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Introduction

In this paper we consider the problem of asymptotically coordinating a large number of agents that share a central, limited resource towards an optimal equilibrium. Such problems arise in many applications, e.g. optimal power flow [START_REF] Dall'anese | Optimal power flow pursuit[END_REF], the TCP protocol [START_REF] Low | Internet congestion control[END_REF][START_REF] Kelly | Fairness and stability of end-to-end congestion control*[END_REF] and buffer networks [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF][START_REF] Blanchini | Network-decentralised optimisation and control: An explicit saturated solution[END_REF][START_REF] Blanchini | Fair and sparse solutions in network-decentralized flow control[END_REF]. We consider the motivating example of a district heating network where unfair situations can arise in peak load conditions; buildings close to heat sources stay warm but peripheral buildings become cold. Coordinating central buildings to reduce their heat load in these scenarios would yield a more fair heat distribution [START_REF] Agner | Combating district heating bottlenecks using load control[END_REF]. For a more detailed view on district heating systems and challenges in district heating control, see e.g. [START_REF] Frederiksen | District heating and cooling. Studentlitteratur[END_REF][START_REF] Vandermeulen | Controlling district heating and cooling networks to unlock flexibility: A review[END_REF]. We consider a representation of such systems given by a linear system with saturating control: ẋ = -x + Bsat (u) + w.

(

Here x ∈ (x 1 , . . . , x n ) ∈ R n represents deviations from reference levels for the agents, w ∈ R n is a constant disturbance acting on the system, u ∈ R n represents the control actions of the agents and B ∈ R n×n represents the interconnection among the agents. The saturation function sat (•) represents the limited nature of the resource in the system. A more detailed description of the system will be given later. Problems of this form are addressed in [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF], which shows that feedback control on the form u = -B T x asymptotically minimizes the cost x T x + v T v for [START_REF] Dall'anese | Optimal power flow pursuit[END_REF] where v = sat (u). Furthermore [START_REF] Blanchini | Fair and sparse solutions in network-decentralized flow control[END_REF] designs a controller that asymptotically minimizes varying norms of u in the non-saturated formulation of [START_REF] Dall'anese | Optimal power flow pursuit[END_REF]. We extend the asymptotically optimal control design of these previous authors in three ways. First, we consider minimizing the cost function ∥x∥ ∞ = max i |x i |, associated with worst-case fairness. In the district heating example, this objective captures the deviation in the coldest building, which for the specific application is more important than minimizing u. Secondly, we approach scalability of the control strategy in another fashion. Indeed, [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF][START_REF] Blanchini | Fair and sparse solutions in network-decentralized flow control[END_REF] approach scalability by considering systems where B has a sparse structure, so that with u = -B T x, each agent acts on a few measurements. We consider another scalable control approach of rank-one coordination as utilized in [START_REF] Madjidian | h 2 optimal coordination of homogeneous agents subject to limited information exchange[END_REF][START_REF] Lidström | Optimal H-infinity state feedback for systems with symmetric and Hurwitz state matrix[END_REF].

In this scenario, the signals from all the agents are combined into one scalar value, and then redistributed to the agents. The advantage of rank-one schemes is that they allow for implementations that scale well and maintain privacy among the agents, as well as scalability, even when B is not sparse. We do this for a specific set of systems [START_REF] Dall'anese | Optimal power flow pursuit[END_REF] where B is an M-matrix, a property that was not previously exploited in this context. Finally, we propose a control law where the results rely only on the structure of B, thus making the implementation robust to modeling errors. To solve the problem under consideration we propose a controller where each agent maintains a local proportional-integral-controller, and coordination is performed through a global rank-one anti-windup correction. Anti-windup techniques have a long-standing tradition of effective use in combination with integral controllers to improve performance [START_REF] Galeani | A tutorial on modern anti-windup design[END_REF]. However, recent results show a strong connection between anti-windup schemes and optimization [START_REF] Hauswirth | On the differentiability of projected trajectories and the robust convergence of non-convex anti-windup gradient flows[END_REF][START_REF] Hauswirth | On the robust implementation of projected dynamical systems with anti-windup controllers[END_REF], opening the possibility of considering anti-windup loops for optimal equilibrium coordination, in line with what we propose here.

In this article we provide several contributions: We propose the aforementioned controller for driving the system to an optimal equilibrium. We show that under certain conditions on the disturbance w, such an equilibrium exists, is unique, and is in fact uniquely optimal. Analytical proofs of convergence are left outside the scope of this work as we have not yet been able to demonstrate them. However, we provide sufficient conditions for stability in the linear domain sat (u) = u. This leads us to formulate a stability conjecture, subject of future work. A numerical experiment is included to show the effectiveness of the proposed method.

The paper is organized as follows. The system and problem under consideration are formally introduced in Section II, along with the proposed control scheme. The existence of an equilibrium for this system is considered in Section III, and the optimality of the system equilibrium is treated in Section IV. Section V introduces a conjecture on the convergence properties of the proposed closed loop, based on a proof of linear-domain stability under suitable conditions on the PI gains. A numerical example is shown in Section VI. Finally conclusions and future work are covered in Section VII.

Notation: If A is a matrix then denote A i to be row i of A and A i,j be the element of A at row i and column j. Let 1 be a column vector of all ones with dimensions taken from context, and thus 11 T is a matrix of all 1's. Denote sat (•) to be the saturation function sat (u) = max (min (u, 1) , -1) and denote the dead-zone function dz (u) = u -sat (u). With a slight abuse of notation, the dead-zone and saturation functions applied to vectors operate element-wise. Let the superscript x 0 denote the state x in an equilibrium point, and the superscript x * to be the value of x which solves an optimization problem. Let the infinite norm ∥•∥ ∞ of a vector v be defined as the maximum magnitude element max i |v i |.

2 System Description and Problem Formulation

System Description

Consider system (1) where x i ∈ R is the state of each agent i = 1, . . . , n and u i ∈ R is the controller output of each agent. B ∈ R n×n is an M-matrix [START_REF] Horn | Topics in Matrix Analysis[END_REF][START_REF] Rantzer | A tutorial on positive systems and large scale control[END_REF]. Such matrices have non-positive off-diagonal entries, thus capturing the fact that each agent negatively impacts the others. Thus, if agent i increases its control input it receives more resources and the other agents receive less resources. Denote M = B -1 . M-matrices have non-negative inverses in general and we will assume that M is strictly positive, thus M i 1 > 0 for all i. Input w denotes a constant, unknown disturbance affecting the system. In practice the disturbance does not need to be constant, but sufficiently slowly varying. Let us also introduce the index k as a maximizing argument of the following expression

k ∈ K = arg max i dz (M i w) M i 1 , (2) 
which is, in general, nonunique and characterizes the agent that is most affected by the disturbance w.

Problem Formulation

We address here the unfair allocation of resources when the agents try to reject a constant disturbance that is too large to drive the system to the origin in view of input saturation. We consider a notion of fairness as described in [START_REF] Mazumdar | Fairness in network optimal flow control: Optimality of product forms[END_REF] where "no individual can improve its performance without affecting at least one user adversely" with regards to the deviations x i , which we formally describe below.

Definition 1. An equilibrium pair (x 0 , u 0 ) is fair if there is no other equilibrium pair (x † , u † ) where ∥x † ∥ ∞ < ∥x 0 ∥ ∞ , or ∥x † ∥ ∞ = ∥x 0 ∥ ∞ and |x † i | < |x 0 i | for some i.
We therefore consider the following problem formulation.

Problem 1. Design a feedback controller driving system (1) from any suitable initial condition to an equilibrium pair (x 0 , u 0 ), such that x * = x 0 and v * = sat u 0 solves the optimization problem

minimize x, v ∥x∥ ∞ (3a) subject to -x + Bv + w = 0, (3b) 
-1 ≤ v ≤ 1 (3c)
uniquely.

As ∥x 0 ∥ ∞ is minimized uniquely, this equilibrium must be fair by Definition 1.

Proposed Feedback Controller

We propose an individual PI controller for each agent. Each controller has an integral state z i , and strictly positive gains p i (proportional gain) and r i (integral gain). These gains can be tuned locally by the agents. We then introduce a scalar communication signal exchanged among the agents, resulting in a rankone anti-windup correction term such that each controller adds the sum of all agents' dead-zones to their integrator input. The full closed-loop system can be written as

ẋ = -x + Bsat (u) + w (4a) ż = x + β11 T dz (u) (4b) u = -P x -Rz, (4c) 
where P and R are diagonal, positive matrices gathering the controller gains p i , r i , 11 T dz (u) is the rank-one anti-windup signal and β is a positive, scalar antiwindup gain. One advantage of the proposed structure is that, under normal circumstances, each PI controller is completely disconnected from the other ones and acts based on local information only. If saturation occurs, the central signal activated and a fairness-oriented coupling emerges from the anti-windup term.

Another advantage of the architecture ( 4) is that when coupling occurs, the coupling signal is merely the sum of the dead-zones for each agent which can be computed efficiently. The summation hides the individual signals, so that when this central signal is redistributed to the agents, each agent does not know the dead-zone values for any of the other individual agents. As such, this global signal lends itself well to scalable and privacy-compliant implementations.

Closed-Loop Equilibria

In this section we characterize the equilibria of the proposed closed-loop system (4). From (4), any equilibrium (x 0 , z 0 ) solves the equations

0 = -x 0 + Bsat u 0 + w (5a) 0 = x 0 + β11 T dz u 0 (5b) u 0 = -P x 0 -Rz 0 . ( 5c 
)
It is not trivial to show whether a solution to (5) exists. This section studies conditions for the existence and uniqueness of such solutions. Note that it is sufficient to study pairs (x 0 , u 0 ) satisfying (5a) and (5b), because the positive definiteness of R implies its invertibility. Hence for any such state-control pair (x 0 , u 0 ) satisfying (5a) and (5b), z 0 can be uniquely determined from (5c).

Existence of an Equilibrium Point

Recall that M = B -1 . We provide below a necessary and sufficient condition for (4) to admit an equilibrium.

Lemma 1. The closed-loop system (5) admits an equilibrium point (x 0 , z 0 ), if and only if

max i M i w -1 M i 1 ≤ min j M j w + 1 M j 1 . (6) 
Proof. Let us begin with showing that ( 6) is necessary for the existence of an equilibrium point. (5a) and (5b) can be combined to

M w + sat u 0 = -βM 11 T dz u 0 . (7) 
Thus

M i w + sat u 0 i M i 1 = -β1 T dz u 0 , ∀i = 1, . . . , n. (8) 
If [START_REF] Blanchini | Fair and sparse solutions in network-decentralized flow control[END_REF] does not hold, then there exist i and j such that

M i w -1 M i 1 > M j w + 1 M j 1 . (9) 
However, [START_REF] Frederiksen | District heating and cooling. Studentlitteratur[END_REF] implies that

M i w + sat u 0 i M i 1 = M j w + sat u 0 j M j 1 . ( 10 
)
As sat u 0 i ≥ -1 and sat u 0 j ≤ 1, ( 9) and (10) cannot simultaneously hold, which establishes a contradiction thus proving that there is no equilibrium. This proves that ( 6) is necessary for the existence of an equilibrium. For the sufficiency, first recall the definition of k, given by [START_REF] Low | Internet congestion control[END_REF]. Then consider the candidate equilibrium x 0 , u 0 given by

x 0 = 1 dz (M k w) M k 1 (11a) u 0 k = -sat (M k w) - dz (M k w) βM k 1 ( 11b 
)
u 0 i = -M i w + M i 1 M k 1 dz (M k w) , ∀i ̸ = k. ( 11c 
)
We show below that when (6) holds, the candidate equilibrium ( 11) solves [START_REF] Blanchini | Network-decentralised optimisation and control: An explicit saturated solution[END_REF]. Consider 3 scenarios. (i): dz (M k w) = 0, (ii): dz (M k w) > 0 and (iii): dz (M k w) < 0. In scenario (i), x 0 = 0, and u 0 = -M w. As dz (M k w) = 0 in this scenario, dz (M i w) = 0 for all i. Otherwise (2) would not be maximized by k. This implies that sat u 0 = u 0 = -M w and dz u 0 = 0. It is thus easy to verify that (5) holds. In scenario (ii), note that the left side of ( 6) is maximized by index k and can be reformulated as

dz (M k w) M k 1 ≤ M i w + 1 M i 1 ∀i = 1, . . . , n. (12) 
Returning to the candidate equilibrium and (11c) for i ̸ = k,

u 0 i = -M i w + M i 1 M k 1 dz (M k w) ≤ 1 ( 13 
)
where the inequality is derived from [START_REF] Galeani | A tutorial on modern anti-windup design[END_REF]. Thus u 0 i ≤ 1. In addition,

u 0 i = -M i w + M i 1 M k 1 dz (M k w) = -sat (M i w) -dz (M i w) + M i 1 M k 1 dz (M k w) = -sat (M i w) + M i 1 dz (M k w) M k 1 - dz (M i w) M i 1 ≥ -1, (14) 
where the last inequality holds because k maximizes (2). This means that

-1 ≤ u 0 i ≤ 1 for all i ̸ = k. Thus sat u 0 i = u 0 i = -M i w + M i 1 M k 1 dz (M k w) , ∀i ̸ = k, (15) 
and

dz (u i ) = 0, ∀i ̸ = k. ( 16 
)
For index k, (11b) provides

sat u 0 k = -sat (M k w) = -M k w + dz (M k w) (17) 
and

dz u 0 k = - dz (M k w) βM k 1 . (18) 
Combining ( 15), ( 16), ( 17) and ( 18) yields

sat u 0 = -M w + M 1 dz (M k w) M k 1 (19) 
and

1 T dz u 0 = - dz (M k w) βM k 1 . ( 20 
)
which allows us to easily verify that (x 0 , u 0 ) from ( 11) solves [START_REF] Blanchini | Network-decentralised optimisation and control: An explicit saturated solution[END_REF] in scenario (ii).

An equal argument can be made for scenario (iii), which we omit for brevity. This shows that given any scenario for dz (M k w), the candidate equilibrium ( 11) is valid when (6) holds. Thus ( 6) is both necessary and sufficient for the existence of an equilibrium.

To interpret [START_REF] Blanchini | Fair and sparse solutions in network-decentralized flow control[END_REF], note that it is satisfied when all entries w i are similar to each other. For instance, w = s1 for any scalar s trivially satisfies the condition. This makes it a sensible assumption when the disturbance w affects all agents in a similar way. This is for instance the case in the district heating example, where the outdoor temperature is likely to be quite similar for all the buildings located in a specific area. To simplify our follow-up definitions, we will assume that (6) holds with a strict inequality, as formulated below.

Assumption 1. The disturbance w satisfies (6) strictly, namely

max i M i w -1 M i 1 < min j M j w + 1 M j 1 . (21) 
We assume the strict inequality to enforce uniqueness of the equilibrium, which is studied in the next section.

Uniqueness of the Equilibrium

Lemma 1 shows that under Assumption 1, there is an equilibrium for the closedloop system. We study here conditions for this equilibrium to be unique. To enforce the uniqueness of this equilibrium, we assume the following. Assumption 2. Either dz (M w) = 0, or the maximizing argument k given by (2) is unique.

If k is non-unique, an arbitrarily small perturbation of B or w would make it so. In practical applications, w is expected to vary slowly over time. This makes it unlikely that k would be non-unique for an extended period of time, but may also cause k to shift between agents. The analysis of such scenarios requires to study the transient behavior of the system, which is outside the scope of the paper, but will be the subject of future work.

Lemma 2. If Assumptions 1 and 2 hold, then [START_REF] Lidström | Optimal H-infinity state feedback for systems with symmetric and Hurwitz state matrix[END_REF] is the unique equilibrium of the closed-loop system (4).

Proof. Recall from the proof of Lemma 1 that for any equilibrium inducing input u 0 , identity (7) must hold. Now denote

t = β1 T dz u 0 , (22) 
which allows [START_REF] Agner | Combating district heating bottlenecks using load control[END_REF] to be rewritten as

sat u 0 i = -M i w -M i 1t, ∀i = 1, . . . , n. (23) 
Note that if t > 0, there must exist an i ∈ {1, . . . , n} such that sat u 0 i = 1. Similarly, if t < 0, there exists an i ∈ {1, . . . , n} such that sat u 0 i = -1. Also note that (21) implies that there cannot exist i and j such that M i w ≥ 1 and M j w ≤ -1. This in turn implies that either dz u 0 ≥ 0 or dz u 0 ≤ 0, where the inequality should be understood componentwise. Now, recalling that k in ( 2) is unique by assumption, consider 3 scenarios; (i): dz (M k w) = 0, (ii): dz (M k w) > 0 and (iii): dz (M k w) < 0. In scenario (i), we see that dz (M i w) = 0 for all i = 1, . . . , n, as otherwise |dz (M i w) | > 0 for some i, implying that (2) would be maximized by this i. Thus |M i w| ≤ 1 for all i. Through (23), we prove next that this implies t = 0. Indeed, assume by an absurd argument that t > 0. Then (23) yields sat u 0 i = -M i w -M i 1t < -M i w ≤ 1 for all i = 1, . . . , n. But if sat u 0 i < 1 for all i, then dz u 0 i ≤ 0 for all i and thus t cannot be positive. A parallel contradiction can be built for t < 0. Thus we conclude that t = 0. In turn, t = 0 implies that dz u 0 = 0, because (22) shows that t is the sum of the entries of dz u 0 = 0, multiplied by the positive scalar β. As the entries of dz u 0 are either all positive or all negative, t can only be 0 if all of the entries of dz u 0 are 0. This uniquely fixes u 0 = -M w, which is the same as the candidate solution [START_REF] Lidström | Optimal H-infinity state feedback for systems with symmetric and Hurwitz state matrix[END_REF]. This in turn uniquely fixes x 0 through (5b), and uniquely fixes z 0 through (5c).

In scenario (ii), (23

) implies t ≤ -dz(M k w) M k 1 , because otherwise sat u 0 k < -1. If t = dz(M k w) M k 1 then sat u 0 k = -1. For i ̸ = k, sat u 0 i = -M i w + M i 1 M k 1 dz (M k w) = -sat (M i w) -dz (M i w) + M i 1 M k 1 dz (M k w) = -sat (M i w) + M i 1 dz (M k w) M k 1 - dz (M i w) M i 1 > -1. (24) 
The last inequality holds because k uniquely maximizes (2) and M i 1 > 0 due to non-negativity and invertibility of M . Thus we conclude that t = -dz(M k w) M k 1 , because otherwise sat u 0 i > -1 for all i, contradicting the fact that t is negative. For this scenario (ii), ( 21) can be written as

dz (M k w) M k 1 < M i w + 1 M i 1 , ∀i ̸ = k, (25) 
Which can be combined with t = -dz(M k w)

M k 1 to show that, for i ̸ = k, sat u 0 i = -M i w + M i 1 M k 1 dz (M k w) < 1. (26) 
Inequality (26) implies |sat u 0 i | < 1 for all i ̸ = k, and thus dz

u 0 i = 0 for all i ̸ = k. This implies t = β1 T dz u 0 = βdz u 0 k (27)
and thus

dz u 0 k = - dz (M k w) βM k 1 . (28) 
Equations ( 26) and (28) uniquely determine u 0 , and, together with (11), x 0 and z 0 are uniquely determined. For scenario (iii), a symmetric argument can be followed, which is omitted for brevity, thus completing the proof.

Optimality

We proved in the previous section that under Assumptions 1 and 2, the proposed closed-loop system has a unique equilibrium, given by [START_REF] Lidström | Optimal H-infinity state feedback for systems with symmetric and Hurwitz state matrix[END_REF]. In this section, we will prove that this equilibrium is also the unique, optimal solution to (3).

Theorem 1. If Assumptions 1 and 2 hold, then x * = x 0 and v * = sat u 0 is the unique solution to (3) where x 0 and u 0 are given by [START_REF] Lidström | Optimal H-infinity state feedback for systems with symmetric and Hurwitz state matrix[END_REF].

Proof. Lemma 2 proves that under Assumptions 1 and 2, (x 0 , u 0 ) is a stateinput equilibrium pair. This means that (x * , v * ) = (x 0 , sat u 0 ) satisfies the constraints (3b) and (3c) and is therefore feasible. What remains is only to show that it is not only feasible but also uniquely optimal. Consider for establishing a contradiction that there exists ξ ̸ = 0, such that x † = x * + ξ, along with v † = v * + M ξ is also feasible and provides a lower or equal cost than (x * , v * ).

An equivalent rewriting of (3) using ξ is

minimize ξ ∥1 dz (M k w) M k 1 + ξ∥ ∞ (29a) subject to ∥M (ξ -w + 1 dz (M k w) M k 1 )∥ ∞ ≤ 1. (29b) 
First note that if dz (M k w) = 0, then ξ = 0 is trivially optimal as any ξ ̸ = 0 would yield a higher cost and thus not be an optimizer. Then consider the case where dz (M k w) > 0. For ξ to provide a lower or equal cost, it must hold that ξ i ≤ 0 for all i. However, analyzing constraint (29b) for index k yields

| -M k w + dz (M k w) + M k ξ| ≤ 1. (30) 
Since we are focusing on the case dz (M k w) > 0, (30) reduces to

| -1 + M k ξ| ≤ 1. (31) 
Since ξ ≤ 0, inequality (31) can only hold for x i = 0 as M k has strictly positive entries. Therefore ξ = 0 is uniquely optimal when dz (M k w) > 0. A parallel reasoning can be performed for the case dz (M k w) < 0. Thus (x * , v * ) is the optimal solution to (3).

Stability Properties

The results of Sections III and IV established that under Assumptions 1 and 2, the unique equilibrium of the closed-loop system (4) solves the optimization problem [START_REF] Kelly | Fairness and stability of end-to-end congestion control*[END_REF]. In this section we formulate the following conjecture regarding its stability properties.

Conjecture 1. Under Assumptions 1 and 2, if p i > r i for all i = 1, . . . , n, then the proposed controller (4) globally solves Problem 1.

Conjecture 1, subject to its proof, would provide strong properties for the proposed control law, granting stability and optimality for a large family of systems subject to a simple control tuning constraint. The proof however is non-trivial and requires results for saturated systems operating deeply in the saturated regime, which is why it is left outside the scope if this work. Our confidence in Conjecture 1 arises from numerous simulations of randomized systems. In addition, the specific choice of p i > r i provides notions of stability for our problem through the following lemma. Lemma 3. Assume that p i > r i for all i and w ∈ L 2 . Then system (4) is asymptotically stable in the region of linearity where sat (u) = u.

Proof. Define y = -Bu. When sat (u) = u and thus dz (u) = 0, the closed loop system (4) can be reformulated in the frequency domain as

sX = -X -Y + W (32a) sU = (P -R)X + P Y -P W. (32b) 
These equations are fully diagonal, and can for each agent i be combined to form This feedback interconnection is represented in Figure 1. When p i > r i , the transfer function ( 33) is positive real, making it a passive component [START_REF] Khalil | Nonlinear systems[END_REF]. In addition, due to B being an M-matrix, we know that there exists a positive, diagonal matrix D such that -DB -B T D ≺ 0. This means that the combined upper block of Figure 1 is strictly passive. The multiplication by the positive, diagonal matrix D -1 does not affect the passivity properties of G 1 (s) . . . G n (s). The feedback interconnection between the strictly passive upper block and the passive lower block means that for any w ∈ L 2 , we have u ∈ L 2 [START_REF] Desoer | Feedback systems. input-output properties[END_REF]. This means that lim t→∞ w(t) = 0, lim t→∞ u(t) = 0 and thus clearly lim t→∞ x(t) = 0 by (4a).

U i = r i + p i s s(s + 1) (Y i -W i ) = G i (s)(Y i -W i ). ( 33 
To prove or refute Conjecture 1 in future work, we believe that these passivity properties may be a useful tool. While it can be shown that the condition P > R is conservative, we have also found examples of sufficiently large integral gains causing instability, thereby suggesting that our conjecture is reasonable.

Numerical Example

To demonstrate the usefulness of the proposed controller, we investigate n = 250 agents interconnected through the matrix B = D(1.2nI -11 T ) where D = diag(d 1 , d 2 , . . . , d n ) and d 1 , . . . , d n are distributed at even intervals between 0.5 and 1.5. w(t) = 1 n sin (t/2π) 2 . We compare three strategies: First the coordinated strategy, consisting in the controller proposed in this paper using the gains p i = 1, r i = 1.5 for all i and β = 1. Secondly the uncoordinated strategy, namely the same PI-controllers as those of the coordinated case, only equipped with a local anti-windup action: żi = x i + βdz (u i ). Finally the linear saturated decentralized (lsd) controller u = -B T x as proposed by [START_REF] Bauso | The linear saturated decentralized strategy for constrained flow control is asymptotically optimal[END_REF]. The systems are simulated using the DifferentialEquations toolbox [START_REF] Rackauckas | Differentialequations.jl-a performant and feature-rich ecosystem for solving differential equations in julia[END_REF] in Julia. Figure 2 shows the envelopes of the time series over the simulation. In the coordinated case (green), all of the states x are nearly completely synchronized. Under both the uncoordinated (blue) and the lsd (red) strategy, there is a large discrepancy between the maximum and minimum states. Furthermore, the lsd strategy is Figure 2: Envelopes of the states x for each strategy. The dashed lines constitute the minimum min i x i (t) and the solid lines the maximum max i x i (t). optimal with regards to a tradeoff between states x and control action u, and therefore no states are driven to the origin with large disturbances w. Figure 3 shows histograms of the worst magnitude deviations in each strategy. We see that both the uncoordinated (blue) and lsd (red) strategies have several agents with larger deviations than any of the agents in the coordinated case. However, both the uncoordinated and lsd strategies also have many agents with lower deviations than that of the coordinated case.

Conclusion

In this paper we have presented a controller for coordinating the control actions of agents that share a central resource. We proved that the only equilibrium of this closed-loop system is optimally fair. This optimality concerns the states x, an important extension of the literature which has mainly focused on properties of the control input u. A conjecture was proposed giving conditions for stability of this optimal equilibrium, motivated by passivity of the closed-loop system in the linear domain.

Subject to the proof of Conjecture 1, the proposed method has many advantages. Each agent could tune the gains of a PI-controller locally while maintaining global guarantees of stability. These guarantees are only dependent on the structure of the system and not the model itself (i.e. the B-matrix does not have to be known, only that it has certain properties). The rank-one communication scheme ensures scalability of the implementation which does not require sparsity of B.

Extensions of the work include exploiting the proven passivity property to prove stability with regards to the optimal equilibrium. Further system structures could be considered, for instance more general A-matrices, output feedback, or non-linear interconnections B(u) which maintain similar properties to the current B-structure. Finally, one can consider analyzing and improving transient performance.
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 11 Figure 1: Block diagram, showing the interconnection used in the proof of Lemma 3.
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 3 Figure 3: Histogram of maximum absolute deviations max t |x i (t)| experienced under each strategy. From deviation 20 to 80, the red and blue bars overlap.
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