Plant Health Workshop: Advances in plant disease and pest management: a holistic approach February 28th, 2023 IRTA, Spain

Breeding for resistance/tolerance in fruit crops: New trends

Bénédicte QUILOT-TURION

INRAE GAFL







### Major stakes for stone fruit production today



#### Need for low input cultivation

Treatment frequency [15-30] High dependance to irrigation and fertilization

### Varieties with low adaptation to agro-ecological transition:

Few resilient varieties No incentive in registration procedure

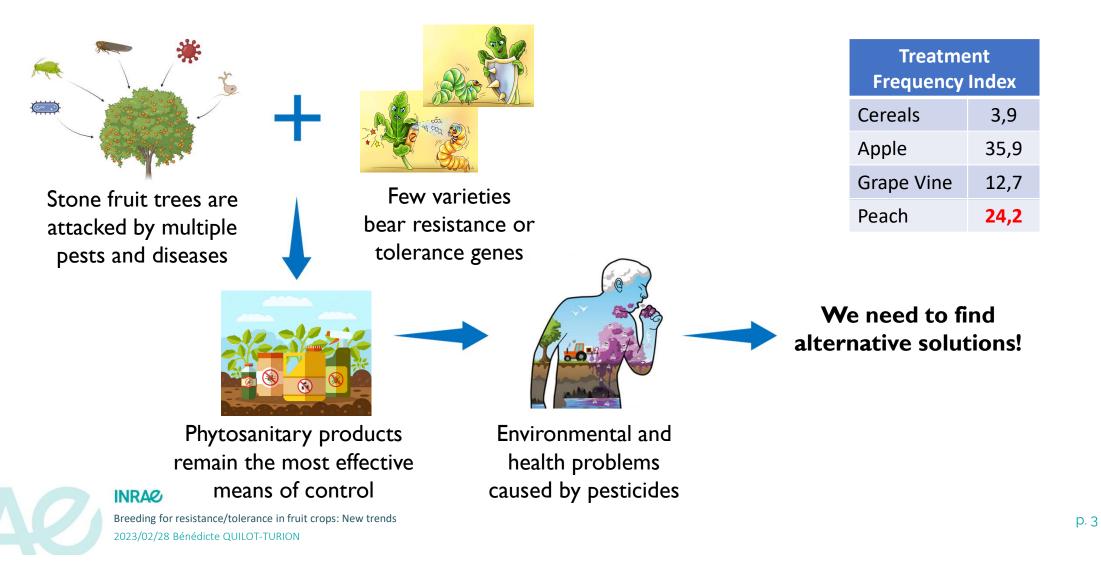
### Perennial crops

Health management over years ~20 years to create a new variety

#### **Major solutions:**

→Genetic diagnostics

→Screening plant material faster and more accurately




#### **Potential for agro-ecology**

Large diversity within stone fruit Development of agroforestry Carbon storage in soil Demand for organic fruits New « eco-labels » on market

#### INRA®

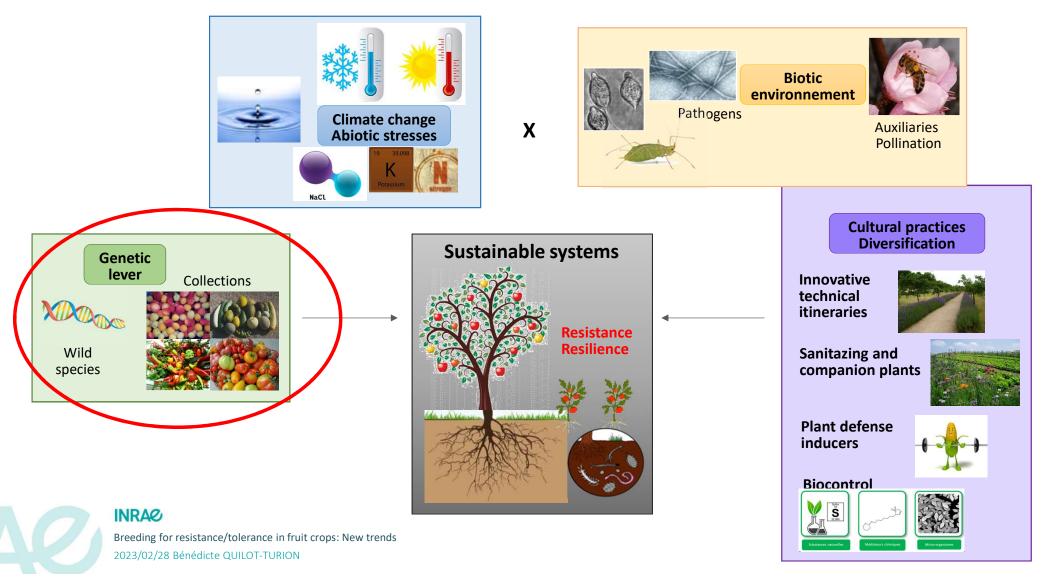
### > The use of pesticides: a real problem in fruit production



Makes genetic an efficient lever for agroecology

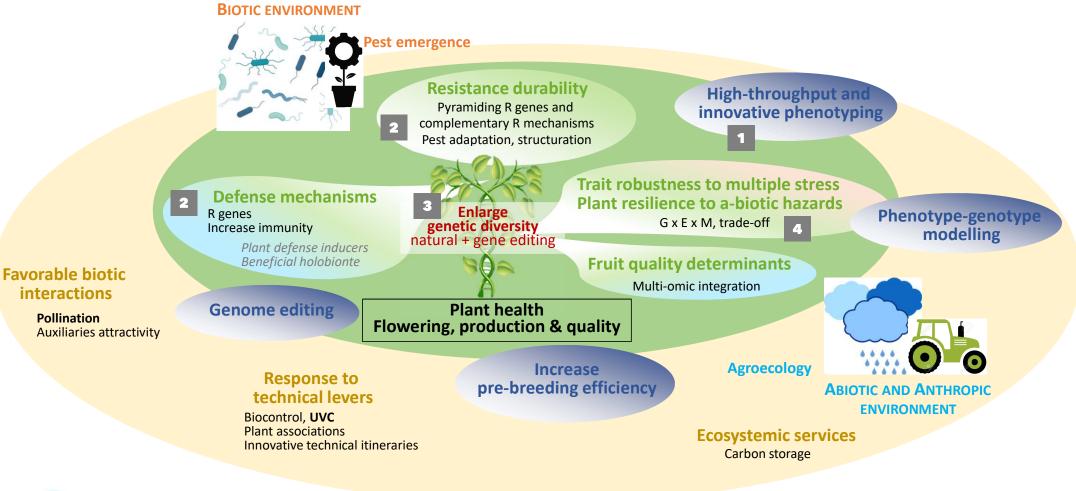
## Combining genetics and agrotechnical levers to develop agroecological, sustainable systems

- 1. Mobilize the arsenal of modern tools
  - Sequencing, genotyping, genetic engineering
  - Digital phenotyping, NIRS
- 2. Ensure the durability of the resistance genes
- 3. Enlarge genetic diversity <- use wild relatives
- 4. Target new traits : eg resilience


#### Methodologies

Marker Assisted Selection Marker Assisted Introgression Genomic prediction Gene editing

Phenotype characterization Phenomic prediction



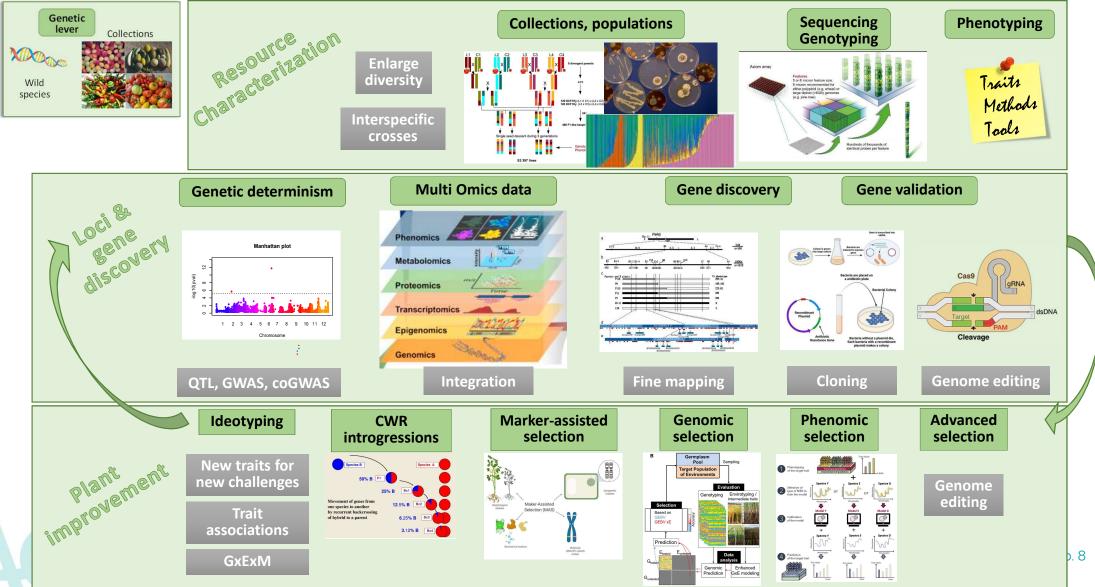

### Makes genetic an efficient lever for agroecology



p. 5

### Makes genetic an efficient lever for agroecology




#### INRA@

### > Summary

- 1. Mobilize the arsenal of modern tools
  - Sequencing, genotyping, genetic engineering
  - Digital phenotyping, NIRS
- 2. Ensure the durability of the resistance genes
- 3. Enlarge genetic diversity <- use wild relatives
- 4. Target new traits : eg resilience



## > The genetician pipeline



### > Phenotyping

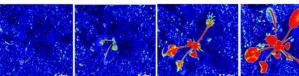
#### **Controlled experiments**

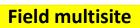


#### Emphasis platform network

#### Phenotyping tools

Highthrouput phenotyping



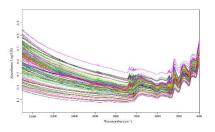


Captors for ecophysiological traits

#### Images for symptoms / architecture

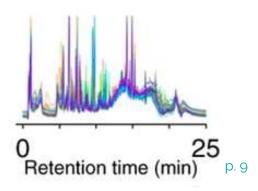












#### INRAO

Breeding for resistance/tolerance in fruit crops: New trends 2023/02/28 Bénédicte QUILOT-TURION

NIRS for phenomics



#### Metabolomics



### > Summary

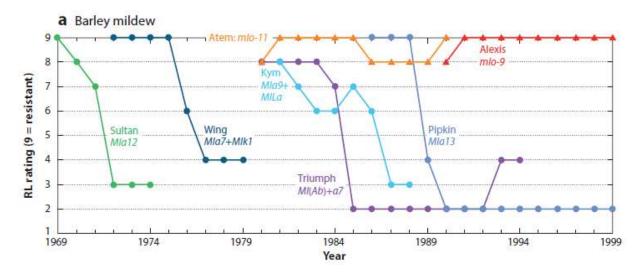
- 1. Mobilize the arsenal of modern tools
  - Sequencing, genotyping, genetic engineering
  - Digital phenotyping, NIRS
- 2. Ensure the durability of the resistance genes
- 3. Enlarge genetic diversity <- use wild relatives
- 4. Target new traits : eg resilience

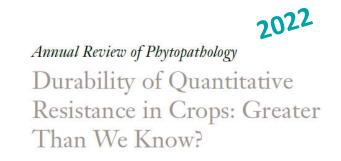


### Durable management of resistance

- Resistance genes are a limited resource
- Resistance gene breakdowns have already been observed
- A breeding program is a long-term and costly process
- The question of the management of resistance durability is crucial, particularly for perennial species

Quantitative resistance (QR) : the foundation of breeding for disease resistance in crops to achieve durable resistance


-> it remains poorly understood in comparison to the well studied gene-for-gene recognition process


Pyramiding resistance genes is an efficient strategy to increase resistance durability

Appropriate cultural practices and monitoring of variety deployment also contribute to the durability of resistance

#### INRAe



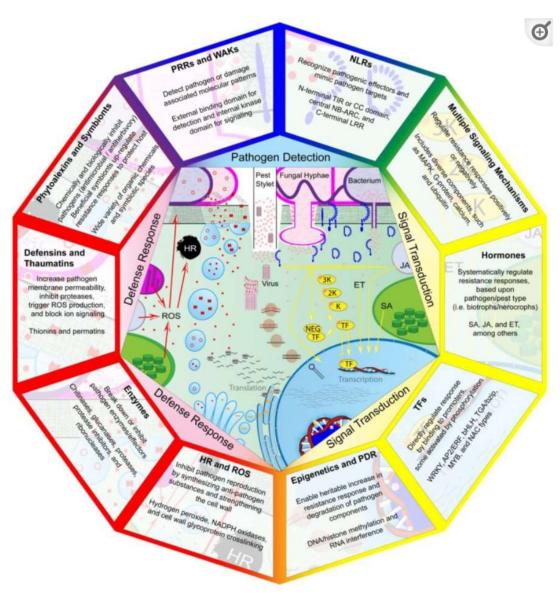




Christina Cowger<sup>1</sup> and James K.M. Brown<sup>2</sup>

Durable Resistance of Crops to Disease: A Darwinian Perspective James K.M. Brown Annual Review of Phytopathology 2015 53:1, 513-539

> **Durable resistance** is defined as resistance that has been effective for a relatively long time over a relatively large area where conditions are generally conducive to the disease


#### INRAe

### Plant defense mechanisms



#### **Review Disease Resistance Mechanisms in Plants**

Ethan J. Andersen <sup>1</sup>, Shaukat Ali <sup>2</sup>, Emmanuel Byamukama <sup>2</sup>, Yang Yen <sup>1</sup><sup>(0)</sup> and Madhav P. Nepal <sup>1,\*</sup><sup>(0)</sup>





### > Durable management of resistance

Many Effector-Triggered Resistance genes with large effects have not been durable because of their specificity to pathogen genotypes

| Specific<br>resistances         | Absolute, total,<br>qualitative<br>resistances         | Monogenic<br><b>Major gene</b>             | Prevents pathogen<br>establishment                                          | Triggers a strong plant response to neutralize<br>the pathogen; not very robust Selection<br>pressure on the pathogen selects more<br>virulent strains: circumvention |
|---------------------------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | Partial,<br>incomplete,<br>quantitative<br>resistances | <b>Polygenic</b><br>Several minor<br>genes | Limits colonization<br>and the impact of the<br>presence of the<br>pathogen | Causes disease reduction Longevity,<br>durability of resistance                                                                                                       |
| Non-<br>specific<br>resistances |                                                        |                                            |                                                                             | to multiple diseases allowing plants to<br>defend themselves against a broad spectrum<br>of pathogens                                                                 |

#### INRA@

### > INRA-ResDur for durable resistance in grape vine

#### Resistance breakdown of

- Rpv3 : resistance to Plasmopara viticola (downy mildew)
- Run1 : resistance to Uncinula necator (powdery mildew)

Marker-assisted selection to stack resistance factors derived from multiple sources.

- -> development of candidate cultivars two or three genes to control each disease
- Rpv1, Rpv3 and Rpv10 for downy mildew
- Run1, Ren3 and Ren3.2 for powdery mildew

# INRA-ResDur: the French grapevine breeding programme for durable resistance to downy and powdery mildew

C. Schneider<sup>a</sup>, C. Onimus, E. Prado, V. Dumas, S. Wiedemann-Merdinoglu, M.A. Dorne, M.C. Lacombe, M.C. Piron, A. Umar-Faruk, E. Duchêne, P. Mestre and D. Merdinoglu



Breeding for durable resistance to downy and powdery mildew in grapevine

D. Merdinoglu\*, C. Schneider, E. Prado, S. Wiedemann-Merdinoglu and P. Mestre

#### INRA@

Breeding for resistance/tolerance in fruit crops: New trends 2023/02/28 Bénédicte QUILOT-TURION

p. 15



- 1. Mobilize the arsenal of modern tools
  - Sequencing, genotyping, genetic engineering
  - Digital phenotyping, NIRS
- 2. Ensure the durability of the resistance genes
- 3. Enlarge genetic diversity <- use wild relatives
- 4. Target new traits : eg resilience



### Enlarge genetic diversity : use wild relatives



p. 17

MDP

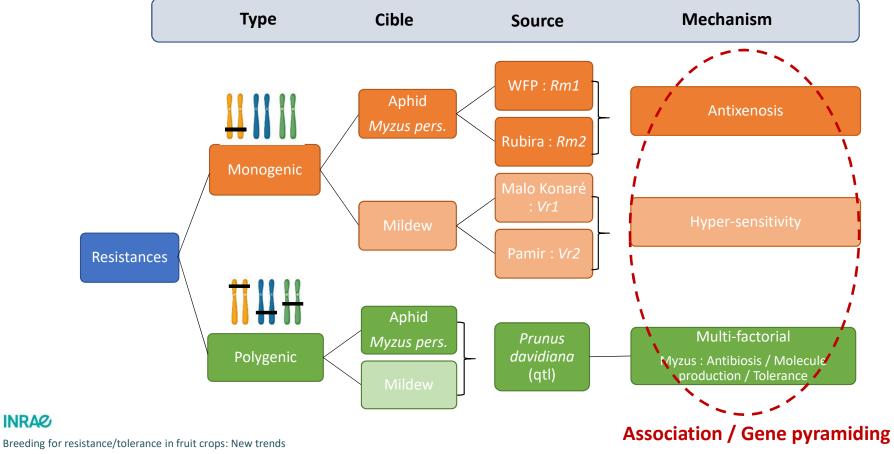
Trends in

### > INRAE peach resistance program : green aphid and powdery mildew

Theor Appl Genet (2003) 107:227–238 DOI 10.1007/s00122-003-1238-8

### 2003

M. Foulongne · T. Pascal · P. Arús · J. Kervella


#### The potential of *Prunus davidiana* for introgression into peach [*Prunus persica* (L.) Batsch] assessed by comparative mapping

| Trait/Resistance      | Organism | Pathogen         | Inoculation | Resistance/<br>tolerance | Inheritance  | Gene name | LG                    | Reference                     |
|-----------------------|----------|------------------|-------------|--------------------------|--------------|-----------|-----------------------|-------------------------------|
| P. davidiana          |          |                  |             |                          |              |           |                       |                               |
| Powdery mildew        | Fungi    | P. pannosa       | Natural     | Tolerance                | Quantitative | QTLs      | 1, 2, 4, 6, 8         | Foulongne et al. (2003)       |
| Sharka                | Virus    | Plum pox virus   | Controlled  | Tolerance                | Quantitative | QTLs      | 1, 2, 4, 5, 6,7       | Rubio et al. (2013)           |
| Green peach aphid     | Insect   | Myzus persicae   | Natural     | Tolerance                | Quantitative | QTLs      | 1, 2, 3, 4,<br>5,6, 8 | Sauge et al. (2012)           |
| Root-knot<br>nematode | Nematode | Meloidogyne spp. | Natural     | Tolerance                | Major gene   |           | Not-mapped            | Reighard and Loreti<br>(2008) |
| Brown rot             | Fungi    | Monilinia spp.   | Controlled  | Tolerance                | Quantitative |           | Not-mapped            | Pascal et al. (1998)          |

INRAØ



### INRAE peach resistance program : green aphid and powdery mildew



#### Major genes associated to minor genes for resistance durability

2023/02/28 Bénédicte QUILOT-TURION

INRAØ

### Incorporation of resistance genes from wild species : a promising option

identify the valuable germplasm

very little information about resistance sources in non-crop *Prunus* relatives

-> systematic survey of *Prunus* wild relatives around the world

-> characterization of their phenotype for various resistance traits

Aranzana et al. Horticulture Research (2019)6:58 https://doi.org/10.1038/s41438-019-0140-8 2019

Horticulture Research www.nature.com/hortres

**REVIEW ARTICLE** 

**Open Access** 

# *Prunus* genetics and applications after de novo genome sequencing: achievements and prospects

Maria José Aranzana<sup>1</sup>, Véronique Decroocq<sup>2</sup>, Elisabeth Dirlewanger<sup>2</sup>, Iban Eduardo<sup>1</sup>, Zhong Shan Gao <sup>3</sup>, Ksenija Gasic<sup>4</sup>, Amy lezzoni<sup>5</sup>, Sook Jung<sup>6</sup>, Cameron Peace<sup>6</sup>, Humberto Prieto<sup>7</sup>, Ryutaro Tao<sup>8</sup>, Ignazio Verde<sup>9</sup>, Albert G. Abbott<sup>10</sup> and Pere Arús<sup>1</sup>

-> introgression of the genetic factors linked to resistance into elite *Prunus* cultivars through interspecific crosses

The construction of a *Prunus* pan-genome would promote and accelerate the development of appropriate genomic tools for all *Prunus* species, including wild relatives



### Development of interspecific lines and molecular tool

Tree Genetics & Genomes (2016) 12: 96 DOI 10.1007/s11295-016-1056-1

2016

ORIGINAL ARTICLE

Marker-assisted introgression (MAI) of almond genes into the peach background: a fast method to mine and integrate novel variation from exotic sources in long intergeneration species

Octávio Serra<sup>1</sup> · José Manuel Donoso<sup>1,2</sup> · Roger Picañol<sup>1,3</sup> · Ignasi Batlle<sup>4</sup> · Werner Howad<sup>1</sup> · Iban Eduardo<sup>1</sup> · Pere Arús<sup>1</sup>

Article

Research

Construction of a collection of introgression lines of "Texas" almond DNA fragments in the "Earlygold" peach genetic background

Naveen Kalluri<sup>1</sup>, Octávio Serra<sup>2</sup>, José Manuel Donoso<sup>3</sup>, Roger Picañol<sup>4</sup>, Werner Howad<sup>1,5</sup>, Iban Eduardo<sup>1,5,\*</sup> and Pere Arús<sup>1,5,\*</sup>

### HORIZON-CL6-2023-BIODIV-01-13 / Crop wild relatives for sustainable agriculture

#### INRA

Breeding for resistance/tolerance in fruit crops: New trends 2023/02/28 Bénédicte QUILOT-TURION

CWR inventory and knowledge WP1 WP2 CWR genotypic characterisation WP3 Phenotypic characterisation HTP genotyping of CWR core-WP4 collections WP5 Genomics-based methods to integrate CWR in pre-breeding programs Promotion and plans for sustainable WP6 conservation of CWR in situ populations

Horticulture 2022 (E) CrossMark

### > An endless work, long and laborious

|         | # pathogens | # studied | included in breeding programs                                                                        |
|---------|-------------|-----------|------------------------------------------------------------------------------------------------------|
| Peach   | 70          | 9         | Powdery mildew, brown rot, leaf curl, Bacterial spot,<br>PPV, green peach aphid, root-knot nematodes |
| Cherry  | 61          | 2         | Monilinia, bacterial canker                                                                          |
| Apricot | 59          | 5         | Monilina, Bacterial canker,<br>PPV, Apricot chlorotic leafroll phytoplasma                           |

source WOS

Few resistance genes known Old and emerging diseases Too many traits to target one by one



### > Summary

- 1. Mobilize the arsenal of modern tools
  - Sequencing, genotyping, genetic engineering
  - Digital phenotyping, NIRS
- 2. Ensure the durability of the resistance genes
- 3. Enlarge genetic diversity <- use wild relatives
- 4. Target an integrative new trait : eg resilience



### > Why is resilience so relevant ?

#### **Convergent selection targets in animals and plants**

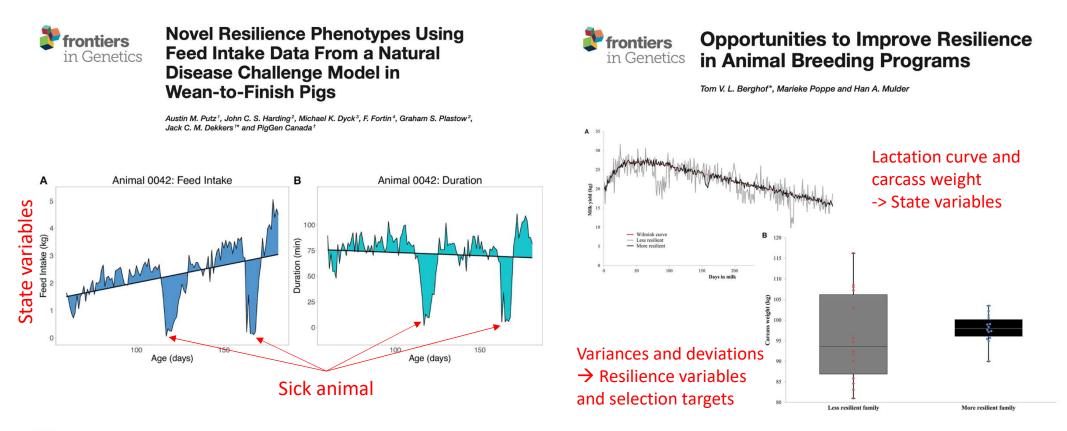
### **Farming challenges**

- Resistances et tolerances to a large number of diseases and parasites
- Reduction of antibiotic/parasitic molecules **Examples of biomarkers of resilience**:
- Milk production (ex. Elgersma et al. 2018)
- Blood tests (ex. Bai et al. 2020)
- Diet (ex. Putz et al. 2019)



#### **Crop challenges**

- Resistances et tolerances to a large number of diseases and parasites
- Reduction of pesticides

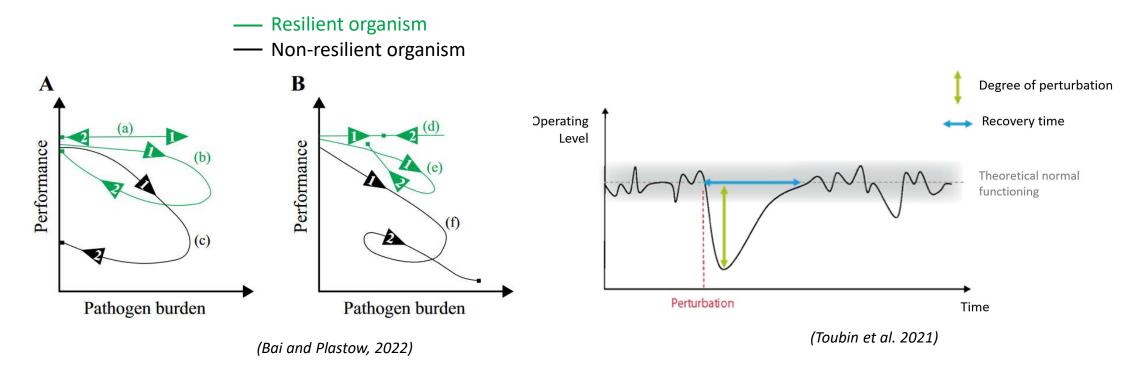

#### Biomarkers of resilience not defined yet:

- Aerial or root biomass?
- Photosynthetic activity?
- Evapo-transpiration?



### Disease-resilience in animals : one step ahead?

« Polymicrobial natural disease model » versus « disease by disease »




#### INRAØ

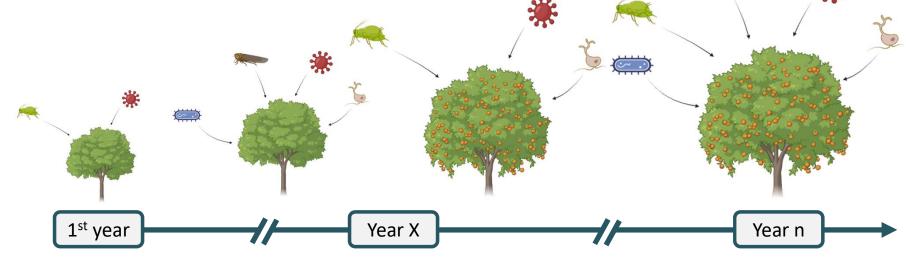
Breeding for resistance/tolerance in fruit crops: New trends 2023/02/28 Bénédicte QUILOT-TURION

#### A source of inspiration

### > Breeding for resilience : a durable way to manage the biotic pressures



**RESILIENCE** : the capacity of an organism to be minimally affected by disturbances or to rapidly return to the state pertained before exposure to a disturbance


#### INRA@

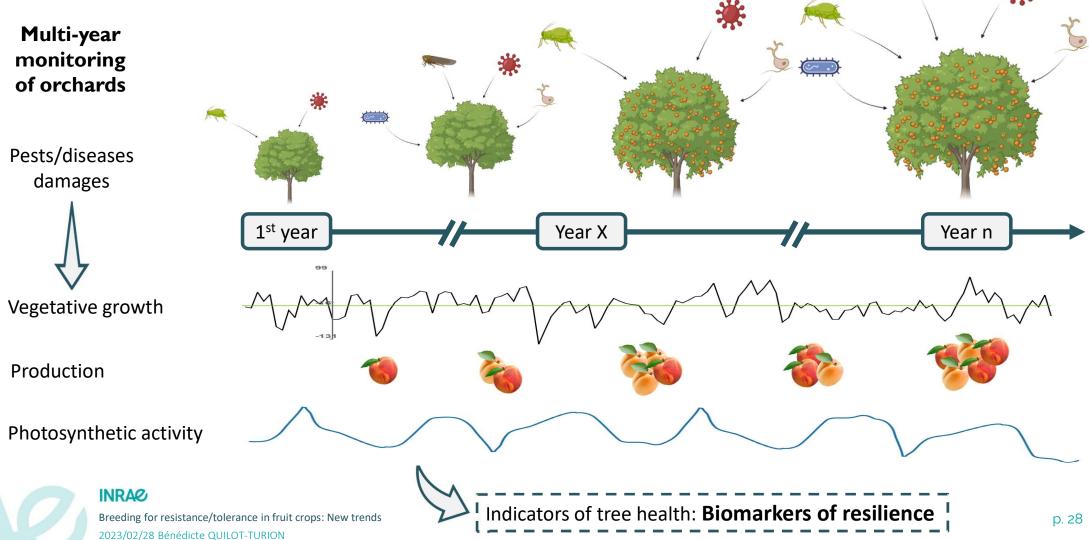
1st PhD committee 2022/09/28 Marie Serrie it crops: New trends

# How to quantify resilience: multi-year and integrative monitoring of orchards

Multi-year monitoring of orchards

Pests/diseases damages






What are the impacts of these biotic stresses on tree health? How to take these data into account in an integrative way?



#### INRAe

How to quantify resilience: multi-year and integrative monitoring of orchards



### > Approach

Uncover the fundamental principles of resilience in stone fruit trees

- Multi-trait observations among diversity panels
- Interactions between pest/diseases
- Quantify the impact of biotic stresses on tree health/vigor over the years
- Quantify risk factors with epidemiological covariables
- Summarizing multiple observations of symptoms into resilience metrics

Find genetic markers associated to disease resilience and/or resilience components (resistance/tolerance)

- Identify inheritance modes of resilience sub-trait and integrative traits
- Impact of the genetic, environment, G x E interactions effects
- Identify best-suited GWAS for multi-trait and multi-environment data



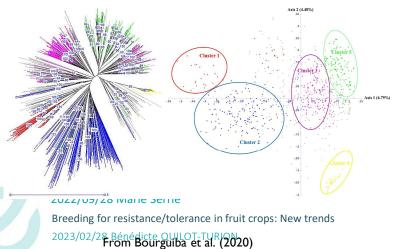
Explore the applications of the methods developed in the project for future disease-resilience breeding

- Defining "resilient ideotypes" as a new target for pre-breeding activities
- Discuss the feasibility of MAS for resilience traits
- Compare resilience characteristics between peach and apricot

#### INRAØ

### > Plant material: multi-species core collections with a large genetic diversity




Apricot cultivated

(P. armeniaca)

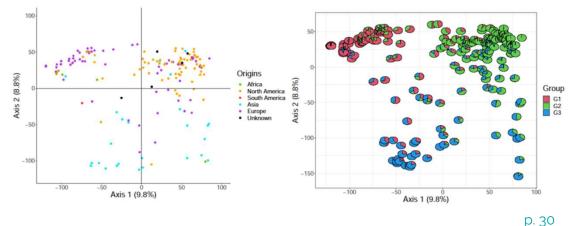
#### I 50 accessions Resequenced with Illumina HiSeq 2000 NGS

**Selecting accessions** 

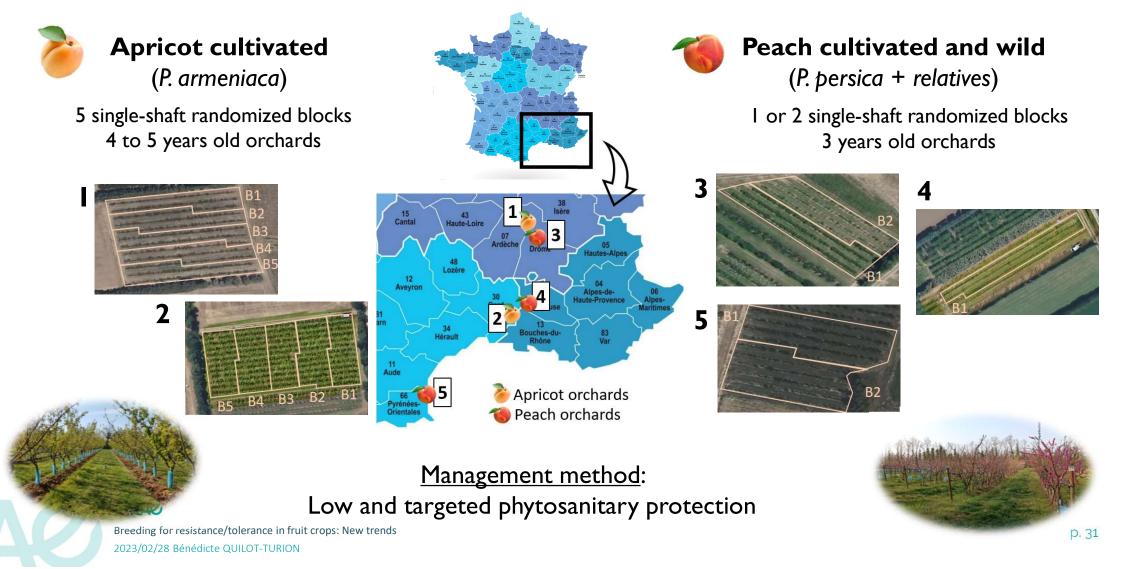
- ✓ Genetic variability of 25 Microsatellites (Bourguiba et al., 2012)
- ✓ Within the five known genetic groups (Bourguiba et al., 2020)
- ✓ Incl. of modern accessions and hybrids from recombinant lines between phylogroups



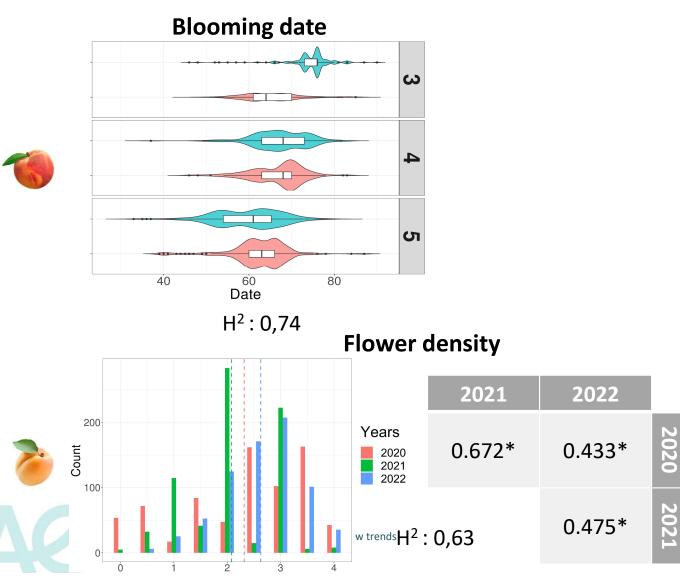



Peach cultivated and wild

(P. persica + relatives)

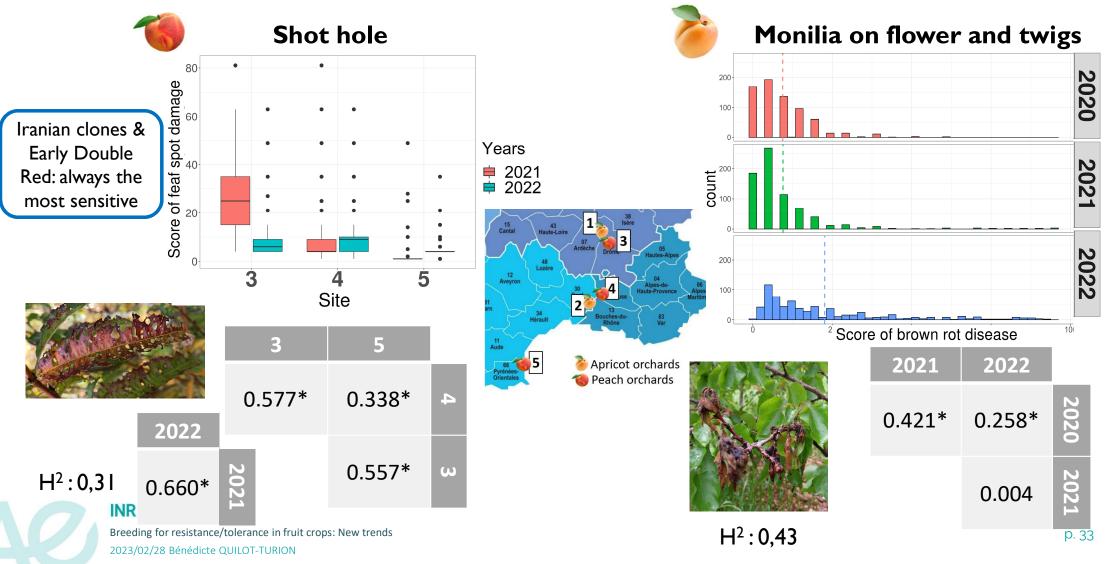

### 206 accessions Genotyped with 16k SNP chip

Selecting accessions


- ✓ SNP polymorphism with 9K chip (Micheletti et al 2015)
- ✓ Incl. of related species and interspecific
- ✓ 3 genetics groups
- ✓ Several geographical origin



### Experimental design: multi-site with low pesticide conditions




### A broad phenological diversity in the core collections





### Strong effect of the environment: Necessity of multi-site and years trials

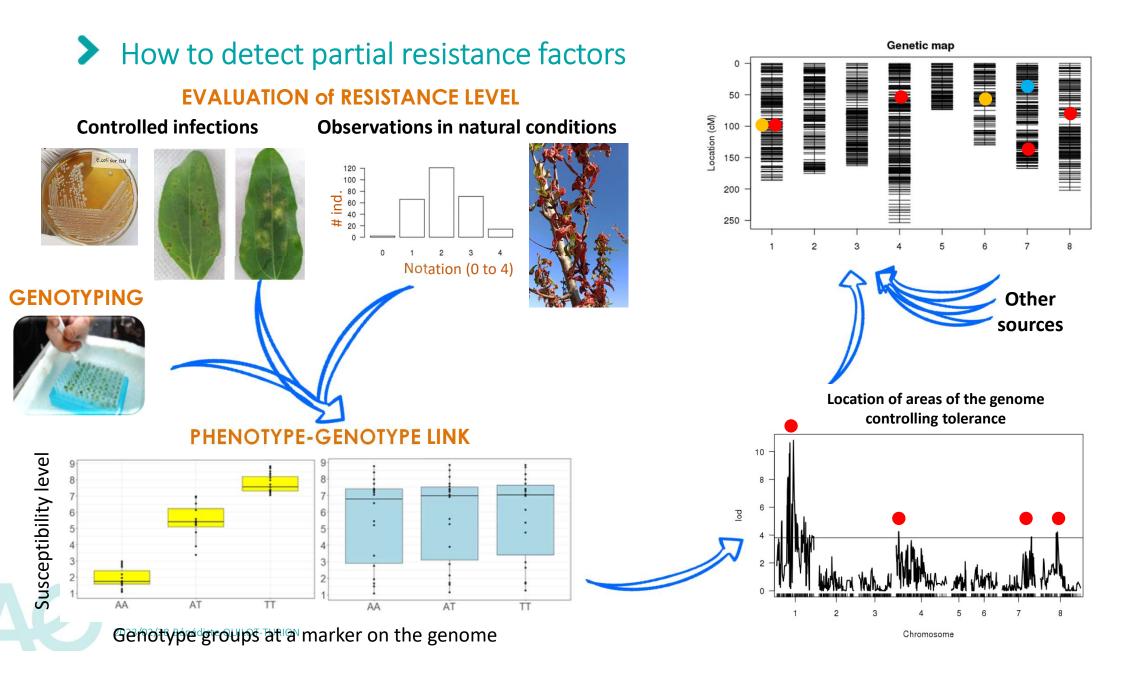


#### First genome-wide association results on peach >

|                  | SNP detected Trait   |                                 | Chromosome     | P-value            | Effect<br>size (β)            |                                                                                                                     |  |
|------------------|----------------------|---------------------------------|----------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Peach_AO_0175780 |                      | Date of vegetative<br>bud break | 2              | 5.24e-08           | -3.99                         | ✓ MLMM method                                                                                                       |  |
| Peach_AO_0459115 |                      | Date of vegetative<br>bud break | 4              | 3.11e-07           | -3.22                         | <ul> <li>(Segura et al. 2012)</li> <li>✓ Bonferroni correction</li> <li>✓ 13,975 markers after filtering</li> </ul> |  |
| Pe               | each_AO_0060498      | Blooming date                   | 1              | 1.1e-06            | 3.67                          |                                                                                                                     |  |
| S                | SNP_IGA_283581       | Blooming date                   | 2              | 7.3e-07            | 4.22                          |                                                                                                                     |  |
| S                | SNP_IGA_116812       | Shot hole                       | 1              | 2.79e-06           | -0.27                         |                                                                                                                     |  |
| [                | Date of vegetativ    | e bud break                     | Bloomi         | ng date            |                               | Shot hole                                                                                                           |  |
| 9                |                      |                                 | ω - • •        |                    | - a                           | •                                                                                                                   |  |
| $-\log_{10}(p)$  |                      |                                 |                |                    | p. 34                         |                                                                                                                     |  |
|                  | 1 2 3 4<br>chromosom | 5678<br>PE                      | 1 2 3<br>chrom | 4 5 6 7 8<br>OSOME | 1 2 3 4 5 6 7 8<br>chromosome |                                                                                                                     |  |

### > A new breeding approach : a better integration of the information

| CLASSICAL SELECTION OF FRUIT TREES                                                          | OBJECTIVES FOR TOMORROW'S SELECTION                                                              |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| "Trait-by-trait" phenotypic selection of varieties<br>with high yield and quality potential | Selection of resilient ideotypes assisted by high-throughput phenotyping and genetic information |  |  |  |
| Elite varieties with a wide geographical spectrum that are greedy in pesticides             | Varieties able to cope with biotic stresses<br>in a given environment                            |  |  |  |
| Exclusively visual phenotyping                                                              | Gain in precision and throughput and new descriptive variables by digital phenotyping            |  |  |  |
| Sorting candidates for selection on adult plants                                            | Early genetic diagnostics                                                                        |  |  |  |
| Pyramiding of traits of interest, cross after cross within a restricted gene pool           | Multi-trait modeling and optimization of the use of diversity                                    |  |  |  |
| Resistance to rare diseases and only based on major genes                                   | Consideration of so-called qualitative resistances and tolerances by quantitative genetics       |  |  |  |


#### INRAØ

### > Acknowledgments

### **Team working**



#### INRAØ

