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Abstract: This article considers different pricing models for a platform based rental system,
such as Airbnb. A linear model is assumed for the demand response to price, and existence and
uniqueness conditions for Nash equilibria are obtained. The Stackelberg equilibrium prices for
the game are also obtained, and an iterative scheme is provided, which converges to the Nash
equilibrium. Different cooperative pricing schemes are studied, and splitting of revenues based on
the Shapley value is discussed. It is shown that a division of revenue based on the Shapley value
gives a revenue to the platform proportional to its control of the market. The demand response
function is modified to include user response to quality of service. It is shown that when the cost
to provide quality of service is low, both renter and the platform will agree to maximize the quality
of service. However, if this cost is high, they may not always be able to agree on what quality of
service to provide.
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Tarification des Plateformes : Jeux, Equilibres et
Coopérations

Résumé : Cet article examine différents modèles de tarification pour un
système de location basé sur une plateforme, comme Airbnb. Un modèle linéaire
est supposé pour la réponse de la demande au prix, et des conditions d’existence
et d’unicité pour les équilibres de Nash sont obtenues. Les prix d’équilibre
de Stackelberg pour le jeu sont également obtenus, et un schéma itératif est
fourni, qui converge vers l’équilibre de Nash. Différents systèmes de tarification
coopérative sont étudiés et la répartition des revenus basée sur la valeur de
Shapley est discutée. Il est montré qu’une répartition des revenus basée sur la
valeur de Shapley donne un revenu à la plateforme proportionnel à son contrôle
du marché. La fonction de réponse à la demande est modifiée pour inclure la
réponse de l’utilisateur à la qualité de service. Il est démontré que lorsque le
coût de la qualité de service est faible, le locataire et la plateforme s’accordent
pour maximiser la qualité de service. Cependant, si ce coût est élevé, ils ne
peuvent pas toujours s’entendre sur la qualité de service à fournir.

Mots-clés : prix, plateformes, Airbnb, équilibre de Nash, valeur de Shapley.
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1 Introduction

A platform is defined as “an entity that brings together economic agents and
actively manages network effects between them" [7]. A platform enables eco-
nomic interactions between users, while also profiting from them, by charging
an appropriate fee from the users. A number of digital platforms have arisen
in recent years, which cater to diverse requirements such as renting (Airbnb,
Booking.com), transportation (Uber) and dating (Tinder). Depending on the
nature of the interactions, the pricing model and the revenue generation mecha-
nism of the platform can vary. In this article, we study the pricing and revenue
of digital renting platforms such as Airbnb. A renting platform can be consid-
ered an example of a two sided market [4], with the two sides referring to the
apartment owners (renters) and the users (consumers), who interact through
the platform. A number of works study pricing of platforms in two sided mar-
kets. In [4], the authors consider two groups interacting through a platform,
with utilities for one group being a linear function of the number of users of
the other group. They find equilibrium prices for joining the platforms, for
monopoly and multiple competing platforms. Another work [19], studies com-
petition between platforms. In [6], the authors study how a gatekeeper, which
controls the availability of price information of commodities, should price itself.
They characterize the equilibrium in which gatekeeper profits are maximized.

There have been a large number of works looking at different aspects of
Airbnb, which is a major player in short term renting [3]. Airbnb is often
used by home owners to supplement their income by renting out of a part of
their apartment full time or part time. From the perspective of customers, it
represents the possibility of monetary savings as well as non monetary utility,
that may come from sharing a living space with a renter [11]. In [21], the authors
consider an online platform model for systems such as Airbnb. There are a finite
number of sellers (of apartments), and a single representative user, interacting
through an online platform. The platform can discriminate regarding how many
sellers are to be displayed on its web interface. Under a multinomial logit model
of demand, it is shown in [21] that social welfare maximization corresponds to
displaying all sellers on the platform, while for maximizing the total revenue
of the sellers, only the best sellers need to be displayed. However, they do not
model the revenue generation mechanism for the platform.

Empirical studies have also been done to study different aspects of the Airbnb
economic system. In [14], the authors study dynamic pricing in Airbnb, and
conclude that hosts with more resources and experience are more likely to vary
prices. In [5], the authors observe that ratings of quality, based on feedback
from previous customers, lets hosts set higher prices for their apartments. There
have also been studies on the impact of Airbnb on the hotel ecosystem [18]. A
work in this direction has noticed an improved revenue for mainstream hotels
owing to the presence of Airbnb [10], because Airbnb absorbs budget tourists,
who are more price elastic, leaving higher paying customers to hotels. These
remaining users are less price elastic. The hotels can now set higher prices for
these remaining users. This increases the revenue of the hotels.

Inria
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1.1 Contributions

The contributions of this work are as follows.

1. We propose a linear response model to capture the demand for apartments
(or rooms). We first propose a competitive game formulation, where the
platform and multiple renter classes find the Nash equilibrium as a pricing
solution. By means of the diagonal strict concavity condition, we establish
the uniqueness of the Nash equilibrium. We also study the Stackelberg or
leader-follower formulation, and demonstrate that being able to pick the
price first gives a competitive advantage in terms of revenue.

2. We consider different cooperative scenarios, where the platform and the
renters take a joint pricing decision. We obtain the Shapley value for the
problem as a means to split the revenue in the cooperative case. With two
platforms and multiple renters, we show that the revenue division using
Shapley value results in the revenue of the platform being proportional to
its market share.

3. We modify the model to introduce the notion of quality of service, and
show that, depending on the cost of providing quality of service, the plat-
form and the renter may have similar or differing perspectives on how
much quality of service to provide to the customer. At low values of the
cost, both the platform and the renter will agree to provide high quality
of service. However, if this cost exceeds a threshold, they may not agree
on the quality of service to be provided.

1.2 System Model

The renting game is played between three sets of users - the platform (for ex-
ample, Airbnb), the renters (people who rent out their apartments through the
platform) and end users or guests (people who are looking to rent out apart-
ments). There are multiple variables of interest which come into play in this
interaction. We model the end users by means of a demand response function,
and we model the platform and renters as playing a game in response to the
properties of this function. We will assume there are N classes of renters, each
representing a particular category of apartments. Each class may represent, for
example, a group of apartments that are preferred by a section of end users.
High paying users prefer different apartments from low paying users. Since the
purchasing power of these two groups are different, it will be reflected in the
demand response of these two classes of apartments to the price charged as
rent. The price charged to the guest has two components: the price paid to the
platform, and the price paid to the renter. For class i, the price paid to the
platform will be denoted by p0i , and the price paid to the renter will be denoted
by p1i . Define the price vector

p = (p0,p1) = (p01, p
0
2, ..., p

0
N , p

1
1, p

1
2, ..., p

1
N ). (1)

RR n° 9510



6 Krishnan K.S., Perlaza, and Altman.

For renter class i, the demand response of the users, as a function of the price
vector p charged, is given by

Ri(p) = αi − βi(p0i + p1i ), (2)

where αi > 0 and βi > 0. This is a linear demand model, which is commonly
used in the literature for modeling demand response [12, 13]. The linear model
can be interpreted as the mean behaviour of a market with stochastic demand.
This models the condition that as price increases, demand for the apartments
decreases. This also leads to a concave utility function, which is the commonly
used form of utility for tractable optimization, in the literature [8]. Note that
Ri(p) represents the number of apartments that are rented out from all apart-
ments of class i, when the price vector is p. The parameter αi represents the
maximum demand for an apartment of class i. The parameter βi models the
rate of decrease of demand of apartments of class i, as price increases. Note
that we do not assume any dependency between the prices of different classes
of apartments. This is because we assume that demand for the different classes
of apartments arise from disjoint sections of the population of customers.

For a price vector p, the revenue (or utility) for the renter i is given by

Ui(p) = Ri(p)p1i for i = 1, ..., N. (3)

The revenue (or utility) for the platform is given by

U0(p) =

N∑
i=1

Ri(p)p0i . (4)

Define the set

P = {p � 0 : pji ≤
αi
βi
, for each i = 1, ..., N and j = 0, 1.} (5)

where 0 represents the all zero vector and � represents the element-wise “greater
than or equal to" inequality. This represents a maximum constraint on the prices
being set by the platform and the renter, separately. We will restrict our prices
to take values from P. This is a larger set than the set commonly used in the
literature, which corresponds to the set of non negative prices with non negative
demand. However, we use this more relaxed definition because the existence and
uniqueness results in Section 2 become simpler to demonstrate. Nevertheless,
with either set of constraints, we will obtain the same equilibrium points.

Remark 1. The demand response, and consequently the utility, can be negative
at some points in the constraint set P. In economic scenarios, one expects utility
to be a non negative quantity. In order to be consistent with this notion of non
negative utility, one can assume that the actual utility received by the players is
offset by a large enough positive value, i.e., of the form C + Uj(p), so that it is
always non negative.

Remark 2. Another approach to define the demand response would be to use
a response function of the form Ri(p) = max(αi − βi(p0i + p1i ), 0). This ensures
non negative demand over any set of prices. However, this can lead to multiple
Nash equilibria, arising at price vectors that have zero demand.

Inria
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1.3 Global Optimum
The global optimal pricing for this model will be that which maximizes the sum
of the revenue of the renters and the platform. The total revenue is

U(p) = U0(p) +

N∑
i=1

Ui(p).

Define the global optimal revenue,

U∗ = max
p∈P

U(p). (6)

It is easy to see that the maximum total revenue is U∗ =
∑N
i=1

α2
i

4βi
, achieved at

any p for which p0i + p1i = αi

2βi
for all renters i. If the revenue is split equally

between the platform and the renter, renter i will receive a revenue of
α2
i

8βi
, and

the platform gets
∑
i

α2
i

8βi
.

2 Non Cooperative Game
From Section 1.2, we can see that the pricing problem can be considered as
a game, between the platform and the renters. Let us consider the case where
there is no cooperation between the renters and the platform. Clearly the renters
(indexed by i going from 1 through N) have strategies p1i , while the platform has
a strategy vector p0. The corresponding utilities are U1, ..., UN for the renters
and U0 for the platform. The price vector p takes values in the set P. It is
easy to see that P is closed, bounded and convex. We define a Nash equilibrium
point for this game as follows.

Definition 1 (Nash equilibrium). A Nash equilibrium point for the above pric-
ing game is given by a point p∗ = (p0∗,p1∗) ∈ P where p0∗ = (p0∗1 , p

0∗
2 , ..., p

0∗
N )

and p1∗ = (p1∗1 , p
1∗
2 , ..., p

1∗
N ) such that

U0(p∗) = max
q
{U0(q,p1∗)}, (7)

Ui(p∗) = max
qi
{Ui(p0∗, p1∗1 , ..., qi, ..., p

1∗
N )} for i = 1, ..., N. (8)

We prove below that a Nash equilibrium exists for this game.

Lemma 1. A Nash equilibrium exists for the above game.

Proof. From the form of the utility function we can see that

1. Ui(p) is continuous in p for all p ∈ P, for i = 0, 1, 2, ..., N

2. Ui(p0,p1) is concave in p1i for each fixed value of (p0, p11, ..., p
1
i−1, p

1
i+1, ..., p

1
N ),

for i = 1, ..., N ,

RR n° 9510



8 Krishnan K.S., Perlaza, and Altman.

3. U0(p0,p1) is concave in p0 for each fixed value of p1.

Since it is a concave game with finite players, a Nash equilibrium p∗ exists [20].

We will now show that this Nash equilibrium is unique. For any non negative
vector s = (s0, s1, ..., sN ), let us define the weighted sum of utilities,

Vs(p) =

N∑
i=0

siUi(p). (9)

Define the pseudogradient vs(p) of Vs(p) as the matrix

vs(p) =


s0∇0U0(p)
s1∇1U1(p)

...
sN∇NUN (p)

 , (10)

where ∇1, ...∇N denote gradient with respect to p11, ..., p
1
N , and ∇0 denotes

gradient with respect to the vector (p01, ..., p
0
N ). For two vectors x and y of the

same dimension, let 〈x, y〉 denote their inner product. The notion of diagonal
strict concavity is defined as follows.

Definition 2. The function Vs(p) is diagonally strict concave for fixed non
negative s if for every p 6= q,

〈q− p, vs(p)− vs(q)〉 > 0. (11)

We are now ready to prove the uniqueness of the Nash equilibrium price p∗
in Lemma 1. We will use the following result from [20].

Proposition 2 (Theorem 2 of [20]). If Vs(p) is diagonally strict concave for
some non zero vector s, the Nash equilibrium point p∗ is unique.

Note that the above result holds when the constraint set P is uncoupled,
i.e., the player constraints do not interact with each other, as in our case.

Theorem 3. The Nash equilibrium point p∗ in Lemma 1 is unique.

Proof. Plugging in the values of U0, ..., UN , and choosing s = (s, s, ..., s), s > 0,
we can write the pseudogradient vs(p) as

vs(p) =



s(R1(p)− β1p01)
s(R2(p)− β2p02)

...
s(RN (p)− βNp0N )
s(R1(p)− β1p1i )

...
s(RN (p)− β1p1N )


. (12)

Inria
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Recall that p = (p00, ..., p
0
N , p

1
0, ..., p

1
N ) and q = (q00 , ..., q

0
N , q

1
0 , ..., q

1
N ). We have

〈q− p, vs(p)− vs(q)〉 =

N∑
i=1

s(q0i − p0i )(Ri(p)−Ri(q) + βi(q
0
i − p0i ))

+

N∑
i=1

s(q1i − p1i )(Ri(p)−Ri(q) + βi(q
1
i − p1i ))

=s

N∑
i=1

βi[(q
0
i − p0i )2 + (q1i − p1i )2] + s

N∑
i=1

βi[q
0
i − p0i + q1i − p1i ]2,

which is positive for q 6= p. Thus it follows that Vs(p) is diagonally strict
concave, and the result follows from Proposition 2.

2.1 Characterizing the Nash Equilibrium
We calculate the Nash equilibrium point p∗ by solving the utility maximization
conditions in Definition 1. From first order conditions for renter class i,

∂Ui(p)

∂p1i
= αi − βip0∗i − 2βip

1
i . (13)

Equating this to zero, we obtain p1∗i = αi

2βi
− p0∗i

2 . Similarly, we have

∂U0(p)

∂p0i
= αi − βip1∗i − 2βip

0
i , (14)

which is equal to zero at p0∗i = αi

2βi
− p1∗i

2 . These are simultaneously true at

p0∗i = p1∗i =
αi
3βi

, which indicates a symmetric pricing between the renter and

the platform. This yields the utilities at the Nash equilibrium point as

Ui(p∗) =
α2
i

9βi
, U0(p∗) =

N∑
i=1

α2
i

9βi
. (15)

At the Nash equilibrium, the price charged to a customer of class i is 2αi

3βi
, which

is higher than the price charged at global optimum, αi

2βi
. However, the total

revenue obtained is
∑
i

2α2
i

9βi
, which is smaller than the global optimal revenue

U∗. The price of anarchy (PoA) [15], defined as the ratio of the total utility at
the global optimum , to the total utility at the equilibrium, is given by

PoA =

∑
i
α2

i

4βi∑
i
2α2

i

9βi

. (16)

Note that PoA ≥ 1. The PoA indicates how close the equilibrium is to the
global optimum, in terms of total revenue. With N = 1, PoA = 9

8 .

RR n° 9510
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2.2 An Iterative Pricing Scheme
We present a sequence of prices that converges to the Nash equilibrium price.
Observe that the constraint region P can be written as P = {p : h(p) � 0},
where h is a vector of 4N linear constraints hk(p),

hk(p) =


p0k, k = 1, ..., N,

p1k−N , k = N + 1, ..., 2N,
αk−2N

βk−2N
− p0k−2N , k = 2N + 1, ..., 3N,

αk−3N

βk−3N
− p1k−3N , k = 3N + 1, ..., 4N.

(17)

Define the index sets

I−(p) = {i : hi(p) ≤ 0}, (18)
I+(p) = {i : hi(p) > 0}. (19)

Let s = (s, s..., s), s > 0. Define, for a 4N length vector w = (w1, ..., w4N ),

Fs(p,w) = vs(p) + 〈∇h(p),w〉, (20)
W(p) = {w : wi ≥ 0 for i ∈ I−(p), wi = 0 for i ∈ I+(p)} (21)
W (p) = argw∈W(p) min ||Fs(p,w)||. (22)

Consider the sequence of prices p(0),p(1), ..., where the components evolve as,

p(t+ 1) = p(t) + ∆(t)[vs(p(t)) + 〈w(t),∇h(p(t))〉], (23)
w(t) ∈W (p(t)), (24)

∆(t) = −Fs(p(t),w(t))TJFFs(p(t),w(t))

||JFFs(p(t),w(t))||2
, (25)

where JF is a mean value of the Jacobian of F . This sequence satisfies the
following.

Theorem 4. Let p(t) satisfy the iterative scheme in (23)-(25). Then, for any
starting point in P, p(t) converges to the Nash equilibrium.

Proof. Consider the pseudogradient vector vs(p) with s = (s, s, .., s). Let J be
the Jacobian of vs(p) with respect to p. We see that J is a 2N ×2N symmetric
matrix with entries Jij given by,

Jij =


−2βi, for i = j, i ≤ N,
−2βi−N , for i = j, i > N,

−βmin(i,j), for |i− j| = N,

0, else.

(26)

for 1 ≤ i, j ≤ 2N . For a vector x, let xT denote its transpose. We can see that
for a 2N length vector x = (x1, x2, ..., x2N ) we have

xTJx = −2

N∑
i=1

βix
2
i − 2

2N∑
i=N+1

βi−Nx
2
i − 2

N∑
i=1

βixixN+i (27)

Inria
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= −
2N∑
i=1

βix
2
i −

2N∑
i=N+1

βi−Nx
2
i −

N∑
i=1

βi(xi + xN+i)
2 < 0, (28)

for all non zero vectors x. Thus it follows that J is negative definite. Note that
J = JT , where JT denotes the transpose of J . Hence J + JT = 2J is also
negative definite. Then, it follows from [20, Theorems 10 and 8] and Theorem
3 that p(t) converges to the Nash equilibrium p∗.

2.3 Stackelberg Pricing
Now we consider the leader follower pricing, where one (set of) players declares
their price first, and the other set follows. Let the renters be leaders (all choos-
ing their prices simultaneously), followed by the platform. The price for the
platform will be such that

∂U0(p)

∂p0i
= 0 for all i. (29)

This is equivalent to

p0i =
αi
2βi
− p1i

2
.

The renter pricing will take this into account. Substituting this value for the
renters, we get

Ui(p) = Ri(p)p1i = p1i (
αi
2
− βip

1
i

2
).

For the renters, taking
∂Ui
∂p1i

= 0 gives

p0i =
αi
4βi

, p1i =
αi
2βi

.

The renters obtain a total revenue of
∑
i

α2
i

8βi
, and the platform gets

∑
i

α2
i

16βi
,

and the total revenue is
∑
i

3α2
i

16βi
. Note that the leader, the renter, obtains

the same revenue as in the globally optimal pricing (assuming equal division of
revenues between renters and the platform). We see that the total price charged
to a class i customer at the Stackelbeg equilibrium is higher than the price at
Nash equilibrium as well as the global optimal price. The price of anarchy at
the Stackelberg equilibrium is

PoA =

∑
i
α2

i

4βi∑
i

3α2
i

16βi

.

For N = 1, PoA = 4
3 , which is greater than PoA at the Nash equilibrium. The

Stackelberg equilibrium prices are hence costlier for the customer, while yielding
lower revenues globally.

RR n° 9510



12 Krishnan K.S., Perlaza, and Altman.

If we consider the inverse case, with the platform being leader and renters

being followers, the platform now gets
∑
i

α2
i

8βi
, and the renters obtain

∑
i

α2
i

16βi
.

Thus, getting to choose the price first lets you have a higher fraction of the
revenue. In practice, who gets to choose first depends on the market. If the
platform is a monopoly, and the renters have no option but to use the platform
for their operation, then the platform may be able to take the lead in pricing,
and getting an advantage. On the other hand, if there are multiple platforms
that compete with in the market, or there is an open market where renters can
easily get customers, renters may be in a position to choose to price first, and
thus make a gain. Thus, renters who exclusively use one platform may stand to
lose in revenue, whereas renters who use multiple platforms or have access to
the real market, can make a gain.

3 Cooperative Pricing

In this section we consider cooperative pricing scenarios. The change from the
preceding section is that the division of revenues between the platform and renter
is fixed by arrangement. The renter pays the the platform from his revenue, at
some previously agreed fixed rate f . We can think of two ways in which revenue
can be shared between renter and the platform. In both these cases we will
see that the total revenue extracted is the maximum possible (i.e., equal to the
globally optimal revenue). However, the sharing of the revenues between renter
and the platform is slightly different. The difference between these two ways is
that in the first, the payment to the platform is viewed as a kind of ‘tax’ on the
renter, and the end user is not aware of it, while in the second case the payment
to the platform is presented as a ‘tax’ to the end user, directly on the price.

3.1 Case A

The renter i announces a price pi, and then pays fpi to the platform, where
f ∈ (0, 1). The utilities of platform and renters i are

U0(p) =
∑
i

(αi − βipi)fpi,

Ui(p) = (αi − βipi)(pi − fpi), i = 1, ..., N.

At the optimal point given by equating the partial derivatives of Ui with respect

to pi to zero, we get pi =
αi
2βi

, Ui(p) = (1 − f)
α2
i

4βi
and U0 = f

∑
i

α2
i

4βi
. Total

revenue extracted is
∑
i

α2
i

4βi
. The rental platform Booking.com uses this model,

and charges an f between 10% and 20%, depending on the location of the
property [2].
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3.2 Case B

The renter i announces a price pi(1 + f), and then pays fpi to the platform, for
some f > 0. The utilities of platform and renters i are

U0(p) =
∑
i

(αi − βi(1 + f)pi)fpi,

Ui(p) = (αi − βi(1 + f)pi)pi, i = 1, ..., N.

In this case the equilibrium prices and revenues are

pi =
αi

2(1 + f)βi
, Ui =

α2
i

4βi(1 + f)
, U0 =

f

1 + f
(
∑
i

α2
i

4βi
).

Total revenue extracted is
∑
i

α2
i

4βi
. This is close to the pricing model of Airbnb,

which charges around 14.2% as f . However, they also charge 3% on the guest
separately [1].

Compared to method A, under method B, for the same f , the revenue of
the platform decreases, and that of the renters increases (because for f > 0,

1− f < 1

1 + f
). Under both methods A and B, the customer sees a price

αi
2βi

.

However, the splitting of revenues is different. Since limf→∞
f

1 + f
= 1, we see

that by increasing f in method B, the platform can achieve a revenue as close
to the total revenue as it wants. The customer sees the same price irrespective
of the choice of f .

3.3 Revenue Division and Shapley Value

In the preceding discussion, we had assumed that there was a previously agreed,
fixed number f , which decided the division of revenue between the platform and
the renter. How can one obtain a “fair” value of f? One may also have a different
value of fi for each renter. How do we decide this division fi? One solution is to
consider the Shapley value [17] associated with the game. In a related context,
Shapley value was used in the study of pricing of internet service prividers
in [16]. The Shapley value is an indicator of the relative power that different
players have in the coalition, when they cooperate. To obtain the Shapley value,
we assign values to different coalitions between the players and the platform.
We will also need to take into account the presence of other competitors to the
platform in the market.

Let Pl = {A1, A2, R1, ..., RN} denote the set of players, with A1 and A2 rep-
resenting two platforms, and Ri representing renter class i. Let µ(C) represent
the worth obtained by a coalition C ⊆ Pl. This denotes the total utility when
all users in C work together as a coalition. We will assume that platform Ai
controls a fraction ρi of the customer population, with ρ1 + ρ2 = 1. This can
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14 Krishnan K.S., Perlaza, and Altman.

be considered as a generalization of our model with renter class j of the market
share controlled by platform i, having a demand response of the form

Ri,j(p) =
√
ρiαj − βj(p0i,j + p1i,j), i = 1, 2, (30)

with the price vector p of appropriate dimensions. Using the results of the pre-
ceding discussions in Section 3, it is clear that the worth obtained by a coalition
between both platforms and a subset of the renters i1, i2, .., in ∈ {1, ..., N} is

µ({A1, A2, Ri1 , Ri2 , ..., Rin}) =

n∑
j=1

α2
ij

4βij
. (31)

If a single platform and a subset of renters collaborate, the revenue will be
proportional to the market share of that platform. Thus, for any i1, i2, .., in ∈
{1, ..., N} we have

µ({An, Ri1 , Ri2 , ..., Rin}) = ρn

n∑
j=1

α2
ij

4βij
, n = 1, 2. (32)

The apartments or the platforms have no worth in the absence of the other, i.e.,

µ({A1}) = µ({A2}) = µ(C) = 0, ∀C ⊆ Pl\{A1, A2}, (33)

where for two sets A,B, A\B = A ∩ Bc denotes the difference of the sets. We
define the Shapley value for the game.

Definition 3. The Shapley value η is the vector given by

η(i) =
∑

C⊆Pl\{i}

|C|!(|Pl| − |C| − 1)!

|Pl|!
(µ(C ∪ {i})− µ(C)) , ∀i ∈ Pl. (34)

Here µ(C∪{i})−µ(C) represents the increment in worth in the coalition C by
the addition of some player i ∈ Pl. The Shapley value is a unique function, that
provides a measure of each player’s contribution to the coalition and satisfies
certain desirable properties [17, Theorem 9.3]. With N renter classes and two
platforms, and worth function µ defined as discussed, we obtain the following.

Lemma 5. For the worth µ defined in (31)-(33), the Shapley value is given by

η(Ai) =
ρi
2

N∑
j=1

α2
j

4βi
, i = 1, 2, (35)

η(Ri) =
1

2

α2
i

4βi
, i = 1, ..., N. (36)

The proof of this lemma is provided in Appendix A.
Thus, if ρ1 = 1, there is one platform that has monopoly, and it will take

away half of the renters’ revenues. Since the total pooled revenue in a coopera-
tive game between one platform and N renters yields a total utility of

∑
i
α2

i

4βi
,
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we can see that the Shapley values of the players tells us how to divide this total
utility. From the perspective of renter class i, the Shapley division represents
a more than twofold improvement over what it gets in the Nash price. The
platform also makes a similar gain.

In the case of two platforms, they will divide half of the total revenue between
themselves. The fraction of total price taken as fee by the platform, is an
indicator of how much of the market it controls, or how close it is to being a
monopoly. Both Airbnb and Booking.com charge well below 50% of the total
price as a service charge. As discussed before, the former charges around 17%
and the latter, 15%, on average.

4 Quality of Service/Experience
In this section, we modify the demand response to incorporate the quality of ser-
vice offered by the renter (alternatively, the quality of experience of the guest).
In the sequel we will assume that there is just one renter class, i.e., N = 1. The
demand response function is given by

R(p) = α− βp+ γq. (37)

Here p represents the price. In this section we will remove the upper bound on
price, and allow it to take values in the set [0,∞). The variable q represents
a quality of service parameter, taking values in the set [qmin, qmax], with 0 ≤
qmin ≤ qmax. Higher values of q correspond to the renters providing better
services for the client (in terms of customer satisfaction). This can correspond
to better behaviour, better services and creating a better ambience around the
property. However, per apartment, maintaining this value of q comes at a price
of cq for the renter. Let us also assume that of the price charged, the renter
gets to keep a fraction f ∈ (0, 1], and the platform keeps 1 − f . The utility of
the renter at a price p is, therefore,

Ur(p) = (fp− cq)R(p). (38)

The utility for the platform, on the other hand is

Ua(p) = (1− f)pR(p). (39)

We are interested in whether the renter and the platform can agree on a value of
q as the quality of service to provide to the customer. We first find the optimal
price from the renter’s perspective, and calculate the utilities for the renter and
the platform at this optimal price. Then we examine how these utilities vary,
as we vary the parameter q.

4.1 Maximizing the Renter’s Utility
The partial derivatives of Ur(p) with respect to p are,

∂Ur(p)

∂p
= αf + cqβ + fqγ − 2pfβ, (40)
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16 Krishnan K.S., Perlaza, and Altman.

∂2Ur(p)

∂p2
= −2fβ < 0. (41)

Since the function is strictly concave, it follows [9, Sec. 4.2.3] that the renter’s
utility is maximized when ∂Ur(p)

∂p = 0, at p = p∗r , where

p∗r =
α+ qγ

2β
+
cq

2f
. (42)

The utility for the renter with price p∗r is

Ur(p
∗
r) =

f

4β
(α+ qγ − cqβ

f
)2. (43)

Since this is a function of q, we look at how it varies with q. We have

∂Ur(p
∗
r)

∂q
=

f

2β
(α+ qγ − cqβ

f
)(γ − cβ

f
) =

α

β

(fγ − cβ)

2
+ q

(fγ − cβ)2

2fβ
.

The utility for the platform at the price p∗r is

Ua(p∗r) =
1− f

4β

[
(α+ qγ)2 −

(
cqβ

f

)2
]
. (44)

The rate of change of the utility of the platform at price p∗r with respect to q is

∂Ua(p∗r)

∂q
=

1− f
2β

[
αγ + q

(
γ2 − c2β2

f2

)]
. (45)

The variation of the function Ur(p
∗
r) with q depends on the value of c, which

is the cost per unit quality of service provided to the client by the renter. We
consider the following cases, for different calues of the cost c.

4.2 Case 1: c = fγ
β

In this case, we see that

Ur(p
∗
r) =

fα2

4β
, (46)

Ua(p∗r) =
(1− f)(α2 + 2qαγ)

4β
. (47)

The renter is insensitive to q, while the platform can gain from a higher q.

4.3 Case 2: c < fγ
β

In this case, we have fγ − cβ > 0. From (44),

∂Ur(p
∗
r)

∂q
> 0 for q > − αf

(fγ − cβ)
. (48)
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Since qmin ≥ 0, and − αf
(fγ−cβ) < 0, it follows that ∂Ur(p

∗
r)

∂q is positive for all
q ∈ [qmin, qmax]. Hence Ur(p∗r) is always increasing, as we increase q from qmin
to qmax. Hence, from the renter’s perspective, it makes sense to choose the
highest value q = qmax, to maximize revenue.

Similarly, from (45), observe that whenever q > − f2αγ
f2γ2−c2β2 , we see that

∂Ua(p
∗
r)

∂q > 0. Since c < fγ
β , it follows that

− f2αγ

f2γ2 − c2β2
= − f2αγ

(fγ − cβ)(fγ + cβ)
< 0,

and hence Ua(p∗r) is increasing, as we increase q from qmin to qmax. Hence, it is
optimal for the platform to have q = qmax as well. Both renter and the platform
are in agreement about the quality of service to be provided. Thus, if the cost
of providing quality of service is below a threshold, both parties can agree on
providing the best quality of service possible.

4.4 Case 3: c > fγ
β

This is the case where the cost of providing quality of service is high. We have

∂Ur(p
∗
r)

∂q

{
< 0, for q < − fα

fγ−cβ ,

> 0, for q > − fα
fγ−cβ .

(49)

Since ∂2Ur(p
∗
r)

∂q2 > 0, q = − fα
fγ−cβ is a minimizer of Ur(p∗r) in the variable q.

Also, since f2γ2−c2β2 = (fγ−cβ)(fγ+cβ) < 0, we have that ∂
2Ua(p

∗
r)

∂q2 < 0.
Hence, for the platform, the value of q that maximizes its revenue is such that
∂Ua(p

∗
r)

∂q = 0, which is given by

q∗a = − f2αγ

f2γ2 − c2β2
. (50)

Note that since fγ < cβ, it follows that −fα
fγ−cβ > 0 and hence, q∗a = fγ

fγ+cβ
−fα
fγ−cβ <

−fα
fγ−cβ . For q > q∗a, we see that ∂Ua(p

∗
r)

∂q is negative, and when q < q∗a, we have
∂Ua(p

∗
r)

∂q positive. We have the following possibilities.

1. If qmin > − fα
fγ−cβ , then

∂Ur(p
∗
r)

∂q > 0 for q ∈ [qmin, qmax]. Therefore, the
renter must choose q = qmax. However, since qmin > q∗a, the utility of
the platform will decrease as we increase q from qmin to qmax. Hence, the
optimal q for the platform is qmin.

2. If qmax < − fα
fγ−cβ , then ∂Ur(p

∗
r)

∂q < 0 for q ∈ [qmin, qmax]. The renter
must choose q = qmin. In this case, the platform has two possibilities. If
qmax ≤ q∗a, it will prefer q = qmax. If qmax > q∗a ≥ qmin, the platform will
prefer q∗a. If qmin > q∗a, the platform will prefer q = qmin.
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3. If − fα
fγ−cβ ∈ [qmin, qmax], the renter will prefer qmin or qmax depending on

which one maximizes the value of Ur(p∗r). The preference of the platform
will be dependent on the position of p∗a relative to the interval [qmin, qmax]
as before.

The sharing of revenues between renter and the platform is through the fraction
f . In the quantity fγ − cβ, neither renter nor the platform can influence β, γ
(determined by the population behaviour) and c (determined by service cost in
the economy). By choosing a particular value of f , the renter and the platform
enter into one of the cases listed above.

5 Conclusion and Future Directions
In this work we have presented different models to understand optimal pricing
and revenue in a digital platform pricing problem and obtain different properties
of non cooperative and cooperative solutions. We also study how providing
quality of service impacts price. While these models help quantify questions of
optimality and equilibrium behaviour in the prices, they do not fully capture all
the dynamics of the rental market. Even though platforms such as Airbnb and
Booking.com have a cooperative pricing mechanism, it is not clear if the Shapley
value by itself fully explains their revenue structure. The next step is to model
different externalities and how they impact prices, revenue and optimality.
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A Proof of Lemma 5
Proof. Let us denote

χ(C) = |C|!(|Pl| − |C| − 1)! = |C|!(N + 1− |C|)! (51)

Consider platform A1. Using (31)-(33), we know that for all C ⊆ Pl such that
C does not contain A1,

µ(C ∪ {A1})− µ(C) = ρ1
∑

j:Rj∈C

α2
j

4βj
. (52)

Using this in (34), we get

η(A1) = ρ1
∑

C⊆Pl\{A1}

χ(C)

(N + 2)!

∑
j:Rj∈C

α2
j

4βj
, (53)

= ρ1

N∑
j=1

α2
j

4βj

∑
C⊆Pl\{A1}:Rj∈C

χ(C)

(N + 2)!
. (54)

Let us denote

P 1
l = {C ⊆ Pl\{A1} : Rj ∈ C}, (55)

P 2
l = {C0 ∪ {Rj} : C0 ⊆ Pl\{A1, Rj}}, (56)

P 3
l = {C0 ∪ {A2, Rj} : C0 ⊆ Pl\{A1, A2, Rj}}, (57)

P 4
l = {C0 ∪ {Rj} : C0 ⊆ Pl\{A1, A2, Rj}}. (58)

We note the following relationships between these sets:

P 1
l = P 2

l = P 3
l ∪ P 4

l , P 3
l ∩ P 4

l = { }. (59)

Here, the first equality follows from Lemma 6 (in Appendix B). The second
equality follows by dividing P 2

l into sets that contain A2 and sets that do not,
and applying Lemma 6. With these we can rewrite η(A1) as

η(A1) =
ρ1

(N + 2)!

N∑
j=1

α2
j

4βj

 ∑
C∈P 3

l

χ(C) +
∑
C∈P 4

l

χ(C)

 ,
=

ρ1
(N + 2)!

N∑
j=1

α2
j

4βj

N−1∑
k=0

(
N − 1

k

)
[(k + 1)!(N − k)! + (k + 2)!(N − k − 1)!] ,

=
ρ1

(N + 2)!

N∑
j=1

α2
j

4βj

N−1∑
k=0

(N − 1)!(k + 1)!(N − k − 1)!

k!(N − k − 1)!
[N − k + k + 2] ,

=
ρ1

(N + 2)!

N∑
j=1

α2
j

4βj

N−1∑
k=0

(N − 1)!(k + 1)(N + 2),
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=
ρ1

(N + 2)!

N∑
j=1

α2
j

4βj
(N − 1)!(N + 2)

N(N + 1)

2
,

=
ρ1
2

N∑
j=1

α2
j

4βj
.

From symmetry we deduce the value of η(A2). For finding η(Ri), we denote

P 5
l = {C ⊆ Pl\{Ri} : µ(C ∪ {Ri})− µ(C) 6= 0}, (60)

P 6
l = {C ∈ P 5

l : C ∩ {A1} = {A1}, C ∩ {A2} = { }}, (61)

P 7
l = {C ∈ P 5

l : C ∩ {A2} = {A2}, C ∩ {A1} = { }}, (62)

P 8
l = {C ∈ P 5

l : C ∩ {A1, A2} = {A1, A2}}. (63)

It is easy to see that

P 5
l = P 6

l ∪ P 7
l ∪ P 8

l , (64)

and P 6
l ,P

7
l , P

8
l are mutually disjoint. By similar simplifications as before, using

the definition of µ, we obtain,

η(Ri) =
1

(N + 2)!

α2
i

4βi

ρ1 ∑
C∈P 6

l

χ(C) + ρ2
∑
C∈P 7

l

χ(C) +
∑
C∈P 8

l

χ(C)

 . (65)

Using Lemma 6, we note that

P 6
l = {C0 ∪ {A1} : C0 ⊆ Pl\{A1, A2, Ri}}, (66)

P 7
l = {C0 ∪ {A2} : C0 ⊆ Pl\{A1, A2, Ri}}, (67)

P 8
l = {C0 ∪ {A1, A2} : C0 ⊆ Pl\{A1, A2, Ri}}. (68)

Using this we obtain

η(Ri) =
1

(N + 2)!

α2
i

4βi

[
(ρ1 + ρ2)

N−1∑
k=0

(
N − 1

k

)
(k + 1)!(N − k)! (69)

+

N−1∑
k=0

(
N − 1

k

)
(k + 2)!(N − k − 1)!

]
. (70)

Since ρ1+ρ2 = 1, the result follows by combining the combinatorial expressions,
similar to the case of η(A1).

B A Simple Identity
Lemma 6. Let X be a set, and X0 a subset of X. Let S be the set of all the
subsets of X that contain X0, i.e.,

S = {S ⊆ X : X0 ⊆ S}. (71)
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Define S0 as

S0 = {S ∪X0 : S ⊆ X\X0}. (72)

Then, S = S0.

Proof. Let σ ∈ S. This implies X0 ⊆ σ ⊆ X. Thus we can write σ = σ0 ∪X0,
where σ0 = σ\X0. Since σ0 ⊆ X\X0, it follows that σ ∈ S0. Thus S ⊆ S0.

Let σ ∈ S0. Then σ = σ0 ∪ X0, where σ0 ⊆ X\X0. Clearly, σ ⊆ X and
X0 ⊆ σ. Thus σ ∈ S, and hence S0 ⊆ S. Thus S = S0.
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