞ (29a)

subject to ∥M(ξ − w + 1
dz (Mkw)

Mk1
)∥∞ ≤ 1. (29b)

9



First note that if dz (Mkw) = 0, then ξ = 0 is trivially optimal as any ξ ̸= 0
would yield a higher cost and thus not be an optimizer. Then consider the case
where dz (Mkw) > 0. For ξ to provide a lower or equal cost, it must hold that
ξi ≤ 0 for all i. However, analyzing constraint (29b) for index k yields

| −Mkw + dz (Mkw) +Mkξ| ≤ 1. (30)

Since we are focusing on the case dz (Mkw) > 0, (30) reduces to

| − 1 +Mkξ| ≤ 1. (31)

Since ξ ≤ 0, inequality (31) can only hold for xi = 0 as Mk has strictly positive
entries. Therefore ξ = 0 is uniquely optimal when dz (Mkw) > 0. A parallel
reasoning can be performed for the case dz (Mkw) < 0. Thus (x∗, v∗) is the
optimal solution to (3).

5 Stability Properties

The results of Sections III and IV established that under Assumptions 1 and
2, the unique equilibrium of the closed-loop system (4) solves the optimization
problem (3). In this section we formulate the following conjecture regarding its
stability properties.

Conjecture 1. Under Assumptions 1 and 2, if pi > ri for all i = 1, . . . , n, then
the proposed controller (4) globally solves Problem 1.

Conjecture 1, subject to its proof, would provide strong properties for the
proposed control law, granting stability and optimality for a large family of
systems subject to a simple control tuning constraint. The proof however is
non-trivial and requires results for saturated systems operating deeply in the
saturated regime, which is why it is left outside the scope if this work. Our
confidence in Conjecture 1 arises from numerous simulations of randomized
systems. In addition, the specific choice of pi > ri provides notions of stability
for our problem through the following lemma.

Lemma 3. Assume that pi > ri for all i and w ∈ L2. Then system (4) is
asymptotically stable in the region of linearity where sat (u) = u.

Proof. Define y = −Bu. When sat (u) = u and thus dz (u) = 0, the closed loop
system (4) can be reformulated in the frequency domain as

sX = −X − Y +W (32a)

sU = (P −R)X + PY − PW. (32b)

These equations are fully diagonal, and can for each agent i be combined to
form

Ui =
ri + pis

s(s+ 1)
(Yi −Wi) = Gi(s)(Yi −Wi). (33)
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Figure 1: Block diagram, showing the interconnection used in the proof of
Lemma 3.

This feedback interconnection is represented in Figure 1. When pi > ri, the
transfer function (33) is positive real, making it a passive component [18]. In
addition, due to B being an M-matrix, we know that there exists a positive,
diagonal matrix D such that −DB −BTD ≺ 0. This means that the combined
upper block of Figure 1 is strictly passive. The multiplication by the positive,
diagonal matrix D−1 does not affect the passivity properties of G1(s) . . . Gn(s).
The feedback interconnection between the strictly passive upper block and the
passive lower block means that for any w ∈ L2, we have u ∈ L2 [19]. This
means that limt→∞ w(t) = 0, limt→∞ u(t) = 0 and thus clearly limt→∞ x(t) = 0
by (4a).

To prove or refute Conjecture 1 in future work, we believe that these passivity
properties may be a useful tool. While it can be shown that the condition P > R
is conservative, we have also found examples of sufficiently large integral gains
causing instability, thereby suggesting that our conjecture is reasonable.

6 Numerical Example

To demonstrate the usefulness of the proposed controller, we investigate n = 250
agents interconnected through the matrix B = D(1.2nI − 11T ) where D =
diag(d1, d2, . . . , dn) and d1, . . . , dn are distributed at even intervals between 0.5

and 1.5. w(t) = 1n sin (t/2π)
2 . We compare three strategies: First the coordinated

strategy, consisting in the controller proposed in this paper using the gains
pi = 1, ri = 1.5 for all i and β = 1. Secondly the uncoordinated strategy,
namely the same PI-controllers as those of the coordinated case, only equipped
with a local anti-windup action: żi = xi + βdz (ui). Finally the linear saturated
decentralized (lsd) controller u = −BTx as proposed by [4]. The systems are
simulated using the DifferentialEquations toolbox [20] in Julia. Figure 2
shows the envelopes of the time series over the simulation. In the coordinated
case (green), all of the states x are nearly completely synchronized. Under both
the uncoordinated (blue) and the lsd (red) strategy, there is a large discrepancy
between the maximum and minimum states. Furthermore, the lsd strategy is
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Figure 2: Envelopes of the states x for each strategy. The dashed lines constitute
the minimum mini xi(t) and the solid lines the maximum maxi xi(t).

Figure 3: Histogram of maximum absolute deviations maxt |xi(t)| experienced
under each strategy. From deviation 20 to 80, the red and blue bars overlap.

optimal with regards to a tradeoff between states x and control action u, and
therefore no states are driven to the origin with large disturbances w. Figure 3
shows histograms of the worst magnitude deviations in each strategy. We see
that both the uncoordinated (blue) and lsd (red) strategies have several agents
with larger deviations than any of the agents in the coordinated case. However,
both the uncoordinated and lsd strategies also have many agents with lower
deviations than that of the coordinated case.

7 Conclusion

In this paper we have presented a controller for coordinating the control actions
of agents that share a central resource. We proved that the only equilibrium of
this closed-loop system is optimally fair. This optimality concerns the states x,
an important extension of the literature which has mainly focused on properties
of the control input u. A conjecture was proposed giving conditions for stability
of this optimal equilibrium, motivated by passivity of the closed-loop system in
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the linear domain.
Subject to the proof of Conjecture 1, the proposed method has many ad-

vantages. Each agent could tune the gains of a PI-controller locally while main-
taining global guarantees of stability. These guarantees are only dependent on
the structure of the system and not the model itself (i.e. the B-matrix does not
have to be known, only that it has certain properties). The rank-one communi-
cation scheme ensures scalability of the implementation which does not require
sparsity of B.

Extensions of the work include exploiting the proven passivity property to
prove stability with regards to the optimal equilibrium. Further system struc-
tures could be considered, for instance more general A-matrices, output feed-
back, or non-linear interconnections B(u) which maintain similar properties to
the current B-structure. Finally, one can consider analyzing and improving
transient performance.
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