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Abstract

The aim of this paper is to investigate the thermodynamics consistency of Gurson’s model
and notably its relation to the class of standard generalized materials. First, we briefly recall
Gurson’s model in its original format and reanalyzed it in the thermodynamic framework of
poroplasticity of saturated media. This allows to properly define the coupling between elasticity
and plasticity and to demonstrate that Gurson’s model fits into the framework of generalized
standard materials model, provided that the internal variables being the plastic strain and the
Lagrangian plastic porosity (and not the Eulerian porosity as in the original Gurson model).
In particular, by construction, the porosity evolution law is proved to be a full part of the
thermodynamic formulation of the model with a generalized normality rule. The implications in
terms of numerical implementation of Gurson’s model are then investigated; a new numerical
scheme based on the time-implicit discretization of the Lagrangian porosity is notably proposed
and discussed with respect to available algorithms.

Keywords: Gurson model; Poroplasticity; ductile porous materials; Generalized standard mate-
rials; Numerical implementation

1 Introduction

Inelastic deformation and failure of ductile materials involve the nucleation, growth and
coalescence of microvoids (see for instance the review paper by Benzerga and Leblond
(2010); Benzerga et al. (2016)). Following the pioneering studies by McClintock (1968)
and Rice and Tracey (1969), respectively for the growth of isolated cylindrical and spher-
ical voids, Gurson (1977) has proposed a micromechanics-based model for ductile porous
materials. Gurson’s model was derived by applying kinematics limit-analysis approach to
a hollow sphere, considered as the porous material unit cell, subjected to homogeneous
strain rate boundary conditions. This procedure results in a macroscopic plastic criterion
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complemented by a macroscopic plastic flow rule. Combined with a porosity evolution law,
this approach allows to build a complete isotropic model for porous metals. This model
has been later extended in several manners among which the heuristic modification pro-
posed by Tvergaard (1981) and Tvergaard and Needleman (1984), known as the GTN
model. For recent reviews of literature, the reader can refer to Besson (2010), Benzerga
and Leblond (2010) or Benzerga et al. (2016).

It must be emphasized that the limit analysis-based micromechanical construction pro-
posed by Gurson does not incorporate coupling between elasticity and plasticity. This
can be done by mean of alternative and more sophisticated variational homogenization
procedures proposed in literature devoted to nonlinear heterogeneous materials (includ-
ing ductile porous one). These procedures are all based on the approach proposed by
Ponte Castañeda (1991) for non linear composites whose constituents behaviors are de-
scribed by means of a single potential (nonlinear elasticity, or purely viscous materials).
For elastoplastic materials with hardenable constituents, Cheng et al. (2017a) have pro-
posed a decoupled approach for ductile porous materials. This has led them to obtain
a macroscopic model described by an overall free energy and a macroscopic dissipation
potential. In order to fully handle the coupling between reversible and dissipative phe-
nomena such as elasto(visco)-plasticity, one may refer to incremental variational approach
as introduced by Lahellec and Suquet (2007). In this framework, the concerned non linear
behaviors of constituents are described by means of two potentials, namely a free energy
and a dissipation potential. The incremental variational approach has been followed and
implemented with some variants by several authors among which Brassart et al. (2012),
Agoras et al. (2016) and Lucchetta et al. (2019) which, in principle, allow to deal with
elastoplastic porous materials without porosity evolution (this is still a matter of research).
Unfortunately, although reversible and dissipative processes are coupled at small scale, the
incremental variational approach does not allow to separate them at macroscopic scale.
Moreover, these studies are still in a early state of development which does not allow to
use them for structural computations.

Coming back to Gurson’s model, owing to existing different interpretations of the porosity
as internal damage variable or not and to the fact that the porosity evolution equation is
obtained from the mass conservation law, the thermodynamic consistency of this model
needs to be clarified. Specifically, its relation to the class of Generalized Standard Mate-
rials (GSM, see for instance Halphen and Nguyen (1975) or Germain et al. (1983) and
Nguyen (1977)) is important since it ensures the existence and uniqueness of the solution
of the projection problem, provided that the evolution equations of the internal variables
are discretized in time with an implicit scheme.

An interesting attempt to analyze the relation between Gurson’s model and the class
of generalized standard materials has been proposed by Enakoutsa et al. (2007). These
authors concluded that Gurson’s model (including hardening) fits into the framework of
generalized standard materials, provided that the porosity is fixed. Therefore, their ther-
modynamics analysis only considers Gurson’s criterion and its associated flow rule, while
the evolution equation of the porosity is disregarded. The consequence in terms of nu-
merical implementation of the model are that the equations of the projection problem
can be obtained through explicit time-discretization with respect to the porosity: with
such scheme, the porosity is considered as fixed during the projection problem. Then, it
is updated at the very end of the global elasto-plastic iterations using an explicit scheme.
With this approach, the porosity remains fixed during the entire procedure of resolution
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of the projection problem at each Gauss point so that the properties of the projection
algorithm are thus exactly the same as if the porosity were fixed in time, no matter the
final update.

It must be noted that in terms of numerical implementation, Enakoutsa et al. (2007)’s
explicit scheme for the porosity differs from standard implementations of Gurson’s model,
as done by Aravas (1987) and Besson et al. (2001), who considered an implicit scheme for
the porosity. Although their algorithms are robust and used in most of the commercial
codes, the use of a time-implicit scheme for the porosity is not supported from a theoretical
point of view by a thermodynamics analysis since it has not been demonstrated yet that
Gurson’s model with the porosity evolution equation belongs to the class of generalized
standard materials. Hence, it is not clear if there is existence and uniqueness of the solution
of the projection problem using such time discretization of the equations.

The aim of this paper is to present a thermodynamics framework of Gurson’s model
for ductile porous media with evolving porosity. To this end, we will take advantage
of elastoplasticity theory for saturated porous media (see for instance Coussy (1995)) to
incorporate in Gurson’s model a pore fluid pressure. In such extension, it is well known that
the state variable representing voids volume fraction and associated to the pore pressure is
the Lagrangian porosity, instead of the Eulerian one (see Coussy (1995); Bignonnet et al.
(2016)). The formulation of the Gurson model in the context of generalized standard
materials will be done in the linearized theory. Nonetheless, following the analysis of
Enakoutsa et al. (2007), it will be shown that this restriction has no consequence in
terms of numerical implementation of the model in the presence of large displacements
and strains (which are generally important in ductile fracture problems), provided that
the extra terms arising from the objective time-derivative of the stress tensor in the
hypoelasticity law are discretized in time with an explicit scheme.

The paper is organized as follows. In Section 2, we analyze the relation between the
original Gurson’s model with Eulerian porosity and the class of GSM. The thermodynamic
framework for elastoplasticity of saturated media (see for instance Coussy (1995, 2004))
is presented in Section 3. In Section 4, Gurson’s model without hardening is extended
to the context of saturated elastoplastic materials based on the well justified concept
of effective stress. It will be shown that in that case the model belongs to the class of
generalized standard materials by considering the Lagrangian porosity (and its evolution
equation). The implications in terms of numerical implementation of Gurson’s model are
then studied in Section 5. Finally, the extension of this analysis to hardening is presented
in Section 6.

2 Original Gurson’s model and the class of generalized standard materials

2.1 A brief recall on generalized standard materials

In the following, we consider only infinitesimal transformations and isothermal conditions.
Generalized standard materials are a class of materials whose constitutive law is described
through two potentials, see for instance Halphen and Nguyen (1975), Germain et al.
(1983) (see also Maitournam (2016)). The first one is the free energy ψ(ε,α), which
depends on the strain tensor ε and a set of internal variables collectively denoted by
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α and representing inelastic phenomena. The free energy function must be convex with
respect to ε and α taken separately 1 . In a classical way, the state laws provide the
reversible parts of the forces

σrev =
∂ψ

∂ε
(ε,α), F rev

α =
∂ψ

∂α
(ε,α). (1)

Under isothermal conditions, the classical Clausius-Duhem inequality reduces to the pos-
itivity of the intrinsic dissipation D, that is

D = σ : ε̇− ψ̇ ≥ 0, (2)

which reads

D =

(
σ − ∂ψ

∂ε

)
: ε̇− ∂ψ

∂α
: α̇ ≥ 0. (3)

Considering only non dissipative deformation ε, the corresponding irreversible force is

then null σirr = σ − ∂ψ

∂ε
= σ − σrev = 0. This readily provides:

σ = σrev =
∂ψ

∂ε
(ε,α). (4)

The intrinsic dissipation reads then

D = Fα : α̇ (5)

with the thermodynamic (irreversible) force Fα associated to α, classically given by

Fα = −∂ψ

∂α
(ε,α). (6)

The second potential is the dissipation one φ(α̇), which must be convex, non-negative
and zero for α̇ = 0. It provides the evolution laws of the internal variables through the
normality rule

Fα ∈ ∂φ(α̇), (7)

where ∂φ is the sub-differential of φ. Equation (7) is equivalent to

α̇ ∈ ∂φ∗(Fα), (8)

with φ∗ the Legendre-Fenchel transform of φ and ∂φ∗ the sub-differential of φ∗.

In the case of a time-independent behavior as considered here, the function φ∗ is the
indicator function of a close convex set C which represents the reversibility domain, in the
space of the thermodynamics forces Fα. This set C is defined as Φ(Fα) ≤ 0. For a regular
point, the evolution law for all internal variables α can be then re-written as

α̇ = η
∂Φ

∂Fα

(Fα), η

= 0 if Φ(Fα) < 0

⩾ 0 if Φ(Fα) = 0,
(9)

η representing the plastic multiplier.

1 Convexity with respect to the global state variable (ε,α) is not required.
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These features of generalized standard materials imply several important properties:

(1) The evolution equation of α automatically warrants that the dissipation D = Fα : α̇
is non-negative, because

Fα ∈ ∂φ(α̇) ⇒ Fα : α̇ ≥ φ(α̇) ≥ 0. (10)

(2) In terms of numerical implementation, a property of the generalized standard ma-
terials framework is that it ensures existence and uniqueness of the solution of the
projection problem (e.g. for plasticity models) (see for instance Simo and Hughes
(1998)), provided that the evolution equation of the internal parameters is discretized
with an implicit scheme, because it reduces to the minimization of a convex function.

(3) The tangent matrix for the global elastic-plastic iterations is symmetric.

2.2 The case of the original Gurson’s model

As already mentioned, we will restrict the presentation of the Gurson’s model the to
linearized theory. Like Gurson, we now consider a spherical cell, having at the current
time t a volume |Ω(t)|, with external radius b and containing a confocal spherical cavity
|ω(t)| with internal radius a (see Figure 1). The current volume fraction of voids is the
Eulerian porosity

f =
|ω(t)|
|Ω(t)|

=
a3

b3
. (11)

spherical void

homogeneous strain rate 
boundary conditions

a

b

plastic matrix

Fig. 1. Elementary cell considered by Gurson (1977).

In the classical form of Gurson’s model without hardening, the free energy ψ(ε, εp) may
read

ψ(ε, εp) =
1

2
(ε− εp) : C : (ε− εp), (12)

where C is the elastic stiffness tensor of the material and the usual partition ε = εe + εp

is adopted. With such modelling, the thermodynamics irreversible force Fεp associated to
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the plastic strain εp is, as classically, given by

Fεp = − ∂ψ

∂εp
(ε, εp) = C : (ε− εp) = σ. (13)

Gurson’s yield function, in its original form, has been obtained from a limit-analysis
approach of an hollow sphere subjected to homogeneous strain rate boundary conditions
and having a von Mises matrix. The corresponding yield criterion takes the form (Gurson,
1977)

Φ(Fεp ; f) = Φ(σ; f) =
σ2
eq

σ2
0

+ 2fcosh
(
3

2

σm
σ0

)
− 1− f 2 ≤ 0. (14)

It must be emphasized that in equation (14), the Eulerian porosity (current volume frac-
tion of void) f acts as a parameter, while σ0 is the yield limit of the matrix, σeq and σm
are respectively the von Mises equivalent stress and the mean stress, given by

σm =
1

3
tr(σ), σeq =

√
3

2
σd : σd, with σd = σ − σmI, (15)

σd is the deviatoric part of σ and I is the second-order identity tensor.

The yield criterion (14) is completed by a plastic flow rule obeying the normality properties
(which is preserved during the upscaling procedure as a consequence of limit-analysis
theorems). The plastic strain rate ε̇p (equal to the Eulerian strain rate dp in the linearized
theory) is thus given by

ε̇p = η
∂Φ

∂σ
(σ), η

= 0 if Φ(σ) < 0

⩾ 0 if Φ(σ) = 0.
(16)

The last ingredient of Gurson’s model is the porosity evolution equation. This balance
equation is deduced from the assumed incompressibility of the matrix (surrounding the
cavity) and the assumption that reversible strains are negligible:

ḟ = (1− f)tr(ε̇p). (17)

Finally, the intrinsic dissipation (5) is given by

D = σ : ε̇p. (18)

Despite the porosity changes (see equation (17)), its evolution does not contribute to the
intrinsic dissipation D. Moreover, f is not related to some normality property as there is
no thermodynamic force associated to f . This situation needs to be clarified, both on the
status of the porosity and its evolution equation.

In addition, Gurson’s model generally includes an heuristic modelling of hardening (pro-
posed by Gurson himself). In this (classical) approach, the constant yield limit σ0 in the
criterion (14) is replaced by some ”average yield stress” σ̄ given by:

σ̄ ≡ σ(ε̄) (19)
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where σ(ε) is a function providing the local yield limit as a function of the local accumu-
lated plastic strain ε, and ε̄ represents some “average equivalent strain” in the heteroge-
neous, porous material. The evolution of ε̄ is governed by the following equation Gurson
(1977):

(1− f)σ̄ ˙̄ε = σ : ε̇p (20)

which expresses the heuristic assumption that the plastic dissipation in the heterogeneous
porous material is equal to that in a fictitious ”equivalent” homogeneous material with
equivalent strain ε̄ and yield stress σ̄.

Interestingly, Enakoutsa et al. (2007) have shown that, provided that the porosity is fixed,
Gurson’s model belongs to the class of standard generalized materials, even in presence
of hardening (modelled by equation (20)). Indeed, the free energy as well as Gurson’s
yield function are convex, and if the porosity is fixed, (i.e. its evolution equation is no
longer included in the model), the evolution equation of the plastic strain rate obeys the
normality rule.

3 Thermodynamic framework for plasticity of saturated porous media

In this section, we summarize and adapt some key elements of poroplasticity theory of
saturated media 2 useful for the reformatting of the Gurson model in Section 4. Our
reference to poroplasticity of saturated media has been primarily motivated by the need
to properly identify the relevant variable describing the porosity (the Lagrangian one)
and its conjugate force (the pressure) and the fact that in this context the dry medium
(p = 0) appears as a particular case. Let us recall that our main objective is not to
formulate a new model of ductile porous material but to propose a suitable framework
for the thermodynamic interpretation of Gurson’s model.

Let us first introduce the Lagrangian porosity and its relationship with the already defined
Eulerian one (11). By denoting |Ω0| the initial volume of the porous material, and recalling
that |ω(t)| is the volume of pores at the current time t, the Lagrangian porosity ϕ, whose
initial value is ϕ0 = f0 (initial Eulerian porosity), is defined by:

ϕ =
|ω(t)|
|Ω0|

(21)

From the definitions of the two type of porosities, it is readily seen that the variation of
pores volume, ∆ω = |ω(t)| − |ω0| (the initial pore volume being denoted |ω0|) is appro-

priately captured by the variation of Lagrangian porosity ϕ− ϕ0 =
∆ω

|Ω0|
, and not by that

of the Eulerian one f − f0.

Although Lagrangian and Eulerian porosities are close in infinitesimal transformations
(their ratio is the Jacobian of the transformation J = 1 + tr(ε), close to 1), one should
be careful that the variations of ϕ and f cannot be confused. Indeed, given ϕ0 = f0, one
obtains by linearization (see for instance Dormieux and Bourgeois (2002))

ϕ− ϕ0 = f − f0 + ftr(ε). (22)

2 A complete presentation of thermodynamic framework for poroplasticty of saturated media can
be found in Coussy (1995) (see also Coussy (2004)).

7



In the context of poroplasticity of saturated media, in addition to the state variables
(strain tensor ε and Lagrangian porosity ϕ), two internal variables are introduced: the
plastic strain tensor εp and the Lagrangian plastic porosity ϕp.

Now, let us come to the elastoplastic behavior, which is then described by means of four
state variables (ε, ϕ, εp, ϕp) with the following additive decomposition:

ε = εe + εp, ∆ϕ = ϕ− ϕ0 = ϕe + ϕp (23)

Note that εe and ϕe refer respectively to the elastic strains and the reversible part of the
Lagrangian porosity.

For sake of clarity, hardening effects due to plastic porosity or to solid matrix hardening
are disregarded at this stage, so that the free energy ψ of the saturated elasto-poroplastic
material takes the form (Coussy (2004)):

ψ(ε, ϕ, εp, ϕp) = ψ(ε− εp, ϕ− ϕ0 − ϕp). (24)

Following the general framework of Section 2, the reversible parts of the forces are

σrev =
∂ψ

∂ε
; F rev

εp =
∂ψ

∂εp
; F rev

ϕ =
∂ψ

∂ϕ
; F rev

ϕp =
∂ψ

∂ϕp
. (25)

By denoting p the pore pressure, the intrinsic dissipation of the saturated poroplastic
material reads (see for instance Coussy (1995) or Coussy (2004))

D = σ : ε̇+ pϕ̇− ψ̇ =

(
σ − ∂ψ

∂ε

)
: ε̇+

(
p− ∂ψ

∂ϕ

)
ϕ̇− ∂ψ

∂εp
: ε̇p − ∂ψ

∂ϕp
ϕ̇p. (26)

The state variables ε and ϕ being non dissipative, one has

σ = σrev =
∂ψ

∂ε
; p = F rev

ϕ =
∂ψ

∂ϕ
. (27)

The intrinsic dissipation (26) of the saturated porous material reads then

D = Fεp : ε̇
p + Fϕpϕ̇p = σ : ε̇p + pϕ̇p (28)

in which the irreversible forces are

Fεp = − ∂ψ

∂εp
=
∂ψ

∂ε
= σ (29)

and

Fϕp = − ∂ψ

∂ϕp
=
∂ψ

∂ϕ
= p, (30)

It is worth noting that when the pore pressure vanishes (p = 0), the intrinsic dissipation
(28) trivially reduces to the plastic power σ : ε̇p, as in (18), although the dissipative
variable ϕ̇p is still present. Clearly enough, the reason for which the porosity does not
contribute to the dissipation (18), in consistency with the original Gurson model, is due
to the cancellation of the pore pressure in the dry elasto-poroplastic material case.
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For completeness, the classical expression of the free energy of a saturated elasto-poroplastic
material in the absence of hardening, takes the form

ψ(ε−εp, ϕ−ϕ0−ϕp) =
1

2
(ε−εp) : C : (ε−εp)+

1

2
N [(ϕ− ϕ0 − ϕp)− b : (ε− εp)]2 , (31)

where C is the elastic stiffness tensor of the porous skeleton, b is the Biot (second-order)
tensor and N is the Biot modulus. This free energy corresponds to that of a poroelastic
material described by means of Biot’s theory.

The stress σ and the pore pressure p are thus given by
σ =

∂ψ

∂ε
(ε− εp, ϕ− ϕ0 − ϕp) = C : (ε− εp)−Nb (ϕ− ϕ0 − ϕp − b : (ε− εp))

p =
∂ψ

∂ϕ
(ε− εp, ϕ− ϕ0 − ϕp) = N(ϕ− ϕ0 − ϕp)−Nb : (ε− εp).

(32)

For evolution laws, as classically in the context of generalized standard materials, let us
introduce the dissipation potential φ, function of the rates of the internal variables (ε̇p, ϕ̇p)
and from which

(σ, p) ∈ ∂φ(ε̇p, ϕ̇p;ϕp) (33)

where ∂φ is the sub-differentials of φ.

It should be noted that in (33) the variable ϕp (Lagrangian plastic porosity) which appears
after the symbol ”; ” plays the role of a parameter, the arguments in the dissipation
potential being ε̇p and ϕ̇p. This complies with the extended definition of the Generalized
standard materials as described by Germain et al. (1983) and Nguyen (1994, 2000)) which
allows the presence of the state variables as parameters in the dissipation potential.

Alternatively, by denoting φ∗ the Legendre-Fenchel transform of φ, which proves to be
the indicator function of the convex set C defined by a criterion Φ(σ, p;ϕp) ≤ 0 for the
elasto-poroplastic material. ϕp appears again as a parameter in φ∗ or equivalently in Φ.
The flow rule reads then (

ε̇p, ϕ̇p
)
∈ ∂φ∗(σ, p;ϕp) (34)

in which the notation ∂φ∗(σ, p) denotes the subdifferential of φ∗ at the point (σ, p). This
corresponds to the normality rule giving ε̇p and ϕ̇p.

4 Thermodynamic based formulation of the Gurson model

As mentioned before, the fluid pressure p appears as the dual quantity associated to the
(Lagrangian) porosity ϕp. Consequently the appropriate thermodynamics interpretation of
the Gurson model first requires its extension to the context of saturated plastic materials.

4.1 Link between the Lagrangian and Eulerian porosities evolutions

As already indicated in Section 2.2, Gurson (1977)’s model involves the Eulerian porosity
(denoted by f). It is then necessary to discuss the link between evolutions of the plastic
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Lagrangian porosity ϕp and the Eulerian porosity. To this end, consider a RVE of the
porous medium having at time t a volume |Ω(t)|, which comprises a pore phase with
volume |ω(t)|. Assuming that all the modification of pores volume |ω(t)| in the RVE is
irreversible, the rate of Lagrangian plastic porosity at time t is defined by

ϕ̇p = lim
dt→0

1

dt

(
|ω(t+ dt)| − |ω(t)|

|Ω(t)|

)
, (35)

which must not be confused with the rate of Eulerian porosity f , expressed as:

ḟ = lim
dt→0

1

dt

(
|ω(t+ dt)|
|Ω(t+ dt)|

− |ω(t)|
|Ω(t)|

)
. (36)

It must be emphasized that these two definitions referred to the same configuration at
time t, while a computation by considering the definition (21) would referred to the initial
configuration for the Lagrangian porosity. For this reason, it is the rate of Lagrangian
plastic porosity at time t (equation (35)) which will be consider in the following together
with ḟ . Moreover, assuming that all the modifications for the volume of the RVE are
irreversible, that is all the reversible parts of the volume change are neglected, the rates
of Lagrangian and Eulerian porosities, in link with (22), are readily related by (see for
instance also Bignonnet et al. (2016)) 3

ϕ̇p = ḟ + ftr(ε̇p) (37)

Furthermore, in the case of a plastically incompressible solid phase, the volume change is
only due to the plastic Lagrangian porosity change, that is

ϕ̇p = tr(ε̇p) (38)

It follows from (37) that
ḟ = (1− f)tr(ε̇p) (39)

which is interestingly the porosity evolution law (17) of the Gurson model obtained from
mass balance equation.

Consequently, in this case, the intrinsic dissipation D, defined by (28), takes the form

D = (σ + pI) : ε̇p. (40)

Remark 1: This result indicates that when the matrix is plastically incompressible,
σ̃ = σ+pI is the effective thermodynamic force associated to the plastic strain. This stress
tensor, well known as the Terzaghi effective stress in the context of poroelasticity with
an incompressible matrix, proves to be also valid in the plastic case of von Mises matrix
(see Coussy (1995) and De Buhan and Dormieux (1999) for a proof in the framework of
limit-analysis theory).

Remark 2: Equation (37) can be integrated in time as

ϕp = ln

(
1− f0
1− f

)
, (41)

3 In relations (37) to (39), which are rigorously valid for the eulerian plastic strain rate εp, the
later has been replaced by tr(ε̇p) using the small strain assumption.
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in which the initial value of ϕp
0 is indeed equal to zero. Given that f0 = ϕ0, one has

f(ϕp) = 1− (1− ϕ0)exp(−ϕp). (42)

Note that in the initial state, ϕp = 0 and one has f(0) = ϕ0 = f0.

4.2 Constitutive relations of the model

As mentionned previously, the thermodynamics analysis of Gurson’s model will be done
within the framework of linearized theory. The effect of large displacements and strains
will only be discussed during the numerical implementation of the model in Section 5.

It must be first emphasized that Gurson’s model is generally devoted to material with
low porosities accounted for in ductile fracture phenomena 4 . For such level of porosity,
the effect of voids on elastic stiffness C of the porous material is generally negligible. As
a consequence, their effects on the Biot tensor can be also neglected. For instance, in the
isotropic case, one has b = bI with b = 1 − khom

ks
, khom being the elastic compressibility

of the porous material which tends to the compressibility of the solid matrix, ks, for low
porosities. Indeed, for low porosities, a direct computation can be done on the hollow
sphere in order to estimate the Biot coefficient (see for instance Dormieux et al. (2006),

chapter 4): b(ϕ) = ϕ

(
1 +

3

4

ks

µs

)
in which µs represents the shear modulus of the solid

matrix. This clearly confirms that b tends to 0 when the porosity is low. Additionally, the

Biot modulus N is given by N(ϕ) =
4

3

µs

ϕ
(see for instance Dormieux et al. (2006)).

In this context, the two terms function of Nb : (ε−εp) in the right hand side of the state
laws (32) can be considered as negligible compared to the others

σ =
∂ψ

∂ε
(ε− εp, ϕ− ϕ0 − ϕp) = C : (ε− εp)−Nb (ϕ− ϕ0 − ϕp)

p =
∂ψ

∂ϕ
(ε− εp, ϕ− ϕ0 − ϕp) = N(ϕ− ϕ0 − ϕp).

(43)

Furthermore, when the pressure is low, that is the case for Gurson’s model, the term bp
in the definition of the stress tensor is negligible so that the stress σ and pore pressure p
are finally given by

σ =
∂ψ

∂ε
(ε− εp, ϕ− ϕ0 − ϕp) = C : (ε− εp)

p =
∂ψ

∂ϕ
(ε− εp, ϕ− ϕ0 − ϕp) = N(ϕ− ϕ0 − ϕp).

(44)

4 Before coalescence, porosities are generally small (Benzerga and Leblond, 2010). Since the
analysis made in this work only concerns Gurson’s model, which is used as a void growth model,
it is reasonable to consider that the porosity reached will always remain moderate (less than
0.01–0.05).

11



The free energy then would be reduced to

ψ(ε− εp, ϕ− ϕ0 − ϕp) =
1

2
(ε− εp) : C : (ε− εp) +

1

2
N(ϕ− ϕ0 − ϕp)2. (45)

The rate form of the constitutive relations of the elasto-poroplastic materials, issued from
(44), then reads 

ε̇ = S : σ̇ + ε̇p

ϕ̇ =
ṗ

N
+ ϕ̇p,

(46)

for which ε̇p and ϕ̇p are given by the evolution equations presented below.
Note that for an imposed constant pressure p, one has ϕ̇ = ϕ̇p which is in agreement with
a previous assumption that all the modification of pores volume in the RVE is irreversible.

Taking advantage of the previous result on the effective stress (De Buhan and Dormieux,
1999) (see also a direct proof by Vincent et al. (2009) in the case of an incompressible
matrix or remark 2 in Subsection 4.1), Gurson (1977)’s yield criterion can be extended to
saturated poroplastic media as

Φ(σ, p;ϕp) =
σ2
eq

σ2
0

+ 2f(ϕp)cosh
(
3

2

σm + p

σ0

)
− 1− f 2(ϕp) ≤ 0, (47)

where the Eulerian porosity has been expressed in terms of the Lagrangian porosity as
f(ϕp) given in (42). We can notice that the reversibility domain defined by Gurson’s
criterion (47) is convex with respect to the thermodynamic forces Fεp = σ and Fϕp = p.

The evolution equations of internal variables εp and ϕp given by the extended normality
rule with respect to the Gurson’s extended yield criterion (47) read:

ε̇p = η
∂Φ

∂Fεp

ϕ̇p = η
∂Φ

∂Fϕp

, η

= 0 if Φ(σ, p;ϕp) < 0

≥ 0 if Φ(σ, p;ϕp) = 0.
(48)

η is the usual plastic multiplier. The evolution of the plastic strain reads

ε̇p = η
∂Φ

∂σ
(σ, p;ϕp) = η

(
f(ϕp)

σ0
sinh

(
3

2

σm + p

σ0

)
I + 3

σd

σ2
0

)
(49)

As a matter of fact, the evolution of the Lagrangian porosity reads

ϕ̇p = η
∂Φ

∂p
(σ, p;ϕp) = 3η

f(ϕp)

σ0
sinh

(
3

2

σm + p

σ0

)
= tr(ε̇p). (50)

This results has been already indicated in (38) as a consequence of the plastic incompress-
ibility of the solid matrix.

For completeness, it is interesting to establish the pseudo potential of dissipation corre-
sponding to the above extended Gurson poroplastic model. To this end, let us recall that
the pseudo potential of dissipation φ is given by the Legendre-Fenchel transform of φ∗

(the indicator function of the elastic domain defined by Φ (see (47)). It is shown that (see

12



Appendix A)

φ(ε̇p, ϕ̇p;ϕp) =



σ0

√(ε̇peq)2 + 4(ε̇pm)2 −
√
f(ϕp)2(ε̇peq)2 + 4(ε̇pm)2

+ 2ε̇pm

(
argsinh

(
2ε̇pm

f(ϕp)ε̇peq

)
− argsinh

(
2ε̇pm
ε̇peq

)) if ϕ̇p = 3ε̇pm

+∞ otherwise,

(51)
which can also be put in the form

φ(ε̇p, ϕ̇p;ϕp) = σ0

√(ε̇peq)2 + 4(ε̇pm)2 −
√
f(ϕp)2(ε̇peq)2 + 4(ε̇pm)2

+ 2ε̇pm

(
argsinh

(
2ε̇pm

f(ϕp)ε̇peq

)
− argsinh

(
2ε̇pm
ε̇peq

))+ U{0}(ϕ̇
p − 3ε̇pm),

(52)

with

U{0}(x) =

 0 if x = 0

∞ if x ̸= 0.
(53)

Note that in (52), the first part of the right hand-side which corresponds to the dissipation
potential already established by Gurson (1977) is in fact remarkably valid for all pressure
p (and not only for p = 0 as in the original Gurson model) provided ϕ̇p = 3ε̇pm. Moreover,
it is noticeable that the porosity evolution law (50) appears as a full part of the expression
(52) through the indicator function U{0}(ϕ̇

p − 3ε̇pm).

The results established in this section clearly show that Gurson’s model and its extension
to elasto-poroplastic saturated media thus fits into the framework of generalized standard
materials provided that (i) the Eulerian porosity f being replaced by the Lagrangian one
ϕp and (ii) the effective stress is introduced in the yield criterion.

Remark 3: It is important to emphasize that from a physical point of view, in saturated
and permeable plastic porous materials, one needs also to consider the fluid flow, gener-
ally through the classical Darcy law (which relates the fluid velocity to the gradient of
pore pressure). This allows to build diffusion equations (coupled or not coupled) which
may complete the mechanical non linear constitutive equations. In this context, it is pos-
sible in some particular case to decouple or neglect diffusion equations and mechanical
constitutive equations. In the present interpretation of Gurson’s model, Darcy’s law has
not been considered. This may correspond to a situation in which the permeability of the
ductile porous material is assumed negligible, in link with an absence of pores connectivity
together and a low porosity (less than few percents as previously assumed).
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5 Implications in terms of numerical implementation of Gurson’s model with-
out matrix hardening

5.1 Brief review of numerical algorithms

Gurson (1977)’s model has been widely studied and several numerical strategies have been
proposed in literature, as quoted below. Here, we focus on the sole “problem of projection”
of the elastically computed stress tensor onto the yield locus (plastic correction of the
elastic predictor) which consists in finding the mechanical state Sn+1 = {εn+1 , ε

p
n+1,

σn+1, fn+1} at time tn+1 resulting from a given, known strain increment ∆εn (resulting
from a global elastoplastic iteration), knowing the previous mechanical state Sn = {εn ,
εpn, σn, fn} at time tn. Here, the specific details related to the numerical integration of
strain hardening within Gurson’s approach will not be discussed (as hardening was not
considered in Section 4) but it will be shown in Section 6 that hardening can be easily
integrated within the (new) proposed algorithm.

First, let us recall three available numerical algorithms of the literature (which we detail
in absence of hardening):

• Peirce et al. (1984) have developed a time integration method devoted to rate-dependant
materials based on a rate-tangent modulus. It was applied to Gurson’s model using an
implicit scheme for the porosity.

• In the work of Aravas (1987), an implicit scheme with respect to the porosity and the
plastic strain was considered. In terms of unknowns, Aravas (1987)’s algorithm consists
of two coupled iterative loops on the equivalent and mean plastic strain increment.

• In the work of Besson et al. (2001), an implicit scheme with respect to the porosity
and the plastic strain was also considered. The algorithm itself consists in a Newton
method on the full set of unknowns (all the components of the plastic strain plus the
porosity).

• Enakoutsa et al. (2007) considered a mixed approach, with an implicit scheme for the
plastic strain and an explicit scheme for the porosity. This allows to reduce the algorithm
to the resolution of a single non-linear equation with only one unknown.

Mention has to be made to the work of Aravas and Ponte Castañeda (2004) (see also
Danas and Aravas (2012); Cheng et al. (2017b) in which a fixed-point method was used
for all microstructural variables (including the porosity): this approach permits to reach
a better convergence in comparison to a fully implicit scheme (Cheng et al., 2017b).

An implicit scheme for the porosity evolution, as considered by Aravas (1987) and Besson
et al. (2001), implies that fn+1 must verify the equation

fn+1 = fn + (1− fn+1)tr(∆εpn), with ∆εpn = εpn+1 − εpn, (54)

or equivalently

fn+1 =
fn + tr(∆εpn)

1 + tr(∆εpn)
, (55)

where the plastic criterion and flow rule are discretized using the final porosity fn+1. It
must be emphasized that the choice of the type of time-discretization was not justified in
the work of Aravas (1987) and Besson et al. (2001).
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An explicit scheme for the porosity evolution, as considered by Enakoutsa et al. (2007),
implies that fn+1 must verify the equation

fn+1 = fn + (1− fn)tr(∆εpn), (56)

where the plastic criterion and flow rule are discretized using the previous porosity fn. In
Enakoutsa et al. (2007), the choice of a mixed implicit/explicit scheme was justified by
the fact that Gurson’s model corresponds to a generalized standard material provided that
the porosity is fixed. The reasoning made in Enakoutsa et al. (2007) is that the existence
and uniqueness of the solution of the projection problem is guaranteed provided that the
porosity is considered as fixed during the projection and then updated at the end of the
iteration with an explicit scheme.

As shown in Section 4, Gurson’s model actually defines a generalized standard material
with the plastic strain and Lagrangian porosity as internal variables. This implies that
the existence and uniqueness of the solution of the projection problem is guaranteed
if the evolution equations of the plastic strain and Lagrangian porosity are discretized
in time with an implicit scheme. However, the analysis made in Section 4 is limited to
the linearized theory which can be restrictive in ductile fracture problems involving large
strains. Following Enakoutsa et al. (2007), it can be shown that the restriction to linearized
theory can be removed by studying in which way the numerical implementation is affected
by large displacements and strains:

• First, the equilibrium equations must be solved at time tn+1, by updating the geometry
at this instant. This operation is done only at the beginning of each major elastoplastic
iteration: the geometry is thus fixed during the projection problem as as a consequence,
this does not modify the mathematical properties of the projection problem.

• Then, the presence of large strain and displacements requires to replace the elasticity
law by a hypoelasticity law involving some objective time-derivative of the stress tensor
(such as the Jaumann stress rate). This type of derivative can include, in addition to
the ordinary derivative, combinations of the stress tensor, the transformation gradient
and the gradient of the velocity. As explained by Enakoutsa et al. (2007), the use
of an explicit scheme for the time-discretization of these extra terms thus involves
known quantities and invariable during each global elasto-plastic iteration: they can be
considered as corrections of the elastic stress predictor and does not have impact upon
the existence and uniqueness of the local projection problem.

Using equation (50), it follows that the final Lagrangian porosity is given by

ϕp
n+1 = ϕp

n + tr(∆εpn), (57)

where the plastic criterion and flow rule are discretized using the final porosity fn+1. Using
equation (42), the Eulerian porosity in the criterion and plastic flow rule is thus given by

f (ϕp
n+1) = 1− 1− ϕ0

exp (ϕp
n + tr(∆εpn))

, (58)

which can be rewritten as

f (ϕp
n+1) =

f (ϕp
n) + exp(tr(∆εpn))− 1

exp(tr(∆εpn))
. (59)
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For an arbitrary time step, this expression is thus different from that given by equation
(55). However, in the limit of small time steps, that is tr(∆εpn) → 0, this reduces to

f (ϕp
n+1) =

f (ϕp
n) + tr(∆εpn)

1 + tr(∆εpn)
, (60)

which is equivalent to equation (55).

5.2 A new implicit scheme for Gurson’s model

We focus on the local step of the elastoplastic solution which consists in projecting the
elastic stress predictor on the yield surface. For simplicity reasons, the algorithm is pre-
sented in the context of isotropic elasticity and small strains; its extension to large strains
does not raise any specific difficulties as discussed previously. Furthermore, we consider
the case of empty cavities (p = 0).

Local projection problem. The constitutive equations of the local projection problem
read



ε = εe + εp Decomposition of the total strain

σ = (3κJ+ 2µK) : (ε− εp) Isotropic elasticity law

Φ(σ, p;ϕp) ≤ 0 Plasticity criterion

ε̇p = η
∂Φ

∂σ

ϕ̇p = η
∂Φ

∂p

η ≥ 0

ηΦ(σ, p;ϕp) = 0

Flow rule and consistency conditions

(61)

where εe is the elastic strain tensor, εp the plastic strain tensor, η the plastic multipler,
κ and µ are respectively the bulk and shear moduli of the matrix, and the fourth-order
tensors J and K are the isotropic projectors which are classically defined as

J =
1

3
I ⊗ I and K = I− J, (62)

with I the second-order identity tensor and I the fourth-order symmetric identity tensor
whose components are Iij = δij and Iijkl = 1

2
(δikδjl + δilδjk), respectively.

The yield criterion and the flow rule are thus discretized using an implicit scheme with
respect to εp and ϕp. The discretized equations of the local projection problem are given
by
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

σn+1 = σelas
n+1 − (3κJ+ 2µK) : ∆εpn

Φ(σn+1, ϕ
p
n+1) ≤ 0

∆εpn = ∆ηn
∂Φ

∂σ
(σn+1, ϕ

p
n+1) = ∆ηn

(
f(ϕp

n+1)

σ0
sinh

(
3

2

σm,n+1

σ0

)
I + 3

σd,n+1

σ2
0

)
∆ϕp

n = tr(∆εpn)

∆ηn ≥ 0

∆ηnΦ(σn+1, ϕ
p
n+1) = 0

ϕp
n+1 = ϕp

n +∆ϕp
n

εpn+1 = εpn +∆εpn,

(63)

where σelas
n+1 = σn + (3κJ+2µK) : ∆εn is the elastic predictor, that is the stress tensor at

time tn+1 resulting from the strain increment ∆εn fictitiously considered as purely elastic.

Algorithm of resolution. The algorithm consists in finding ∆ηn. In the case of an
explicit discretization of the porosity, it has been shown in Enakoutsa et al. (2007) (see
also Dorhmi et al. (2020)) that the local projection problem reduces to the resolution of
a single non-linear equation on the sole unknown ∆ηn. Thus, in order to take advantage
of their algorithm, the treatment of the porosity evolution is done using a fixed point: (i)
assume ϕp

n+1 = ϕp
n; (ii) compute εpn+1, σn+1 with this value ϕp

n+1; (iii) deduce from equa-
tion (63)7 a refined estimate of ϕp

n+1; (iv) follow the procedure until the method converges
and ϕp

n+1 reaches a stationary value.

The problem thus consists in the determination of εpn+1, σn+1 for a (temporarily) fixed
value ϕp

n+1. First we begin with the elastic behaviour. If the condition Φ(σelas
n+1, ϕ

p
n+1) ≤ 0

is met, then the evolution is purely elastic and the final mechanical state is simply given
by σn+1 = σelas

n+1

εpn+1 = εpn.
(64)

However, if Φ(σelas
n+1, ϕ

p
n+1) > 0, then the elastic predictor is not plastically admissible and

a plastic correction is needed to ensure that the plasticity criterion is verified. Using (63)1
and (63)3, the final stress σn+1 can be written as

σn+1 = σelas
n+1 −∆ηn

(
3κf(ϕp

n+1)

σ0
sinh

(
3σn+1,m

2σ0

)
I + 6µ

σn+1,d

σ2
0

)
, (65)

where σn+1,d = σn+1− 1
3
tr(σn+1)I is the deviatoric part of the stress σn+1. By taking the

mean part (σn+1,m) and von Mises norm (σn+1,eq) of the stress σn+1, one gets:
σn+1,m = σelas

n+1,m − 3∆ηnκf(ϕ
p
n+1)

σ0
sinh

(
3σn+1,m

2σ0

)
σn+1,eq =

σelas
n+1,eq

1 + 6∆ηn
µn

σ2
0

.
(66)
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The criterion Φ(σn+1, ϕ
p
n+1) = 0 must be verified so that one has

σ2
n+1,eq

σ2
0

+ 2f(ϕp
n+1)cosh

(
3σn+1,m

2σ0

)
− 1− f 2(ϕp

n+1) = 0, (67)

which permits to express the mean stress as a function of the equivalent stress:

σn+1,m = sgn(σelas
n+1,m)

2σ0
3

argcosh


1 + f 2(ϕp

n+1)−
σ2
n+1,eq

σ2
0

2f(ϕp
n+1)

 , (68)

where sgn(x) denotes the sign of x. In equation (68), the term in the argcosh function
must be greater than or equal to 1 (by definition of its domain of definition). Combining
equation (66) and (68), one finally gets

G(∆ηn) =
2σ0
3

argcosh (g(∆ηn)) +
3∆ηnκf(ϕ

p
n+1)

σ0

√
g(∆ηn)2 − 1− |σelas

n+1,m| = 0, (69)

where

g(∆ηn) =

1 + f 2(ϕp
n+1)−

(
σelas
n+1,eq

σ2
0 + 6µ∆ηn

)2

2f(ϕp
n+1)

≥ 1. (70)

Equation (69) is a nonlinear equation with the sole unknown ∆ηn which can be solved
using a Newton method. Once ∆ηn is known, the final stress σn+1 is deduced using
equations (65) and (66), and the increment of plastic strain ∆εpn is deduced using equation
(63)3.

5.3 Numerical example

The predictions of the algorithm proposed in Section 5.2 will be now assessed. We will
notably compare it to the explicit scheme for the Eulerian porosity of Enakoutsa et al.
(2007) and to the implicit scheme for the Eulerian porosity of Aravas (1987). In practice
for the calculations, the explicit scheme for the Eulerian porosity consists in considering
fn in the equations and updating the porosity explicitly using equation (56). On the other
hand, the implicit scheme for the Eulerian porosity is similar to that developed in Section
(5.2), except for the fact that fn+1 is considered in the criterion and flow rule and its
evolution equation must verify equation (55).

The model predictions are investigated with a single (homogeneous) element subjected
to an axisymmetric proportional loading with major axial stress σ33, under conditions
of fixed stress triaxiality T = σm/σeq. The non-zero components of the stress tensor are
supposed to be

σ11 = σ22 = σm − 1

3
σeq, σ33 = σm +

2

3
σeq. (71)

The evolution of Eulerian porosity f will be studied for the implicit scheme on ϕp (in
this case, f is deduced from ϕp using equation (42)), the implicit scheme on f and the
explicit scheme on f . Two triaxialities T = 1 and T = 3 are considered, and in each case,
the influence of the strain increment ∆εeq is investigated. The parameters used for the
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simulations are given in Table 1. The results are shown in Figures 2 and 3 for T = 1 and
T = 3, respectively.

Table 1
Values of parameters for the numerical simulations

E [MPa] ν [-] f0 = ϕ0 [-] σ0 [MPa]

210 000 0.3 10−3 400

0 0.2 0.4 0.6 0.8 1

εeq

0

0.005

0.01

0.015

0.02

0.025

f

Implicit scheme on φp

Implicit scheme on f

Explicit scheme on f

(a)

0 0.2 0.4 0.6 0.8 1

εeq

0

0.005

0.01

0.015

0.02

0.025

f

Implicit scheme on φp

Implicit scheme on f

Explicit scheme on f

(b)

Fig. 2. Evolution of the Eulerian porosity f in the case T = 1. (a) ∆εeq = 0.02 and (b)
∆εeq = 0.002.

(a) (b)

Fig. 3. Evolution of the Eulerian porosity f in the case T = 3. (a) ∆εeq = 0.002 and (b)
∆εeq = 0.0002.

In the two triaxiality cases considered, the evolution of the Eulerian porosity is almost the
same when considering the implicit scheme on ϕp or the implicit scheme on f . This is due
to the fact that for small to moderate values of the total strain increment ∆ε (which is
considered here) the Eulerian porosity after evolution is the same regardless of the scheme
chosen (see equations (55) and (60)). On the other hand, for moderate strain increments
(∆εeq = 0.02 in the case T = 1 and ∆εeq = 0.002 in the case T = 3), some differences are
observed with the explicit scheme. When the strain increment decreases, those differences

19



disappear and all the porosity evolution are merged (to the expected reference solution),
regardless of the numerical scheme. For T = 1 the maximal relative error between the
solution obtained using large increments (∆εeq = 0.02) and the reference solution, is of
about 8.6% for the explicit scheme and 10% for the two implicit schemes. For T = 3
the maximal relative error between the solution obtained using large increments (∆εeq =
0.002) and the reference solution, is of about 4.2% for the explicit scheme and 5.5% for the
two implicit schemes. It is interesting to note that, for a given triaxiality, the evolution of
the porosity is underestimated for the explicit scheme when the time increment increases
while it overestimated for the implicit schemes when the time increment increases is (see
Figures 2a and 3a) in comparison with the (reference) solution given with the small time
increment (see Figures 2b and 3b). Therefore, the explicit scheme appears to be closer
to the reference solution for large increments but it underestimates void growth which
implies that the occurrence of failure is expected to be delayed with this scheme.

5.4 Discussion

The present approach has permitted to define a new class of algorithm for Gurson’s model
that is based on the discretization of the Lagrangian porosity ϕp instead of the Eulerian
porosity f . It has been shown that, for small increments of the total strain, a time-implicit
scheme on Lagrangian porosity ϕp is equivalent to a time-implicit scheme on the Eulerian
porosity f , which is confirmed by the numerical simulations. Furthermore, if the strain
increment is decreased, the results predicted by a time-explicit scheme on the Eulerian
porosity are equivalent to those predicted with a time-implicit scheme, which is expected.

In terms of computational complexity, both implicit algorithm (with ϕp or f) involves
two non-linear equations which can be solved using different strategies (as the fixed point
considered here or a Newton’s method as done in Aravas (1987)) while the explicit algo-
rithm involves only one non-linear equation. Thus, for Gurson’s model without hardening,
the proposed approach permits to justify Aravas (1987)’s algorithm but does not permit
to improve the computational complexity as it also involves two non-linear equations.

It should be noted that concerning the convergence during the integration of the equa-
tions, no differences were observed between the time-implicit models based of ϕp and
f , respectively. This convergence study must be carefully analyzed in future works on
structural calculations based on the two integration schemes.

6 Extension to Gurson’s model with matrix hardening

We aim in the present section to investigate the matrix hardening effect. The reader inter-
ested by the analysis of hardening due to plastic porosity in the context of poroplasticity
can refer to Coussy (1995, 2004) (see also Bignonnet et al. (2016).
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6.1 Gurson’s model with isotropic hardening

Gurson (1977)’s model was derived using limit-analysis, so it applies to rigid-ideal plastic
materials. However, in practical applications, it is necessary to consider a hardenable solids
matrix. As presented in Section 2, the classical extension of Gurson’s model to hardening
consists in replacing the constant yield strength σ0 in the criterion (47) by some “average
yield stress” σ̄ which will play the role of a hardening variable:

Φ(σ, p, σ̄;ϕp) =
σ2
eq

σ̄2
+ 2f(ϕp)cosh

(
3

2

σm + p

σ̄

)
− 1− f 2(ϕp) ≤ 0. (72)

This average yield stress σ̄ is given by

σ̄ = σ(ε̄), (73)

and the evolution of ε̄ reads:

˙̄ε =
σ : ε̇p

(1− f)σ̄
. (74)

Due to the evolution equation of ε̄, it is necessary to extend the results of Section 4 to
Gurson (1977)’s model with hardening, following Enakoutsa et al. (2007)’s work.

Then, based on previous expression of the free energy, the free energy ψh accounting for
matrix hardening is obtained by adding to previous expression (for no matrix hardening
case) a supplementary quantity λ

∫ ε̄
0 σ(ε)dε:

ψh(ε− εp, ϕ− ϕ0 − ϕp, ε̄) = ψ(ε− εp, ϕ− ϕ0 − ϕp) + λ
∫ ε̄

0
σ(ε)dε, (75)

where λ is a constant (yet to be determined).

With this definition, the stress tensor σ, the fluid pressure p and the (irreversible) ther-
modynamic forces Fεp , Fϕp and Fε̄ are given by

σ =
∂ψh

∂ε
(ε− εp, ϕ− ϕ0 − ϕp, ε̄)

p =
∂ψ

∂ϕ
(ε− εp, ϕ− ϕ0 − ϕp, ε̄)

Fεp = − ∂ψ

∂εp
(ε− εp, ϕ− ϕ0 − ϕp, ε̄) = σ

Fϕp = − ∂ψ

∂ϕp
(ε− εp, ϕ− ϕ0 − ϕp, ε̄) = p

Fε̄ = −∂ψ
∂ε̄

(ε− εp, ϕ− ϕ0 − ϕp, ε̄) = −λσ̄.

(76)

It is easy to check that (i) the free energy is convex with respect to ε, εp, ϕ, ϕp and ε̄ and
(ii) that the reversibility domain defined by Gurson’s criterion (72) is convex with respect
to the global variable (Fεp , Fε̄) and Fϕp (see Enakoutsa et al. (2007)).

If we assume that this model belongs to the class of standard generalized materials, the
evolution equations of internal variables εp, ϕp and ε̄ obey the extended normality rule
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with respect to the Gurson’s extended yield criterion (47):

ε̇p = η
∂Φ

∂Fεp

ϕ̇p = η
∂Φ

∂Fϕp

˙̄ε = η
∂Φ

∂Fε̄

, η

= 0 if Φ(σ, p, σ̄;ϕp) < 0

≥ 0 if Φ(σ, p, σ̄;ϕp) = 0.
(77)

The two first equations in (77) are the same as in the case without hardening. In order to
express the last equation in (77), let us first introduce the changes of variable and function
defined by

σ + pI

σ̄
≡ X; Φ(σ, p, σ̄;ϕp) ≡ Φ̃(X;ϕp). (78)

One can then deduce that
∂Φ

∂σ
(σ, p, σ̄;ϕp) =

1

σ̄

∂Φ̃

∂X
(X;ϕp)

∂Φ

∂σ̄
(σ, p, σ̄;ϕp) = − 1

σ̄2

∂Φ̃

∂X
(X;ϕp) : (σ + pI),

(79)

which leads to
∂Φ

∂σ̄
(σ, p, σ̄;ϕp) = − 1

ησ̄
(σ + pI) : ε̇p. (80)

It can then be shown that the last equation in (77) reads

˙̄ε = η
∂Φ

∂Fϕp

= −η
λ

∂Φ

∂σ̄
(σ, p, σ̄;ϕp) =

1

λσ̄
(σ + pI) : ε̇p. (81)

In order to fit with Gurson’s heuristic type of hardening modelling (in the case p = 0)
given by equation (74), it is sufficient to consider that λ = 1− f̄ , with f̄ constant (since
we assumed that λ was constant):

(1− f̄) ˙̄εσ̄ = σ : ε̇p. (82)

This choice of f̄ instead of f in the evolution equation of the hardening parameter is equiv-
alent to considering a fixed porosity but only on the evolution equation of the hardening
parameter.

To conclude, Gurson’s model fits into the framework of generalized materials with hard-
ening effects provided that the parameter f̄ in the evolution equation of the hardening
variable ε̄ is constant. Thus, in practice in the numerical procedure, this parameter will
be chosen as the previous porosity (f̄ = fn) and will be kept constant during one global
iteration. The treatment of the porosity in the evolution equation of hardening is thus
explicit.

6.2 Numerical algorithm

As in Section 5.2 we consider the case of empty cavities (p = 0). The yield criterion and
the flow rule are thus discretized using an implicit scheme with respect to εp, ϕp and ε̄,
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but in the evolution equation of the hardening, the Eulerian porosity at the previous time
step is considered. The discretized equations of the local projection problem are given by



σn+1 = σelas
n+1 − (3κJ+ 2µK) : ∆εpn

Φ(σn+1, σ̄n+1, ϕ
p
n+1) ≤ 0

∆εpn = ∆ηn
∂Φ

∂σ
(σn+1, σ̄n+1, ϕ

p
n+1) = ∆ηn

(
f(ϕp

n+1)

σ̄n+1

sinh

(
3

2

σm,n+1

σ̄n+1

)
I + 3

σd,n+1

σ̄2
n+1

)
∆ϕp

n = tr(∆εpn)

∆ε̄n =
σn+1 : ∆εpn

(1− f(ϕp
n))σ̄n+1

∆ηn ≥ 0

∆ηnΦ(σn+1, σ̄n+1, ϕ
p
n+1) = 0

ϕp
n+1 = ϕp

n +∆ϕp
n

εpn+1 = εpn +∆εpn

ε̄n+1 = ε̄n +∆ε̄n

σ̄n+1 = ε(ε̄n+1),

(83)

where σelas
n+1 = σn + (3κJ+2µK) : ∆εn is the elastic predictor, that is the stress tensor at

time tn+1 resulting from the strain increment ∆εn fictitiously considered as purely elastic.
The key point here is that in equation (83)5, we consider f(ϕp

n).

As in the case without hardening, the algorithm consists in finding ∆ηn. The algorithm
proposed in Section 5.2 consists in solving the nonlinear equation (69) on the sole un-
known ∆ηn, for a known Lagrangian porosity ϕp

n+1 and constant yield limit σ0, where the
calculation of ϕp

n+1 is performed using a fixed point method.

In the case with hardening, we propose to extend the previous algorithm by adding the
treatment of hardening within the fixed point iteration: (i) assume ϕp

n+1 = ϕp
n and σ̄n+1 =

σ̄n; (ii) compute εpn+1, σn+1 with these values ϕp
n+1 and σ̄n+1; (iii) deduce from equations

(83)8 and (83)11 a refined estimate of ϕp
n+1 and σ̄n+1; (iv) follow the procedure until the

method converges and ϕp
n+1 and σ̄n+1 reach a stationary value. In that case, the nonlinear

equation on ∆ηn is

G(∆ηn) =
2σ̄n+1

3
argcosh (g(∆ηn)) +

3∆ηnκf(ϕ
p
n+1)

σ̄n+1

√
g(∆ηn)2 − 1− |σelas

n+1,m| = 0, (84)

where

g(∆ηn) =

1 + f 2(ϕp
n+1)−

(
σelas
n+1,eq

σ̄2
n+1 + 6∆ηnµ

)2

2f(ϕp
n+1)

≥ 1. (85)
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6.3 Application

We consider the same numerical examples than in Section 5.3. The predictions of the
algorithm developed in Section 6.2 will be compared to the time-explicit scheme for the
porosity of Enakoutsa et al. (2007) (in which hardening is treated with a time-implicit
scheme but with fn in equation (82)) and the fully time-implicit scheme of Aravas (1987)
(in which hardening is treated with a time-implicit scheme but with fn+1 in equation
(82)).

For the simulations, a classical power-law isotropic hardening is assumed:

σ(ε) = σ0

(
1 +

ε

ε0

)n

, (86)

where σ0 is the initial yield stress, ε0 is the hardening parameter and n is the hardening
exponent; the parameters for the simulation are given in Table 2. The case T = 3 is
considered and the results are shown in Figure 4.

Table 2
Values of parameters for the numerical simulations

E [MPa] ν [-] f0 = ϕ0 [-] σ0 [MPa] ε0 n

210 000 0.3 10−3 400 0.002 0.1

(a) (b)

Fig. 4. Evolution of the Eulerian porosity f in the case T = 3 (with hardening). (a) ∆εeq = 0.002
and (b) ∆εeq = 0.0002.

The same trends than in the case without hardening are observed, that is no difference
between the two time implicit schemes and an underestimation of the porosity growth by
the explicit scheme. The maximal relative error between the solution obtained using large
increments (∆εeq = 0.002) and the reference solution, is of about 5.5% for the explicit
scheme and 4.2% for the two implicit schemes. It should be noted that the case with
hardening, Enakoutsa et al. (2007)’s algorithm consists of two loops (a Newton method on
the plastic multiplier and an “external” fixed point on hardening), while Aravas (1987)’s
algorithm consists of three loops (two coupled iterative loops on the plastic multiplier and
final porosity and an “external” fixed point on hardening) and the algorithm of Section 6.2
consists of two loops (a Newton method on the plastic multiplier and an “external” fixed
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point on both hardening and Lagrangian porosity). In addition to its thermodynamics
consistency, the algorithm proposed in this work, provides the same predictions than the
scheme of Aravas (1987) with here less computational complexity since it involves only
two nonlinear equations.

7 Conclusion

The aim of this paper was to investigate the thermodynamics consistency of Gurson’s
model and specifically its relation to the class of generalized standard materials. First,
Gurson’s model has been extended to the framework of poroplastic saturated media. This
allows to demonstrate that it fits into the framework of generalized standard materials
model, provided that the internal variables are the plastic strain and the Lagrangian
plastic porosity (and not the Eulerian porosity as in the original Gurson model). Let us
recall that the Lagrangian porosity is indeed the state variable which corresponds to the
pore pressure (as the associated thermodynamic irreversible force). By construction, the
porosity evolution law was proved to be a full part of the thermodynamic formulation of
the model with a generalized normality rule. This clearly appears also in the expression
that has been established for the pseudo-potential. From the computational point of view,
the existence and uniqueness of the projection problem are guaranteed provided that the
plastic strain and Lagrangian porosity evolution equations are discretized using a time-
implicit scheme. It has been notably shown that this approach, in the limit of small time
steps, is equivalent to a implicit scheme on the Eulerian porosity. Hence, without hardening
the present approach permits to justify Aravas (1987)’s classical algorithm for Gurson’s
model. Finally, in presence of hardening, it was shown that Gurson’s model also fits into
the framework of generalized standard materials, provided that, in the heuristic equation
for hardening, the porosity is taken at the previous step. An efficient new algorithm based
on Enakoutsa et al. (2007)’s work was then proposed in the case of hardening, based on
a global fixed point on both the hardening parameter and the Lagrangian porosity and a
Newton method on the plastic multiplier. In terms of convergence during the integration
of the equations, no differences were observed between a time-implicit algorithm based on
the Eulerian porosity and a time-implicit algorithm based on the Lagrangian porosity on a
material point. Future work will involve the numerical implementation of the time-implicit
algorithm based on the Lagrangian porosity in a finite element code and a comparative
analysis of its convergence with respect to that of the time-implicit algorithm based on
the Eulerian porosity.
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A Derivation of the pseudo potential

Starting from the indicator function of domain C, defined by

φ∗(σ, p;ϕp) =

0 if Φ(σ, p;ϕp) ≤ 0

+∞ otherwise
(A.1)

the pseudo potential of dissipation, defined as the Legendre-Fenchel transform of φ∗ reads

φ(ε̇p, ϕ̇p;ϕp) = [φ∗(σ, p;ϕp)]∗ = sup
σ,p

[
σ : ε̇p + pϕ̇p − φ∗(σ, p;ϕp)

]
= sup

σ,p∈C

[
σ : ε̇p + pϕ̇p

]
(A.2)
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This requires to search for a majoration of

σ : ε̇p + pϕ̇p ≤ σ0

[
σeq
σ0
ε̇peq + 3

σm
σ0
ε̇pm

]
+ pϕ̇p (A.3)

The criterion (47) gives

σeq
σ0

≤
√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

)
(A.4)

that allows to write the right hand member of the majoration inequality (A.3) in the
following form

σ : ε̇p + pϕ̇p ≤ σ0

[
ε̇peq

√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

)
+ 3

σm
σ0
ε̇pm

]
+ pϕ̇p

which can be rewritten in a more convenient form

σ : ε̇p + pϕ̇p ≤ A (A.5)

with

A = σ0

[
ε̇peq

√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

)
+ 3

σm + p

σ0
ε̇pm

]
+ p(ϕ̇p − 3ε̇pm)

The right hand member, denoted A, being no more dependent on σeq, its maximum is
searched with respect to σm/σ0 and p. The computation of the derivative of A with respect
to σm/σ0 leads to

∂A

∂(σm/σ0)
= 0 =⇒ ε̇pm

ε̇peq
=

f(ϕp) sinh
(
3

2

σm + p

σ0

)
2

√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

) (A.6)

The derivative of A with respect to p gives

∂A

∂p
= 0 =⇒ ϕ̇p = 3ε̇peq

f(ϕp) sinh
(
3

2

σm + p

σ0

)
2

√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

) (A.7)

namely compared with the expression of ε̇pm/ε̇
p
eq previously found

ϕ̇p = 3ε̇pm = trε̇p (A.8)

It is convenient to introduce (see for instance Leblond (2003))

β = 2
ε̇pm
ε̇peq

In order to eliminate the terms σm and p in ((A.5)) we compute β2. A second order

polynomial of unknown cosh
(
3

2

σm + p

σ0

)
is obtained. Its solving allows to retrieve (almost
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to the term p) one of the two relations already established by Leblond (2003):

cosh
(
3

2

σm + p

σ0

)
=

1

f(ϕp)

[√
(1 + β2)(f 2(ϕp) + β2)− β2

]

from which we deduce

cosh
(
3

2

σm + p

σ0

)
= cosh

(
argsinh

β

f(ϕp)
− argsinh β

)

and then
σm + p

σ0
=

2

3

(
argsinh

β

f(ϕp)
− argsinh β

)
(A.9)

By reporting this in the expression of

√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

)
it is readily

seen that√
1 + f 2(ϕp)− 2f(ϕp) cosh

(
3

2

σm + p

σ0

)
=
√
1 + β2 −

√
f 2(ϕp) + β2 (A.10)

By introducing (A.9) and (A.10) in (A.5) one gets

σ : ε̇p + pϕ̇p ≤ σ0

[(√
(ε̇peq)2 + 4(ε̇pm)2 −

√
f(ϕp)2(ε̇peq)2 + 4(ε̇pm)2

)
+2ε̇pm

(
argsinh

(
2ε̇pm

f(ϕp)ε̇peq

)
− argsinh

(
2ε̇pm
ε̇peq

))]
+ p(ϕ̇p − 3ε̇pm) (A.11)

It follows that

φ(ε̇p, ϕ̇p;ϕp) = 

σ0
[(√

(ε̇peq)2 + 4(ε̇pm)2 −
√
f(ϕp)2(ε̇peq)2 + 4(ε̇pm)2

)
+

2ε̇pm

(
argsinh

(
2ε̇pm

f(ϕp)ε̇peq

)
− argsinh

(
2ε̇pm
ε̇peq

))]
if ϕ̇p = 3ε̇pm

+∞ otherwise

(A.12)

is the dissipation pseudo potential.
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