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 as a nearest-neighbor random walk on Z that is non-Markovian: at each step, the probability to cross a directed edge depends on the number of previous crossings of this directed edge. Tóth and Vető found this walk to have a very peculiar behavior, and conjectured that, denoting the walk by (Xm)m∈N, for any t ≥ 0 the quantity 1 √ N X ⌊N t⌋ converges in distribution to a non-trivial limit when N tends to +∞, but the process ( 1 √ N X ⌊N t⌋ ) t≥0 does not converge in distribution. In this paper, we prove not only that ( 1 √ N X ⌊N t⌋ ) t≥0 admits no limit in distribution in the standard Skorohod topology, but more importantly that the trajectories of the random walk still satisfy another limit theorem, of a new kind. Indeed, we show that for n suitably smaller than N and TN in a large family of stopping times, the process ( 1 n (X T N +tn 3/2 -XT N )) t≥0 admits a non-trivial limit in distribution. The proof partly relies on combinations of reflected and absorbed Brownian motions which may be interesting in their own right.

Introduction

The "true" self-avoiding random walk was introduced by Amit, Parisi and Peliti in [START_REF] Daniel | Asymptotic behavior of the "true" self-avoiding walk[END_REF] in order to approximate a random self-avoiding path on Z d , which cannot be constructed step by step in a straightforward way, by a random walk constructed step by step. In dimension 1, it is a random walk on Z that is discrete-time, nearest-neighbor and non-Markovian (in this paper, the term "random walk" will often be used for non-Markovian processes), defined so that at each time, if the process is at i ∈ Z, it may go to i + 1 or i -1 with a transition probability depending on the time already spent by the process at sites i + 1 and i -1 (the local time at these sites). This transition probability is defined so that the process is self-repelling: if the process spent more time at i + 1 than at i -1 in the past, it will have a larger probability to go to i -1 than to i + 1.

However, the non-Markovian nature of the "true" self-avoiding random walk makes it hard to study. This led to the introduction by Tóth in the fundamental series of papers [START_REF] Tóth | True' self-avoiding walks with generalized bond repulsion on Z[END_REF][START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF][START_REF] Tóth | Generalized Ray-Knight theory and limit theorems for self-interacting random walks on Z[END_REF] of models where the probability of going to i + 1 or i -1 does not depend on the local time at the sites i + 1 and i -1, but instead of the local time of the non-oriented edges {i, i + 1} and {i, i -1}, that is of the number of times the process already went through these edges. These processes are easier to study because they allow the use of a Ray-Knight argument: under some conditions, the local times on the edges form a Markov process, and its Markovian nature allows its analysis. This kind of argument was first used for simple random walks (see the original papers of Knight [START_REF] Frank | Random walks and a sojourn density process of Brownian motion[END_REF] and Ray [START_REF] Ray | Sojourn times of diffusion processes[END_REF]), then applied to random walks in random environments in [START_REF] Kesten | A limit law for random walk in a random environment[END_REF]. In [START_REF] Tóth | True' self-avoiding walks with generalized bond repulsion on Z[END_REF][START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF][START_REF] Tóth | Generalized Ray-Knight theory and limit theorems for self-interacting random walks on Z[END_REF], Tóth was able to extend this Ray-Knight argument to self-repelling random walks and proved that the process of their local times, once properly rescaled, converges in distribution. The limit, as well as the rescaling, depends on the exact definition of the transition probabilities, but is always a random process, either a power of a reflected Brownian motion or a gluing of squared Bessel processes (a non-Markovian random walk with a deterministic limit was studied by Tóth in [START_REF] Tóth | Limit theorems for weakly reinforced random walks on Z[END_REF], but it is very different as it is self-attracting instead of self-repelling: the more an edge was crossed in the past, the more likely it is to be crossed again).

In [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF], Tóth and Vető introduced a self-repelling random walk whose transition probabilities are defined trough the local time on oriented edges rather than non-oriented ones. This random walk (X m ) m∈N on Z is defined as follows. Let w : Z → (0, +∞) be a non-decreasing, non-constant function. If the cardinal of a set A is denoted by |A|, for any m ∈ N, i ∈ Z, we denote ℓ ± m,i = |{0 ≤ k ≤ m -1 | (X k , X k+1 ) = (i, i ± 1)}| the local time of the oriented edge (i, i ± 1), and ∆ m,i = ℓ - m,i -ℓ + m,i . We then set X 0 = 0, and for all m ∈ N, P(X m+1 = X m + 1) = 1 -P(X m+1 = X m -1) = w(∆ m,Xm ) w(∆ m,Xm ) + w(-∆ m,Xm )

.

On an intuitive level, it is not a priori clear why this processs should behave differently from the processes with nonoriented edges, especially the process introduced by Tóth in [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], which seems to be very similar when w is exponential. However, the process of Tóth and Vető [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] exhibits a sharply different behavior. Indeed, building on the Ray Knight techniques developed by Tóth in [START_REF] Tóth | True' self-avoiding walks with generalized bond repulsion on Z[END_REF][START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF][START_REF] Tóth | Generalized Ray-Knight theory and limit theorems for self-interacting random walks on Z[END_REF], Tóth and Vető proved in [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] that the renormalized process of the local times of (X m ) m∈N does converge, but to a deterministic limit forming a triangle f (x) = (1-|x|) + , instead of a random process (the fluctuations around this deterministic limit were studied by the first author in [START_REF] Marêché | Fluctuations of the local times of the self-repelling random walk with directed edges[END_REF]). Since this model behaves differently from the self-repelling models previously studied, it is interesting to explore its behavior in more depth.

In [START_REF] Mountford | Central limit theorem for the self-repelling random walk with directed edges[END_REF], Pimentel, Valle and the second author proved that Xn √ n converges in distribution to the uniform distribution on [-1, 1]: the random walk has a diffusive scaling. This suggests the process ( 1 n X ⌊n 2 t⌋ ) t≥0 should converge in distribution when n tends to +∞, which would be a diffusive renormalization. However, the simulations of Tóth and Vető in [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] seem to indicate that this process does not converge. This is the starting point of this work.

We prove not only that ( 1 n X ⌊n 2 t⌋ ) t≥0 has no limit with respect to the topology of continuous real processes on [0, +∞), but the stronger result that there is no limit point in the standard Skorohod topology for càdlàg processes on [0, +∞) (see [START_REF] Pollard | Convergence of stochastic processes[END_REF] or [START_REF] Stewart | Markov processes: characterization and convergence[END_REF] for an introduction to this topology).

Proposition 1. ( 1 n X ⌊tn 2 ⌋ ) t∈[0,+∞) admits no limit point in distribution in the standard Skorohod topology for càdlàg processes on [0, +∞) when n tends to +∞.

Proposition 1 means that there is no diffusive renormalization, but we show nonetheless that a non-trivial renormalization of the process exists. This renormalization is the first result of its kind to our knowledge: we show that there exist stopping times of order N 2 so that for n ≪ N , the random walk started at this stopping times and considered on a scale n admits a superdiffusive renormalization. More rigorously, let ϕ : N * → N * such that there exists α > 1 so that for some N 0 ∈ N * we have ϕ(N ) ≤ N 1/α for N ≥ N 0 , and ϕ(N ) → +∞ when N → +∞. We will denote ϕ(N ) by n to shorten the notation. For any m ∈ N, i ∈ Z, let us denote T ± m,i = inf{k ≥ 0 | ℓ ± k,i = m}. We set θ > 0, x ∈ R. For any N ∈ N * , we denote (Y N t ) t∈R + the continuous process defined by

Y N t = X T ± ⌊N θ⌋,⌊N x⌋ +tn 3/2 -X T ±
⌊N θ⌋,⌊N x⌋ n when tn 3/2 is an integer and by linear interpolation otherwise. We proved the following.

Theorem 2. (Y N t ) t∈[0,+∞) converges in distribution in the topology of continuous real processes on [0, +∞) when N tends to +∞, to a limit different from the null function.

Theorem 2 means that locally after T ± ⌊N θ⌋,⌊N x⌋ , the process (X m ) m∈N has a superdiffusive behavior. It thus fluctuates more quickly than diffusively, which explains why ( 1 n X ⌊tn 2 ⌋ ) t∈[0,+∞) admits no limit in distribution. Once Theorem 2 is established, proving Proposition 1 is rather easy. In order to show Theorem 2, we follow the approach recently introduced by Kosygina, Peterson and the second author [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF] for another kind of non-Markovian random walk, called an excited random walk with Markovian cookie stacks. They used that approach to prove the convergence of their renormalized random walk to a Brownian motion pertrubed at extrema. For some ε > 0, we consider "mesoscopic times": T 0 = T ± ⌊N θ⌋,⌊N x⌋ , and T k+1 is the first moment m after T k at which |X m -X T k | = ⌊εn⌋. The convergence of (Y N t ) t∈[0,+∞) can be deduced from the convergence in distribution of the 1 n (X T k+1 -X T k ) and the 1 n 3/2 (T k+1 -T k ), which is obtained by using Ray-Knight arguments for the process (X T k +m ) m∈N .

There are important differences between the argument in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF] and ours. In [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF], the behavior when X m was near the extremities of the range of (X m ) 0≤m≤T k was different from its behavior in the "bulk" of the range. In our work, the normalization considered keeps the process far from the extremities of the range, so we never need to take this different behavior into account.

Furthermore, the Ray-Knight arguments for the process (X T k +m ) m∈N give a different law for its local times than in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF], so they need a different treatment. Interestingly, the behavior of (X T k +m ) m∈N is close to that of the random walk of [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], which allows to use arguments similar to those in [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], though the processes are different enough so they do not suffice. We roughly have that ( i j ∆ T k+1 ,j ) i is a random walk reflected on or absorbed by ( i j ∆ T k ,j ) i (see Definition 21 for the notion of reflection), which we may consider as an "environment", hence ( 1 √ n i j ∆ T k+1 ,j ) i converges in distribution to a Brownian motion reflected by or absorbed on the limit of ( 1

√ n i j ∆ T k ,j ) i .
In [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF] the environment was absent, therefore we had to find new ideas to control the interaction between ( i j ∆ T k+1 ,j ) i and ( i j ∆ T k ,j ) i . Moreover, we need to study the properties of the limit processes, which lead us to study combinations of reflected and absorbed Brownian motions which we consider novel and of interest in their own right. Indeed, Brownian motions reflected on other Brownian motions have been studied before (see [START_REF] Soucaliuc | Reflection and coalescence between independent one-dimensional Brownian paths[END_REF][START_REF] Tóth | Skorohod-reflection of Brownian paths and BES 3[END_REF]), but the results found in those papers were insufficient for our purposes.

Finally, the limit of the random walk in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF] was known, expected from prior results on particular cases. Here the limit is unknown, and we do not identify it beyond noting that is exists and is continuous. It is not obvious whether the limit is intimately related to the process of [START_REF] Tóth | The true self-repelling motion[END_REF][START_REF] Newman | Convergence of the Tóth lattice filling curve to the Tóth-Werner plane filling curve[END_REF], and it would be useful to develop the ideas presented here to understand said limit process better. The lack of knowledge about the limit forced us to find novel arguments to prove the convergence. An attribute of our approach is that the "coarse-graining" with the mesoscopic times relies purely on Ray-Knight properties. This, we feel, gives it the potential to be generalized to yield limits for a much larger class of self-interacting random walks.

The paper unfolds as follows. In Section 2 we give an outline of the proof. In Section 3 we introduce much notation, and auxiliary random variables we will use throughout the paper. Section 4 considers some "bad events" outside which the environment and some associated variables behaves well, and proves that they have very small probability. In Section 5, we prove that outside of the bad events, ( i j ∆ T k+1 ,j ) i is indeed close to a random walk reflected on the environment. Section 6 is the most important in that it shows that with very high probability, the stopping times T k do not accumulate and T k -T 0 is at least of order kn 3/2 . We need such a control on the T k because we do not know the limit of (Y N t ) t∈[0,+∞) ; it is the most novel part of the work. Section 7 discusses the limit process of the environment and introduces the reflecting/absorption processes which may be of interest in their own right; this section is mostly independent from the rest of the paper. In Section 8, we prove that the environments indeed converge to these limit processes and we use this convergence to deduce the convergence in distribution of the "mesoscopic quantities" 1 n (X T k+1 -X T k ) and 1 n 3/2 (T k+1 -T k ). In Section 9 we finally prove Theorem 2 and Proposition 1. An appendix contains some arguments that are necessary to complete the proof but not very specific or novel, and which a reader might want to omit.

Outline of the proof

This section being an outline, most of its content will be non-rigorous. We first outline how to prove Theorem 2. In order to prove the convergence in distribution of the renormalized process (Y N t ) t∈[0,+∞) , we need to prove its tightness and the convergence of its finite-dimensional marginals. Let us concentrate on the finite-dimensional marginals for now. The proof of their convergence is partially inspired from the method introduced by Kosygina, Peterson and the second author in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF]: we define "mesoscopic times" (T k ) k∈N so that T 0 = T ± ⌊N θ⌋,⌊N x⌋ , and T k+1 is the first time m after

T k at which |X m -X T k | = ⌊εn⌋. For m ∈ {T k , ..., T k+1 } we have |X m -X T k | ≤ ⌊εn⌋, hence if t ∈ [ 1 n 3/2 (T k -T 0 ), 1 n 3/2 (T k+1 -T 0 )] we have |Y N t -1 n (X T k -X T 0 )| ≤ ε.
Consequently, if we can prove the convergence in distribution of the 1 n (X T k+1 -X T k ) and the 1 n 3/2 (T k+1 -T k ), we can prove that the finite-dimensional marginals of (Y N t ) t∈[0,+∞) are close to those of a limit process depending of ε, which we may call (Y ε t ) t∈[0,+∞) . In [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF], the limit (Y N t ) t∈[0,+∞) was known, and the (equivalent of) (Y ε t ) t∈[0,+∞) converges towards it when ε tends to 0, so this suffices. However, here we do not know the limit of (Y N t ) t∈[0,+∞) , which forces us to add another step. We notice that if the finite-dimensional marginals converge, then their limit has to be close to the finite-dimensional marginals of (Y ε t ) t∈[0,+∞) for any ε, so the limit is uniquely determined. Consequently, if the finite-dimensional marginals are tight, then they converge. However, this means we also have to prove the tightness of the finite-dimensional marginals. In order to do that, we prove that the 1 n 3/2 (T k -T 0 ) are at least of order k (or rather k times a constant). Indeed, when m ∈ {T 0 , ..., T k } we have |X m -X T 0 | ≤ k⌊εn⌋, thus 1 n 3/2 (T k -T 0 ) is the smallest time at which (Y N t ) t∈[0,+∞) can reach kε, so if it tends to +∞ with k, then the finite-dimensional marginals of (Y N t ) t∈[0,+∞) will be tight, hence they will converge. Consequently, to prove the convergence of the finite-dimensional marginals of (Y N t ) t∈[0,+∞) , we need to prove that 1 n 3/2 (T k -T 0 ) is of order k as well as the convergence in distribution of the 1 n (X T k+1 -X T k ), 1 n 3/2 (T k+1 -T k ). Actually, proving that also yields the tightness of the process (Y N t ) t∈[0,+∞) . Indeed, it is tight when (X m ) m∈N does not fluctuate too quickly, which is the same thing as the 1 n 3/2 (T k+1 -T k ) not being too small. Therefore, we have two main things to prove: the convergence in distribution of the 1 n (X T k+1 -X T k ), 1 n 3/2 (T k+1 -T k ) and the fact that

1 n 3/2 (T k -T 0 ) is of order k.
We first direct our attention to the convergence in distribution of the 1 n (X T k+1 -X T k ), 1 n 3/2 (T k+1 -T k ). As was done in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF], we prove it through a study of "mesoscopic" local times. We let T - T k be the first time m after T k at which X m = X T k -⌊εn⌋, then T - T k will be T k+1 if (X T k +m ) m∈N reaches X T k -⌊εn⌋ before X T k + ⌊εn⌋. For any i ∈ Z, let L T k ,- i the local time on the oriented edge (i -1, i) between times T k and T - T k , that is the number of times the process went from i -1 to i between times T k and T - T k . Then we will have X T k+1 = X T k -⌊εn⌋ if and only if there exists i ∈ {X T k , ..., X T k + ⌊εn⌋} so that L T k ,- i = 0, because this means that before T - T k i.e. before (X T k +m ) m∈N goes to X T k -⌊εn⌋, it does not reach i hence does not reach X T k + ⌊εn⌋. Consequently, one can know whether X T k+1 = X T k -⌊εn⌋ or X T k + ⌊εn⌋ by looking at the local times L T k ,- i . Moreover, if X T k+1 = X T k -⌊εn⌋, we have T k+1 = T - T k , and at each step made between times T k and T - T k the random walk crosses an edge, so one can compute T k+1 -T k from the local times L T k ,- i , and if X T k+1 = X T k + ⌊εn⌋, one can compute T k+1 -T k from local times defined in a symmetric way. In order to establish the convergence in distribution of the 1 n (X T k+1 -X T k ), 1 n 3/2 (T k+1 -T k ), it is thus enough to understand the local times L T k ,- i .

As in [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF], we will study these local times through a Ray-Knight argument, that is by exploiting their Markov properties. However, the use of the ideas of [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF] stops here, because the dynamics of our process is different from theirs. We are able to express

L T k ,- i as roughly i ζ T k ,-,E j -i ζ T k ,-,B j , where the ζ T k ,-,E j are small modifications of the ∆ T - T k
,j and the ζ T k ,-,B j are small modifications of the ∆ T k ,j . We thus express L T k ,- i as the difference between the random walk i ζ T k ,-,E j and the random walk i ζ T k ,-,B j . We then need to study these walks, hence the ∆ T - T k ,i and ∆ T k ,i . Part of this study resembles what was done in [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], though there are very important differences. We are only interested in i ≥ X T k -⌊εn⌋, since (X m ) m∈N does not go below X T k -⌊εn⌋ between times T k and T - T k so L T k ,- i = 0 for i < X T k -⌊εn⌋. We notice that when X m = i, then the probability for X m+1 to be i -1 or i + 1, hence for ∆ m+1,i to be ∆ m,i + 1 or ∆ m,i -1, depends only on ∆ m,Xm = ∆ m,i , therefore if we only keep track of the changes of ∆ m,i , we get a Markov chain. If we only keep track of the values of ∆ m,i when ∆ m,i = ∆ m-1,i + 1 (respectively ∆ m,i = ∆ m-1,i -1), which means the last move of the walk at i was to go to the left of i (respectively to the right), we obtain another Markov chain, the ⊕-Markov chain (respectively the ⊖-Markov chain) with equilibrium measure we call ρ + (respectively ρ -). The number of steps made by these Markov chains at i is roughly the local time at i. Now, we have

X T - T k = X T k -⌊εn⌋, so for i ≥ X T k -⌊εn⌋, our self-repelling random walk is at the left of i at time T - T k , hence ∆ T - T k ,i is a step of the ⊕-Markov chain at i. If L T k ,- i
is large, the ⊕-Markov chain at i made many steps between times T k and T - T k , therefore at time T - T k it will have forgotten the value of ∆ T k ,i and the law of ∆ T - T k ,i will be close to ρ + . This implies that when

L T k ,- i is large, the ∆ T - T k
,i are roughly i.i.d. with law ρ + and independent from the

∆ T k ,i . Since L T k ,- i is roughly i ζ T k ,-,E j -i ζ T k ,-,B j , this means that when i ζ T k ,-,E j is well above i ζ T k ,-,B j , then i ζ T k ,-,E j
behaves like a random walk with i.i.d. increments independent from i ζ T k ,-,B j .

Furthermore, we have roughly

i ζ T k ,-,E j -i ζ T k ,-,B j = L T k ,- i with L T k ,- i non-negative, hence i ζ T k ,-,E j remains larger than i ζ T k ,-,B
j at all times. More precisely, for i ∈ {X T k -⌊εn⌋, ..., X T k }, the process i ζ T k ,-,E j will behave like a random walk reflected on the "environment" i ζ T k ,-,B j . Moreover, for i > X T k , when L T k ,- i = 0 then (X m ) m∈N does not reach i between times T k and T - T k (that is when going from X T k to X T k -⌊εn⌋), so it will not reach any j > i, so L T k ,- j = 0 for any j > i. This implies that as soon as

i ζ T k ,-,E j = i ζ T k ,-,B j then j ζ T k ,-,E j ′ = j ζ T k ,-,B j ′
for any j > i, which means the random walk i ζ T k ,-,E j is "absorbed" by the environment i ζ T k ,-,B j when it hits said environment. Consequently, if 1

√ n i ζ T k ,-,B j
converges to some limit process, then 1

√ n i ζ T k ,-,E j converges to
a Brownian motion that is partly reflected on the limit of 1

√ n i ζ T k ,-,B j
and partly absorbed by this limit. We can then use the convergence of 1

√ n i ζ T k ,-,E j to deduce the convergence of 1 √ n i ζ T k+1 ,-,B j
. It is thus possible to prove the joint convergence of the 1

√ n i ζ T k ,-,B j , 1 √ n i ζ T k ,-,E j
by induction on k. This yields control of the L T k ,- i

. In [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], Tóth used a similar strategy to prove the convergence of the local times process of a self-repelling random walk with undirected edges, but he had no equivalent of 1

√ n i ζ T k ,-,B j
(his random walk is simply reflected on 0). There are three major problems for putting this approach into practice to prove the convergence in distribution of the

1 n (X T k+1 -X T k ), 1 n 3/2 (T k+1 -T k ). Firstly, though we know that when i ζ T k ,-,E j is well above i ζ T k ,-,B j , then i ζ T k ,-,E j
behaves like a random walk with i.i.d. increments independent from i ζ T k ,-,B j , we do not have this sort

of control when i ζ T k ,-,E j is close to i ζ T k ,-,B j
, so it is not that easy to prove that i ζ T k ,-,E j behaves like a random walk reflected on i ζ T k ,-,B j . Our model being very different from the one studied by Tóth in [START_REF] Tóth | The "true" self-avoiding walk with bond repulsion on Z: limit theorems[END_REF], we had to find a novel argument. In order to solve this problem, we notice that though when L T k ,- i is small the ⊕-Markov chain at i is not at equilibrium, it can be coupled with another that is at equilibrium, and can therefore be controlled. Even with this control, we need to establish rather complex inequalities (see [START_REF] Kesten | A limit law for random walk in a random environment[END_REF]

) to prove i ζ T k ,-,E j is close to a random walk reflected on i ζ T k ,-,B j .
The second problem lies in the definition of the limit process of 1

√ n i ζ T k+1 ,-,B j . Indeed, T k+1 is T - T k when there exists i ∈ {X T k , ..., X T k + ⌊εn⌋} so that L T k ,- i = 0, i.e. i ζ T k ,-,E j = i ζ T k ,-,B j , which means i ζ T k ,-,E j is absorbed by i ζ T k ,-,B j
. In this case we have

∆ T k+1 ,i = ∆ T - T k ,i , hence the ζ T k+1 ,-,B j can be obtained from the ∆ T - T k ,i hence from the ζ T k ,-,E j . The limit of 1 √ n i ζ T k+1 ,-,B j
is then obtained from the limit of 1

√ n i ζ T k ,-,E j
, and this works roughly in the case where the limit of 1

√ n i ζ T k ,-,E j is absorbed by the limit of 1 √ n i ζ T k ,-,B j
. However, we also have to consider the case

T k+1 ̸ = T - T k , that is X T k+1 = X T k + ⌊εn⌋.
We can study it in the same way that the case

X T k+1 = X T k + ⌊εn⌋, defining symmetric quantities ζ T k ,+,B i , ζ T k ,+,E i
. We then get that the behavior of the ∆ T k+1 ,i , hence the limit of 1

√ n i ζ T k+1 ,-,B j
, can be obtained from the limit of 1

√ n i ζ T k ,+,E j
when the latter is absorbed by the limit of 1

√ n i ζ T k ,+,B j
. Consequently, to be able to construct the limit process of 1

√ n i ζ T k+1 ,-,B j
, we have to show that the probability that the limit of 1

√ n i ζ T k ,+,E j is absorbed by the limit of 1 √ n i ζ T k ,+,B j
is one minus the probability the limit of 1

√ n i ζ T k ,-,E j is absorbed by the limit of 1 √ n i ζ T k ,-,B j
. In order to do that, we study the following setting: we have a Brownian motion reflected by some function called the "barrier" from time -1 to time 0 and absorbed by the barrier from time 0 to time 1, and another Brownian motion going backwards, reflected above the same barrier from time 1 to time 0 and absorbed by the barrier from time 0 to time -1. We prove several conditions for the probability that the first Brownian motion actually gets absorbed to be one minus the probability that the second Brownian motion is absorbed. We believe this study to be of independent interest.

The third problem lies in deducing rigorously the convergence of 1 n (X T k+1 -X T k ) from the convergence of the processes 1

√ n i ζ T k ,-,B j and 1 √ n i ζ T k ,-,E j . Indeed, we know that X T k+1 = X T k -⌊εn⌋ if and only if i ζ T k ,-,E j gets absorbed by i ζ T k ,-,B j
, but proving that the probability of this absorption converges to the probability of absorption of the limit processs requires some property of continuity of the absorption time for the limit process. In order to show such a property, we study the limit processes of the environments 1

√ n i ζ T k ,-,B j
, k ∈ N. These limit processes may be interesting on their own: they are the sequence of processes obtained by firstly running either a Brownian motion first reflected then absorbed on another Brownian motion, conditioned to absorption, or a backwards Brownian motion with the same properties, and then iterating this procedure by reflecting and absorbing the new Brownian motion on the resulting process. We prove that the law of the limit processes thus obtained, on certain small intervals, is close in some sense either to the law of a Brownian motion or to the law of a Brownian motion reflected on a Brownian motion. These latter processes being easy to control, this allows us to deduce the required continuity property.

We now explain how to prove that 1 n 3/2 (T k -T 0 ) is of order k. This is an entirely novel argument. As we already mentioned, if

T - T k = T k , we can deduce T k+1 -T k from the L T k ,- i ; actually we roughly have T k+1 -T k = 2 L T k ,- i
, where the sum is on i ∈ {X T k -⌊εn⌋, ..., X T k + ⌊εn⌋}. We also know that L T k ,- i is the difference between the random walks i ζ T k ,-,E j and i ζ T k ,-,B j , and that i ζ T k ,-,E j is an i.i.d. random walk reflected on i ζ T k ,-,B j for i ∈ {X T k -⌊εn⌋, ..., X T k } and absorbed by i ζ T k ,-,B j for i ∈ {X T k , ..., X T k + ⌊εn⌋}. Since we need only a lower bound on T k+1 -T k = 2 L T k ,- i , we can consider only the sum on i ∈ {X T k -⌊εn⌋, ..., X T k }, where the walk i ζ T k ,-,E j is reflected. Then since i ζ T k ,-,E j is an i.i.d. random walk reflected on i ζ T k ,-,B j , it will be larger than some i.i.d. random walk which we call i ζ T k ,-,I j . We deduce

L T k ,- i = i ζ T k ,-,E j -i ζ T k ,-,B j ≥ i ζ T k ,-,I j -i ζ T k ,-,B j . If i ζ T k ,-,B j was an i.i.d. random walk too, i ζ T k ,-,I j -i ζ T k ,-,B j would be an i.i.d. random walk, hence T k+1 -T k = 2 L T k ,- i
would be larger than the integral of an i.i.d. random walk on an interval of length of order n. Since such a random walk may go to an height of order √ n, we would have T k+1 -T k of order n 3/2 , hence 1 n 3/2 (T k+1 -T k ) would be of order 1, hence 1 n 3/2 (T k -T 0 ) would be of order k. Consequently, it is enough to prove that i ζ T k ,-,B j is close to an i.i.d. random walk.

i ζ T k ,-,B j will be close to an i.i.d. random walk for k = 0. Indeed, the ζ T 0 ,-,B j are based on the ∆ T 0 ,i , and if i is at the right of X T 0 (respectively at its left), the last move of the process at i before T 0 was going to the left (respectively to the right), hence ∆ T 0 ,i is a step of the ⊕-Markov chain at i (respectively the ⊖-Markov chain at i). Now, at time T 0 = T ± ⌊N θ⌋,⌊N x⌋ , the local times around X T 0 = ⌊N x⌋ ± 1 are not far from ⌊N θ⌋, hence they are large enough for the ⊕-and ⊖-Markov chains to be at equilibrium. These Markov chains are also independent for different i. We deduce that at the right of X T 0 , the ∆ T 0 ,i are i.i.d. with law ρ + , and at the left of X T 0 , the ∆ T 0 ,i are i.i.d. with law ρ -. This will imply i ζ T 0 ,-,B j is an i.i.d. random walk. i ζ T k ,-,B j will also be an i.i.d. random walk if between times T 0 and T k , the process (X m ) m∈N never went between X T k and X T k+1 , since in this case, for i between X T k and X T k+1 we have ∆ T 0 ,k = ∆ T 0 ,i . Another favorable case is when the "mesoscopic process" (X T k ) k∈N does a U-turn, that is when

X T k+1 = X T k ± ⌊εn⌋ = X T k-1 (in the following we consider X T k+1 = X T k -⌊εn⌋ = X T k-1 to fix the notation). Indeed, the ζ T k ,-,B i
are based on the ∆ T k ,i , and in this case X T k = X T k-1 + ⌊εn⌋, hence the ∆ T k ,i can be deduced from the

ζ T k-1 ,+,E i . Furthermore, the process i ζ T k-1 ,+,E j
is roughly a reflected i.i.d. random walk, hence is above an i.i.d. random walk, which allows to control it, hence to control i ζ T k ,-,B j . The case of a U-turn is thus tractable. However, if the mesoscopic process does not do a U-turn, for example if X T k+1 = X T k -⌊εn⌋ = X T k-1 -2⌊εn⌋, things quickly become more complicated. Indeed, we need to control the ∆ T k+1 ,i on {X T k , ..., X T k + ⌊εn⌋}, since if at some point after time T k+1 the mesoscopic process goes from X T k to X T k + ⌊εn⌋, then the environment will be based on these

∆ T k+1 ,i . As T k+1 = T - T k , the ∆ T k+1 ,i = ∆ T - T k
,i can be deduced from the ζ T k ,-,E i , so we have to control those. Now, since X T k+1 = X T k -⌊εn⌋, between times T k and T k+1 the process (X m ) m∈N may enter {X T k , ..., X T k + ⌊εn⌋}, but will not reach X T k + ⌊εn⌋. Let i 0 the rightmost site of Z that is reached. We already saw that on {X T k , ..., X

T k + ⌊εn⌋}, i ζ T k ,-,E j is an i.i.d. random walk absorbed by i ζ T k ,-,B j . For i ≤ i 0 , we have L T k ,- i > 0, so i ζ T k ,-,E j is not yet absorbed, hence i ζ T k ,-,E j
behaves as an i.i.d. random walk, hence we can control it. For i > i 0 , since (X m ) m∈N does not reach i between times T k and T k+1 , we have ∆ T k+1 ,i = ∆ T k ,i , and since

X T k = X T k-1 -⌊εn⌋, we have T k = T - T k-1 , hence the ∆ T k ,i can be deduced from the ζ T k-1 ,-,E i
. We then notice that since we consider i ∈ {X T k , ..., X T k +⌊εn⌋}, we have i ∈ {X T k-1 -⌊εn⌋, ..., X T k-1 }, and that for such i the process i ζ T k-1 ,-,E j is a reflected i.i.d. random walk, hence is larger than an i.i.d. random walk, therefore we can control it. To sum up, we have two cases, both of which can be controlled, so this will still give a tractable environment for the next time the mesoscopic process goes from X T k to X T k +⌊εn⌋. However, if before that the mesoscopic process makes a visit from X T k -⌊εn⌋ to X T k and back, then during the shift from X T k to X T k -⌊εn⌋, (X m ) m∈N may visit some i ∈ {X T k , ..., X T k + ⌊εn⌋}, which will change their ∆ m,i and give us another case to take into account. Since there is no limit on the number of such visits, the environment on {X T k , ..., X T k + ⌊εn⌋} can become uncontrollable. In order to solve this problem, we devised an algorithm that keeps track of the control we have on the environment, and used it to prove that whatever the path of the mesoscopic process (X T k ) k∈N , there is always a positive fraction of its steps in which we can control the environment, hence for which 1 n 3/2 (T k+1 -T k ) is of order 1. This is enough to prove 1 n 3/2 (T k -T 0 ) is of order k. Now, in order to prove Proposition 1, we need to show (X m ) m∈N fluctuates too quickly for ( 1 N X ⌊N 2 t⌋ ) t∈[0,+∞) to have a limit. In order to do that, we reuse some of the techniques developed for the proof of Theorem 2. If we choose the same T 0 , but T 1 is the first time m after T 0 at which |X m -X T 0 | = ⌊εN ⌋ (instead of ⌊εn⌋ as in the proof of Theorem 2), we can prove that 1

N 3/2 (T 1 -T 0 ) converges in distribution, which implies T 1 -T 0 is of order N 3/2
. This means the time needed for (X m ) m∈N to move on a scale N is of order N 3/2 , therefore the time needed for ( 1 N X ⌊N 2 t⌋ ) t∈[0,+∞) to move on a scale 1 is of order 1/N 1/2 . It is thus clear the latter process cannot converge when N tends to +∞. 

Notation and auxiliary random variables

f : A → R, we denote ∥f ∥ ∞ = sup x∈A |f (x)|. For any m ∈ N, we define F m = σ(X 0 , X 1 , . . . , X m ).
Let ε > 0. ε may take different values throughout the paper, but the one used will always be clear from the context. We denote T 0 = T ± ⌊N θ⌋,⌊N x⌋ (which was defined in the introduction), and for any k ∈ N,

T k+1 = inf{k ′ ≥ T k | |X k ′ -X T k | = ⌊εn⌋}.
For any m ∈ N, we also introduce the stopping times [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] states that almost-surely, for any i ∈ Z, m, m ′ ∈ N, the local time ℓ ± m,i will reach m ′ in finite time, therefore all these stopping times are finite. 

T ± m = inf{m ′ ≥ m | X m ′ = X m ± ⌊εn⌋}. Proposition 1 of
ζ m,-,B i = -∆ m,i -1/2 if i ≤ X m , -∆ m,i + 1/2 if i > X m , and ζ m,-,E i = -∆ T - m ,i + 1/2, ζ m,+,B i = ∆ m,i + 1/2 if i ≤ X m , ∆ m,i -1/2 if i > X m , and ζ m,+,E i = ∆ T + m ,i + 1/2.
We also define

L m,± i = |{m ≤ m ′ < T ± m | (X m ′ , X m ′ +1 ) = (i -1, i)}|. Observation 4. For i ≥ X m -⌊εn⌋ + 1, we have L m,- i+1 = L m,- i + ζ m,-,E i -ζ m,-,B i , and for i ≤ X m + ⌊εn⌋ -1 we have L m,+ i = L m,+ i+1 + ζ m,+,E i -ζ m,+,B i .
Proof. We write the proof for L m,- i+1 ; the argument for L m,+ i is similar. We have

L m,- i+1 = ℓ + T - m ,i -ℓ + m,i = (ℓ + T - m ,i -ℓ - T - m ,i ) -(ℓ + m,i -ℓ - m,i ) + ℓ - T - m ,i -ℓ - m,i = -∆ T - m ,i -(-∆ m,i ) + ℓ - T - m ,i -ℓ - m,i . Now, ℓ - T - m ,i -ℓ - m,i is the number of times X goes from i to i -1 between m and T - m , which is L m,- i + 1 if i ≤ X m and L m,- i if i > X m , hence the result. □
In order to control the behavior of the ζ m,±,B i , ζ m,±,E i , we recall some definitions and properties from [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF]. We define a Markov chain (ξ(m)) m∈N on Z by the following transition probabilities:

P(ξ(m + 1) = ξ(m) + 1) = 1 -P(ξ(m + 1) = ξ(m) -1) = w(-ξ(m)) w(ξ(m)) + w(-ξ(m)) (1) ζ m,-,E i = η(L m,- i + 1) + 1/2 with η(0) = -∆ m,i if X m -⌊εn⌋ < i ≤ X m , η(L m,- i ) + 1/2 with η(0) = -∆ m,i if i > X m , ∀i ∈ Z, ζ m,+,E i = η(L m,+ i+1 ) + 1/2 with η(0) = ∆ m,i .
In [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF], it was proven that the measure ρ -defined as follows is the unique invariant probability measure of η:

∀i ∈ Z, ρ -(i) = 1 Z(w) ⌊|2i+1|/2⌋ j=1 w(-j) w(j)
with Z(w) = i∈Z ⌊|2i+1|/2⌋ j=1 w(-j) w(j) .

We notice that for any i ∈ N, ρ -(-i -1) = ρ -(i), so ρ -is symmetric with respect to -1/2. Therefore, we may define the measure ρ + on Z by ρ + (i) = ρ -(i -1) = ρ -(-i) for any i ∈ Z. ρ -and ρ + have respective expectations -1/2 and 1/2. We also denote ρ 0 the measure on 1 2 + Z defined by ρ 0 (i) = ρ -(i -1 2 ) for any i ∈ 1 2 + Z, which has expectation 0. The measure ρ 0 is very important, since the law of the ζ T ι m,i ,±,B , ζ T ι m,i ,±,E will be close to ρ 0 under "good conditions". In particular, these variables will have expectation close to 0.

Remark 5. We could study our random walk (X m ) m∈N "starting from a random environment", that is setting the ∆ 0,i , i ∈ Z to random variables instead of setting them to 0, and then evolving (X m ) m∈N and the (∆ m,i ) m∈N , i ∈ Z according to the usual rules. This yields a new random walk ( Xm ) m∈N and an "environment" process on ( ∆m,i ) m∈N,i∈Z which evolves a follows:

(1) We choose the ∆0,i , i ∈ Z to be independent, with distribution ρ -for i < 0, ρ + for i > 0 and ρ -+ρ + 2 for i = 0. We set X0 = 0.

(2) For any m ≥ 0, P( Xm+1 = Xm + 1) = 1 -P( Xm+1 = Xm -1) = w( ∆m, Xm ) w(-∆m, Xm )+w( ∆m, Xm ) .

(3) for m ≥ 0, we set ∆m+1,i = ∆m,i for i ̸ = Xm and ∆m+1, Xm = ∆m, Xm -( Xm+1 -Xm ).

Let µ 0 be the law of (∆ 0,i ) i∈Z and for all m > 0 let µ m be the law of (∆ m,i ) i∈Z shifted by the "tagged particle" Xm , that is the law of (∆ m, Xm+i ) i∈Z . Then direct calculation shows that for each m ≥ 0, µ m = µ 0 . So with this particular measure µ 0 for the initial environment, the distribution of the environment is stationary, hence the increments of ( Xm ) m∈N are stationary. Though of course knowing that X1 = 1 will typically mean that the conditional distribution of ( ∆1,i ) i∈Z shifted by 1 is not µ 0 .

A slight modification of our arguments (to deal with the distribution of ( ∆0,i ) i∈Z ) shows that the motion of ( Xm ) m∈N is governed by Theorem 2. Unlike the motion of the tagged particle in an exclusion process with a non nearest neigbor jump kernel or in high dimension with an initial product measure (see [START_REF] Kipnis | Central limit theorem for additive functionals of reversible Markov processes with applications to simple exclusion[END_REF]), our environment does not evolve outside of the position of Xm . In this it is like the Markov chain cookie random walk studied by [START_REF] Kosygina | Convergence of random walks with Markovian cookie stacks to Brownian motion perturbed at extrema[END_REF] where the intial distribution of the environment is π -for i < 0, π + for i > 0 and π + +π - 2 = π for i = 0. However, in the Markov chain cookie random walk, the "tagged particle" does have a motion that (under diffusive scaling) converges to a Brownian motion, which is not the case in our model (as the limit has non-Brownian scaling properties). The two models, though similar, thus have a different behavior, and the reason for that is not clear, though obviously the operator for our process does not fall into the domain of Kipnis-Varadhan analysis.

In order to control the behavior of η, thus of the ζ m,±,B i , ζ m,±,E i , we will need the following lemma, proved in [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF].

Lemma 6 (Lemma 1 of [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF]). There exist constants c = c(w) > 0 and C = C(w) < ∞ such that for any m ≥ 0,

P(η(m) = i|η(0) = 0) ≤ Ce -c|i| and i∈Z |P(η(m) = i|η(0) = 0) -ρ -(i)| ≤ Ce -cm .
We now state two easy coupling lemmas, which we will need in order to define auxiliary random variables.

Lemma 7. For any probability laws µ and ν on Z, for any random variables V µ with law µ and U independent from V µ uniform on [0, 1], one can construct a random variable V ν of law ν depending only on V µ and U such that P(V µ ̸ = V ν ) is minimal.

Proof. We suppose µ ̸ = ν, as if µ = ν we can take V ν = V µ . The construction is as follows. If µ(V µ ) ≤ ν(V µ ), we set

V ν = V µ . If µ(V µ ) > ν(V µ ), we set V ν = V µ if U ∈ [0, ν (Vµ) 
µ(Vµ) ], and for any i

∈ Z \ {V µ }, V ν = i if U ∈ ν(V µ ) µ(V µ ) + µ(V µ ) -ν(V µ ) µ(V µ ) j<i (ν(j) -µ(j)) + j∈Z (ν(j) -µ(j)) + , ν(V µ ) µ(V µ ) + µ(V µ ) -ν(V µ ) µ(V µ ) j≤i (ν(j) -µ(j)) + j∈Z (ν(j) -µ(j)) + .
It is straightforward to check that V ν has law ν and that P(

V µ ̸ = V ν ) = j∈Z (µ(j) -ν(j)) + , hence is minimal. □ Lemma 8. It is possible to couple two processes η and η ′ with η ′ (0) = η(0) -1 so that for any ℓ ∈ N, η(ℓ) -1 ≤ η ′ (ℓ) ≤ η(ℓ).
Proof. It is enough to couple η(1) and η ′ (1) so that η(1) -1 ≤ η ′ (1) ≤ η [START_REF] Daniel | Asymptotic behavior of the "true" self-avoiding walk[END_REF]. For this, we set U a random variable uniform on [0, 1], and we set η(1) = i when U ∈ (P(η(1) ≥ i + 1), P(η(1) ≥ i)] for η = η or η ′ . η and η ′ have the right marginal laws. We only have to prove that for any i ∈ Z, P(η ′ (1) ≥ i + 1) ≤ P(η(1) ≥ i + 1) and P(η(1) ≥ i) ≤ P(η ′ (1) ≥ i -1). Now, for any i ∈ Z, one can check that P(η(1

) ≥ i) = i j=η(0)
w(-j) w(j)+w(-j) if i ≥ η(0), and P(η(1) ≥ i) = 1 if i < η(0). Since η ′ (0) < η(0), we deduce P(η ′ (1) ≥ i + 1) ≤ P(η(1) ≥ i + 1). Now, if i < η(0), i -1 < η ′ (0), so P(η(1) ≥ i) = P(η ′ (1) ≥ i -1) = 1, and if i ≥ η(0) we have P(η(1

) ≥ i) = i j=η(0) w(-j) w(j)+w(-j) ≤ i-1 j=η ′ (0)
w(-j) w(j)+w(-j) = P(η ′ (1) ≥ i -1) since w(-.) w(.)+w(-.) is non-increasing. This ends the proof of the lemma. □

We are now in position to control the laws of the ∆ T ι m,i ,j for m ≥ N θ/2, i ∈ Z, ι ∈ {+, -}. Heuristically, the ∆ T ι m,i ,j are steps of chains η or -η, and these chains have made a large number of steps before time T ι m,i since m is large, hence the ∆ T ι m,i ,j will have law close to the invariant measure of η or -η, that is ρ -or ρ + . More precisely, we have the following proposition.

Proposition 9. For any m ≥ N θ/2, i ∈ Z, ι ∈ {+, -}, there exists a collection of random variables ( ∆T ι m,i ,j ) j∈Z , an event B m,i,ι 0 , and constants C 0 = C 0 (w, ε) < ∞ and c 0 = c 0 (w) > 0, so that when n is large enough, P(B m,i,ι 0

) ≤ C 0 e -c 0 n (α-1)/4 , B m,i,ι 0 contains {there exists i -n (α-1)/4 ⌊εn⌋ -1 ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ + 1, ∆T ι m,i ,j ̸ = ∆ T ι m,i ,j }, B m,i,ι
0 depends only on F T ι m,i and on random variables independent from X, and the ( ∆T ι m,i ,j ) j∈Z are independent with the following laws:

• for ι = -, ∆T ι m,i ,j has law ρ -for j ≤ i -1 and ∆T ι m,i ,j has law ρ + for j ≥ i; • for ι = +, ∆T ι m,i ,j has law ρ -for j ≤ i and ∆T ι m,i ,j has law ρ + for j ≥ i + 1. Proof. We write the argument for ι = -; the case ι = + is similar. We begin by constructing ( ∆T ι m,i ,j ) j∈Z . This construction is inspired from the one in Section 3.3 of [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF]. We have X T ι m,i -1 = i, thus for j ≤ i-1, the last time before T ι m,i that the process (X m ′ ) m ′ ∈Z was at j, it went to the right, hence the last step of (∆ m ′ ,j ) m ′ ∈N before time T ι m,i is an downwards step. Moreover, the number of downwards steps of

(∆ m ′ ,j ) m ′ ∈N before time T ι m,i is ℓ + T - m,i ,j . We deduce that ∆ T - m,i ,j = ξ j (τ -(ℓ + T - m,i ,j )) = η j,-(ℓ + T - m,i ,j )
, where the η j,-are independent copies of η starting from 0 (and the ξ j are independent copies of ξ starting from 0). In the same way, for

j ≥ i, ∆ T - m,i ,j = ξ j (τ + (ℓ - T - m,i ,j )) = -η j,+ (ℓ - T - m,i ,j
) where the η j,+ are independent, independent from the η j,-, j ≤ i -1, and start from 0. We will drop the index + orfrom the η j,± for convenience. By Lemmas 6 and 7, we can introduce random variables r j i.i.d. of law ρ -such that for any j, P(η j (⌈N θ/4⌉) ̸ = r j ) ≤ Ce -cθN/4 . For any j, we define another copy of η, (η j (ℓ)) ℓ≥⌈N θ/4⌉ , so that ηj (⌈N θ/4⌉) = r j , if η j (⌈N θ/4⌉) = r j , ηj (ℓ) = η j (ℓ) for any ℓ ≥ ⌈N θ/4⌉, and the ηj are independent. For j ≤ i -1, we set ∆T - m,i ,j = ηj (ℓ + T - m,i ,j ∨ ⌈N θ/4⌉), and for j ≥ i we set ∆T - m,i ,j = -η j (ℓ - T - m,i ,j ∨ ⌈N θ/4⌉). To show that the ∆T - m,i ,j are independent with the required laws, we notice that since ρ -is invariant for η, ηj (ℓ) has law ρ -for any ℓ ≥ ⌈N θ/4⌉. Now, for j > i, we notice that ℓ -

T - m,i ,j = ℓ + T - m,i ,j-1 or ℓ + T -
m,i ,j-1 + 1 depending only on the position of i and j with respect to 0. Furthermore,

ℓ + T - m,i ,j-1 = ℓ - T - m,i ,j-1 -∆ T - m,i ,j-1 = ℓ - T - m,i ,j-1 + η j-1 (ℓ - T - m,i ,j-1
), and we recall that ℓ - T - m,i ,i = m, so one can prove by induction that ℓ - T - m,i ,j depends only on the η j ′ , i ≤ j ′ < j, which are independent from ηj , therefore ∆T - m,i ,j is independent from the η j ′ , ηj ′ , j ′ < j, and has law ρ + . The same argument can be used for j ≤ i -1 to show that ℓ + T - m,i ,j depends only on the η j ′ , j < j ′ < i so ∆T - m,i ,j has law ρ -and is independent from the η j ′ , ηj ′ , j ′ > j. This implies the ∆T - m,i ,j are independent with the required laws. We now define B m,i,- 0 . We set B m,i,-

0,1 = {there exists i -n (α-1)/4 ⌊εn⌋ -1 ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ + 1 such that η j (⌈N θ/4⌉) ̸ = r j }, B m,i,- 0,2 = {there exists i -n (α-1)/4 ⌊εn⌋ ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ such that |∆ T - m,i ,j | > n (α-1)/4 } and B m,i,- 0 = B m,i,- 0,1 ∪ B m,i,- 0,2 .
To show that B m,i,- 0 contains the required event, we notice that for any

j ∈ Z, ℓ - T - m,i ,j = ∆ T - m,i ,j + ℓ + T - m,i ,j and |ℓ - T - m,i ,j -ℓ + T - m,i ,j-1 | ≤ 1, so we have |ℓ + T - m,i ,j-1 -ℓ + T - m,i ,j | ≤ |∆ T - m,i ,j | + 1 and |ℓ - T - m,i ,j+1 -ℓ - T - m,i ,j | ≤ |∆ T - m,i ,j | + 1.
In addition, we recall that ℓ - T - m,i ,i = m. We deduce that when n is large enough, for any

0 ≤ s ≤ n (α-1)/4 ⌊εn⌋, if |∆ T - m,i ,j | ≤ n (α-1)/4 for all i -s ≤ j ≤ i -1, then |ℓ + T - m,i ,j -m| ≤ 4εn (α+1)/2 for i -s -1 ≤ j ≤ i -1, and if |∆ T - m,i ,j | ≤ n (α-1)/4 for all i ≤ j ≤ i + s then |ℓ - T - m,i ,j -m| ≤ 4εn (α+1)/2 for i ≤ j ≤ i + s + 1. Consequently, if (B m,i,- 0,2
) c is satisfied and n is large enough, for all i -n (α-1)/4 ⌊εn⌋ -

1 ≤ j ≤ i -1 we have ℓ + T - m,i ,j ≥ m-4εn (α+1)/2 ≥ ⌈N θ/4⌉
, and for all i ≤ j ≤ i+n (α-1)/4 ⌊εn⌋+1 we have ℓ -

T - m,i ,j ≥ m-4εn (α+1)/2 ≥ ⌈N θ/4⌉. This implies that if (B m,i,- 0 ) c is satisfied, for all i -n (α-1)/4 ⌊εn⌋ -1 ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ + 1, ∆T - m,i ,j = ∆ T - m,i ,j , thus B m,i,- 0 contains the required event.
To see that B m,i,- 0 has the required dependencies, we notice that B m,i,-

0,2 depends on F T - m,i
. Furthermore, if (B m,i,- 0,2 ) c is satisfied and n is large enough, for all i -n (α-1)/4 ⌊εn⌋ -1 ≤ j ≤ i -1 we have ℓ + T - m,i ,j ≥ ⌈N θ/4⌉ and for all i ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ + 1 we have ℓ - T - m,i ,j ≥ ⌈N θ/4⌉, so the events {η j (⌈N θ/4⌉) ̸ = r j } depend only on F T - m,i and on the random variables used to construct the r j .

We now bound the probability of B m,i,-

0

. By the definition of the r j , when n is large enough, P(B m,i,- 0,1 ) ≤ 3εn (α+3)/4 Ce -cθN/4 . Furthermore, when n is large enough, if B m,i,- 0,2 is satisfied by some i -n (α-1)/4 ⌊εn⌋ ≤ j ≤ i -1 (the case i ≤ j ≤ i + n (α-1)/4 ⌊εn⌋ is similar), and if we consider the largest such j, then |ℓ + T - m,i ,j -m| ≤ 4εn (α+1)/2 , so there exists an integer m ′ ∈ [m -4εn (α+1)/2 , m + 4εn (α+1)/2 ] such that |η j (m ′ )| ≥ n (α-1)/4 . This implies

P(B m,i,- 0,2 ) ≤ |j-i|≤n (α-1)/4 ⌊εn⌋,|m ′ -m|≤4εn (α+1)/2 P(|η j (m ′ )| ≥ n (α-1)/4 ) ≤ 32ε 2 n (3α+5)/4 2 C
1 -e -c e -cn (α-1)/4 , the latter inequality coming from Lemma 6. This ends the proof. □ Proposition 9 gives us a good control on the ∆ m,i when m is some T ι m ′ ,i ′ with m ′ ≥ N θ/2. However, we will need to understand the ∆ m,i when m is T k , k ∈ N. In order to do that, we establish the following proposition, which states that outside of an event of very small probability, each T k will be one of the T ι m ′ ,i ′ for some random m ′ ≥ N θ/2, i ′ ∈ Z, ι ∈ {+, -}. Proposition 10. We can define an event B such that for any k ∈ N * , if B c occurs and n is large enough,

T k = T + m,i or T - m,i
for some integers ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 and ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ + n (α+4)/5 . In addition, there exists a constant c ′ = c ′ (w) > 0 such that P(B) ≤ e -c ′ n ((α-1)/4)∧(1/10) when n is large enough.

Proof. By the definition of the T k , if n is large enough, there exist m ∈ N, ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ + n (α+4)/5 and ι ∈ {+, -} so that T k = T ι m,i , hence we only have to obtain the property on m. Roughly, the idea of the proof is that at T 0 = T ± ⌊N θ⌋,⌊N x⌋ , Proposition 9 allows us to control the ∆ T 0 ,j , which are tightly linked to the ℓ ± T 0 ,j , which allows to show that the ℓ ± T 0 ,j cannot be too small, thus since T k ≥ T 0 , the ℓ ± T k ,j cannot be too small which yields a lower bound on m. Moreover, this control on the ℓ ± T 0 ,j also implies that they cannot be too large, therefore ℓ ι T 0 ,⌊(N +n (α+9)/10 )x⌋ ≤ ⌊(N + n (α+9)/10 )θ⌋, thus T 0 ≤ T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ . Since the random walk cannot reach ⌊(N + n (α+9)/10 )x⌋ from ⌊N x⌋ between times T 0 and T k , this implies T k ≤ T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ . We can exert the same control on the ℓ ± at time T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ as at time T 0 , which allows us to prove that m is not too large.

We now construct the event B, which will roughly mean "the ℓ ± don't behave well". We suppose without loss of generality that we work with T 0 = T + ⌊N θ⌋,⌊N x⌋ and x > 0. For ι ∈ {+, -}, we define

B ι = {∃i ∈ Z with |i-⌊N x⌋| ≤ 2n (α+4)/5 and |ℓ ι T 0 ,i -ℓ ι T 0 ,y +(i-⌊N x⌋)/2| > n (α+5)/10 }, with y = ⌊N x⌋ if ι = + and y = ⌊N x⌋+1 if ι = -.
To shorten the notation, we will write in this proof T ι for T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ . We define

B ′ ι = {∃i ∈ Z with |i -⌊(N + n (α+9)/10 )x⌋| ≤ 2n (α+4)/5 and |ℓ ι T ι,i -ℓ ι T ι,⌊(N +n (α+9)/10 )x⌋ + (i -⌊(N + n (α+9)/10 )x⌋)/2| > n (α+5)/10 }. If x < 0, we would replace (i -⌊N x⌋)/2 by -(i -⌊N x⌋)/2 in B ι,

and similarly in B ′

ι. If we had x = 0, we would replace ⌊(N + n (α+9)/10 )x⌋ by ⌊n (α+9)/10 ⌋, in B ι we would replace (i -⌊N x⌋)/2 by |i/2|, and in B ′ ι we would replace

(i -⌊(N + n (α+9)/10 )x⌋)/2 by (|i| -⌊n (α+9)/10 ⌋)/2. Finally, we define B = B + ∪ B -∪ B ′ + ∪ B ′ -.
We now prove that if B c occurs, T k has the desired property. We notice that since T k = T ι m,i , we have m = ℓ ι T k ,i . We first prove the lower bound on m. We have

m = ℓ ι T k ,i ≥ ℓ ι T 0 ,i . Moreover, |i -⌊N x⌋| ≤ 2n (α+4)/5 and B c ι occurs, hence |ℓ ι T 0 ,i -ℓ ι T 0 ,y + (i -⌊N x⌋)/2| ≤ n (α+5)/10 with y = ⌊N x⌋ if ι = + and y = ⌊N x⌋ + 1 if ι = -. Since T 0 = T + ⌊N θ⌋,⌊N x⌋ , if ι = + we have ℓ + T 0 ,⌊N x⌋ = ⌊N θ⌋, hence ℓ ι T 0 ,i ≥ ⌊N θ⌋ -n (α+5)/10 -n (α+4)/5 . If ι = -, we have |ℓ - T 0 ,⌊N x⌋+1 -ℓ + T 0 ,⌊N x⌋ | ≤ 1 and ℓ + T 0 ,⌊N x⌋ = ⌊N θ⌋, thus ℓ ι T 0 ,i ≥ ⌊N θ⌋ -n (α+5)/10 -1 -n (α+4)/5
. In both cases we get ℓ ι T 0 ,i ≥ ⌊N θ⌋ -2n (α+4)/5 when n is large enough, hence m ≥ ⌊N θ⌋ -2n (α+4)/5 . We now prove the upper bound on m. In order to do that, we notice that

|⌊(N + n (α+9)/10 )x⌋ -⌊N x⌋| ≤ 2n (α+4)/5 when n is large enough, thus since B c ι occurs, |ℓ ι T 0 ,⌊(N +n (α+9)/10 )x⌋ -ℓ ι T 0 ,y + (⌊(N + n (α+9)/10 )x⌋ -⌊N x⌋)/2| ≤ n (α+5)/10 with |ℓ ι T 0 ,y -⌊N θ⌋| ≤ 1. This implies ℓ ι T 0 ,⌊(N +n (α+9)/10 )x⌋ -⌊N θ⌋ ≤ n (α+5)/10 -(⌊(N + n (α+9)/10 )x⌋ -⌊N x⌋)/2 + 1 ≤ n (α+5)/10
when n is large enough, hence ℓ ι T 0 ,⌊(N +n (α+9)/10 )x⌋ < ⌊(N + n (α+9)/10 )θ⌋, which yields T 0 ≤ T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ . Furthermore, between times T 0 and T k the random walk stays at distance at most kεn + 1 of ⌊N x⌋, hence when n is large enough it does not reach ⌊(N + n (α+9)/10 )x⌋, therefore T k ≤ T ι ⌊(N +n (α+9)/10 )θ⌋,⌊(N +n (α+9)/10 )x⌋ = T ι , which yields

m = ℓ ι T k ,i ≤ ℓ ι T ι ,i . Now, |i -⌊N x⌋| ≤ n (α+4)/5 , thus |i -⌊(N + n (α+9)/10 )x⌋| ≤ 2n (α+4)/5 when n is large enough, thus since B ′ ι occurs, |ℓ ι T ι ,i -ℓ ι T ι ,⌊(N +n (α+9)/10 )x⌋ + (i -⌊(N + n (α+9)/10 )x⌋)/2| ≤ n (α+5)/10 , so ℓ ι T ι ,i ≤ ℓ ι T ι ,⌊(N +n (α+9)/10
)x⌋ + n (α+5)/10 + n (α+4)/5 . In addition, by the definition of T ι we have

ℓ ι T ι ,⌊(N +n (α+9)/10 )x⌋ = ⌊(N + n (α+9)/10 )θ⌋, thus m ≤ ℓ ι T ι ,i ≤ ⌊(N + n (α+9)/10
)θ⌋ + n (α+5)/10 + n (α+4)/5 ≤ ⌊N θ⌋ + 2n (α+4)/5 . We now prove the bound on P(B) with the help of Proposition 9. It is enough to find c ′ = c ′ (w) > 0 so that P(B -) ≤ e -2c ′ n ((α-1)/4)∧(1/10) when n is large enough, as the probabilities P(B + ), P(B ′ + ), P(B ′ -) can be dealt with in the same way. Moreover, by Proposition 9 we have P(B

⌊N θ⌋,⌊N x⌋,+ 0 ) ≤ C 0 e -c 0 n (α-1)/4 when n is large enough, so it is enough to prove P(B -∩ (B ⌊N θ⌋,⌊N x⌋,+ 0 ) c
) ≤ e -c 0 n 1/10 for some constant c0 = c0 (w) > 0 when n is large enough. In order to do that, we set i ∈ Z so that |i -⌊N x⌋| ≤ 2n (α+4)/5 . We will write ℓ - T 0 ,i -ℓ - T 0 ,⌊N x⌋ + (i -⌊N x⌋)/2 as a sum of i.i.d. random variables as follows. We first suppose

i < ⌊N x⌋, then ℓ - T 0 ,i -ℓ - T 0 ,⌊N x⌋ + (i -⌊N x⌋)/2 = i+1 j=⌊N x⌋ (ℓ - T 0 ,j-1 -ℓ - T 0 ,j -1/2
). Now, we recall that x > 0 and n α ≤ N , so when n is large enough i ≥ 0, which yields that for any j ∈ {i + 1, ..., ⌊N x⌋},

ℓ - T 0 ,j = ℓ + T 0 ,j-1 -1, hence ℓ - T 0 ,i -ℓ - T 0 ,⌊N x⌋ + (i -⌊N x⌋)/2 = i+1 j=⌊N x⌋ (ℓ - T 0 ,j-1 -ℓ + T 0 ,j-1 + 1/2) = i+1 j=⌊N x⌋ (∆ T 0 ,j-1 + 1/2). Moreover, ℓ - T 0 ,⌊N x⌋+1 = ℓ + T 0 ,⌊N x⌋ , thus ℓ - T 0 ,⌊N x⌋ -ℓ - T 0 ,⌊N x⌋+1 = ℓ - T 0 ,⌊N x⌋ -ℓ + T 0 ,⌊N x⌋ = ∆ T 0 ,⌊N x⌋ . We deduce ℓ - T 0 ,i - ℓ - T 0 ,⌊N x⌋+1 + (i -⌊N x⌋)/2 = ∆ T 0 ,⌊N x⌋ + i+1 j=⌊N x⌋ (∆ T 0 ,j-1 + 1/2). Now, if (B ⌊N θ⌋,⌊N x⌋,+ 0 
) c occurs and n is large enough,

∆ T 0 ,j = ∆T 0 ,j for any j ∈ {i, ..., ⌊N x⌋}, thus ℓ - T 0 ,i -ℓ - T 0 ,⌊N x⌋+1 + (i -⌊N x⌋)/2 = ∆T 0 ,⌊N x⌋ + i+1 j=⌊N x⌋ ( ∆T 0 ,j-1 + 1/2). Therefore it is enough to show P(| ∆T 0 ,⌊N x⌋ + i+1 j=⌊N x⌋ ( ∆T 0 ,j-1 + 1/2)| > n (α+5)/10
) ≤ e -2c 0 n 1/10 for some constant c0 = c0 (w) > 0 when n is large enough. Now, by Proposition 9 ∆T 0 ,⌊N x⌋ has law ρ -which has exponential tails, so there exists a constant c0 = c0 (w) > 0 so that P(| ∆T 0 ,⌊N x⌋ | > n (α+5)/10 /2) ≤ e -c 0 n (α+5)/10 when n is large enough. Therefore it suffices to prove P(| i+1 j=⌊N x⌋ ( ∆T 0 ,j-1 + 1/2)| > n (α+5)/10 /2) ≤ e -n 1/10 /3 when n is large enough. Furthermore, by Proposition 9 the ∆T 0 ,j-1 are i.i.d. with law ρ -, thus the ∆T 0 ,j-1 + 1/2 are i.i.d. with law ρ 0 .

Consequently, we only have to prove that P(|

⌊N x⌋-i j=1 ζ j | > n (α+5)/10 /2
) ≤ e -n 1/10 /3 when n is large enough, where (ζ j ) j∈N are i.i.d. with law ρ 0 . Moreover, ρ 0 has exponential tails, so E(e sζ 1 ) < +∞ when s > 0 is small enough. Since

ρ 0 is symmetric, P(| ⌊N x⌋-i j=1 ζ j | > n (α+5)/10 /2) = 2P( ⌊N x⌋-i j=1 ζ j > n (α+5)/10 /2) = 2P(exp(n -(α+4)/10 ⌊N x⌋-i j=1 ζ j ) > exp(n 1/10 /2)) = 2e -n 1/10 /2 E(exp(n -(α+4)/10 ζ 1 )) ⌊N x⌋-i when n is large enough, that is P(| ⌊N x⌋-i j=1 ζ j | > n (α+5)/10 /2) = 2e -n 1/10 /2 E(exp(n -(α+4)/10 ζ 1 )) ⌊N x⌋-i . We now study E(exp(n -(α+4)/10 ζ 1 )). We have exp(n -(α+4)/10 ζ 1 ) = 1 + n -(α+4)/10 ζ 1 + 1 2 n -(α+4)/5 ζ 2 1 e ζ ′ 1 with |ζ ′ 1 | ≤ |n -(α+4)/10 ζ 1 |, hence E(exp(n -(α+4)/10 ζ 1 )) = 1 + E( 1 2 n -(α+4)/5 ζ 2 1 e ζ ′ 1 ) ≤ 1 + 1 2 n -(α+4)/5 E(ζ 2 1 e |n -(α+4)/10 ζ 1 | ). Now, since ρ 0 has exponential tails, there exists c0 = c0 (w) > 0 and C0 = C0 (w) < +∞ so that E(ζ 2 1 e c0 |ζ 1 | ) ≤ C0 . When n is large enough, E(ζ 2 1 e |n -(α+4)/10 ζ 1 | ) ≤ E(ζ 2 1 e c0 |ζ 1 | ) ≤ C0 , thus E(exp(n -(α+4)/10 ζ 1 )) ≤ 1+n -(α+4)/5
C0 /2 ≤ e n -(α+4)/5 C0 /2 . In addition, we know that P(|

⌊N x⌋-i j=1 ζ j | > n (α+5)/10 /2) = 2e -n 1/10 /2 E(exp(n -(α+4)/10 ζ 1 )) ⌊N x⌋-i when n is large enough, hence we obtain that P(| ⌊N x⌋-i j=1 ζ j | > n (α+5)/10 /2) = 2e -n 1/10 /2 e (⌊N x⌋-i)n -(α+4)/5 C0 /2 ≤ 2e -n 1/10
/2 e 2n (α+4/5) n -(α+4)/5 C0 /2 ) = 2e -n 1/10 /2 e C0 ≤ e -n 1/10 /3 when n is large enough, which ends the proof. □ Remark 11. It is possible to use the main result of [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] to craft an event B for which the proof is much simpler, but such that B c only ensures N θ/2 ≤ m ≤ 5N θ/2. This is not enough for our purposes, since we will later use union bounds on events indexed by m, the probability of each event of order e -c(ln n) 2 .

We will need some other auxiliary variables. Firstly, for m ≥ N θ/2, i ∈ Z, ι ∈ {+, -}, we will need an equivalent of the processes (L

T ι m,i ,- j ) j∈Z and (L T ι m,i ,+ j ) j∈Z "when the environment at time T ι m,i is ( ∆T ι m,i ,j ) j∈Z instead of (∆ T ι m,i ,j ) j∈Z ". We denote m = T ι m,i and ī = X T ι m,i for short. We define ( L m,- j ) j∈Z as follows. For j ≤ ī -⌊εn⌋ + 1, L m,- j = 0. By Observation 4, for any j ≥ ī -⌊εn⌋ + 1 we have L m,- j+1 = L m,- j + ζ m,-,E j -ζ m,-,B j
, and by ( 1), if

ī -⌊εn⌋ + 1 ≤ j ≤ ī, ζ m,-,E j = η(L m,- j + 1) + 1/2 with η(0) = -∆ m,j , while if j > ī, ζ m,-,E j = η(L m,- j ) + 1/2 with η(0) = -∆ m,j . We can define η so that η(0) = -∆ m,j , the transitions of η are independent from ( ∆ m,j ′ ) j ′ ∈Z , and η = η if (B m,i,ι 0 ) c is satisfied, n large enough and |j -ī| ≤ n (α-1)/4 ⌊εn⌋. We define L m,- j by induction by setting L m,- j+1 = L m,- j + η( L m,- j + 1) + ∆ m,j + 1 if ī -⌊εn⌋ + 1 ≤ j ≤ ī and L m,- j+1 = L m,- j + η( L m,- j ) + ∆ m,j if j > ī.
We define

( L m,+ j ) j∈Z in the same way. L m,+ j = 0 for j > ī+⌊εn⌋, L m,+ ī+⌊εn⌋ = 1. For any j < ī+⌊εn⌋, ζ m,+,E j = η(L m,+ j+1 )+1/2 with η(0) = ∆ m,j
, and we may define η so that η(0) = ∆ m,j , the transitions of η are independent from ( ∆ m,j ) j∈Z , and ) j∈Z where

η = η if (B m,i,ι 0 ) c is satisfied, n large enough and |j -ī| ≤ n (α-1)/4 ⌊εn⌋. We then define L m,+ j = L m,+ j+1 + η( L m,+ j+1 ) -∆ m,j + 1 if ī < j < ī + ⌊εn⌋ and L m,+ j = L m,+ j+1 + η( L m,+ j+1 ) -∆ m,j if j ≤ ī. When n is large enough, if (B m,i,ι 0 ) c is satisfied, L m,± j = L m,± j for any j ∈ Z with |j -ī| ≤ n (α-1)/4 ⌊εn⌋.
m ∈ N. If m = T ι m ′ ,i for some m ′ ≥ N θ/2, i ∈ Z, ι ∈ {+, -}, we construct the ( ζm,-,I j ) j∈Z at the same time. Let j ∈ Z. If j ≤ X m -⌊εn⌋, ζ m,-,I j = ζm,-,I j will be a random variable of law ρ 0 independent from everything else. If X m -⌊εn⌋ < j ≤ X m , by (1) we know that ζ m,-,E j = η(L m,- j + 1) + 1/2 with η(0) = -∆ m,j , and (if m = T ι m ′ ,i
) we remember the definitions of η and Lm,-

j given above. We denote T = inf{ℓ ≥ 0 | η(ℓ) = 0} and T = inf{ℓ ≥ 0 | η(ℓ) = 0}.
Let U be a random variable uniform on [0, 1] independent from everything else. We can apply the construction of Lemma 7 with η(T + ⌊(ln n) 2 /2⌋) and U to construct a random variable ∆ of law ρ -and so that P(η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆) is minimal, and with η( T + ⌊(ln n) 2 /2⌋) and U to construct a random variable ∆ of law ρ -and so that P(η(

T + ⌊(ln n) 2 /2⌋) ̸ = ∆) is minimal. If (B m,i,ι 0 ) c is satisfied and n is large enough, we then have ∆ = ∆. Then, if L m,- j + 1 -T ≥ (ln n) 2 /2, we define ζ m,-,I j = η ′ (L m,- j + 1 -T -⌊(ln n) 2 /2⌋) + 1/2, where η ′ (0) = ∆ and η ′ (.) = η(T + ⌊(ln n) 2 /2⌋ + •) when η(T + ⌊(ln n) 2 /2⌋) = ∆. If L m,- j + 1 -T < (ln n) 2 /2, we set ζ m,-,I j = ζ, where ζ is a random variable of law ρ 0 independent of everything else. Similarly, if Lm,- j + 1 -T ≥ (ln n) 2 /2, we define ζm,-,I j = η′ ( Lm,- j +1-T -⌊(ln n) 2 /2⌋)+1/2, where η′ (0) = ∆, η′ (.) = η( T +⌊(ln n) 2 /2⌋+•) when η( T +⌊(ln n) 2 /2⌋) = ∆,
and η′ = η ′ when (B m,i,ι 0 ) c is satisfied and n large enough. If Lm,- j + 1 -T < (ln n) 2 /2, we set ζm,-,I j = ζ. If j > X m ,
we use the same construction with L m,- j replacing L m,- j + 1. We use a similar construction for the ζ m,+,I j , j ∈ Z.

For any j ∈ Z, ζ m,+,E j = η(L m,+ j+1 ) + 1/2 with η(0) = ∆ m,j . We take similar T and ∆, as well as T and ∆ when iι1-⌊εn⌋ ≤ j ≤ iι1+⌊εn⌋.

If L m,+ j+1 -T ≥ (ln n) 2 /2, we define ζ m,+,I j = η ′ (L m,+ j+1 -T -⌊(ln n) 2 /2⌋)+1/2, where η ′ (0) = ∆ and η ′ (.) = η(T + ⌊(ln n) 2 /2⌋ + •) when η(T + ⌊(ln n) 2 /2⌋) = ∆. If L m,+ j+1 -T < (ln n) 2 /2, we set ζ m,+,I j = ζ
, where ζ is a random variable of law ρ 0 independent of everything else. In the same way, if Lm,+ j+1 -T ≥ (ln n) 2 /2, we define ζm,+,

I j = η′ ( Lm,+ j+1 -T -⌊(ln n) 2 /2⌋)+1/2, where η′ (0) = ∆, η′ (.) = η( T +⌊(ln n) 2 /2⌋+•) when η( T +⌊(ln n) 2 /2⌋) = ∆, and η′ = η ′ when ∆m,j = ∆ m,j . If Lm,+ j+1 -T < (ln n) 2 /2, we set ζm,+,I j = ζ
. Some properties of the random variables defined thus are stated in the following proposition.

Proposition 12. For any m ∈ N, ι ∈ {+, -}, (ζ m,ι,I i ) i∈Z are i.i.d. with law ρ 0 , independent from F m , and depend only on F T ι m and on a set of random variables independent from everything else. Moreover, for any

i ∈ Z, ζ m,-,I i is independent from ζ m,-,B j , ζ m,-,E j for j < i, and ζ m,+,I i is independent from ζ m,+,B j , ζ m,+,E j for j > i. Furthermore, for any m ≥ N θ/2, i ∈ Z, ι ∈ {+, -}, for ι ′ ∈ {+, -}, ( ζT ι m,i ,ι ′ ,I j ) j are i.i.d. with law ρ 0 , independent from ( ∆T ι m,i ,j ) j∈Z , for any iι1-⌊εn⌋ ≤ j ≤ iι1+⌊εn⌋, ( ζT ι m,i ,-,I j ′ ) j ′ ≥j is independent from ( LT ι m,i ,-,I j ′ ) j ′ ≤j and ( ζT ι m,i ,+,I j ′ ) j ′ ≤j is independent from ( LT ι m,i ,+,I j ′ ) j ′ >j . In addition, if (B m,i,ι 0 ) c is satisfied and n is large enough, ζT ι m,i ,-,I j = ζ T ι m,i ,-,I j and ζT ι m,i ,+,I j = ζ T ι m,i ,+,I j for any iι1 -⌊εn⌋ ≤ j ≤ iι1 + ⌊εn⌋.
Proof. We only prove the independence and distribution properties for ζ m,-,I , as the proof is the same for ζ m,+,I , ζT ι m,i ,-,I and ζT ι m,i ,+,I and the other claims are clear from the construction.

If j ≤ X m -⌊εn⌋, the result is clear. If X m -⌊εn⌋ < j ≤ X m , we notice that η(T + ⌊(ln n) 2 /2⌋) is independent from T , F m , ζ m,-,B j ′ , ζ m,-,E j , ζ m,-,I j ′ for j ′ < j, so ∆ also is, as well as the transitions of η ′ . Consequently, η ′ (L m,- j + 1 -T -⌊(ln n) 2 /2⌋) is independent from T , F m , ζ m,-,B j ′ , ζ m,-,E j ′ , ζ m,-,I j ′ for j ′ < j and has law ρ -. We deduce that ζ m,-,I j is independent from F m , ζ m,-,B j ′ , ζ m,-,E j ′ , ζ m,-,I j ′
for j ′ < j and has law ρ 0 . If j > X m , the proof is the same as for j ≤ X m -⌊εn⌋. □

Bad events

In this section, we are going to prove that outside of "bad events" of small probability, the random variables defined in Section 3 behave well. For any m ∈ N, we define two sequences (I m,-(ℓ)) ℓ∈N and (I m,+ (ℓ)) ℓ∈N by

I m,-(0) = X m -⌊εn⌋, I m,-(ℓ + 1) = inf{I m,-(ℓ) < i < X m | L m,- i < (ln n) 3 } for ℓ ∈ N and I m,+ (0) = X m + ⌊εn⌋, I m,+ (ℓ + 1) = sup{X m < i < I m,+ (ℓ) | L m,+ i+1 < (ln n) 3 + 1} for ℓ ∈ N. We also denote ℓ m,- max = max{ℓ > 0 | I m,-(ℓ) < +∞} and ℓ m,+ max = max{ℓ > 0 | I m,+ (ℓ) > -∞}.
We define the following events (we stress that they are different from the events defined in Proposition 9 and its proof).

B - m,1 = {∃i ∈ {X m -⌊nε⌋ + 1, . . . , X m -⌊(ln n) 8 ⌋}, ∀j ∈ {i, . . . , i + ⌊(ln n) 8 ⌋}, L m,- j < (ln n) 3 }}, B + m,1 = {∃i ∈ {X m + ⌊(ln n) 8 ⌋ + 1, . . . , X m + ⌊nε⌋}, ∀j ∈ {i -⌊(ln n) 8 ⌋, . . . , i}, L m,+ j < (ln n) 3 + 1}}, B - m,2 = {|{X m < i ≤ X m + n (α-1)/4 ⌊εn⌋ | 0 < L m,- i < (ln n) 3 }| ≥ (ln n) 8 }, B + m,2 = {|{X m -n (α-1)/4 ⌊εn⌋ ≤ i ≤ X m | 0 < L m,+ i < (ln n) 3 }| ≥ (ln n) 8 }, B - m,3 = {∃i ∈ {X m -⌊nε⌋ + 1, . . . , X m + ⌊nε⌋} such that L m,- i ≥ (ln n) 2 and ζ m,-,E i ̸ = ζ m,-,I i }, B + m,3 = {∃i ∈ {X m -⌊nε⌋, . . . , X m + ⌊nε⌋ -1} such that L m,+ i+1 ≥ (ln n) 2 and ζ m,+,E i ̸ = ζ m,+,I i }, B - m,4 = {|{X m -⌊εn⌋ < i < X m | 0 ≤ L m,- i < (ln n) 3 }| > (ln n) 10 √ n}, B + m,4 = {|{X m < i < X m + ⌊εn⌋ | 0 ≤ L m,+ i+1 < (ln n) 3 + 1}| > (ln n) 10 √ n}, B - m,5 = {∃i ∈ {X m -⌊nε⌋ + 1, . . . , X m + ⌊nε⌋} such that |ζ m,-,B j | > (ln n) 2 , |ζ m,-,E j | > (ln n) 2 or |ζ m,-,I j | > (ln n) 2 }, B + m,5 = {∃i ∈ {X m -⌊nε⌋-1, . . . , X m +⌊nε⌋-1} such that |ζ m,+,B j | > (ln n) 2 , |ζ m,+,E j | > (ln n) 2 or |ζ m,+,I j | > (ln n) 2 }, B - m,6 =    max 1≤ℓ 1 ≤ℓ 2 ≤ℓ m,- max ℓ 2 ℓ=ℓ 1 ζ m,-,I I m,-(ℓ) > (ln n) 7 n 1/4 or max 1≤ℓ 1 ≤ℓ 2 ≤ℓ m,- max ℓ 2 ℓ=ℓ 1 ζ m,-,B I m,-(ℓ) > (ln n) 7 n 1/4    , B + m,6 =    max 1≤ℓ 1 ≤ℓ 2 ≤ℓ m,+ max ℓ 2 ℓ=ℓ 1 ζ m,+,I I m,+ (ℓ) > (ln n) 7 n 1/4 or max 1≤ℓ 1 ≤ℓ 2 ≤ℓ m,+ max ℓ 2 ℓ=ℓ 1 ζ m,+,B I m,+ (ℓ) > (ln n) 7 n 1/4    .
Moreover, for any r ∈ {1, . . . , 6}, we set B r = (B -

T ι m,i ,r ∪ B + T ι m,i ,r ), where the union is on ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 , ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ + n (α+4)/5 , ι ∈ {+, -}. Finally, we set B 0 = B m,i,ι 0
, where the union is on the same indexes as before. The goal of this section is to prove that P( 6 i=0 B i ) is small (Proposition 20). To achieve it, we will deal with each "bad event" separately. Proposition 13. There exists a constant c 1 = c 1 (w) > 0 such that when n is large enough, 5 and ι ∈ {+, -}. We are going to bound the probability of (B m,i,ι 0

P(B c 0 ∩ B 1 ) ≤ e -c 1 (ln n) 2 and P(B c 0 ∩ B 2 ) ≤ e -c 1 (ln n) 2 . Proof. Let ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 , ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ -n (α+4)/
) c ∩ B - T ι m,i ,1 and (B m,i,ι 0 ) c ∩ B - T ι m,i ,2 (the B + T ι
m,i ,r can be dealt with in the same way). We write ī = i ι 1 = X T ι m,i and m = T ι m,i . By Observation 4, for any ī -⌊εn⌋

< j 1 ≤ j 2 , L m,- j 2 -L m,- j 1 = j 2 -1 j=j 1 (ζ m,-,E j -ζ m,-,B j
). Instead of tackling this sum, we will consider a more amenable j 2 -1 j=j 1 A j , where the random variables A j , j > ī-⌊εn⌋, are defined as follows. We fix j > ī-⌊εn⌋, and we recall the chain η introduced before Proposition 12. If ī-⌊εn⌋ < j ≤ ī, by Lemma 8 we can couple η with a chain η such that η(0) = -∆ m,j -1 and for all ℓ ≥ 0, η(ℓ) ≤ η(ℓ). We then set

A j = η( L m,- j +1)+ ∆ m,j +1, which is at most ζ m,-,E j -ζ m,-,B j when (B m,i,ι 0 ) c is satisfied and n is large enough. If j > ī, we set A j = η( L m,- j ∨ 1) + ∆ m,j . For any i 0 ∈ { ī-⌊nε⌋+1, . . . , ī-⌊(ln n) 6 ⌋}, we denote K i 0 = {∃j ∈ {i 0 +1, . . . , i 0 +⌊(ln n) 6 ⌋}, j-1 j ′ =i 0 A j ′ ≥ (ln n) 3 }; for i 0 ≥ ī + 1, we denote K i 0 = {∃j ∈ {i 0 + 1, . . . , i 0 + ⌊(ln n) 6 ⌋}, j-1 j ′ =i 0 A j ′ ≤ -(ln n) 3 }. Finally, for any j ≥ ī -⌊nε⌋ + 1, we denote G j = σ(A j ′ , ī -⌊nε⌋ + 1 ≤ j ′ < j; L m,- j ′ , ī -⌊nε⌋ + 1 ≤ j ′ ≤ j).
We are going to prove the following. Lemma 14. There exists a constant c1 = c1 (w) > 0 such that when n is large enough, for any

i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋} or i 0 ≥ ī + 1, we have P(K c i 0 |G i 0 ) ≤ e -c 1 almost-surely. Let us show that Lemma 14 implies sufficient bounds on P((B m,i,ι 0 ) c ∩ B - T ι m,i ,1 ) and P((B m,i,ι 0 ) c ∩ B - T ι m,i ,2 ).
We begin with P((B m,i,ι 0

) c ∩ B - T ι m,i ,1 ). If (B m,i,ι 0
) c is satisfied, n is large enough and there exists i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 8 ⌋} such that for all j ∈ {i 0 , . . . , i 0 + ⌊(ln n) 8 ⌋}, L m,- j < (ln n) 3 , then for all ℓ ∈ {0, . . . , ⌊(ln n) 2 ⌋ -1}, for all j ∈ {i 0 + ℓ⌊(ln n) 6 ⌋ + 1, . . . , i 0 + (ℓ + 1)⌊(ln n) 6 ⌋} we have L m,- j < L m,- i 0 +ℓ⌊(ln n) 6 ⌋ + (ln n) 3 , thus for all ℓ ∈ {0, . . . , ⌊(ln n) 2 ⌋ -1}, K c i 0 +ℓ⌊(ln n) 6 ⌋ is satisfied. We deduce that when n is large enough,

P((B m,i,ι 0 ) c ∩ B - T ι m,i ,1 ) ≤ ī-⌊(ln n) 8 ⌋ i 0 = ī-⌊nε⌋+1 P   ⌊(ln n) 2 ⌋-1 l=0 K c i 0 +ℓ⌊(ln n) 6 ⌋   ≤ nεe -c 1 ⌊(ln n) 2 ⌋ ,
which is enough.

We now deal with P((B m,i,ι 0

) c ∩B - T ι m,i ,2
). We define the following random variables when possible: 1) , which is enough.

τ 1 = inf{j > ī | 0 < L m,- j < (ln n) 3 }, and for ℓ ≥ 1, τ i+1 = inf{j ≥ τ ℓ + ⌊(ln n) 6 ⌋ | 0 < L m,- j < (ln n) 3 }. If (B m,i,ι 0 ) c ∩ B - T ι m,i ,2 is satisfied and n is large enough, τ ⌊(ln n) 2 ⌋ exists, τ ⌊(ln n) 2 ⌋ ≤ ī + n (α-1)/4 ⌊εn⌋ -⌊(ln n) 6 ⌋ + 1, and for any ℓ ∈ {1, . . . , ⌊(ln n) 2 ⌋ -1}, L m,- j > 0 for j ∈ {τ ℓ , . . . , τ ℓ + ⌊(ln n) 6 ⌋}, since if j > ī is such that L m,- j = 0, L m,- j = 0 for all j ′ > j. In addition, if (B m,i,ι 0 ) c is satisfied, n is large enough and j ≤ ī+n (α-1)/4 ⌊εn⌋, when L m,- j = L m,- j > 0 we have A j = ζ m,-,E j -ζ m,-,B j . We deduce that if (B m,i,ι 0 ) c ∩ B - T ι m,i ,2 is satisfied, τ ⌊(ln n) 2 ⌋ exists, τ ⌊(ln n) 2 ⌋ ≤ ī + n (α-1)/4 ⌊εn⌋ -⌊(ln n) 6 ⌋ + 1, and for any ℓ ∈ {1, . . . , ⌊(ln n) 2 ⌋ -1}, K c τ ℓ occurs. This yields P((B m,i,ι 0 ) c ∩ B - T ι m,i ,2 ) ≤ e -c 1 (⌊(ln n) 2 ⌋-
We now prove Lemma 14. To proceed, we will need the following claim:

Claim 15. Let i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋} or i 0 ≥ ī + 1.
For any j ∈ {i 0 , . . . , i 0 + ⌊(ln n) 6 ⌋ -1}, p ≥ 1, A j ∈ L p and E(A j |G j ) = 0. Furthermore, there exist constants c1 = c1 (w) > 0, C1 = C1 (w) < ∞ such that for any j ∈ {i 0 , . . . , i 0 + ⌊(ln n) 6 ⌋ -1}, E(A 2 j |G j ) ≥ c1 and E(|A j | 3 |G j ) ≤ C1 . Proof of Claim 15. We suppose i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋}; the case i 0 ≥ ī + 1 can be dealt with in the same way. Let j ∈ {i 0 , . . . , i 0 + ⌊(ln n) 6 ⌋ -1}. Then A j = η( L m,j + 1) + ∆ m,j + 1 with η(0) = -∆ m,j -1. ∆ m,j has law ρ -and is independent of G j , so the chain η is stationary and independent of G j . Moreover, L m,j is G j -measurable, so conditionally to G j , η( L m,j + 1) has law ρ -. Therefore ∆ m,j and η( L m,j + 1) have exponential tails, so A j ∈ L p for any p ≥ 1. In addition, if we write A j,1 = ∆ m,j + 1 2 and A j,2 = η( L m,j + 1) + 1 2 for short, conditionally to G j both A j,1 and A j,2 have law ρ 0 . This implies

E(A j |G j ) = E(A j,1 + A j,2 |G j ) = 0. Furthermore, E(|A j | 3 |G j ) ≤ E(|A j,1 | 3 |G j ) + 3E(|A j,1 | 2 |A j,2 ||G j ) + 3E(|A j,1 ||A j,2 | 2 |G j ) + E(|A j,2 | 3 |G j ) ≤ E(|A j,1 | 3 |G j ) + 3E(|A j,1 | 4 |G j ) 1/2 E(|A j,2 | 2 |G j ) 1/2 + 3E(|A j,1 | 2 |G j ) 1/2 E(|A j,2 | 4 |G j ) 1/2 + E(|A j,2 | 3 |G j )
by the Cauchy-Schwarz inequality. Since ρ 0 has exponential tails, each of these expectations is bounded, thus E(|A j | 3 |G j ) is at most a constant depending on w.

We now deal with the lower bound of

E(A 2 j |G j ). Since A j is integer-valued, E(A 2 j |G j ) ≥ P(A j ̸ = 0|G j ) ≥ P(η( L m,- j + 1) ̸ = 0|G j , ∆ m,j = -1)P( ∆ m,j = -1|G j ).
Furthermore, P( ∆ m,j = -1|G j ) = ρ -(-1). In addition, if ∆ m,j = -1, η(0) = 0, so by Lemma 6 there exists ℓ 0 ∈ N * such that for any ℓ ≥ ℓ 0 , P(η(ℓ)

̸ = 0|G j , ∆ m,j = -1) ≥ 1 2 ρ -(Z * ). Now, for any 1 ≤ ℓ < ℓ 0 , there exists a constant c1,ℓ > 0 such that P(η(ℓ) ̸ = 0|G j , ∆ m,j = -1) ≥ c1,ℓ . We deduce E(A 2 j |G j ) ≥ ρ -(-1) min 1 2 ρ -(Z * ), min 1≤ℓ<ℓ 0 ci,ℓ > 0,
which ends the proof of the claim. □

Proof of Lemma 14. Let i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋} or i 0 ≥ ī + 1. We denote i ′ 0 = i 0 + ⌊(ln n) 6 ⌋ -1 for short. Claim 15 implies ( j-1 j ′ =i 0 A j ′ ) i 0 ≤j≤i ′ 0 +1 is a martingale with respect to the filtration (G j ) j> ī-⌊nε⌋ . We would like to use a central limit theorem for martingales to control the law of i ′ 0 j ′ =i 0 A j ′ , but in order to do that we would need i ′ 0 j ′ =i 0 A 2 j ′ to be close to a constant when n is large enough, and we do not control it well enough. We will therefore define another martingale. Thanks to Claim 15, for any j ∈ {i 0 , . . . , i ′ 0 }, we can define σ j ≥ 0 by σ

2 j = E(A 2 j |G j ). We set j 0 = inf{j ∈ {i 0 , . . . , i ′ 0 } | j j ′ =i 0 σ 2 j ′ ≥ c1 (ln n) 6 2 }, which exists since i ′ 0 j ′ =i 0 σ 2 j ′ ≥ c1 ⌊(ln n) 6 ⌋ by Claim 15. We define κ ∈ [0, 1] by j 0 -1 j=i 0 σ 2 j + κσ 2 j 0 = c1 (ln n) 6 2
. For any j ∈ {i 0 , . . . , i ′ 0 }, we also define

Āj = A j 1 {j 0 >j} + √ κA j 1 {j 0 =j} and σj ≥ 0 by σ2 j = E( Ā2 j |G j ) = σ 2 j 1 {j 0 >j} + κσ 2 j 1 {j 0 =j} , so that i ′ 0 j=i 0 Āj = j 0 -1 j=i 0 A j + √ κA j 0 . This implies that for i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋}, if i ′ 0 j=i 0 Āj ≥ (ln n) 3 then K i 0 occurs, so P(K c i 0 |G i 0 ) ≤ P( i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 ). Similarly, for i 0 ≥ ī + 1 we have P(K c i 0 |G i 0 ) ≤ P( i ′ 0 j=i 0 Āj > -(ln n) 3 |G i 0 )
. Consequently, to prove Lemma 14 we only have to find a constant c1 = c1 (w) > 0 such that when n is large enough, for any i 0 ∈ { ī -⌊nε⌋ + 1, . . . , ī -⌊(ln n) 6 ⌋} we have P(

i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 ) ≤ e -c 1
almost-surely (the case i 0 ≥ ī + 1 can be dealt with in the same way).

Suppose by contradiction that it is not true. This implies that there exists a sequence (N (k)) k∈N tending to +∞ so that for each k ∈ N there exists the following (the quantities will depend on k, but we will not include this dependence in the notation as that would make it too heavy) ⌊N (k)θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N (k)θ⌋ + 2n (α+4)/5 , ⌊N (k)x⌋-n (α+4)/5 ≤ i ≤ ⌊N (k)x⌋-n (α+4)/5 , ι ∈ {+, -} and i 0 ∈ { ī-⌊nε⌋+1, . . . , ī-⌊(ln n) 6 ⌋} so that P(

i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 ) > 1+c ′ 1 2
with positive probability, where c ′ 1 ∈ (0, 1) is the probability that a random variable with law N (0, 1) is at most

√ 2 √ c1
. For any j ≥ ī -⌊nε⌋ + 1, we denote

G j = ((A j ′ )ī -⌊nε⌋+1≤j ′ <j , ( L m,- j ′ )ī -⌊nε⌋+1≤j ′ ≤j ). Since G i 0 = σ((A j )ī -⌊nε⌋+1≤j<i 0 , ( L m,- j )ī -⌊nε⌋+1≤j≤i 0 ), the fact that P( i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 ) > 1+c ′ 1 2
with positive probability yields that there exists ω ∈ Z 2(i 0 -ī+⌊nε⌋)-1 such that P(G i 0 = ω) > 0 and P(

i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 = ω) > 1+c ′ 1 2 .
We want to apply a central limit theorem for martingales to the process ( j-1

j ′ =i 0 √ 2 √ c1 (ln n) 3 Āj ′ ) i 0 ≤j≤i ′ 0 +1
under the law P(•|G i 0 = ω). We denote this law P ′ (.) for short, and write E ′ (•) for the expectation operator. We consider the probability space

( k∈N Ω k , k∈N F ′ k , k∈N P k )
, where for any k ∈ N the space (Ω k , F ′ k , P k ) is a copy of the probability space where the A j , j ≥ ī -⌊nε⌋ + 1, L m,j , j ≥ ī -⌊nε⌋ + 1 corresponding to k live, with the probability measure P ′ corresponding to k. We denote P = k∈N P k and E the corresponding expectation. For any k ∈ N, we may consider the (G j (k)) i 0 (k)≤j≤i ′ 0 (k) and ( Āj (k)) i 0 (k)≤j≤i ′ 0 (k) defined as previously, but on the space (Ω k , F ′ k , P k ). Possibly through extracting a subsequence, we can assume n(k

) is non-decreasing in k. For any k ∈ N, ℓ ∈ {1, ..., ⌊(ln n(k)) 6 ⌋}, we define G ′ k,ℓ = ( k k ′ =0 G i 0 (k ′ )+ℓ-1 (k ′ )) ⊗ ( k ′ >k {∅, Ω k ′ })) i 0 (k)≤j≤i ′ 0 (k) . We then have G ′ k,ℓ ⊂ G ′ k+1,ℓ .
We will use a central limit theorem for martingales with

( i 0 (k)+j-1 j ′ =i 0 (k) √ 2 √ c1 (ln n(k)) 3 Āj ′ (k)) 0≤j≤⌊(ln n(k)) 6 ⌋ .
To do that, let us prove its assumptions. We first notice that for any k ∈ N, for any random variable V and any

j ≥ i 0 we have E ′ (V |G j ) = E(V |G j ). Indeed, for any ω ′ ∈ Z 2(j-i 0 ) so that P ′ (G j = (ω, ω ′ )) > 0 we have E ′ (V |G j = (ω, ω ′ )) = E ′ (V 1 {G j =(ω,ω ′ )} ) P ′ (G j = (ω, ω ′ )) = E(V 1 {G j =(ω,ω ′ )} ) P(G i 0 = ω) P(G i 0 = ω) P(G j = (ω, ω ′ )) = E(V 1 {G j =(ω,ω ′ )} ) P(G j = (ω, ω ′ )) = E(V |G j = (ω, ω ′ )).
In addition, by Claim 15, for any j ∈ {i 0 , ..., i ′ 0 } we have E(A j |G j ) = 0, which implies E( Āj |G j ) = 0, therefore [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] ⌋ is a martingale difference array. By Claim 15, for any k ∈ N, i 0 ≤ j ≤ i ′ 0 , A j is square-integrable with respect to P, thus to P ′ , hence Āj also, therefore Āj (k) is square-integrable. Furthermore,

E ′ ( Āj |G j ) = 0. This implies E( Āj (k)|G ′ k,j-i 0 (k)+1 ) = 0, so ( √ 2 √ c1 (ln n(k)) 3 Āi 0 (k)+ℓ-1 (k), G k,ℓ ) k∈N,1≤ℓ≤⌊(ln n(k))
⌊(ln n(k)) 6 ⌋ ℓ=1 E(( Āi 0 (k)+ℓ-1 (k)) 2 |G ′ k,ℓ ) is the same as i ′ 0 i=i 0 E ′ ( Ā2 j |G j ) = i ′ 0 i=i 0 E( Ā2 j |G j ) = c1 (ln n) 6
2 by definition of j 0 and κ, thus we may deduce that

⌊(ln n(k)) 6 ⌋ ℓ=1 E(( √ 2 √ c1 (ln n) 3 Āi 0 (k)+ℓ-1 (k)) 2 |G ′ k,ℓ ) = 1. We now prove the conditional Lindeberg condition. Let δ > 0, for any k ∈ N Claim 15 yields E(| Āj | 3 |G j ) ≤ C1 for all j ∈ {i 0 , ..., i ′ 0 }, therefore i ′ 0 i=i 0 E ′   √ 2 √ c1 (ln n) 3 Āj 2 1 {| √ 2 √ c1 (ln n) 3 Āj |>δ} G j   = i ′ 0 i=i 0 E   √ 2 √ c1 (ln n) 3 Āj 2 1 {| √ 2 √ c1 (ln n) 3 Āj |>δ} G j   ≤ i ′ 0 i=i 0 E   1 δ √ 2 √ c1 (ln n) 3 Āj 3 G j   = 1 δ 2 3/2 c3/2 1 (ln n) 9 i ′ 0 i=i 0 E(| Āj | 3 |G j ) ≤ 1 δ 2 3/2 c3/2 1 (ln n) 9 (i ′ 0 -i 0 + 1) C1 = 1 δ 2 3/2 C1 c3/2 1 (ln n) 3 .
This implies 3 , hence it converges to 0 in probability, which is the conditional Lindeberg condition. Consequently, by the central limit theorem for martingales found as Corollary 3.1 of [START_REF] Hall | Martingale limit theory and its application[END_REF], 3 Āi 0 (k)+ℓ-1 (k) converges in distribution to N (0, 1). This implies that when k is large enough, P(

⌊(ln n(k)) 6 ⌋ ℓ=1 E(( √ 2 √ c1 (ln n) 3 Āi 0 (k)+ℓ-1 (k)) 2 1 {| √ 2 √ c1 (ln n) 3 Āi 0 (k)+ℓ-1 (k)|>δ} |G ′ k,ℓ ) ≤ 1 δ 2 3/2 C1 c3/2 1 (ln n)
⌊(ln n(k)) 6 ⌋ ℓ=1 √ 2 √ c1 (ln n)
⌊(ln n(k)) 6 ⌋ ℓ=1 √ 2 √ c1 (ln n) 3 Āi 0 (k)+ℓ-1 (k) < √ 2 √ c1 ) ≤ 1+c ′ 1 2 , hence P ′ ( i ′ 0 j=i 0 Āj < (ln n) 3 ) ≤ 1+c ′ 1 2
. However, that contradicts the fact that P(

i ′ 0 j=i 0 Āj < (ln n) 3 |G i 0 = ω) > 1+c ′ 1 2
, hence our assumption was wrong, which ends the proof of the lemma. □ □ Lemma 16. There exists a constant c 3 = c 3 (w) > 0 such that when n is large enough,

P(B c 0 ∩ B 3 ) ≤ e -c 3 (ln n) 2 . Proof. Let ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 , ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ + n (α+4)/5 , ι ∈ {+, -}. We denote m = T ι m,i and ī = X T ι m,i .
It is enough to find constants C3 = C3 (w) < +∞ and c3 = c3 (w) > 0 such that when n is large enough, for any j ∈ { ī -⌊εn⌋ + 1, . . . , ī + ⌊εn⌋}, P((B m,i,ι 0

) c ∩ {L m,- j ≥ (ln n) 2 , ζ m,-,E j ̸ = ζ m,-,I j }) ≤ C3 e -c 3 (ln n) 2
and for any j ∈ { ī -⌊εn⌋, . . . , ī + ⌊εn⌋ -1}, P((B m,i,ι 0

) c ∩ {L m,+ j+1 ≥ (ln n) 2 , ζ m,+,E j ̸ = ζ m,+,I j }) ≤ C3 e -c 3 (ln n) 2 .
We will write the proof for the ζ m,-,E j with j ∈ { ī -⌊εn⌋ + 1, . . . , ī}; the other cases can be dealt with in the same way.

We use the notation of the construction of the ζ m,-,I

j . With this notation, ζ m,-,E j can be different from ζ m,-,I j only if η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆ or L m,- i + 1 -T < (ln n) 2 /2. This yields that if L m,- j ≥ (ln n) 2 , ζ m,-,E j can be different from ζ m,-,I j only if η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆ or T > (ln n) 2 /2 + 1. Therefore it is enough to bound P(η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆)
and P((B m,i,ι 0

) c ∩ {T > (ln n) 2 /2 + 1}
). ∆ was chosen so to have P(η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆) minimal, so by Lemma 6, P(η(T + ⌊(ln n) 2 /2⌋) ̸ = ∆) ≤ Ce -c⌊(ln n) 2 /2⌋ , which is enough. It remains to bound P((B m,i,ι 0

) c ∩ {T > (ln n) 2 /2 + 1}).
In order to bound P((B m,i,ι 0 ) c ∩ {T > (ln n) 2 /2 + 1}), we consider the chain ξ so that η corresponds to the η -of ξ (see the definitions before Lemma 8). We notice ξ(0) = η(0) = -∆ m,j . We denote T ′ = inf{ℓ > 0 | ξ(ℓ -1) = 1, ξ(ℓ) = 0}; we then have T ≤ T ′ , so it is enough to find constants C3 = C3 (w) < +∞ and c3 = c3 (w) > 0 such that when n is large enough, P((B m,i,ι 0

) c ∩ {T ′ > (ln n) 2 /2 + 1}) ≤ C3 e -c 3 (ln n) 2 .
In order to do that, we will notice that if we denote i w = min{i ′ ∈ N * | w(i ′ ) ̸ = w(-i ′ )} -1, then on {-i w , ..., i w } the chain ξ behaves like a simple random walk, while outside {-i w , ..., i w } the chain ξ is biased towards 0. We consider the successive times at which ξ is at -i w or i w : E 0 = inf{ℓ ≥ 0 | ξ(ℓ) = i w or -i w }, and for any ℓ > 1,

E ℓ = {ℓ ′ > E ℓ-1 | ξ(ℓ ′ ) = i w or -i w }.
After each of these times, ξ may try to go to 1 and then to 0. Therefore, if T ′ is large, one of the following happens: ξ did not reach {-i w , i w } quickly enough at the beginning to have spare time to make a lot of tries, or it did not come back to {-i w , i w } many times afterwards to make other tries, or there were many tries but they all failed. Let us formalize this. We denote p w = w(-iw-1) w(iw+1)+w(-iw-1) ∈ (0, 1/2). We will also need a constant c3 = c3 (w) > 0 that we will define later. We set

A 1 = {|ξ(0)| > 1-2pw 2 ⌊(ln n) 2 /4⌋}, A 2 = {E 0 > (ln n) 2 /4}, A 3 = {E ⌊c 3 (ln n) 2 ⌋ -E 0 > (ln n) 2 /4} and A 4 = {T ′ > E ⌊c 3 (ln n) 2 ⌋ }. We have {T ′ > (ln n) 2 /2 + 1} ⊂ A 2 ∪ A 3 ∪ A 4 , hence we have (2) P((B m,i,ι 0 ) c ∩ {T ′ > (ln n) 2 /2 + 1}) ≤ P((B m,i,ι 0 ) c ∩ A 1 ) + P(A c 1 ∩ A 2 ) + P(A 3 ) + P(A 3
). Each of these four terms admits an exponential bound which is rather easy to prove, hence we postpone the proof to the appendix. □ Proposition 17. There exists a constant c 4 = c 4 (w, ε) > 0 such that when n is large enough,

P(B c 0 ∩ B c 1 ∩ B c 3 ∩ B 4 ) ≤ e -c 4 (ln n) 2 .
The proof of Proposition 17 uses rather classical techniques, therefore we include only a sketch here and put the full proof in the appendix.

Proof sketch of Proposition 17. Let ⌊N θ⌋-2n (α+4)/5 ≤ m ≤ ⌊N θ⌋+2n (α+4)/5 , ⌊N x⌋-n (α+4)/5 ≤ i ≤ ⌊N x⌋+n (α+4)/5 , ι ∈ {+, -}. We denote m = T ι m,i . We give the sketch only for thecase, as the argument for the + case is the same. Since (B - m,1 ) c occurs, each "excursion of L m,-below (ln n) 3 " has length at most (ln n) 8 , hence to have B - m,4 we need at least

(ln n) 2 √ n "excursions of L m,-below (ln n) 3 ", hence (ln n) 2 √ n -1 "excursions of L m,-above (ln n) 3 ". On (B - m,3 ) c , when L m,- j ≥ (ln n) 3 we have by Observation 4 that L m,- j+1 -L m,- j = ζ m,-,E j -ζ m,-,B j = ζ m,-,I j -ζ m,-,B j
, hence L m,- j is roughly an i.i.d. random walk. Therefore each "excursion of L m,-above (ln n) 3 " has probability roughly 1 √ n to have length at least n conditional on the past "excursions", thus to be the last "excursion" we see as we only consider an interval of size εn. Therefore the probability of seeing (ln n) 2 √ n -1 "excursions" has the appropriate bound. □ Lemma 18. There exists a constant c 5 = c 5 (w) > 0 such that when n is large enough,

P(B c 0 ∩ B 5 ) ≤ e -c 5 (ln n) 2 . Proof. Let ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 , ⌊N x⌋ -n (α+4)/5 ≤ i ≤ ⌊N x⌋ + n (α+4)/5 , ι ∈ {+, -}.
We denote m = T ι m,i and ī = X T ι m,i . It is enough to find constants C5 = C5 (w) < +∞ and c5 = c5 (w) > 0 such that when n is large enough, P((B m,i,ι 0 ) + 1/2 depending on j. If j is such that ∆ m,j has law ρ + , -∆ m,j has law ρ -, so η( L m,j + 1) + 1/2 and η( L m,j ) + 1/2 have law ρ 0 , which is enough. Now, if j is such that ∆ m,j has law ρ -, -∆ m,j -1 has law ρ -. By Lemma 8, we can couple η with a process η′ so that η′ (0) = -∆ m,j -1 and η(ℓ) -1 ≤ η′ (ℓ) ≤ η(ℓ) for any ℓ ∈ N. Then η′ ( L m,j ) and η′ ( L m,j + 1) have law ρ -, which has exponential tails, hence the result. □ Lemma 19. There exists a constant c 6 > 0 such that when n is large enough,

) c ∩ {|ζ| > (ln n) 2 }) ≤ C5 e -c 5 (ln n) 2 for ζ ∈ {ζ m,-,B j , ζ m,-,E j , ζ m,-,I j | j ∈ { ī -⌊εn⌋ + 1, . . . , ī + ⌊εn⌋}} ∪ {ζ m,+,B j , ζ m,+,E j , ζ m,+,I j | j ∈ { ī -⌊εn⌋, . . . , ī + ⌊εn⌋ -1}}. The ζ m,±,I
P(B c 0 ∩ B c 4 ∩ B 6 ) ≤ e -c 6 (ln n) 2 . Proof. Let ⌊N θ⌋-2n (α+4)/5 ≤ m ≤ ⌊N θ⌋+2n (α+4)/5 , ⌊N x⌋-n (α+4)/5 ≤ i ≤ ⌊N x⌋+n (α+4)/5 , ι ∈ {+, -}. It is enough to find constants C6 = C6 (w) < +∞ and c6 > 0 such that when n is large enough P((B m,i,ι 0 ) c ∩ (B - T ι m,i ,4 ) c ∩ B - T ι m,i ,6 ) ≤ C6 e -c 6 (ln n) 2 and P((B m,i,ι 0 ) c ∩ (B + T ι m,i ,4 ) c ∩ B + T ι m,i ,6 ) ≤ C6 e -c 6 (ln n) 2 . Let us do it for B - T ι m,i ,6 ; the case B + T ι m,i ,6 is similar. We denote m = T ι m,i and ī = X T ι m,i . We introduce a sequence ( Ī m,-(ℓ)) ℓ∈N "like (I m,-(ℓ)) ℓ∈N , but for L m,-": Ī m,-(0) = ī -⌊εn⌋, and for any ℓ ∈ N, Ī m,-(ℓ + 1) = inf{ Ī m,-(ℓ) < j < ī | L m,- j < (ln n) 3 }. If (B m,i,ι 0 ) c occurs and n is large enough, Ī m,-(ℓ) = I m,-(ℓ) for any ℓ ∈ N, hence for ℓ ≤ ℓ m,- max , ζ m,-,B I m,-(ℓ) = -∆ m, Ī m,-(ℓ) -1/2 and ζ m,-,I I m,-(ℓ) = ζ m,-,I Ī m,- (ℓ) 
. By abuse of notation, the -∆ m, Ī m,-(ℓ) -1/2 and ζ m,-,I Ī m,-(ℓ) for ℓ > ℓ m,- max will be i.i.d. random variables with law ρ 0 independent from everything else. We notice that if (B - m,4 ) c occurs, ℓ m,- max ≤ (ln n) 10 √ n. Consequently, when n is large enough,

P((B m,i,ι 0 ) c ∩ (B - T ι m,i ,4 ) c ∩ B - T ι m,i ,6 ) ≤ P      max 1≤ℓ 1 ≤ℓ 2 ≤(ln n) 10 √ n ℓ 2 ℓ=ℓ 1 ζ m,-,I Ī m,-(ℓ) > (ln n) 7 n 1/4 or max 1≤ℓ 1 ≤ℓ 2 ≤(ln n) 10 √ n ℓ 2 ℓ=ℓ 1 (-∆ m, Ī m,-(ℓ) -1/2) > (ln n) 7 n 1/4      .
Moreover, for any ℓ ≥ 1, ζ m,-,I Ī m,-(ℓ) has law ρ 0 and is independent from 10 √ n, we will study

( ζ m,-,I Ī m,-(ℓ ′ ) ) 1≤ℓ ′ <ℓ . In addition, for any ℓ ≥ 1, -∆ m, Ī m,-(ℓ) -1/2 has law ρ 0 and is independent from (-∆ m, Ī m,-(ℓ ′ ) -1/2) 1≤ℓ ′ <ℓ . Consequently, it is enough to find constants C′ 6 = C′ 6 (w) < +∞ and c6 > 0 such that when n is large enough, if (ζ ℓ ) ℓ∈N is a sequence of i.i.d. random variables with law ρ 0 , P(max 1≤ℓ 1 ≤ℓ 2 ≤(ln n) 10 √ n | ℓ 2 ℓ=ℓ 1 ζ ℓ | > (ln n) 7 n 1/4 ) ≤ C′ 6 e -c 6 (ln n) 2 . Let 1 ≤ ℓ 1 ≤ ℓ 2 ≤ (ln n)
P(| ℓ 2 ℓ=ℓ 1 ζ ℓ | > (ln n) 7 n 1/4
). Since ρ 0 is symmetric with respect to 0 and by the Markov inequality,

P   ℓ 2 ℓ=ℓ 1 ζ ℓ > (ln n) 7 n 1/4   ≤ 2P   ℓ 2 ℓ=ℓ 1 ζ ℓ > (ln n) 7 n 1/4   = 2P   exp   1 (ln n) 5 n 1/4 ℓ 2 ℓ=ℓ 1 ζ ℓ   > exp (ln n) 2   ≤ 2e -(ln n) 2 E   exp   1 (ln n) 5 n 1/4 ℓ 2 ℓ=ℓ 1 ζ ℓ     = 2e -(ln n) 2 ℓ 2 ℓ=ℓ 1 E exp 1 (ln n) 5 n 1/4 ζ ℓ , (3) 
so we have to study E(exp(

1 (ln n) 5 n 1/4 ζ))
where ζ has law ρ 0 . Now, we can write exp(

1 (ln n) 5 n 1/4 ζ) = 1 + ζ (ln n) 5 n 1/4 + ζ 2 2(ln n) 10 √ n e ζ ′ , where |ζ ′ | ≤ | ζ (ln n) 5 n 1/4 |, hence E exp 1 (ln n) 5 n 1/4 ζ = 1 + E ζ 2 2(ln n) 10 √ n e ζ ′ ≤ 1 + 1 2(ln n) 10 √ n E ζ 2 exp ζ (ln n) 5 n 1/4 .
Furthermore, ρ 0 has exponential tails, so there exist constants c6 = c6 (w) > 0 and C6 = C6 (w)

< +∞ such that E(ζ 2 e c6 |ζ| ) ≤ C6 . When n is large enough, | ζ (ln n) 5 n 1/4 | ≤ c6 |ζ|, so E(exp( 1 (ln n) 5 n 1/4 ζ)) ≤ 1 + C6 2(ln n) 10 √ n ≤ exp( C6 2(ln n) 10 √ n ). By (3), we deduce that when n is large enough, P(| ℓ 2 ℓ=ℓ 1 ζ ℓ | > (ln n) 7 n 1/4 ) ≤ 2e C6 /2 e -(ln n) 2 , which suffices. □
The results of this section can be summed up by the following proposition.

Proposition 20. There exists a constant c = c(w, ε) > 0 such that when n is large enough, P( 6 r=0 B r ) ≤ e -c(ln n) 2 . Proof. We can write

P 6 r=0 B r ≤ P(B 0 ) + P(B c 0 ∩ B 1 ) + P(B c 0 ∩ B 2 ) + P(B c 0 ∩ B 3 ) + P(B c 0 ∩ B c 1 ∩ B c 3 ∩ B 4 ) + P(B c 0 ∩ B 5 ) + P(B c 0 ∩ B c 4 ∩ B 6 ).
Proposition 9 implies that when n is large enough, P(B 0 ) ≤ e -c 0 n (α-1)/4 /2 . By Proposition 13, P(B c 0 ∩B 1 ), P(B c 0 ∩B 2 ) ≤ e -c 1 (ln n) 2 when n is large enough. By Lemma 16, P(B c 0 ∩ B 3 ) ≤ e -c 3 (ln n) 2 when n is large enough. By Proposition 17,

P(B c 0 ∩B c 1 ∩B c 3 ∩B 4 ) ≤ e -c 4 (ln n) 2
when n is large enough. By Lemma 18, P(B c 0 ∩B 5 ) ≤ e -c 5 (ln n) 2 when n is large enough. By Lemma 19, P(B c 0 ∩ B c 4 ∩ B 6 ) ≤ e -c 6 (ln n) 2 when n is large enough. We deduce that if c = 1 2 min(c 1 , c 3 , c 4 , c 5 , c 6 ), then P( 6 r=0 B r ) ≤ e -c(ln n) 2 when n is large enough. □

A discrete reflected random walk

Our goal in this section is to prove that ζ m,-,E j (with a corresponding statement for ζ m,+,E j ) behaves roughly as a "random walk reflected on ζ m,-,B j ". In order to do that, we will introduce a discrete process S m,-,I that is roughly 

(W t ) t∈[a,b] a Brownian motion so that W a ≥ f (a). The reflection of W on f is the process W ′ defined as follows. If W a = f (a), for all t ∈ [a, b] we set W ′ t = W t + sup a≤s≤t (f (s) -W s ). If W a > f (a), if t 0 denotes b ∧ inf{t ∈ [a, b] | W t = f (t)}, for t ∈ [a, t 0 ] we set W ′ t = W t , and for t ∈ [t 0 , b] we set W ′ t = W t + sup t 0 ≤s≤t (f (s) -W s ).
If f is random, a Brownian motion reflected on f without further precision will be the reflection on f of a Brownian motion independent of f . We now introduce the following notation. Lemma 24. For any m ∈ N, we have

∀ i ∈ {X m -⌊εn⌋ + 1, ..., X m }, S m,-,I i = i-1 j=Xm-⌊εn⌋+1 ζ m,-,I j + max Xm-⌊εn⌋+1≤j≤i   S m,-,B j - j-1 j ′ =Xm-⌊εn⌋+1 ζ m,-,I j ′   , ∀ i ∈ {X m + 1, . . . , X m + ⌊εn⌋}, S m,+,I i = Xm+⌊εn⌋-1 j=i ζ m,+,I j + max i≤j≤Xm+⌊εn⌋   S m,+,B j - Xm+⌊εn⌋-1 j ′ =j ζ m,+,I j ′   .
Proof. Let m ∈ N. We will write the proof for S m,-,I ; the same argument also applies to S m,+,I . To shorten the notation, we will drop the exponents m, -, and write i 1 = X m -⌊εn⌋ + 1, i 2 = X m . We thus want to prove that for each i ∈ {i 1 , ..., i 2 } we have

S I i = i-1 j=i 1 ζ I j +max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ).
We will prove it by induction on i. For i = i 1 , this comes from the definition of the processes. Now let i ∈ {i 1 , ..., i 2 -1} so that

S I i = i-1 j=i 1 ζ I j + max i 1 ≤j≤i (S B j - j-1 j ′ =i 1 ζ I j ′ ).
There are two possibilities. The first is

S I i + ζ I i ≥ S B i+1 . In this case, S I i+1 = S I i + ζ I i . Moreover, we have i-1 j=i 1 ζ I j + max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ) + ζ I i ≥ S B i+1 , hence max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ) ≥ S B i+1 -i j=i 1 ζ I j , thus max i 1 ≤j≤i+1 (S B j -j-1 j ′ =i 1 ζ I j ′ ) = max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ), so i j=i 1 ζ I j + max i 1 ≤j≤i+1 (S B j -j-1 j ′ =i 1 ζ I j ′ ) = i-1 j=i 1 ζ I j + max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ) + ζ I i = S I i + ζ I i = S I i+1
, which is what we want. The other possibility is

S I i + ζ I i < S B i+1 . In this case, S I i+1 = S B i+1 . Furthermore, we have i-1 j=i 1 ζ I j + max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ) + ζ I i < S B i+1 , so max i 1 ≤j≤i (S B j -j-1 j ′ =i 1 ζ I j ′ ) < S B i+1 -i j=i 1 ζ I j , hence max i 1 ≤j≤i+1 (S B j -j-1 j ′ =i 1 ζ I j ′ ) = S B i+1 -i j=i 1 ζ I j . We deduce i j=i 1 ζ I j + max i 1 ≤j≤i+1 (S B j -j-1 j ′ =i 1 ζ I j ′ ) = i j=i 1 ζ I j + S B i+1 -i j=i 1 ζ I j = S B i+1 = S I i+1 , which is the desired result. □
The following proposition is the main result of the section: if the bad events do not occur, S m,±,I is close to S m,±,E .

Proposition 25. When n is large enough, for any m ∈ N,

if 6 r=1 (B - m,r ) c occurs then for all i ∈ {X m -⌊εn⌋ + 1, . . . , X m }, S m,-,I i -(ln n) 8 n 1/4 ≤ S m,-,E i ≤ S m,-,I i + ⌈(ln n) 3 ⌉, and if 6 r=1 (B + m,r ) c occurs then for all i ∈ {X m + 1, . . . , X m + ⌊εn⌋}, S m,+,I i -(ln n) 8 n 1/4 ≤ S m,+,E i ≤ S m,+,I i + ⌈(ln n) 3 ⌉.
Proof. Let m ∈ N. We will write the proof for S m,-,E ; the same argument also applies to S m,+,E . In order to lighten the notation, we will drop the exponents m, -, and write

i 1 = X m -⌊εn⌋ + 1, i 2 = X m .
The idea of the proof is that when S E i ≥ S B i + (ln n) 3 , then L i ≥ (ln n) 3 by Definition 22, thus since B - m,3 holds we have

ζ E i = ζ I i , therefore S E i+1 = S E i + ζ E i = S E i + ζ I i . Now, if S I
i is not too close to S B i we also have S I i+1 = S I i + ζ I i , so S E and S I evolve in the same way. Consequently, the difference between S E and S I comes only from the i such that L i < (ln n) 3 , and the fact the bad events do not occur will imply the difference thus accrued is small. In order to make this argument work, we need to show that when L i ≥ (ln n) 3 , S I i is not too close to S B i . However, it may not actually be the case for all i. To solve this problem, we will actually use the aforementioned argument with some processes S ′ and S ′′ , which will respectively be close to S E and S I .

We begin by proving that S E is close to the auxiliary process S ′ defined for i ∈ {i 1 , . . . , i 2 } by

S ′ i = max(S E i , S B i + ⌈(ln n) 3 ⌉). For the i such that S ′ i = S E i , it is obvious. If i is such that S ′ i = S B i + ⌈(ln n) 3 ⌉, then we have S E i ≤ S B i + ⌈(ln n) 3 ⌉. Moreover, by Definition 22 S E i -S B i = L i ≥ 0, so S B i ≤ S E i ≤ S B i + ⌈(ln n) 3 ⌉, which means S ′ i -⌈(ln n) 3 ⌉ ≤ S E i ≤ S ′ i . We deduce (4) ∀i ∈ {i 1 , . . . , i 2 }, S ′ i -⌈(ln n) 3 ⌉ ≤ S E i ≤ S ′ i .
We now prove that S I is close to an auxiliary process S ′′ which will be "the random walk ζ I i reflected on S B + ⌈(ln n) 3 ⌉". More precisely, S ′′ i is defined for i ∈ {i 1 , . . . , i 2 } as follows: S ′′ i 1 = ⌈(ln n) 3 ⌉, and for any i ∈ {i 1 , . . . , i 2 -1}, S ′′ i+1 =

S ′′ i + ζ I i if S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉, S B i+1 + ⌈(ln n) 3 ⌉ otherwise.
Since S I is "the random walk ζ I i reflected on S B " and S ′′ is "the random walk ζ I i reflected on S B + ⌈(ln n) 3 ⌉", we can expect S I and S ′′ to be close. We are going to prove by induction on i ∈ {i 1 , . . . , i 2 } that S I i ≤ S ′′ i ≤ S I i + ⌈(ln n) 3 ⌉. It is true for i = i 1 by the definition of the processes. We now suppose it is true for some i ∈ {i 1 , . . . , i 2 -1} and prove it for i + 1.

If S I i + ζ I i ≥ S B i+1 and S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉, then S I i+1 -S ′′ i+1 = (S I i + ζ I i ) -(S ′′ i + ζ I i ) = S I i -S ′′ i , which is enough. If S I i + ζ I i ≥ S B i+1
and

S ′′ i + ζ I i < S B i+1 + ⌈(ln n) 3 ⌉, then S I i+1 = S I i + ζ I i ≤ S ′′ i + ζ I i < S B i+1 + ⌈(ln n) 3 ⌉ = S ′′ i+1 , thus S I i+1 ≤ S ′′ i+1 , and S ′′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉ ≤ S I i + ζ I i + ⌈(ln n) 3 ⌉ = S I i+1 + ⌈(ln n) 3 ⌉, which is enough. If S I i + ζ I i < S B i+1 and S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉, then S ′′ i -S I i > ⌈(ln n) 3 ⌉, so this case is impossible. Finally, if S I i + ζ I i < S B i+1 and S ′′ i + ζ I i < S B i+1 + ⌈(ln n) 3 ⌉, then S I i+1 = S B i+1 and S ′′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉, which is enough. We deduce that (5) ∀i ∈ {i 1 , . . . , i 2 }, S I i ≤ S ′′ i ≤ S I i + ⌈(ln n) 3 ⌉.
We are now able to show that the only difference between S ′ and S ′′ comes from the i such that L i < (ln n) 3 . We denote ℓ(i 1 ) = 0, and for any i ∈ {i 1 + 1, . . . , i 2 }, ℓ(i) = |{j ∈ {i 1 , . . . , i -1} | L j < (ln n) 3 }|. We are going to prove the following by induction on i ∈ {i 1 , . . . , i 2 }:

(6) S ′ i ≤ S ′′ i ≤ S ′ i +   max 1≤ℓ 1 ≤ℓ(i) ℓ(i) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) )   + ,
where the maximum is 0 if ℓ(i) = 0. For i = i 1 , we have

S ′ i 1 = S ′′ i 1 = ⌈(ln n) 3 ⌉, so (6) 
holds. Now, let i ∈ {i 1 , . . . , i 2 -1} and suppose (6) holds for i. We will prove that it holds also for i + 1.

We first consider the case L i ≥ (ln n) 3 . In this case, ℓ(i

+ 1) = ℓ(i), so it is enough to prove 0 ≤ S ′′ i+1 -S ′ i+1 ≤ S ′′ i -S ′ i . We notice first that since L i ≥ (ln n) 3 , S E i -S B i = L i ≥ ⌈(ln n) 3 ⌉, so S E i ≥ S B i + ⌈(ln n) 3 ⌉, so S ′ i = S E i . We also notice that since L i ≥ (ln n) 2 and (B - m,3 ) c occurs, ζ E i = ζ I i . We begin by assuming L i+1 ≥ (ln n) 3 . Then S E i+1 -S B i+1 ≥ ⌈(ln n) 3 ⌉, so S ′ i+1 = S E i+1 . This implies S ′ i+1 = S E i + ζ E i = S ′ i + ζ I i . Moreover, S ′′ i + ζ I i ≥ S ′ i + ζ I i = S ′ i+1 = S E i+1 ≥ S B i+1 + ⌈(ln n) 3 ⌉, so S ′′ i+1 = S ′′ i + ζ I i . This yields S ′′ i+1 -S ′ i+1 = S ′′ i -S ′ i , which is enough. We now assume L i+1 < (ln n) 3 . Then S E i+1 -S B i+1 < ⌈(ln n) 3 ⌉, so S ′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉. If S ′′ i + ζ I i < S B i+1 + ⌈(ln n) 3 ⌉, S ′′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉, so S ′′ i+1 -S ′ i+1 = 0, which is enough. If S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉, S ′′ i+1 = S ′′ i + ζ I i . Furthermore, S ′ i+1 ≥ S E i+1 = S E i + ζ E i = S ′ i + ζ I i . We deduce S ′′ i+1 -S ′ i+1 ≤ S ′′ i + ζ I i -(S ′ i + ζ I i ) = S ′′ i -S ′ i . In addition, S ′′ i+1 = S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉ = S ′ i+1
, so S ′′ i+1 -S ′ i+1 ≥ 0, which is enough. Consequently, (6) holds for i + 1 in the case L i ≥ (ln n) 3 .

We now consider the case L i < (ln n) 3 . We first show that

S ′′ i+1 ≥ S ′ i+1 . If L i+1 < (ln n) 3 , S E i+1 < S B i+1 + ⌈(ln n) 3 ⌉ so S ′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉ ≤ S ′′ i+1 . If L i+1 ≥ (ln n) 3 , we notice that L i+1 = L i + ζ E i -ζ B i by Observation 4. Moreover, since (B - m,5 ) c occurs, we have |ζ E i |, |ζ B i | ≤ (ln n) 2 , so L i ≥ (ln n) 3 -2(ln n) 2 ≥ (ln n) 2 when n is large enough. Thus, since (B - m,3 ) c occurs, ζ E i = ζ I i . We deduce S B i+1 + ⌈(ln n) 3 ⌉ ≤ S E i+1 = S E i + ζ I i ≤ S ′ i + ζ I i ≤ S ′′ i + ζ I i , so S ′′ i+1 = S ′′ i + ζ I i . Furthermore, since S E i+1 ≥ S B i+1 + ⌈(ln n) 3 ⌉, S ′ i+1 = S E i+1 ≤ S ′′ i+1 . Therefore S ′ i+1 ≤ S ′′ i+1 in all cases. We now show that S ′′ i+1 -S ′ i+1 ≤ (max 1≤ℓ 1 ≤ℓ(i+1) ℓ(i+1) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) )) + = (max 1≤ℓ 1 ≤ℓ(i)+1 ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) )) + since ℓ(i + 1) = ℓ(i) + 1. If S ′′ i + ζ I i < S B i+1 + ⌈(ln n) 3 ⌉, S ′′ i+1 = S B i+1 + ⌈(ln n) 3 ⌉ ≤ S ′ i+1 , so S ′′ i+1 -S ′ i+1 ≤ 0, which is enough. Hence we consider the case S ′′ i + ζ I i ≥ S B i+1 + ⌈(ln n) 3 ⌉. We have S ′ i+1 ≥ S B i+1 + ⌈(ln n) 3 ⌉, so S ′′ i+1 -S ′ i+1 ≤ S ′′ i + ζ I i -S B i+1 -⌈(ln n) 3 ⌉ = S ′′ i + ζ I i -S B i -⌈(ln n) 3 ⌉ -ζ B i . Furthermore, since L i < (ln n) 3 , S ′ i = S B i + ⌈(ln n) 3 ⌉, so we get S ′′ i+1 -S ′ i+1 ≤ S ′′ i -S ′ i + ζ I i -ζ B i .
In addition, I(ℓ(i + 1)) = I(ℓ(i) + 1) = i, thus we have ( 7)

S ′′ i+1 -S ′ i+1 ≤ S ′′ i -S ′ i + ζ I I(ℓ(i)+1) -ζ B I(ℓ(i)+1) .
We first assume max 1≤ℓ 1 ≤ℓ(i)

ℓ(i) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) ≥ 0. Then max 1≤ℓ 1 ≤ℓ(i) ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) ≥ ζ I I(ℓ(i)+1) -ζ B I(ℓ(i)+1) , so max 1≤ℓ 1 ≤ℓ(i)+1 ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) = max 1≤ℓ 1 ≤ℓ(i) ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 )
). Therefore, by ( 6) and ( 7),

S ′′ i+1 -S ′ i+1 ≤ max 1≤ℓ 1 ≤ℓ(i)+1 ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 )
), which is enough. We now assume max 1≤ℓ 1 ≤ℓ(i)

ℓ(i) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) ≤ 0. Then (6) yields S ′′ i -S ′ i ≤ 0, so by (7) S ′′ i+1 -S ′ i+1 ≤ ζ I I(ℓ(i)+1) -ζ B I(ℓ(i)+1
) . In addition, max 1≤ℓ 1 ≤ℓ(i)

ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) ≤ ζ I I(ℓ(i)+1) -ζ B I(ℓ(i)+1) , so max 1≤ℓ 1 ≤ℓ(i)+1 ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) = ζ I I(ℓ(i)+1) -ζ B I(ℓ(i)+1) . We deduce S ′′ i+1 -S ′ i+1 ≤ max 1≤ℓ 1 ≤ℓ(i)+1 ℓ(i)+1 ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 )
), which is enough. Consequently, (6) holds for i + 1 in the case L i < (ln n) 3 .

We deduce that (6) holds for any i ∈ {i 1 , . . . , i 2 }. Moreover, for any i ∈ {i 1 , . . . , i 2 }, since (B - m,6 ) c occurs, we have

  max 1≤ℓ 1 ≤ℓ(i) ℓ(i) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) )   + ≤ max 1≤ℓ 1 ≤ℓ(i) ℓ(i) ℓ 2 =ℓ 1 (ζ I I(ℓ 2 ) -ζ B I(ℓ 2 ) ) ≤ max 1≤ℓ 1 ≤ℓ(i) ℓ(i) ℓ 2 =ℓ 1 ζ I I(ℓ 2 ) + max 1≤ℓ 1 ≤ℓ(i) ℓ(i) ℓ 2 =ℓ 1 ζ B I(ℓ 2 ) ≤ max 1≤ℓ 1 ≤ℓ 2 ≤ℓmax ℓ 2 ℓ=ℓ 1 ζ I I(ℓ) + max 1≤ℓ 1 ≤ℓ 2 ≤ℓmax ℓ 2 ℓ=ℓ 1 ζ B I(ℓ) ≤ 2(ln n) 7 n 1/4 , therefore S ′ i ≤ S ′′ i ≤ S ′ i +2(ln n) 7 n 1/4
. From this, (4) and ( 5), we deduce that for any i ∈ {i 1 , . . . , i 2 }, 3 ⌉, which ends the proof. □

S I i -2(ln n) 7 n 1/4 - ⌈(ln n) 3 ⌉ ≤ S E i ≤ S I i + ⌈(ln n) 3 ⌉, so when n is large enough, S I i -(ln n) 8 n 1/4 ≤ S E i ≤ S I i + ⌈(ln n)

Lower bounds on the T K -T 0

The goal of this section is to prove that if the bad events do not happen, then for any K ∈ N, T K -T 0 is at least of order Kn 3/2 : there exists a constant δ > 0 so that P(T K -T 0 < δKn 3/2 , B c ∩ 6 r=0 B c r ) ≤ 1 2 K (Proposition 32). We stress that we will not try to prove that each T k+1 -T k , k ∈ {0, ..., K -1} is large, since it is very possible that for some k the configuration at time T k is bad enough to prevent it. However, a combinatorial argument will allow us to prove that a constant proportion of the k satisfy that T k+1 -T k is large, which will be enough. This is one of the hardest parts of the work, and the most novel one. Let us give some ideas of the proof.

For any k ∈ {0, ..., K -1}, if (say)

X T k+1 = X T k -⌊εn⌋, then T k+1 -T k = T - T k -T k ≥ i 2 i=i 1 L T k ,- i+1 for any {i 1 , ..., i 2 } ⊂ {X T k+1 + 1, ..., X T k }. Now, if i ∈ {i 1 , ..., i 2 }, Observation 4 yields L T k ,- i+1 = L T k ,- i 1 + i j=i 1 (ζ T k ,-,E j - ζ T k ,-,B j
), and

L T k ,- i 1 ≥ 0, thus L T k ,- i+1 ≥ i j=i 1 (ζ T k ,-,E j -ζ T k ,-,B j ), so T k+1 -T k ≥ i 2 i=i 1 i j=i 1 (ζ T k ,-,E j -ζ T k ,-,B j ) = i 2 i=i 1 i j=i 1 ζ T k ,-,E j -i 2 i=i 1 i j=i 1 ζ T k ,-,B j
. Therefore, if for some constant δ > 0 we have that i 2

i=i 1 i j=i 1 ζ T k ,-,E j ≥ δn 3/2 and i 2 i=i 1 i j=i 1 ζ T k ,-,B j ≤ -δn 3/2 , then it guarantees T k+1 -T k ≥ 2δn 3/2 .
If this is true for a positive fraction of the k ∈ {0, ..., K -1}, then T K -T 0 will be of order Kn 3/2 . The i 2 i=i 1 i j=i 1 ζ T k ,-,E j will be rather easy to control, as Proposition 25 indicates that i 2

i=i 1 i j=i 1 ζ T k ,-,E j = i 2 i=i 1 (S T k ,-,E i -S T k ,-,E i 1 -1 ) will be close to i 2 i=i 1 (S T k ,-,I i -S T k ,-,I i 1 -1 ). Now, S T k ,-,I is "the random walk ζ T k ,-,I j reflected on S T k ,-,B ", hence i 2 i=i 1 (S T k ,-,I i -S T k ,-,I i 1 -1 ) ≥ i 2 i=i 1 i j=i 1 ζ T k ,-,I j , so it is enough to prove i 2 i=i 1 i j=i 1 ζ T k ,-,I j ≥ δn 3/2 .
Since the ζ T k ,-,I j are i.i.d. with law ρ 0 , the sum i 2

i=i 1 i j=i 1 ζ T k ,-,I j
is basically the integral of the i.i.d. random walk i j=i 1 ζ T k ,-,I j on the interval {i 1 , ..., i 2 }, so if i 2 -i 1 is of order n, there is a positive probability to have i j=i

1 ζ T k ,-,I j of order √ n, hence to have i 2 i=i 1 i j=i 1 ζ T k ,-,I j ≥ δn 3/2 .
However, we also have to control the i 2

i=i 1 i j=i 1 ζ T k ,-,B j
, which depend on the ∆ T k ,j , and this is harder.

If X T k-1 = X T k -⌊εn⌋ = X T k+1 (i.e. the mesoscopic process (X T k ′ ) k ′ ∈N is doing a U-turn), then for j ∈ {X T k+1 + 1, ..., X T k } we have ζ T k ,-,B j = ζ T k-1 ,+,E j
, which we can then deal with in the same way as the ζ T k ,-,E j . However, if the mesoscopic process is not doing a U-turn, the state of the ∆ T k ,j will depend on the previous history of the process. To keep track of it, we will use an algorithm to associate to each time k ∈ {0, ..., K} a configurations of states of the edges of Z. The edges (z, z + 1) will be in any of the four following states:

• Clean. This is the case in which (X m ) m∈N did not visit any j ∈ {X T 0 + ⌊εn⌋z + 1, ..., X T 0 + ⌊εn⌋(z + 1) -1} since time T 0 , so the corresponding ∆ j are still the ∆ T 0 ,j , which we can control by Proposition 9. • Usable. This is the case in which there was some k ′ so that

X T k ′ -1 = X T 0 + ⌊εn⌋(z + 1), X T k ′ = X T 0 + ⌊εn⌋z and X T k ′ +1 = X T 0 + ⌊εn⌋(z -1) (or symmetrically X T k ′ -1 = X T 0 + ⌊εn⌋z, X T k ′ = X T 0 + ⌊εn⌋(z + 1), X T k ′ +1 = X T 0 + ⌊εn⌋(z + 2))
, and (X m ) m∈N did not visit {X T 0 + ⌊εn⌋z, ..., X T 0 + ⌊εn⌋(z + 1)} since. At time

T k ′ , the ∆ j for j ∈ {X T 0 +⌊εn⌋z, ..., X T 0 +⌊εn⌋(z +1)} correspond to the ζ T k ′ -1 ,-,E j
, and between times T k ′ and T k ′ +1 the process (X m ) m∈N visited some such j, but not all, so at time T k ′ +1 the ∆ j of the sites such visited correspond to the ζ

T k ′ ,-,E j
, while the ∆ j of the sites not visited still correspond to the ζ

T k ′ -1 ,-,E j . Consequently, the ∆ j may correspond to the ζ T k ′ ,-,E j or the ζ T k ′ -1 ,-,E j
, which we will be able to control since there are only two possibilities.

• Usable-clean. This is the case in which "the mesoscopic process made a U-turn just at the left of z or at the right of z+1, but never approached z or z+1 otherwise": there was some k ′ so that

X T k ′ +1 = X T k ′ -1 = X T 0 +⌊εn⌋(z- 1) and X T k ′ = X T 0 + ⌊εn⌋z (or symmetrically X T k ′ +1 = X T k ′ -1 = X T 0 + ⌊εn⌋(z + 2), X T k ′ = X T 0 + ⌊εn⌋(z + 1)
), but none of the other X T k ′′ was X T 0 + ⌊εn⌋z or X T 0 + ⌊εn⌋(z + 1). In this case, since time T 0 , the process (X m ) m∈N could only visit {X T 0 + ⌊εn⌋z, ..., X T 0 + ⌊εn⌋(z + 1)} between times T k ′ and T k ′ +1 , and did not visit all the sites. The ∆ j of the sites that were visited correspond to the ζ

T k ′ ,-,E j
, and the ∆ j of the sites that were not visited are still the ∆ T 0 ,j . There are still only two possibilities that we can control.

• Dirty. This covers all the other cases, in which we will not be able to control the ∆ j . Consequently, if the edge (z, z + 1) is clean, usable or usable-clean at the step corresponding to T k , the ∆ T k ,j on {X T 0 + ⌊εn⌋z, ..., X T 0 + ⌊εn⌋(z + 1)} can be controlled, hence the ζ T k ,-,B j can. We will show that whatever the path of the mesoscopic process (X T k ′ ) 0≤k ′ ≤K , a positive fraction of the edges it crosses will be clean, usable or usable-clean at the time of crossing, so a positive fraction of the steps will give us a lower bound

T k ′ -T k ′ -1 ≥ 2δn 3/2 , which is enough to prove T K -T 0 is of order Kn 3/2 .
In order to write the rigorous proof, we will need some notation for the "trajectory" of the mesoscopic process

(X T k ) k∈N . Let K ∈ N * . A path of length K is a sequence γ = (z 0 , z 1 , . . . , z K ) with z 0 = 0, z k ∈ Z and |z k -z k-1 | = 1
for any k ∈ {1, . . . , K}. We say that X follows γ when X T k = X T 0 + ⌊εn⌋z k for all k ∈ {0, . . . , K}. Moreover, we define the following stopping times: T γ 0 = T 0 and for k ∈ {1, . . . , K},

T γ k = inf{m ≥ T γ k-1 | Xm = XT 0 + ⌊εn⌋z k }. If X follows γ, (B ⌊N θ⌋,⌊N x⌋,± 0
) c occurs and n is large enough, then T γ k = T k for all k ∈ {0, ..., K}.

Some of the ζ T k ,±,B i we need to control will depend on the ∆ T 0 ,i , but their exact definition depends on if we want to work with ζ T k ,-,B i or ζ T k ,+,B i , which depends on the path of the mesoscopic process. Moreover, it is more practical to work with the ∆T 0 ,i , because we know their law by Proposition 9. Consequently, for any k ∈ {0, ..., K -1} we define ( ζγ,k i ) i∈Z thus:

• if z k+1 = z k -1, ζγ,k i = -∆T 0 ,i -1/2 if i ≤ X T 0 + ⌊εn⌋z k , -∆T 0 ,i + 1/2 if i > X T 0 + ⌊εn⌋z k ; • if z k+1 = z k + 1, ζγ,k i = ∆T 0 ,i + 1/2 if i ≤ X T 0 + ⌊εn⌋z k , ∆T 0 ,i -1/2 if i > X T 0 + ⌊εn⌋z k .
Since we may use the ζγ,k

i instead of the ζ T k ,±,B i
, we will need to replace the ζ T k ,±,I i by random variables that are independent from the ζγ,k i , hence from the ∆T 0 ,i . We had a construction in Proposition 12 that gave appropriate replacements for the ζ T 0 ,±,I i , but not for the ζ T k ,±,I i with k > 0. Finding good replacements for the ζ T k ,±,I i for all k ∈ N is the goal of the following proposition.

Proposition 26. For any k ∈ {0, ..., K-1}, we can also define random variables (ζ γ,k i ) i∈Z with the following properties. The

ζ γ,k i , i ∈ Z are i.i.d. with law ρ 0 and (ζ γ,k i ) i∈Z is independent from ( ∆T 0 ,i ) i∈Z and (ζ γ,k ′ i ) i∈Z , k ′ < k. In addition, if n is large enough, X follows γ and (B ⌊N θ⌋,⌊N x⌋,± 0 ) c occurs, then for any k ∈ {0, ..., K -1}, (ζ γ,k i ) i∈Z = (ζ T k ,ι,I i ) i∈Z , where ι = + if z k+1 = z k + 1 and ι = -if z k+1 = z k -1.
Proof. We can define a process ( Xm ) m≥T 0 which is "like (X m ) m≥T 0 , but such that the environment at time T 0 is ( ∆T 0 ,i ) i∈Z ". It is defined so that XT 0 = X T 0 , ( ∆T 0 ,i ) i∈Z = ( ∆T 0 ,i ) i∈Z , for all m ≥ T 0 ,

P( Xm+1 = Xm + 1) = 1 -P( Xm+1 = Xm -1) = w( ∆m, Xm ) w( ∆m, Xm ) + w(-∆m, Xm ) , ∆m+1, Xm = ∆m, Xm -1 if Xm+1 = Xm + 1 ∆m, Xm + 1 if Xm+1 = Xm -1
and ∆m+1,i = ∆m,i for all i ̸ = Xm , the transitions of ( Xm ) m≥T 0 are independent from ( ∆T 0 ,i ) i∈Z , and for any k ∈ N, if n is large enough and (B ⌊N θ⌋,⌊N x⌋,± 0 (ζ γ,k i ) i∈Z will then be defined for the process ( Xm ) m≥T 0 as the (ζ

) c occurs then ( Xm ) T 0 ≤m≤T k = (X m ) T 0 ≤m≤T k . The
T γ k ,ι,I i
) i∈Z are defined for the process (X m ) m≥T 0 , where ι = + if z k+1 = z k + 1 and ι = -if z k+1 = z k -1, with the construction given before Proposition 12. □

In order to lower bound the i 2

i=i 1 i j=i 1 ζ T k ,-,E j and the i 2 i=i 1 i j=i 1 ζ T k ,-,B j
(as well as the symmetric quantities when X T k+1 = X T k + ⌊εn⌋), we will need to lower bound the i 2

i=i 1 i j=i 1 ζ γ,k j , the i 2 i=i 1 i j=i 1 ζγ,k j and the i 2 i=i 1 i j=i 1 -ζγ,k j
(as well as the symmetric quantities). We introduce the necessary notation to do that. We denote

r 2 = E(ζ 2
) where ζ has law ρ 0 . We set 0 < ε < min( ε 8 , ε). For any path γ of length K, for any k ∈ {0, ..., K -1}, for any interval I = {i 1 , ..., i 2 } of Z with i 2 -i 1 = ⌈εn⌉ -1, we define the following events:

W ← γ,k,I =    i 2 i=i 1 i j=i 1 ζ γ,k j ≥ r 2 6 (εn) 3/2    , W +,← γ,k,I =    i 2 i=i 1 i j=i 1 ζγ,k j ≥ r 2 6 (εn) 3/2    , W -,← γ,k,I =    i 2 i=i 1 i j=i 1 -ζγ,k j ≥ r 2 6 (εn) 3/2    , W → γ,k,I =    i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2    , W +,→ γ,k,I =    i 2 i=i 1 i 2 j=i ζγ,k j ≥ r 2 6 (εn) 3/2    , W -,→ γ,k,I =    i 2 i=i 1 i 2 j=i -ζγ,k j ≥ r 2 6 (εn) 3/2    .
Lemma 27. When n is large enough, for any K ∈ N * , for any path γ of length K, for any k ∈ {0, ..., K -1}, for any interval 

I = {i 1 , ..., i 2 } of Z with i 2 -i 1 = ⌈εn⌉ -1, P(W ← γ,k,I ) ≥ 1 32 and P(W → γ,k,I ) ≥ 1 32 . More- over, if z k ≤ 0 and I ⊂] -∞, X T 0 + ⌊εn⌋z k -1], or if z k ≥ 0 and I ⊂ [X T 0 + ⌊εn⌋z k + 1, +∞[, then we have P(W +,← γ,k,I ), P(W -,← γ,k,I ), P(W +,→ γ,k,I ), P(W -,→ γ,k,I ) > 1 32 . Proof. The ζ γ,k i , i ∈ I are i.i.d. with law ρ 0 . Furthermore, if z k ≤ 0 and I ⊂] -∞, X T 0 + ⌊εn⌋z k -1], or if z k ≥ 0 and I ⊂ [X T 0 + ⌊εn⌋z k + 1,
) 3/2 ) ≥ 1 32 . S is symmetric, so P(S ≥ r 2 6 (εn) 3/2 ) = 1 2 P(|S| ≥ r 2 6 (εn) 3/2 ) = 1 2 P(S 2 ≥ r 2 6 (εn) 3 ), thus it is enough to show P(S 2 ≥ r 2 6 (εn) 3 ) ≥ 1 16 .
In order to do that, we notice that S = ⌈εn⌉ i=1 iζ i and ρ 0 has expectation 0, hence

E(S 2 ) = ⌈εn⌉ i=1 i 2 r 2 = ⌈εn⌉(⌈εn⌉+1)(2⌈εn⌉+1) 6 r 2 ≥ r 2 3 (εn) 3/2 and E(S 4 ) = 3 ⌈εn⌉ i=1 ⌈εn⌉ j=1 i 2 j 2 r 2 2 + ⌈εn⌉ i=1 i 4 (E(ζ 4 ) -3r 2 2 ) = 3 ⌈εn⌉(⌈εn⌉ + 1)(2⌈εn⌉ + 1) 6 2 r 2 2 + 6⌈εn⌉ 5 + 15⌈εn⌉ 4 + 10⌈εn⌉ 3 -⌈εn⌉ 30 (E(ζ 4 ) -3r 2 2 ) ≤ 4E(S 2 ) 2
when n is large enough. We deduce P(S 2 ≥ r 2 6 (εn) 3 ) ≥ P(S 2 ≥ E(S 2 ) 2 ), hence by the Paley-Zygmund inequality, P(S 2 ≥ r 2 6 (εn

) 3 ) ≥ 1 4 E(S 2 ) 2
E(S 4 ) ≥ 1 16 . □

We are now in position to write down the algorithm mentioned at the beginning of the section, which for each time k ∈ {0, ..., K} yields a configuration of states of the edges of Z in which the edges can be clean, usable, usable-clean or dirty depending on the control we have on them. Let K ∈ N * . For any path γ = (z 0 , z 1 , . . . , z K ) of length K, at the same time as the configurations of states of the edges, we will define a sequence of random variables (Θ γ k ) 0≤k≤K-1 so that for any k ∈ {0, ..., K -1}, Θ γ k ∈ {0, 1, * }. As we will show later in Proposition 28, they will be defined so that that if X follows γ, Θ γ k = 1 (as well as an additional condition) and B ∩ (

6 r=1 B c 0 ) occurs, then T k -T k-1 ≥ r 2 6 (εn) 3/2 .
For any edge (z, z + 1) of Z, we denote I(z, z + 1) the collection of intervals composed of the {X T 0 + ⌊εn⌋z + ⌈εn⌉(m -1) + 1, ..., X T 0 + ⌊εn⌋z + ⌈εn⌉m} for m ∈ {1, ..., 2⌊ ε 4ε ⌋}. We also denote respectively I l (z, z + 1) and I r (z, z + 1) the collections of the {X T 0 + ⌊εn⌋z + ⌈εn⌉(m -1) + 1, ..., X T 0 + ⌊εn⌋z + ⌈εn⌉m} respectively for m ∈ {1, ..., ⌊ ε 4ε ⌋} and m ∈ {⌊ ε 4ε ⌋ + 1, ..., 2⌊ ε 4ε ⌋}. When n is large enough, the intervals of I(z, z + 1) are contained in {X T 0 + ⌊εn⌋z + 1, ..., X T 0 + ⌊εn⌋(z + 1) -1}.

We now define the (Θ γ k ) 0≤k≤K-1 as follows. For any k ∈ {0, ..., K -1}, we say the k-th step of γ is the passage from z k to z k+1 . We will decompose the path in stages of one or two steps at the end of which we update the states of the edges of Z. At time k = 0, all the edges of Z are clean. Let k = 0 or let k ∈ {1, ..., K -2} and suppose the last step of a stage of γ is the step k -1. We suppose z k+1 = z k + 1 (if z k+1 = z k -1, the definition is similar, with all the arrows reversed in the events and r, l exchanged). We define the next stage as follows, depending on the state of the edges at time k.

Case (z k , z k+1 ) clean. In this case, the stage will encompass only step k. We then define Θ γ k as the indicator of I∈I(z k ,z k+1 ) (W → γ,k,I ∩ W -,→ γ,k,I ), we say Θ γ k is of type C, and the edges (z k , z k+1 ), (z k , z k -1) become dirty at time k + 1. Case (z k , z k+1 ) dirty. In this case, the stage will encompass steps k and k + 1, and there will be different cases.

If z k+2 = z k , we set Θ γ k = * and Θ γ k+1 as the indicator of I∈I(z k ,z k+1 ) (W ← γ,k,I ∩ W ← γ,k+1,I
). We also say Θ γ k+1 is of type D. After the stage, at time k + 2, (z k , z k+1 ) and its two neighboring edges become dirty. We now assume z k+2 ̸ = z k , i.e. z k+2 = z k+1 +1. Then there will be different cases depending of the state of (z k+1 , z k+2 ) at time k. Case (z k+1 , z k+2 ) dirty. Then we set Θ γ k = * , and Θ γ k+1 as the indicator of

{|{I ∈ I l (z k , z k+1 )|W ← γ,k,I }| ≥ ε 2 9 ε } ∩ {|{I ∈ I r (z k , z k+1 )|W ← γ,k+1,I }| ≥ ε 2 9 ε }.
We then say that Θ γ k+1 is of type A'. At time k+2, the edges (z k -1, z k ) and (z k+1 , z k+2 ) become dirty. Moreover, if Θ γ k+1 = 1, we say the stage is a stage with wait and the edge (z k , z k+1 ) becomes usable at time k + 2. If, in addition to having Θ γ k+1 = 1, we also have that (z k , z k -1) was dirty at time k, we say the stage is dirty. Case (z k+1 , z k+2 ) clean. Then we set Θ γ k+1 as the indicator of

I∈I(z k+1 ,z k+2 ) (W → γ,k+1,I ∩ W -,→ γ,k+1,I ) and we say Θ γ k+1 is of type C. (z k+1 , z k+2 ) then becomes dirty at time k + 2. If (z k -1, z k ) is not clean at time k, it becomes dirty at time k + 2 and we set Θ γ k = * . If (z k -1, z k ) is clean at time k, then we set Θ γ k as the indicator of {|{I ∈ I l (z k -1, z k )|W +,← γ,k,I }| ≥ ε 2 9 ε } ∩ {|{I ∈ I r (z k -1, z k )|W ← γ,k,I }| ≥ ε 2 9 ε } and we say Θ γ k is of type B'. If Θ γ k = 1 then (z k -1, z k ) becomes usable-clean at time k + 2, otherwise it becomes dirty.
Case (z k+1 , z k+2 ) usable (respectively usable-clean). In this case, there exists k ′ ≤ k so that (z k+1 , z k+2 ) became usable (respectively usable-clean) at time k ′ , and we consider the largest such k ′ . We then have

Θ γ k ′ -1 = 1 (respectively Θ γ k ′ -2 = 1), so the sets E r = {I ∈ I r (z k+1 , z k+2 )|W → γ,k ′ -2,I } and E l = {I ∈ I l (z k+1 , z k+2 )|W → γ,k ′ -1,I } (respectively E r = {I ∈ I r (z k+1 , z k+2 )|W +,→ γ,k ′ -2,I } and E l = {I ∈ I l (z k+1 , z k+2 )|W → γ,k ′ -2,I }) have at least ε 2 9 ε elements.
We then define Θ γ k+1 as the indicator of ( I∈E l W → γ,k+1,I ) ∩ ( I∈Er W → γ,k+1,I ) and say Θ γ k+1 is of type A (respectively of type B ). Both (z k , z k+1 ) and (z k+1 , z k+2 ) become dirty at time k + 2. Moreover, if (z k -1, z k ) is not clean at time k, it becomes dirty and we set

Θ γ k = * . If (z k -1, z k ) is clean at time k, then we set Θ γ k as the indicator of {|{I ∈ I l (z k -1, z k )|W +,← γ,k,I }| ≥ ε 2 9 ε } ∩ {|{I ∈ I r (z k -1, z k )|W ← γ,k,I }| ≥ ε 2 9 ε } and we say Θ γ k is of type B'. If Θ γ k = 1 then (z k -1, z k ) becomes usable-clean at time k + 2, otherwise it becomes dirty.
Case (z k , z k+1 ) usable (respectively usable-clean). In this case, the stage will encompass only step k. Moreover, there exists k ′ ≤ k such that (z k , z k+1 ) became usable (respectively usable-clean) at time k ′ , and we consider the largest such k ′ . We then have

Θ γ k ′ -1 = 1 (respectively Θ γ k ′ -2 = 1), so the sets E r = {I ∈ I r (z k , z k+1 )|W → γ,k ′ -2,I } and E l = {I ∈ I l (z k , z k+1 )|W → γ,k ′ -1,I } (respectively E r = {I ∈ I r (z k , z k+1 )|W +,→ γ,k ′ -2,I } and E l = {I ∈ I l (z k , z k+1 )|W → γ,k ′ -2,I }) have at least ε 2 9 ε elements. We then define Θ γ k as the indicator of ( I∈E l W → γ,k,I ) ∩ ( I∈Er W → γ,k,I
) and say Θ γ k is of type A (respectively of type B). Both (z k , z k+1 ) and (z k , z k -1) become dirty at time k + 1.

If this algorithm does not yield a value for Θ γ K-1 , we set Θ γ K-1 = * .

Proposition 28. For any K ∈ N * , for any path γ of length K, if X follows γ, B c ∩ ( 6 r=0 B c r ) occurs and n is large enough, then for any k ∈ {0, ..., K -1}, if Θ γ k is of type A, B, C or D and

Θ γ k = 1 then T k+1 -T k ≥ r 2 6 (εn) 3/2 .
Proof. Let us assume that X follows γ, B c ∩ ( 6 r=0 B c r ) occurs and n is large enough. We notice that since ) c occurs. In particular, by Proposition 9, for any ⌊N x⌋ -n (α-1)/4 ⌊εn⌋ -1 ≤ i ≤ ⌊N x⌋ + n (α-1)/4 ⌊εn⌋ + 1, hence for any k ∈ {0, ..., K -1} and i ∈ {X T 0 + ⌊εn⌋(z k -1), ..., X T 0 + ⌊εn⌋(z k + 1)}, we have ∆T 0 ,i = ∆ T 0 ,i . Furthermore, by Proposition 10, since B c occurs, for any k ∈ {0, ..., K -1} we have

T k = T + m,i or T - m,i
for some integers ⌊N θ⌋ -2n (α+4)/5 ≤ m ≤ ⌊N θ⌋ + 2n (α+4)/5 and i ∈ [⌊N x⌋ -n (α+4)/5 , ⌊N x⌋ + n (α+4)/5 ]. Therefore, since 6 r=0 B c r occurs, 6 r=1 (B - T k ,r ) c and 6 r=1 (B + T k ,r ) c occur. Set k ∈ {0, ..., K -1} and suppose Θ γ k = 1. We will deal with the possible types of Θ γ k separately. Case Θ γ k of type A. We suppose z k+1 = z k + 1, the other case can be dealt with in the same way. In this case, the edge (z k , z k+1 ) was usable at time k. We denote k ′ the biggest integer below k such that (z k , z k + 1) became usable at time k ′ . Then the path γ did not cross (z k , z k + 1) between times k ′ -1 and k, and was always strictly below z k between these times. Moreover, for any

k ′′ ∈ N, m ∈ {T k ′′ , ..., T k ′′ +1 }, by definition of T k ′′ +1 we have X m ∈ {X T k ′′ -⌊εn⌋, ..., X T k ′′ + ⌊εn⌋}. Since X follows γ, this implies that for any m ∈ {T k ′ , ..., T k -1}, X m < X T 0 + ⌊εn⌋z k , so for any i ≥ X T 0 + ⌊εn⌋z k , ∆ T k ,i = ∆ T k ′ ,i .
There will be two different cases (we recall the notations E l , E r introduced when defining the Θ γ k of type A). We first assume L . We deduce

T k ′ -1 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 = 0. We notice that since Θ γ k = 1, there exists I = {i 1 , ..., i 2 } ∈ E r such that W → γ,k,I occurs. Since I ∈ E r , W → γ,k ′ -2,I also occurs. This yields i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ γ,k ′ -2 j ≥ r 2 
i 2 i=i 1 i 2 j=i ζ T k ,+,I j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ T k ′ -2 ,-,I j ≥ r 2 6 (εn) 3/2 .
In addition, by the definition of S T k ,+,I i , for any i ∈ {i 1 , ..., i 2 }, S T k ,+,I i

-S T k ,+,I i 2 +1 ≥ i 2 j=i ζ T k ,+,I j . Moreover, since 6 r=1 (B + T k ,r ) c occurs, Proposition 25 yields S T k ,+,E i ≥ S T k ,+,I i -(ln n) 8 n 1/4 and S T k ,+,E i 2 +1 ≤ S T k ,+,I i 2 +1 + ⌈(ln n) 3 ⌉, so S T k ,+,E i -S T k ,+,E i 2 +1 ≥ S T k ,+,I i -S T k ,+,I i 2 +1 -(ln n) 8 n 1/4 -⌈(ln n) 3 ⌉ ≥ i 2 j=i ζ T k ,+,I j -(ln n) 8 n 1/4 - ⌈(ln n) 3 ⌉, which implies i 2 i=i 1 (S T k ,+,E i -S T k ,+,E i 2 +1 ) ≥ r 2 12 (εn) 3/2 , that is i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2 12 (εn) 3/2 . By the same arguments, i 2 i=i 1 (S T k ′ -2 ,-,E i 2 +1 -S T k ′ -2 ,-,E i ) ≥ r 2 12 (εn) 3/2 , that is i 2 i=i 1 i 2 j=i ζ T k ′ -2 ,-,E j ≥ r 2 12 (εn) 3/2 . Now, for any j ∈ I, ζ T k ′ -2 ,-,E j = -∆ m,j + 1/2 where m = T - T k ′ -2 = T k ′ -1 since X follows γ, so ζ T k ′ -2 ,-,E j = -∆ T k ′ -1 ,j + 1/2. Furthermore, since L T k ′ -1 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 = 0, for any m ∈ {T k ′ -1 , ..., T k ′ } we have X m ≤ X T 0 + ⌊εn⌋z k + ⌊ ε 4ε ⌋ so if j ∈ I we have ∆ T k ′ -1 ,j = ∆ T k ′ ,j = ∆ T k ,j .
We deduce that for any j ∈ I, we have ζ

T k ′ -2 ,-,E j = -∆ T k ,j + 1/2 = -ζ T k ,+,B j . Therefore i 2 i=i 1 i 2 j=i ζ T k ′ -2 ,-,E j ≥ r 2 12 (εn) 3/2 becomes i 2 i=i 1 i 2 j=i -ζ T k ,+,B j ≥ r 2 12 (εn) 3/2 . Since i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2 12 (εn) 3/2 , we get i 2 i=i 1 i 2 j=i (ζ T k ,+,E j -ζ T k ,+,B j ) ≥ r 2 6 (εn) 3/2 . By Observation 4, this yields i 2 i=i 1 (L T k ,+ i -L T k ,+ i 2 +1 ) ≥ r 2 6 (εn) 3/2 . Now, L T k ,+ i 2 +1 ≥ 0, hence i 2 i=i 1 L T k ,+ i ≥ r 2 6 (εn) 3/2 . This implies T + T k -T k ≥ r 2 6 (εn) 3/2 , thus T k+1 -T k ≥ r 2 6 (εn) 3/2 .
We now assume L

T k ′ -1 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 ̸ = 0. Since Θ γ k = 1, there exists I = {i 1 , ..., i 2 } ∈ E l such that W → γ,k,I occurs. Since I ∈ E l , W → γ,k ′ -1,I also occurs. This yields i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ γ,k ′ -1 j ≥ r 2 6 (εn) 3/2 . Since (B ⌊N θ⌋,⌊N x⌋,± 0
) c occurs, n is large enough and X follows γ, for any j ∈ I we have

ζ γ,k j = ζ T k ,+,I j and ζ γ,k ′ -1 j = ζ T k ′ -1 ,-,I j , hence i 2 i=i 1 i 2 j=i ζ T k ,+,I j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ T k ′ -1 ,-,I j ≥ r 2 6 (εn) 3/2 . From i 2 i=i 1 i 2 j=i ζ T k ,+,I j ≥ r 2 6 (εn) 3/2 we can deduce i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2
12 (εn) 3/2 by the same arguments as before. Unfortunately, we cannot do the same with

i 2 i=i 1 i 2 j=i ζ T k ′ -1 ,-,I j
, as that would require Proposition 25, that relies on j ∈ {X T k ′ -1 -⌊εn⌋ + 1, ..., X T k ′ -1 }, which is not the case for i ∈ I. However, (B - T k ′ -1 ,3 ) c occurs, so for each j ∈ I such that L

T k ′ -1 ,- j ≥ (ln n) 2 , we have ζ T k ′ -1 ,-,I j = ζ T k ′ -1 ,-,E j . Furthermore, L T k ′ -1 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 ̸ = 0, hence the random walk X went from X T 0 + ⌊εn⌋z k to X T 0 + ⌊εn⌋z k + ⌊ ε 4ε ⌋ + 1 between times T k ′ -1 and T k ′ , which implies L T k ′ -1 ,- j
> 0 for each j ∈ I. In addition,

(B - T k ′ -1 ,2 ) c occurs, thus |{j ∈ I | 0 < L T k ′ -1 ,- j < (ln n) 2 }| < (ln n) 8 , so |{j ∈ I | L T k ′ -1 ,- j < (ln n) 2 }| < (ln n) 8 . Finally, (B - T k ′ -1 ,5
) c occurs, hence for any j ∈ I we have |ζ

T k ′ -1 ,-,E j |, |ζ T k ′ -1 ,-,I j | ≤ (ln n) 2 . We deduce i 2 i=i 1 i 2 j=i ζ T k ′ -1 ,-,E j ≥ i 2 i=i 1 i 2 j=i ζ T k ′ -1 ,-,I j -2⌈εn⌉(ln n) 10 ≥ r 2 6 (εn) 3/2 -2⌈εn⌉(ln n) 10 , thus i 2 i=i 1 i 2 j=i ζ T k ′ -1 ,-,E j ≥ r 2 12 (εn) 3/2
when n is large enough. Now, for any j ∈ I, ζ

T k ′ -1 ,-,E j = -∆ m,j + 1/2 with m = T - T k ′ -1 = T k ′ , hence ζ T k ′ -1 ,-,E j = -∆ T k ′ ,j + 1/2 = -∆ T k ,j + 1/2 = -ζ T k ,+,B j . This yields i 2 i=i 1 i 2 j=i -ζ T k ,+,B j ≥ r 2
12 (εn) 3/2 . Since we also proved

i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2 12 (εn) 3/2
, we can end the proof as in the previous case. Case Θ γ k of type B. We suppose z k+1 = z k + 1, the other case can be dealt with in the same way. In this case, (z k , z k+1 ) was usable-clean at time k. We denote k ′ the (only) integer below k such that (z k , z k+1 ) became usableclean at time k ′ . Then the path γ remained below z k up to time k, and the only time before k at which the path reached z k is time k ′ -2. Since X follows γ, this implies that for any i ∈ {X T 0 + ⌊εn⌋z k , ..., X T 0 + ⌊εn⌋(z k + 1)}, ∆ T k ′ -2 ,i = ∆ T 0 ,i , and

∆ T k ,i = ∆ T k ′ -1 ,i . If L T k ′ -2 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 ̸ = 0,
we can prove our result using the same method as in the similar case when Θ γ k of type A, replacing T k ′ -1 by T k ′ -2 . We now deal with the case L

T k ′ -2 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 = 0. Since Θ γ k = 1, there exists I = {i 1 , ..., i 2 } ∈ E r such that W → γ,k,I occurs. Since I ∈ E r , W +,→ γ,k ′ -2,I also occurs. This yields i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζγ,k ′ -2 j ≥ r 2 6 (εn) 3/2 .
From the first inequality we can deduce

i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2
12 (εn) 3/2 as in the case Θ γ k of type A. Now, by the definition of the ζγ,k ′ -2 j , for any j ∈ I we

have ζγ,k ′ -2 j = -∆T 0 ,j +1/2 = -∆ T 0 ,j +1/2, thus ζγ,k ′ -2 j = -∆ T k ′ -2 ,j +1/2. Now, since L T k ′ -2 ,- X T 0 +⌊εn⌋z k +⌊ ε 4ε ⌋+1 = 0, X did not visit j between times T k ′ -2 and T k ′ -1 , hence ∆ T k ′ -2 ,j = ∆ T k ′ -1 ,j = ∆ T k ,j , so ζγ,k ′ -2 j = -∆ T k ,j + 1/2 = -ζ T k ,+,B j . Therefore i 2 i=i 1 i 2 j=i ζγ,k ′ -2 j ≥ r 2 6 (εn) 3/2 yields i 2 i=i 1 i 2 j=i -ζ T k ,+,B j ≥ r 2 6 (εn) 3/2
. We can now conclude as in the case Θ γ k of type A. Case Θ γ k of type C. We suppose z k+1 = z k + 1, the other case can be dealt with in the same way. Since Θ γ k = 1, there exists

I ∈ I(z k , z k+1 ) such that W → γ,k,I ∩ W -,→ γ,k,I , which yields i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i -ζγ,k j ≥ r 2 6 (εn) 3/2 . Since X follows γ, (B ⌊N θ⌋,⌊N x⌋,± 0 
) c occurs and n is large enough, for any j ∈ I we have

ζ γ,k j = ζ T k ,+,I j , so i 2 i=i 1 i 2 j=i ζ T k ,+,I j ≥ r 2 6 (εn) 3/2 .
We can now use the same arguments as in the case Θ γ k of type A to deduce

i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2
12 (εn) 3/2 . Moreover, for any j ∈ I we have ζγ,k j = ∆T 0 ,j -1/2 = ∆ T 0 ,j -1/2. In addition, since Θ γ k is of type C, (z k , z k+1 ) was clean at time k, hence the path γ stayed strictly below z k until time k, thus ∆ T 0 ,j = ∆ T k ,j , hence ζγ,k

j = ∆ T k ,j -1/2 = ζ T k ,+,B j . Consequently, i 2 i=i 1 i 2 j=i -ζγ,k j ≥ r 2 6 (εn) 3/2 implies i 2 i=i 1 i 2 j=i -ζ T k ,+,B j ≥ r 2 
6 (εn) 3/2 . We can now end the proof as in the case Θ γ k of type A. Case Θ γ k of type D. We suppose z k+1 = z k + 1, the other case can be dealt with in the same way. Then since Θ γ k = 1, there exists

I ∈ I(z k , z k+1 ) such that W → γ,k-1,I ∩ W → γ,k,I occurs. This yields i 2 i=i 1 i 2 j=i ζ γ,k-1 j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ γ,k j ≥ r 2 6 (εn) 3/2 . Since X follows γ, (B ⌊N θ⌋,⌊N x⌋,± 0 
) c occurs and n is large enough, for any j ∈ I we have

ζ γ,k-1 j = ζ T k-1 ,-,I j and ζ γ,k j = ζ T k ,+,I j , so we get i 2 i=i 1 i 2 j=i ζ T k-1 ,-,I j ≥ r 2 6 (εn) 3/2 and i 2 i=i 1 i 2 j=i ζ T k ,+,I j ≥ r 2 6 (εn) 3/2 . From the second inequality we can deduce i 2 i=i 1 i 2 j=i ζ T k ,+,E j ≥ r 2
12 (εn) 3/2 by the same arguments as in the case Θ γ k of type A; we can also apply them to the first inequality to obtain i 2

i=i 1 i 2 j=i ζ T k-1 ,-,E j ≥ r 2 12 (εn) 3/2 . Now, for any j ∈ I, ζ T k-1 ,-,E j = -∆ m,j + 1/2 with m = T - T k-1 = T k , hence ζ T k-1 ,-,E j = -∆ T k ,j + 1/2 = -ζ T k ,+,B j
. Therefore we

have i 2 i=i 1 i 2 j=i -ζ T k ,+,B j ≥ r 2 12 (εn) 3/2
. We can now conclude as in the case Θ γ k of type A. □

In light of Proposition 28, we want to prove that for any K ∈ N * , for any path γ of length K, the probability that there are not enough k ∈ {0, ..., K -1} so that Θ γ k is of type A, B, C or D and Θ γ k = 1 is very weak. A sequence of {0, 1, * } K that is a possible value of (Θ γ k ) 0≤k≤K-1 will be called an admissible sequence for γ. Since the states of the edges of Z at time k depend only on the path and of the Θ γ k ′ , k ′ < k, and since the states of the edges at time k determine whether Θ γ k = * , we have the following lemma. Lemma 29. For any K ∈ N * , there are at most 2 K admissible sequences for any given path of length K.

For any K ∈ N * , for any path γ of length K, we call A(γ) the set of admissible sequences for γ. We also call A ′ (γ) the set of bad admissible sequences, that is the (t k ) 0≤k≤K-1 ∈ A(γ) such that |{k ∈ {0, ..., K -1}|t k = 0}| ≥ K/20. All admissible sequences that are not bad will contain enough k ∈ {0, ..., K -1} so that Θ γ k is of type A, B, C or D and Θ γ k = 1, as established by the following lemma. Lemma 30. For any K ∈ N * , for any path γ of length K, if (Θ γ k ) 0≤k≤K-1 is not bad, we have |{k ∈ {0, ..., K -1}| Θ γ k is of type A, B, C or D and Θ γ k = 1}| ≥ K/20. Proof. We notice that at each stage of the path without wait, we get either a Θ γ k which is 0 or a Θ γ k of type A, B, C or D. Since (Θ γ k ) 0≤k≤K-1 is not bad, |{k ∈ {0, ..., K -1}|Θ γ k = 0}| < K/20, so if there are at least K/10 stages without wait, |{k ∈ {0, ..., K -1}| Θ γ k is of type A, B, C or D and Θ γ k = 1}| ≥ K/20. Therefore it is enough to prove that there are at least K/10 stages without wait.

If there are at least K/10 stages with wait that are not dirty, we notice that each of these stages has to follow a stage without wait, so there are at least K/10 stages without wait.

If there are less than K/10 stages with wait that are not dirty, we call K d the number of dirty stages with wait, K nd the number of stages with wait that are not dirty, and K ww the number of stages without wait. There are at least K/2 stages in the path (since all the edges are initially clean, the first stage is one-step long), hence

K d +K nd +K ww ≥ K/2. By assumption, K nd ≤ K/10, hence K d + K ww ≥ K/2 -K nd ≥ K/2 -K/10 = 2K/5
. Now, for each stage without wait, the number of dirty edges of Z increases by at most 3, for each dirty stage with wait, the number of dirty edges of Z decreases by 1, and for each stage with wait that is not dirty, the number of dirty edges of Z does not change. We deduce that K d ≤ 3K ww , so K d + K ww ≥ 2K/5 implies 4K ww ≥ 2K/5, thus K ww ≥ K/10, which means there are at least K/10 stages without wait, which ends the proof. □

It now remains to prove that the probability of a bad admissible sequence to occur is very small, which is the following proposition.

Proposition 31. When n is large enough, for any K ∈ N * , for any path γ of length K, for any

(t k ) 0≤k≤K-1 ∈ A ′ (γ), we have P(∀k ∈ {0, ..., K -1}, Θ γ k = t k ) ≤ 1/8 K . Proof. If we know that Θ γ k = t k for 0 ≤ k ≤ K -1, it determines the type of the Θ γ k , k ∈ {0, ..., K -1}; if under these conditions Θ γ
k is of a given type, we will say that t k is of this type. For any k ∈ {0, ..., K -1}, we denote P γ k the event {∀k ′ ∈ {0, ..., k},

Θ γ k ′ = t k ′ }. Since (t k ) 0≤k≤K-1 ∈ A ′ (γ)
, there are at least K/20 integers k ∈ {0, ..., K -1} such that t k = 0. Consequently, it is enough to prove that for any k ∈ {0, ..

., K -1}, if t k is of type A, B, B' or C then P(Θ γ k = 0|P γ k-1 ) ≤ 2 -60 and if t k is of type A' or D then P(Θ γ k = 0|P γ k-2 ) ≤ 2 -60
(where P γ -1 denotes the whole universe). Let k ∈ {0, ..., K -1}.

Case t k of type A'. We suppose z k+1 = z k +1; the other case can be dealt with in the same way. In this case, knowing γ and

Θ γ k ′ = t k ′ , k ′ ≤ k-2 is enough to know Θ γ k is of type A', so P(Θ γ k = 0|P γ k-2 ) = P({|{I ∈ I l (z k-1 , z k )|W ← γ,k-1,I }| < ε 2 9 ε } ∪ {|{I ∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε }|P γ k-2 ). Moreover, P γ k-2 depends only on the ζ γ,k ′ i , ζγ,k ′ i with k ′ ≤ k -2, i ∈ Z, hence on the ζ γ,k ′ i , ∆T 0 ,i with k ′ ≤ k -2, i ∈ Z. In addition, the W ← γ,k-1,I , W ← γ,k,I depend only on the ζ γ,k i , ζ γ,k-1 i , i ∈ Z, which are by construction independent from the ζ γ,k ′ i , ∆T 0 ,i with k ′ ≤ k -2, i ∈ Z, hence from P γ k-2 . We deduce P(Θ γ k = 0|P γ k-2 ) = P({|{I ∈ I l (z k-1 , z k )|W ← γ,k-1,I }| < ε 2 9 ε } ∪ {|{I ∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε }). Therefore it is enough to prove P(|{I ∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε ) ≤ 2 -61 (as P(|{I ∈ I l (z k-1 , z k )|W ← γ,k-1,I }| < ε 2 9 ε
) can be dealt with in the same way). Moreover, we can write

P(|{I ∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε ) = P( I∈Ir(z k-1 ,z k ) 1 W ← γ,k,I < ε 2 9 ε ), the fact that the I ∈ I r (z k-1 , z k ) are disjoint implies the 1 W ←
γ,k,I are independent, and we have E(1 W ← γ,k,I ) ≥ 1 32 by Lemma 27, therefore by the Hoeffding inequality, P(|{I

∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε ) ≤ P( I∈Ir(z k-1 ,z k ) 1 W ← γ,k,I - E( I∈Ir(z k-1 ,z k ) 1 W ← γ,k,I ) < ε 2 9 ε -1 32 ⌊ ε 4ε ⌋) ≤ exp - 2( 1 32 ⌊ ε 4ε ⌋-ε 2 9 ε ) 2 ⌊ ε 4ε ⌋ . Since ε ≤ ε 8 , ⌊ ε 4ε ⌋ ≥ ε 8ε , so 1 32 ⌊ ε 4ε ⌋ -ε 2 9 ε ≥ 1 32 ε 8ε - ε 2 9 ε = ε 2 9 ε . This implies P(|{I ∈ I r (z k-1 , z k )|W ← γ,k,I }| < ε 2 9 ε ) ≤ exp - 2( ε 2 9 ε ) 2 ⌊ ε 4ε ⌋ ≤ exp(-2( ε 2 9 ε ) 2 4ε ε ) = exp(-ε 2 15 ε ) ≤ 2 -61 since ε ≤ 1 2 15 
61 ln 2 ε. This ends the proof for this case. Case t k of type B'. We suppose z k+1 = z k +1; the other case can be dealt with in the same way. In this case, knowing γ and

Θ γ k ′ = t k ′ , k ′ ≤ k-1 is enough to know Θ γ k is of type B', hence P(Θ γ k = 0|P γ k-1 ) = P({|{I ∈ I l (z k -1, z k )|W +,← γ,k,I }| < ε 2 9 ε }∪{|{I ∈ I r (z k -1, z k )|W ← γ,k,I }| < ε 2 9 ε }|P γ k-1 ). Furthermore, since t k is of type B', (z k -1, z k ) is clean at time k, which means the path γ "never used edge (z k -1, z k ) before time k", hence when n is large enough, P γ k-1 depends only on ζ γ,k ′ i , ∆T 0 ,i with k ′ ≤ k-1, i ̸ ∈ {X T 0 +⌊εn⌋(z k -1), ..., X T 0 +⌊εn⌋z k }, while the W +,←
γ,k,I , W ← γ,k,I considered here depend only on the ζ γ,k i , ∆T 0 ,i with i ∈ {X T 0 +⌊εn⌋(z k -1), ..., X T 0 +⌊εn⌋z k }, which are independent from the former, thus from

P γ k-1 . This yields P(Θ γ k = 0|P γ k-1 ) = P({|{I ∈ I l (z k -1, z k )|W +,← γ,k,I }| < ε 2 9 ε } ∪ {|{I ∈ I r (z k -1, z k )|W ← γ,k,I }| < ε 2 9 ε }), so it is enough to prove that P(|{I ∈ I l (z k -1, z k )|W +,← γ,k,I }| < ε 2 9 ε ) ≤ 2 -61 and P(|{I ∈ I r (z k -1, z k )|W ← γ,k,I }| < ε 2 9 ε ) ≤ 2 -61
. This can be done in the same way as for the case t k of type A', noticing that since (z k -1, z k ) is clean at time k, the path γ did not cross the edge (z k -1, z k ) before time k, thus z k ≤ 0 and the intervals I we consider are contained in ] -∞, X T 0 + ⌊εn⌋z k -1], so we can use Lemma 27.

Case t k of type A. We suppose z k+1 = z k + 1; the other case can be dealt with in the same way. We will use the notations k ′ , E r and E l introduced when describing the Θ γ k of type A. Knowing γ and

Θ γ k ′′ = t k ′′ , k ′′ ≤ k -1 is enough to know Θ γ k is of type A and to determine k ′ , hence P(Θ γ k = 0|P γ k-1 ) = P(( I∈E l (W → γ,k,I ) c ) ∪ ( I∈Er (W → γ,k,I ) c )|P γ k-1 ). Therefore it is enough to prove P( I∈E l (W → γ,k,I ) c |P γ k-1 ) ≤ 2 -61 , as P( I∈Er (W → γ,k,I ) c |P γ k-1 ) ≤ 2 -61 can be proven in the same way. If P γ k-1 occurs, |E l | ≥ ε 2 9 ε , so (8) 
P   I∈E l (W → γ,k,I ) c P γ k-1   = E⊂I l (z k ,z k+1 ),|E|≥ ε 2 9 ε P   I∈E l (W → γ,k,I ) c , E l = E P γ k-1   . Now, for any E ⊂ I l (z k , z k+1 ) with |E| ≥ ε 2 9 ε , P( I∈E l (W → γ,k,I ) c , E l = E|P γ k-1 ) = P( I∈E (W → γ,k,I ) c , E l = E|P γ k-1 ). Moreover, P γ k-1 and {E l = E} depend only on the ζ γ,k ′′ i , ∆T 0 ,i with k ′′ ≤ k -1, i ∈ Z, while the W → γ,k,I de- pend on the ζ γ,k
i , i ∈ Z, which are independent from the former. This implies P(

I∈E (W → γ,k,I ) c , E l = E|P γ k-1 ) = P( I∈E (W → γ,k,I ) c )P(E l = E|P γ k-1
), hence equation ( 8) becomes

P   I∈E l (W → γ,k,I ) c P γ k-1   = E⊂I l (z k ,z k+1 ),|E|≥ ε 2 9 ε P I∈E (W → γ,k,I ) c P(E l = E|P γ k-1 ),
so it is enough to prove that for any

E ⊂ I l (z k , z k+1 ) with |E| ≥ ε 2 9 ε , P( I∈E (W → γ,k,I ) c ) ≤ 2 -61
. Now let E be such a set, then the I ∈ E are disjoint hence the W → γ,k,I are independent, thus P(

I∈E (W → γ,k,I ) c ) = I∈E P((W → γ,k,I ) c ) ≤ ( 31 32 ) ε 2 9 ε by Lemma 27 and |E| ≥ ε 2 9 ε . Since ε ≤ - ln( 31 32 )
2 9 61 ln 2 ε, we indeed obtain P( I∈E (W → γ,k,I ) c ) ≤ 2 -61 . Case t k of type B. This case can be dealt with using the same arguments as for the case t k of type A. Case t k of type C. We suppose z k+1 = z k +1; the other case can be dealt with in the same way. In this case, knowing γ and

Θ γ k ′ = t k ′ , k ′ ≤ k -1 is enough to know Θ γ k is of type C, hence P(Θ γ k = 0|P γ k-1 ) = P( I∈I(z k ,z k+1 ) ((W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c )|P γ k-1
). Furthermore, since t k is of type C, (z k , z k+1 ) is clean at time k, which means the path γ "never used edge (z k , z k+1 ) before time k", hence when n is large enough, P γ k-1 depends only on ζ γ,k ′ i , ∆T 0 ,i with k ′ ≤ k -1, i ̸ ∈ {X T 0 +⌊εn⌋z k , ..., X T 0 +⌊εn⌋z k+1 }, while the W → γ,k,I , W -,→ γ,k,I we consider depend only on ζ γ,k i , ∆T 0 ,i with i ∈ {X T 0 + ⌊εn⌋z k , ..., X T 0 + ⌊εn⌋z k+1 }, which are independent from the former thus from P γ k-1 . This implies

P(Θ γ k = 0|P γ k-1 ) = P( I∈I(z k ,z k+1 ) ((W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c )). In addition, the I ∈ I(z k , z k+1 ) are disjoint hence the (W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c are independent, so P(Θ γ k = 0|P γ k-1 ) = I∈I(z k ,z k+1 ) P((W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c ). Now, let I ∈ I(z k , z k+1 ), we have P((W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c ) = 1 -P(W → γ,k,I ∩ W -,→ γ,k,I ) = 1 -P(W → γ,k,I )P(W -,→ γ,k,I ) as W → γ,k,I is independent from W -,→ γ,k,I
(they depend respectively on ζ γ,k i and ∆T 0 ,i ). Furthermore, (z k , z k+1 ) is clean at time k, thus the path γ never crossed edge (z k , z k+1 ) before time k, hence z k ≥ 0, and we have I ⊂ [X T 0 + ⌊εn⌋z k + 1, +∞[, so we can apply Lemma 27 to W -,→ γ,k,I , as well as to W → γ,k,I , which yields P((

W → γ,k,I ) c ∪ (W -,→ γ,k,I ) c ) = 1 -P(W → γ,k,I )P(W -,→ γ,k,I ) ≤ 1 -( 1 32 ) 2 = 1 -2 -10 . We deduce P(Θ γ k = 0|P γ k-1 ) ≤ (1 -2 -10 ) 2⌊ ε 4ε ⌋ ≤ (1 -2 -10 ) ε 4ε ≤ 2 -60 since ε ≤ -ln(1-2 -10 )
240 ln 2 ε. Case t k of type D. We assume z k+1 = z k +1; the other case can be dealt with in the same way (beware: the definition of type D was detailed for z k+1 = z k -1). In this case, knowing γ and

Θ γ k ′ = t k ′ , k ′ ≤ k -2 is enough to know Θ γ k is of type D, hence P(Θ γ k = 0|P γ k-2 ) = P( I∈I(z k+1 ,z k ) ((W → γ,k-1,I ) c ∪ (W → γ,k,I ) c )|P γ k-2 ). Moreover, P γ k-2 depends only on the ζ γ,k ′ i , ∆T 0 ,i with k ′ ≤ k -2, i ∈ Z, while the W → γ,k-1,I , W → γ,k,I depend only on the ζ γ,k-1 i , ζ γ,k i with i ∈ Z, which
are independent from the former, hence from P γ k-2 . We deduce

P(Θ γ k = 0|P γ k-2 ) = P( I∈I(z k+1 ,z k ) ((W → γ,k-1,I ) c ∪ (W → γ,k,I ) c
)), which can be bounded by the same arguments as in the case t k of type C. □

We are now able to conclude. Proposition 28 and Lemma 30 allow to deduce that for any K ∈ N * , when n is large enough, if T K -T 0 < K 20 r 2 6 (εn) 3/2 and B c ∩ ( 6 r=0 B c r ) occurs, there exists a path γ of length K so that (Θ k ) 0≤k≤K-1 ∈ A ′ (γ). In addition, there are 2 K possible paths of length K, therefore Lemma 29 and Proposition 31 yield the following.

Proposition 32. For any K ∈ N * , for n large enough, P(T K -T 0 < K r 2 120 (εn) 3/2 , B c ∩ 6 r=0 B c r ) ≤ 1 2 K .

The limit process of the environments

In Section 8, we will need to prove the joint convergence in distribution of the position of our random walk at times T 0 , ...T K and of "environment" processes depending of the ∆ T k ,j , k ∈ {0, ..., K} (see Definition 45). In order to show this convergence, we will need some results on the limit process, the "limit process of the environments". We believe said limit process to be of independent interest. In Section 7.1, we will prove some results on Brownian motions reflected on and absorbed by general barriers (we recall the Definition 21 of the reflected Brownian motion), which are interesting in their own right and which we will need to apply to the limit process of the environments. In Section 7.2, we give the definition of the limit process of the environnements and prove that the results of Section 7.1 can actually be applied to it. 7.1. Brownian motion results. Let us set some notations. The Brownian motions in the subsection will all have the same variance (but not necessarily the variance of ρ 0 ). Our barrier will be a continuous function f : [-1, 1] → R. We suppose for notational convenience (and with no loss of generality) that f (0) = 0. We consider a process ( W Proposition 33. We always have p -+ p + ≥ 1. Moreover, we define a random variable Z as follows: let Wand W + be two independent Brownian motions on [0, 1] with W -0 = W + 0 = 0, we set Z = sup 0≤t≤1 ( Wt + f (-t)) + inf 0≤t≤1 ( W + t -f (t)). Then we have p -+ p + = 1 if and only if P(Z = 0) = 0. Proof. By definition, for any t ∈ [-1, 0] we have

- t ) t∈[-1,1] which is a Brownian motion (W - t ) t∈[-1,1] reflected on f above f on [-1, 0], starting with W - -1 = f (- 1 
W - t = W - t + sup -1≤s≤t (f (s) -W - s ) = sup -1≤s≤t (f (s) + W - t -W - s ), and for t ∈ [0, σ ∧ 1] we have W - t = W - 0 + (W - t -W - 0 ). Therefore we have P(σ -= 1) ≤ P( W - 0 + (W - 1 -W - 0 ) = f (1)), while (W - t -W - 0 ) t∈[0,1]
is a Brownian motion independent from W -0 , hence P(σ -= 1) = 0. This implies p -= P(σ -≤ 1). In addition,

σ -≤ 1 when inf 0≤t≤1 ( W - t -f (t)) ≤ 0, thus when inf 0≤t≤1 ( W - 0 + (W - t -W - 0 ) -f (t)) ≤ 0, that is W - 0 + inf 0≤t≤1 ((W - t -W - 0 ) -f (t)) ≤ 0 which can be written as sup -1≤t≤0 (f (t) + W - 0 -W - t ) + inf 0≤t≤1 ((W - t - W - 0 ) -f (t)) ≤ 0. This implies p -= P(sup -1≤t≤0 (f (t) + W - 0 -W - t ) + inf 0≤t≤1 ((W - t -W - 0 ) -f (t)) ≤ 0) = P(Z ≤ 0). Now, p + corresponds to the p -associated to the function f : [-1, 1] → R defined by f (t) = f (-t) for any s ∈ [-1, 1]. This yields p + = P sup 0≤t≤1 ( W - t + f (-t)) + inf 0≤t≤1 ( W + t -f (t)) ≤ 0 = P sup 0≤t≤1 ( W - t + f (t)) + inf 0≤t≤1 ( W + t -f (-t)) ≤ 0 = P inf 0≤t≤1 (-W - t -f (t)) + sup 0≤t≤1 (-W + t + f (-t)) ≥ 0 , but inf 0≤t≤1 (-W - t -f (t)) + sup 0≤t≤1 (-W + t + f (-t)
) ≥ 0 has the same law as Z, so p + = P(Z ≥ 0). Since we also have p -= P(Z ≤ 0), we always have p -+ p + ≥ 1, and we have p -+ p + = 1 if and only if P(Z = 0) = 0. □

In order to get both a more practical condition for having p -+ p + = 1 than the one in Proposition 33 and auxiliary results that will be useful in Section 8, we need to introduce some stopping times. Let (W t ) t∈[0,1] a Brownian motion, and g : [0, 1] → R a continuous function. For any δ ∈ R, we define σ(δ) = inf{t ∈ [0, 1] | W t ≤ g(t) + δ}, the inf being infinite when the set is empty.

Lemma 34. For any continuous function g : [0, 1] → R (possibly random) so that g(0) < W 0 almost-surely, we have that σ(δ) converges in probability to σ(0) as δ tends to 0.

Proof. We first suppose g and W 0 are deterministic and g(0) < W 0 . It is enough to prove that for any a > 0, P(|σ(δ) -σ(0)| > a) tends to 0 when δ tends to 0. We will treat δ > 0, the negative case is handled similarly. For any a > 0, for any δ > 0, we notice that σ(0) ≥ σ(δ), so if |σ(δ) -σ(0)| > a then σ(0) -σ(δ) > a, so there exists a non-negative integer i ≤ ⌊1/a⌋ + 1 so that σ(δ) ≤ ia and σ(0) > ia. We deduce ( 9)

P(|σ(δ) -σ(0)| > a) ≤ 1 a + 2 max t∈[0,1] P(σ(δ) ≤ t, σ(0) > t).
We thus need to study the P(σ(δ) ≤ t, σ(0) > t). For any δ > 0, we consider a Brownian motion (W δ t ) t∈[0,1] starting from W 0 + δ, independent from (W t ) t∈[0,1] until they meet, and then coalescing with

(W t ) t∈[0,1] . We also denote σ ′ (δ) = inf{t ∈ [0, 1] | W δ t ≤ g(t) + δ}.
Since δ > 0, we have W δ t ≥ W t for any t ∈ [0, 1], thus we have σ(δ) ≤ σ ′ (δ). Moreover, σ ′ (δ) has the same law as σ(0). We deduce that for t ∈ [0, 1], denoting T δ the time of coalescence of (W t ) t∈[0,1] and (W δ t ) t∈[0,1] , P(σ(δ) ≤ t, σ(0) > t) = P(σ(δ) ≤ t) -P(σ(0) ≤ t) = P(σ(δ) ≤ t) -P(σ ′ (δ) ≤ t) = P(σ(δ) ≤ t, σ ′ (δ) > t) ≤ P(T δ > σ(δ)). From this and (9) we deduce P(|σ(δ) -σ(0)| > a) ≤ (⌊ 1 a ⌋ + 2)P(T δ > σ(δ)), so it is enough to prove P(T δ > σ(δ)) tends to 0 when δ tends to 0. To do that, we denote δ 0 = W 0 -g(0) 2 > 0. When δ ≤ δ 0 we have σ(δ) ≥ σ(δ 0 ) hence P(T δ > σ(δ)) ≤ P(T δ > σ(δ 0 )). Now, σ(δ 0 ) > 0 and T δ converges in probability to 0 when δ tends to 0, therefore lim δ→0 P(T δ > σ(δ 0 )) = 0, which ends the proof when g and W 0 are deterministic. If g and W 0 are random, we notice that for any a > 0, P(|σ(δ) -σ(0)| > a) = E(P(|σ(δ) -σ(0)| > a | g, W 0 )), and that for any value of g and W 0 so that g(0) < W 0 , we have lim δ→0 P(|σ(δ) -σ(0)| > a | g, W 0 ) = 0, hence P(|σ(δ) -σ(0)| > a | g, W 0 ) converges almost-surely to 0 when δ tends to 0, therefore lim δ→0 P(|σ(δ) -σ(0)| > a) = 0. □ Lemma 34 allows us to prove the following condition, more practical than the one in Proposition 33.

Proposition 35. If P( W - 0 > f (0)) = 1, then p -+ p + = 1. Proof. Let us assume P( W - 0 > f (0)) = 1.
We recall that by Proposition 33, proving P(Z = 0) = 0 is enough to prove p -+p + = 1. Now, by definition

W - 0 = W - 0 +sup -1≤t≤0 (f (t)-W - t ) = sup -1≤t≤0 (f (t)-W - t +W - 0 )
which has the same law as sup 0≤t≤1 ( Wt +f (-t)), so P(Z = 0) = P( W -0 +inf 0≤t≤1 ( W + t -f (t)) = 0) = P(inf 0≤t≤1 ( W -0 + W + t -f (t)) = 0). We use the notations of Lemma 34 with the process ( W -0 + W + t ) t∈[0,1] replacing (W t ) t∈[0,1] and the restriction of f to [0, 1] replacing g. We then have P(Z = 0) ≤ P(σ(0) < +∞, ∀ δ < 0, σ(δ) = +∞). Now, since W -0 + W + 0 = W -0 and P( W -0 > f (0)) = 1, Lemma 34 implies σ(δ) converges in probability to σ(0) when δ tends to 0, hence P(σ(0) < +∞, ∀ δ < 0, σ(δ) = +∞) = 0, therefore P(Z = 0) = 0, which ends the proof. □

We are going to establish another criterion for having p -+ p + = 1, which will not be used in this paper but has independent interest. Proposition 33 stated that p -+ p + = 1 if and only if P(Z = 0) = 0, and we saw in the proof of Proposition 35 that P(Z = 0) = P(inf 0≤t≤1 ( W -0 + W + t -f (t)) = 0), and that this was 0 if P( W -0 > f (0)) = 1. Therefore p -+ p + > 1 if and only if P( W -0 = f (0)) > 0 and with strictly positive probability a Brownian motion

(W t ) t∈[0,1] starting at 0 satisfies W t ≥ f (t) for 0 ≤ t ≤ 1. Now, recall that a function f : [0, 1] → R with f (0) = 0 is called a lower function if P(∀ 0 ≤ t ≤ 1, W t ≥ f (t)) > 0. So for example, if 0 < ϵ < 2 and W is a standard
Brownian motion, a continuous function equivalent to -(2 + ϵ)t ln(ln( 1 t )) around 0 is a lower function (indeed, the Law of the Iterated Logarithm implies there exists δ > 0 so that P(∀ 0 ≤ t ≤ δ, W t ≥ 1 1+ε f (t)) > 0, and the Forgery Theorem (Theorem 38 of [START_REF] Freedman | Brownian motion and diffusion[END_REF]

) implies P(∀ δ ≤ t ≤ 1, W t -W δ ≥ f (t) -f (δ) -( 1 1+ε -1)f (δ)) > 0), but a function equivalent to -(2 -ϵ)t ln(ln( 1 t ))
is not (for refinement see [START_REF] Erdös | On the law of the iterated logarithm[END_REF]). Furthermore, P( W -0 = f (0)) > 0 if and only if P(sup -1≤t≤0 (f (t) -W - t + W - 0 ) = 0) > 0, which is the case if and only if the function : t → -f (-t) is a lower function. We deduce the following criterion.

Proposition 36. p -+p + > 1 if and only if the functions f 1 , f 2 : [0, 1] → R defined by f 1 (t) = f (t) and f 2 (t) = -f (-t) for t ∈ [0, 1] are both lower functions. 7.2. The limit process of the environments. The limit process of the environments will be the following.

Definition 37. W 0 will be a two-sided Brownian motion with W 0 0 = 0. We denote Z0 = 0. Let k ∈ N, and suppose that W k ′ , Zk ′ are defined for any k ′ ∈ {0, ..., k}, we construct W k+1 as follows.

We consider a continuous process (V k,- t

) t∈[-ε,ε] defined thus:

V k,- -ε = W k -ε , (V k,- t
) t∈[-ε,0] is a Brownian motion above W k reflected on W k , and

(V k,- t ) t∈[0,ε] is a Brownian motion absorbed by W k . Let σ k,-= inf{t ≥ 0 | V k,- t = W k
t } be the absorption time, and p k,-= P(σ k,-< ε|W k ) the probability of absorption. Similarly, let

(V k,+ t ) t∈[-ε,ε] so that V k,+ ε = W k ε , (V k,+ ε-t ) t∈[0,ε] is a Brownian motion reflected on (W k ε-t ) t∈[0,ε] above (W k ε-t ) t∈[0,ε] and (V k,+ -t ) t∈[0,ε] is a Brownian motion absorbed by (W k -t ) t∈[0,ε] , let σ k,+ = sup{t ≤ 0 | V k,+ t = W k t }
be the absorption time, and set p k,+ = P(σ k,+ > -ε|W k ).

Then, independently from the W k ′ , k ′ ∈ {0, ..., k}, we set Zk+1 = Zk -1 with probability p k,-and Zk+1 = Zk + 1 with probability 1 -p k,-.

• If Zk+1 = Zk -1, W k+1 is defined as follows. For t ∈] -∞, 0] ∪ [2ε, +∞[, we set W k+1 t = W k t-ε -W k -ε . Moreover, we define a process ( W k,- t ) t∈[-ε,ε] thus: W k,- -ε = W k -ε , ( W k,- t ) t∈[-ε,0] is a Brownian motion above W k reflected on W k , and ( W k,- t ) t∈[0,ε] is a Brownian motion absorbed by W k , but ( W k,- t ) t∈[-ε,ε] is conditioned to coalesce with W k before time ε. Then for any t ∈ [0, 2ε], we set W k+1 t = W k,- t-ε -W k -ε . In addition, we set Tk+1 = 2 ε -ε ( W k,- t -W k t )dt. • If Zk+1 = Zk + 1, the definition is similar. If t ∈] -∞, -2ε] ∪ [0, +∞[, we set W k+1 t = W k t+ε -W k ε . We also define a process ( W k,+ t ) t∈[-ε,ε] so that W k,+ ε = W k ε , ( W k,+ ε-t ) t∈[0,ε] is a Brownian motion above (W k ε-t ) t∈[0,ε]
reflected on (W k ε-t ) t∈[0,ε] , and ( W k,+ -t ) t∈[0,ε] is a Brownian motion absorbed by (W k -t ) t∈[0,ε] , conditioned to coalesce. Then for t ∈ [-2ε, 0], we set

W k+1 t = W k,+ t+ε -W k ε . In addition, we set Tk+1 = 2 ε -ε ( W k,+ t -W k t )dt.
Remark 38. V k,-corresponds roughly to the limit of 1

√ n ζ T k ,-,E i
, and W k to the limit of 1

√ n ζ T k ,-,B i .
The limit process of the environments satisfies the following property, whose proof is given in the appendix.

Lemma 39. For any k ∈ N * , the random variables Tk and k k ′ =1 Tk ′ have no atoms. We want to apply the results of Section 7.1 to the limit process of the environments. However, to use them, we need the Brownian motion ( Wor W ) to be strictly above the barrier (f or g) at 0. Hence we have to prove such a result for the processes defined in Definition 37, which is the following.

Proposition 40. For any k ∈ N, we have

P(V k,- 0 > W k 0 ) = 1 and P(V k,+ 0 > W k 0 ) = 1.
The rest of this section is devoted to the proof of Proposition 40. The idea is to prove that the law of W k in some small interval [-ε, ε] around 0 is "close" to that of a Brownian motion, or of a Brownian motion reflected on a Brownian motion. Indeed, we can prove that a Brownian motion like V k,± reflected on such a process is almost-surely strictly above it at time 0 (Lemma 43).

We need to define some notation. For any ε > 0, let (W t ) t∈[-ε,ε] a two-sided Brownian motion with W 0 = 0. We denote its law µ ε. We will also denote µ -,ε the law of (W ′ t ) t∈[-ε,ε] so that "at the left of 0, W ′ is a Brownian motion, and at the right of 0, W ′ is a Brownian motion reflected on W "; more rigorously, (W

′ t ) t∈[-ε,0] = (W t ) t∈[-ε,0] and (W ′ t ) t∈[0,ε] is a Brownian motion reflected on (W t ) t∈[0,ε] above (W t ) t∈[0,ε] so that W ′ 0 = 0.
Similarly, we will denote µ +,ε the law of (W ′ t ) t∈[-ε,ε] so that "at the right of 0, W ′ is a Brownian motion, and at the left of 0, W ′ is a Brownian motion reflected on W ", that is

(W ′ t ) t∈[0,ε] = (W t ) t∈[0,ε] and (W ′ -t ) t∈[0,ε] is a Brownian motion reflected on (W -t ) t∈[0,ε] above (W -t ) t∈[0,ε] so that W ′ 0 = 0.
Finally, for any k ∈ N, we denote by µ k z,ε "the law of W k in a window of size 2ε around zε", that is the law of (W k zε+t -W k zε ) t∈[-ε,ε] . Now, for any ε > 0, we denote F ε the set of real non-negative bounded functions defined on the space of continuous functions : [-ε, ε] → R. If µ is the law of a continuous stochastic process (W t ) t∈[-ε,ε] and f ∈ F ε, we denote by µ(f ) or µ(f ((W t ) t∈[-ε,ε] )) the expectation of f ((W t ) t∈[-ε,ε] ) under the law µ. For any f ∈ F ε, for any process

(W t ) t∈[-ε,ε] , we denote f ((W t ) t∈[-ε,ε] ) = f ((W t ) t∈[-ε,0] , (W t ) t∈[0,ε]
). We then have the following proposition, which indicates that for any k ∈ N, the law of W k is "close" to an appropriate law.

Proposition 41. For any z ∈ Z, ε > 0 we have µ 0 z,ε = µ ε, and for all k ∈ N * , for all δ > 0, there exists ε > 0 so that, for any f ∈ F ε, for any z ∈ Z\{0} we have µ

k z,ε (f ) ≤ 2 k µ ε(f )+δ∥f ∥ ∞ , and µ k 0,ε (f ) ≤ 2 k-1 (µ -,ε (f )+µ +,ε (f ))+δ∥f ∥ ∞ .
The following lemma indicates that if the law of W k around time 0 is close to an appropriate law, we have the desired property

P(V k,± 0 > W k 0 ) = 1.
Lemma 42 together with Proposition 41 prove Proposition 40, and Lemma 42 is also used in the proof of Proposition 41.

Lemma 42. If for any ε > 0 we have µ 0 0,ε = µ ε, then P(V 0,- 0 > W 0 0 ) = 1 and P(V 0,+ 0 > W 0 0 ) = 1. Moreover, for any k ∈ N * , if for any δ > 0 there exists ε > 0 so that for any f ∈ F ε we have

µ k 0,ε (f ) ≤ 2 k-1 (µ -,ε (f ) + µ +,ε (f )) + δ∥f ∥ ∞ , then P(V k,- 0 > W k 0 ) = 1 and P(V k,+ 0 > W k 0 ) = 1.
In order to prove Lemma 42, we need to show that a Brownian motion reflected on a process with law µ ε, µ -,ε or µ +,ε will almost-surely be stricly above it at time 0, which is the following lemma.

Lemma 43. For any ε > 0, we denote by (W t ) t∈[-ε,ε] a process with law µ ε, µ -,ε or µ +,ε , and by (W

′ t ) t∈[-ε,ε] a Brownian motion reflected on (W t ) t∈[-ε,ε] such that W ′ -ε ≥ W -ε .
Then for any δ > 0, there exists 0 < ε′ ≤ ε so that

P(∀ t ∈ [-ε ′ , ε′ ], W ′ t > W t ) ≥ 1 -δ. Proof.
We begin by introducing some notations. We denote by (W ′′ t ) t∈[-ε,ε] the Brownian motion so that (W

′ t ) t∈[-ε,ε] is the reflection of (W ′′ t ) t∈[-ε,ε] on (W t ) t∈[-ε,ε]
. We notice that if ( Wt ) t∈[0,1] is a Brownian motion with W0 = 0, there exists some finite M > 0 so that P(max 0≤t≤1 | Wt | ≤ M/3) > 0. We denote i 0 = ⌈ -ln(ε) 2 ln 2 ⌉ (then 2 -2i 0 ≤ ε). It will be enough to prove that P(

∃ i ≥ i 0 so that ∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M and W ′′ 0 -W ′′ -2 -2i ≥ (2M +1)2 -i ) = 1. Indeed, then there almost surely exists i ≥ i 0 so that ∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M and W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i . Then (W ′ t ) t∈[-2 -2i ,0] is above the Brownian motion (W ′′ t -W ′′ -2 -2i + W -2 -2i ) t∈[-2 -2i ,0] reflected on (W t ) t∈[-2 -2i ,0] , itself above the Brownian motion (W ′′ t -W ′′ -2 -2i + W -2 -2i ) t∈[-2 -2i ,0] . Therefore W ′ 0 ≥ W ′′ 0 -W ′′ -2 -2i + W -2 -2i ≥ (2M + 1)2 -i -M 2 -i = (M + 1)2 -i ≥ W 0 + 2 -i > W 0 . We deduce P(W ′ 0 > W 0 ) = 1. Now let δ > 0. Since P(W ′ 0 = W 0 ) = 0, there exists δ 1 > 0 so that P(W ′ 0 -W 0 < δ 1 ) ≤ δ/2. Furthermore, the processes (W t ) t∈[-ε,ε] and (W ′ t ) t∈[-ε,ε] are continuous, hence there exists 0 < ε′ < ε so that P(∀ t ∈ [-ε ′ , ε′ ], |(W ′ t -W t ) -(W ′ 0 -W 0 )| ≤ δ 1 /2) ≥ 1 -δ/2. We then have P(∀ t ∈ [-ε ′ , ε′ ], W ′ t > W t ) ≥ 1 -δ, which is Lemma 43. Consequently, we only have to prove P(∃ i ≥ i 0 so that ∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M and W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i ) = 1. We will prove P(|{i ∈ N | i ≥ i 0 , ∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M, W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i }| = +∞) = 1
. By Blumenthal 0-1 law, this event has probability 0 or 1, so it is enough to prove that it has positive probability. Now, P(|{i

∈ N | i ≥ i 0 , ∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M, W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i }| = +∞) = P(∩ i≥i 0 ∪ j≥i {∀ t ∈ [-2 -2j , 0], |W t | ≤ 2 -j M, W ′′ 0 -W ′′ -2 -2j ≥ (2M + 1)2 -j }) = lim i→+∞ P(∪ j≥i {∀ t ∈ [-2 -2j , 0], |W t | ≤ 2 -j M, W ′′ 0 - W ′′ -2 -2j ≥ (2M + 1)2 -j }) ≥ lim inf i→+∞ P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M, W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i ).
Consequently, it is enough to find a positive lower bound for the

P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M, W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i
). In addition, W and W ′′ are independent, hence

P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M, W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i ) = P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M )P(W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i ).
Moreover, by scaling invariance of the Brownian motion, P(W ′′ 0 -W ′′ -2 -2i ≥ (2M + 1)2 -i ) = P(W ′′ 0 -W ′′ -1 ≥ 2M + 1), which is positive and independent on i. Therefore we only have to find a positive lower bound for the P( Proof of Lemma 42. We only spell out the proof for k ∈ N * and P(V k,+ 0 > W k 0 ) = 1, as the other cases can be dealt with in the same way. We are going to prove that for any δ > 0 we have P

∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M ). If (W t ) t∈[-ε,ε] has law µ ε or µ -,ε , (W -t ) t∈[0,ε] is a Brownian motion, so by scaling invariance, P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M ) = P(max 0≤t≤1 | Wt | ≤ M ) > 0, which is enough. If (W t ) t∈[-ε,ε] has law µ +,ε , we may say (W -t ) t∈[0,ε] is a Brownian motion (W 1 -t ) t∈[0,ε] with W 1 0 = 0 reflected on an independent Brownian motion (W 2 -t ) t∈[0,ε] with W 2 0 = 0. As before, P(∀ t ∈ [-2 -2i , 0], |W 1 t | ≤ 2 -i M/3) = P(∀ t ∈ [-2 -2i , 0], |W 2 t | ≤ 2 -i M/3) = P(max 0≤t≤1 | Wt | ≤ M/3) > 0, thus P(∀ t ∈ [-2 -2i , 0], |W 1 t |, |W 2 t | ≤ 2 -i M/3) is constant and positive. Now, if for all t ∈ [-2 -2i , 0] we have |W 1 t |, |W 2 t | ≤ 2 -i M/3, then for all t ∈ [-2 -2i , 0] we have W t = W 1 t + sup t≤s≤0 (W 2 s -W 1 s ), hence |W t | ≤ 2 -i M . This implies that P(∀ t ∈ [-2 -2i , 0], |W t | ≤ 2 -i M )
(V k,+ 0 = W k 0 ) ≤ δ, which is enough. Let δ > 0. We recall that (V k,+ -t ) t∈[-ε,ε
] is a Brownian motion reflected and absorbed by (W k -t ) t∈[-ε,ε] (see Definition 37). We may consider that it was constructed as the reflection and absorption of the Brownian motion Now, by the induction hypothesis there exists some ε4 > 0 so that for any g ∈ F ε4 we have µ

k -1,ε 4 (g) ≤ 2 k µ ε4 (g) + (δ/2)∥g∥ ∞ , therefore if ε ≤ ε4 , we have E( f (W k,-1 [-ε,0] , (V k,- t-ε -W k -ε ) [0,ε] )) ≤ 2 k µ ε(E( f (W [-ε,0] , (W ′ t -W ′ 0 ) [0,ε] )|W )) + (δ/2)∥ f ∥ ∞ = 2 k µ -,ε (f ) + (δ/2)∥f ∥ ∞ . Similarly, if ε ≤ ε4 , we have E( f ((V k,+ t+ε -W k ε ) [-ε,0] , W k,1 [0,ε] )) ≤ 2 k µ +,ε (f ) + (δ/2)∥f ∥ ∞ . Consequently, (14) implies that if ε ≤ ε4 , we have E( f (W k+1,0 [-ε,0] , W k+1,0 [0,ε] )) ≤ 2 k µ -,ε (f ) + (δ/2)∥f ∥ ∞ + 2 k µ +,ε (f ) + (δ/2)∥f ∥ ∞ , that is µ k+1 0,ε (f ) ≤ 2 k µ -,ε (f ) + 2 k µ +,ε (f ) + δ∥f ∥ ∞ . To conclude, if we set ε = min(ε 1 , ε2 , ε3 , ε4 , ε/2) > 0, for any f ∈ F ε, for any z ∈ Z \ {0} we have µ k+1 z,ε (f ) ≤ 2 k+1 µ ε(f ) + δ∥f ∥ ∞ , and µ k+1 0,ε (f ) ≤ 2 k µ -,ε (f ) + 2 k µ +,ε (f ) + δ∥f ∥ ∞ ,
which ends the proof of Proposition 41. □

Convergence of the mesoscopic quantities

In order to prove the main results of this work, Theorem 2 and Proposition 1, we need to prove the convergence of the "mesoscopic" quantities, that is the 1 n (X T k+1 -X T k ) and 1 n 3/2 (T k+1 -T k ). For ε > 0, for any k ∈ N, we will denote

Z N k = 1 ⌊εn⌋ (X T k -X T 0 ). Then (Z N k )
k∈N is a nearest-neighbor random walk on Z. The result we will need is the following.

Proposition 44. For any ε > 0, K ∈ N * , (Z N 1 , ..., Z N K , 1 n 3/2 (T 1 -T 0 ), 1 n 3/2 (T 2 -T 1 ), ..., 1 n 3/2 (T K -T K-1
)) converges in distribution to ( Z1 , ..., ZK , T1 , ..., TK ) (defined as in Definition 37) when N tends to +∞. Moreover, the Tk and k k ′ =1 Tk ′ , k ∈ {1, ..., K}, have no atoms. In order to prove Proposition 44, we notice that for k ∈ {0, ..., K -1}, we have

Z N k+1 = Z N k -1 if and only if (X T k +m ) m∈N reaches X T k -⌊εn⌋ before X T k + ⌊εn⌋, which means L T k ,- X T k +⌊εn⌋ = 0. In addition, in this case one can check that T k+1 -T k = ⌊εn⌋ + 2 i∈Z L T k ,- i . We thus wish to study L T k ,- i . Moreover, remembering Definition 22, for i > X T k -⌊εn⌋, we have L T k ,- i = S T k ,-,E i -S T k ,-,B i
, and it so happens that (S T k ,-,E i ) i is close to a random walk reflected on (S T k ,-,B i ) i when i ∈ {X T k -⌊εn⌋+1, ..., X T k } and absorbed by (S T k ,-,B i ) i when i ≥ X T k . Therefore, we are going to study the limit of the processes (S T k ,-,B i ) i , which can be considered as "environments" in which the (S T k ,-,E i ) i evolve. In order to have more practical notation, the precise environment process we will study is the following. Definition 45. For any k ∈ N, the environment process at time T

k , (E N k,i ) i∈Z , is defined by E N k,i = X T k j=X T k +i (∆ T k ,j + 1/2) for i ≤ 0 and E N k,i = X T k +i-1 j=X T k +1 (-∆ T k ,j + 1/2) for i ≥ 1.
For any family of real-valued discrete processes (H N i ) i∈Z , any real numbers a < b, we will write "(H N nt ) t∈[a,b] " as a shortcut for "the linear interpolation of (H

N ⌊nt⌋ ) t∈[a,b] ". For any k ∈ N, 1 n 3/2 (T k+1 -T k ) can be written as as a function of Z N k , Z N k+1 , ( 1 √ n E N k,nt ) t∈[-2ε,2ε] and ( 1 √ n E N k+1,nt ) t∈[-2ε,2ε]
. Consequently, it will be enough to prove that

(Z N 1 , ..., Z N k , ( 1 √ n E N 0,nt ) t∈[-a,a] , ..., ( 1 √ n E N k,nt ) t∈[-a,a]
) converges in distribution when N tends to +∞ to prove Proposition 44. This is the following proposition.

Proposition 46. For any k ∈ N, for any a > 0, (Z

N 1 , ..., Z N k , ( 1 √ n E N 0,nt ) t∈[-a,a] , ..., ( 1 √ n E N k,nt ) t∈[-a,a]
) converges in distribution to ( Z1 , ..., Zk , (W 0 ) t∈[-a,a] , ..., (W k ) t∈[-a,a] ) when N tends to +∞.

We first prove Proposition 44 given Proposition 46.

Proof of Proposition 44. Let ε > 0, K ∈ N * . For any k ∈ {0, ..., K -1}, we will write

1 n 3/2 (T k+1 -T k ) as a func- tion of Z N k , Z N k+1 , ( 1 √ n E N k,nt ) t∈[-2ε,2ε] and ( 1 √ n E N k+1,nt ) t∈[-2ε,2ε] . Indeed, if Z N k+1 = Z N k -1, we have T k+1 -T k = 2 X T k +⌊εn⌋ i=X T k -⌊εn⌋+1 L T k ,- i + ⌊εn⌋ = 2 ⌊εn⌋ i=-⌊εn⌋+1 (E N k+1,i+⌊εn⌋ + E N k,-⌊εn⌋+1 -E N k,i ) + ⌊εn⌋, while if Z N k+1 = Z N k + 1, we have T k+1 -T k = 2 X T k +⌊εn⌋ i=X T k -⌊εn⌋+1 L T k ,+ i -⌊εn⌋ = 2 ⌊εn⌋ i=-⌊εn⌋+1 (E N k+1,i-⌊εn⌋ -E N k+1,0 + 1 -(E N k,i -E N k,⌊εn⌋ )) -⌊εn⌋ = 2 ⌊εn⌋ i=-⌊εn⌋+1 (E N k+1,i-⌊εn⌋ -E N k+1,0 -E N k,i + E N k,⌊εn⌋ ) + 3⌊εn⌋. Therefore, if for any z, z ′ ∈ Z, f, g continuous real functions on [-2ε, 2ε] we define F N (Z, Z ′ , f, g) =1 {z ′ =z-1}   2 n ⌊εn⌋ i=-⌊εn⌋+1 g i + ⌊εn⌋ n + f -⌊εn⌋ + 1 n -f i n + ⌊εn⌋ n 3/2   +1 {z ′ =z+1}   2 n ⌊εn⌋ i=-⌊εn⌋+1 g i -⌊εn⌋ n -g(0) -f i n + f ⌊εn⌋ n + 3 ⌊εn⌋ n 3/2   , then 1 n 3/2 (T k+1 -T k ) = F N (Z N k , Z N k+1 , ( 1 √ n E N k,nt ) t∈[-2ε,2ε] , ( 1 √ n E N k+1,nt ) t∈[-2ε,2ε]
). Now, we recall that by Proposition 46, (Z ) c occurs and n is large enough, for any X T 0 -⌈an⌉ ≤ i ≤ X T 0 + ⌈an⌉ we have ∆ T 0 ,i = ∆T 0 ,i . Moreover, lim N →+∞ P((B ⌊N θ⌋,⌊N x⌋,± 0 ) c ) = 1. Furthermore, for any i < X T 0 , ∆T 0 ,i + 1/2 has law ρ 0 , for any i > X T 0 , -∆T 0 ,i + 1/2 has law ρ 0 , ∆T 0 ,X T 0 + 1/2 has law ρ 0 or ρ 0 translated by +1, and these variables are independent. Therefore ( 1 √ n E N 0,nt ) t∈[-a,a] converges to (W 0 ) t∈[-a,a] by Donsker's invariance principle.

N 1 , ..., Z N K , ( 1 √ n E N 0,nt ) t∈[-2ε,2ε] , ..., ( 1 √ n E N K,nt ) t∈[-2ε, 2ε 
We now set k ∈ N and suppose the proposition is true for k. We will prove it for k + 1. Let a > 0. We will study processes corresponding to "the environment at the first time after T k at which the process reaches X T k -⌊εn⌋" and "the environment at the first time after T k at which the process reaches X T k + ⌊εn⌋", and prove they have suitable convergences in distribution. From the convergence in distribution of these two processes we will deduce the convergence in distribution of Z N k+1 and ( 1

√ n E N k+1,nt ) t∈[-a,a] .
The "environment at the first time after T k at which the process reaches X T k -⌊εn⌋" is defined as follows. We define the process

(E N,- k,i ) i∈Z by E N,- k,i = E N k,-⌊εn⌋+1 + X T k +i-1 j=X T k -⌊εn⌋+1 ζ T k ,-,E j for i > -⌊εn⌋ (so E N,- k,i = E N k,-⌊εn⌋+1 + S T k ,-,E X T k +i if we recall Definition 22) and E N,- k,i = E N k,-⌊εn⌋+1 for i ≤ -⌊εn⌋. We also define σ N k,-= inf{i > 0 | L T k ,- X T k +i = 0}, noticing that Z N k+1 = Z N k -1 if and only if X T k -⌊εn⌋ is reached before X T k + ⌊εn⌋, that is if and only if σ N k,-≤ ⌊εn⌋. us to conclude that (Ξ N , ( 1 √ n ẼN,- k,nt ) t∈[-ε,ε] ) converges in distribution to (Ξ, ( W k t ) t∈[-ε,ε]
) when N tends to +∞, which ends the proof of the claim. □

We are now going to write

( 1 n σ N k,-, ( 1 √ n E N,- k,nt ) t∈[-ε,ε] ) as a function of (( 1 √ n ẼN,- k,nt ) t∈[-ε,ε] , ( 1 √ n E N k,nt ) t∈[-ε,ε]
). We define a function F so that for f 1 , f 2 : [-ε, ε] → R continuous functions, F (f 1 , f 2 ) = (s, f 3 ) with s = inf{t ∈ [0, ε] | f 1 (t) = f 2 (t)} (defined to be +∞ if there is no such t) and f 3 is defined by f 3 (t) = f 1 (t) if t ≤ s and f 3 (t) = f 2 (t) if t ≥ s. For n large enough, we also define functions F N so that for f 1 , f 2 : [-ε, ε] → R continuous functions, F N (f 1 , f 2 ) = (s, f 3 ) with s = inf{t ∈ [ 1 n , ε] | f 1 (t) = f 2 (t)} and f 3 is defined by f 3 (t) = f 1 (t) if t ≤ s and f 3 (t) = f 2 (t) if t ≥ s. We then have

( 1 n σ N k,-, ( 1 √ n E N,- k,nt ) t∈[-ε,ε] ) = F N (( 1 √ n ẼN,- k,nt ) t∈[-ε,ε] , ( 1 √ n E N k,nt ) t∈[-ε,ε]
). We now deduce the convergence of (Ξ N , 1 n σ N k,-, ( ). This can be proven with the help of Lemma 34, which we are able to use thanks to Proposition 40.

We are now able to prove the convergence in distribution of (Ξ N , 1 n σ N k,-, ( )) when N tends to +∞. This random variable is (Ξ, σ k,-, (V k,- t

) t∈[-ε,ε] ) where V k,- is a Brownian motion with V k,- -ε = W k -ε reflected above W k on W k on [-ε, 0] and absorbed by W k on [0, ε], while σ k,-is the absorption time.

This ends the study of the "environment at the first time after T k at which the process reaches X T k -⌊εn⌋". We can define a similar process for the "environment at the first time after T k at which the process reaches X T k + ⌊εn⌋": By putting the results about (E N,- k,i ) i∈Z and (E N,+ k,i ) i∈Z together, we will now be able to complete the proof of Proposition 46. ΞN and Ξ will denote the same objects as Ξ N and Ξ, but with [-a, a] replacing [-a -ε, a + ε]. Let Ψ be a continuous bounded function of ( ΞN , Z N k+1 , ( ) with Ψ + continuous and bounded. We then have

(E N,+ k,i
E Ψ ΞN , Z N k+1 , 1 √ n E N k+1,nt [-a,a] =E Ψ -Ξ N , 1 √ n E N,- k,nt t∈[-ε,ε] 1 {σ N k,-≤⌊εn⌋} + E Ψ + Ξ N , 1 √ n E N,+ k,nt t∈[-ε,ε] 1 {σ N k,+ >-⌊εn⌋} . (16) 
We can use again the Skorohod Representation Theorem to assume the convergence in distribution of the variables (Ξ N , 1 n σ N k,± , ( 1 √ n E N,± k,nt ) t∈[-ε,ε] ) to (Ξ, σ k,± , (V k,± t

) t∈[-ε,ε] ) is almost sure. Furthermore, by the definition of σ k,-, the probability that σ k,-= ε is smaller than the probability that a Brownian motion starting at V k,- 0 at time 0 is exactly at W k ε at time ε, which is 0, hence P(σ k,-= ε) = 0. Similarly, P(σ k,+ = -ε) = 0. Consequently, the right-hand side of [START_REF] Soucaliuc | Reflection and coalescence between independent one-dimensional Brownian paths[END_REF] converges to E(Ψ -(Ξ, (V k,- t ) t∈[-ε,ε] )1 {σ k,-<ε} ) + E(Ψ + (Ξ, (V k,+ t ) t∈[-ε,ε] )1 {σ k,+ >-ε} ). Now, we remember the quantity p k,-= P(σ k,-< ε|W k ) introduced in Definition 37. We then have p k,-= P(σ k,-< ε|Ξ), therefore 2 when N is large enough. Consequently, we only have to prove that lim N →+∞ P(

E Ψ -Ξ, (V k,- t ) t∈[-ε,ε] 1 {σ k,-<ε} = E E Ψ -Ξ, (V k,- t ) t∈[-ε,ε] 1 {σ k,-<ε} Ξ = E p k,-E Ψ -Ξ, (V k,- t ) t∈[-ε,ε]
T 1 ψ(N ) 2 ≤ ϑ, T 1 ψ(N ) 2 -T 0 ψ(N ) 2 ≤ min 1≤i≤M |t i -t i-1 |) = 1.
In order to do that, we remark that Corollary 1 of [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] states that T 0 ψ(N ) 2 converges in probability to 4θ 2 = 4(

√ ϑ 2 √
2 ) 2 = ϑ 2 when N tends to +∞, which implies lim N →+∞ P( T 0 ψ(N ) 2 > 3ϑ 4 ) = 0, thus we only have to prove lim N →+∞ P( T 1 ψ(N ) 2 -T 0 ψ(N ) 2 > ϑ 4 ∧ min 1≤i≤M |t i -t i-1 |) = 0. Therefore, proving that ).

With such a definition, B ⌊ψ(N )θ⌋,0,-0 will contain {there exists -⌊θψ(N )/2⌋ -1 ≤ i ≤ ⌊θψ(N )/2⌋ + 1, ∆T 0 ,i ̸ = ∆ T 0 ,i }. Moreover, Theorem 1 of [START_REF] Tóth | Self-repelling random walk with directed edges on Z *[END_REF] yields that sup y∈R | 1 ψ(N ) ℓ + T 0 ,⌊ψ(N )y⌋ -(θ -|y| 2 ) + | converges in probability to 0 when N tends to +∞, so P(B ⌊ψ(N )θ⌋,0,-0,2

) tends to 0 when N tends to +∞, so P(B ⌊ψ(N )θ⌋,0,-0

) tends to 0 when N tends to +∞. , c3 is positive, depends only on w, and satisfies P(A 3 ) ≤ e -c 3,3 (ln n) 2 /8 .

Finally, we bound P(A 4 ). In order to do that, we notice that the arguments used for A 3 yield in particular that for any ℓ ∈ N, E ℓ+1 -E ℓ is finite a.s. In addition, similar arguments can be used to show that E 0 is finite a.s., so for any ℓ ∈ N, E ℓ is finite a.s. Moreover for any ℓ ∈ N * , if i w > 0, P(T ′ > E 2ℓ ) = P(T ′ > E 2ℓ , ξ(E 2(ℓ-1) ) = -i w , T ′ > E 2(ℓ-1) ) + P(T ′ > E 2ℓ , ξ(E 2(ℓ-1) ) = i w , T ′ > E 2(ℓ-1) ). Furthermore, we have P(T ′ ≤ E 2ℓ , ξ(E 2(ℓ-1) ) = -i w , T ′ > E 2(ℓ-1) ) ≥ P(T ′ > E 2(ℓ-1) , ξ(E 2(ℓ-1) ) = -i w , ξ(E 2(ℓ-1) + 1) = -i w + 1, . . . , ξ(E 2(ℓ-1) + i w ) = 0, ξ(E 2(ℓ-1) + i w + 1) = 1, ξ(E 2(ℓ-1) + i w + 2) = 0) = (1/2) iw+2 P(ξ(E 2(ℓ-1) ) = -i w , T ′ > E 2(ℓ-1) ). Similarly, P(T ′ ≤ E 2ℓ , ξ(E 2(ℓ-1) ) = i w , T ′ > E 2(ℓ-1) ) ≥ (1/2) iw P(ξ(E 2(ℓ-1) ) = i w , T ′ > E 2(ℓ-1) ). We deduce P(T ′ > E 2ℓ ) ≤ (1 -(1/2) iw+2 )P(T ′ > E 2(ℓ-1) ). The same argument yields that if i w = 0, P(T ′ ≤ E 2ℓ , T ′ > E 2(ℓ-1) ) ≥ ((1 -p w )/2)P(T ′ > E 2(ℓ-1) ), so P(T ′ > E 2ℓ ) ≤ (1 -(1 -p w )/2)P(T ′ > E 2(ℓ-1) ). Therefore in both cases there exists a constant c 3,4 = c 3,4 (w) > 0 such that

P(2 ε -ε ( W k,+ t -W k t )dt + k k ′ =1
Tk ′ = a) = 0 almost-surely. We write the proof for W k,t , as the proof for W k,+ t is similar. Let a ≥ 0. By Definition 37, it is enough to prove that P(2

ε -ε (V k,- t -W k t )dt + k k ′ =1
Tk ′ = a) = 0. We set δ > 0. It is enough to prove that P(2

ε -ε (V k,- t -W k t )dt + k k ′ =1
Tk ′ = a) ≤ δ. In order to do that, we need to introduce a new process. We recall that (V k,- t ) t∈[-ε,ε] is a Brownian motion reflected on W k above W k on [-ε, 0] and absorbed by W k on [0, ε] with V k,- -ε = W k -ε (see Definition 37). We consider the process ( W k t ) t∈[-ε,ε] that is "the same Brownian motion reflected on W k on [-ε, 0], but free on [0, ε]": if (V k,- t

) t∈[-ε,ε] was constructed as the reflection and absorption of a given Brownian motion, ( W k t ) t∈[-ε,ε] is the latter Brownian motion reflected on W k above W k on [-ε, 0] and free on [0, ε], with W k -ε = W k -ε . In Definition 37 we also denoted σ k,-= inf{t ≥ 0 | V k,- t = W k t } the absorption time of (V k,- t

) t∈[-ε,ε] ; for any t ≤ σ k,-we have V k,- t = W k t . By Proposition 40, P(V k,- 0 > W k 0 ) = 1, and the processes V k,-and W k are continuous, so there exists ε > 0 so that P(σ k,-< ε) ≤ δ. This implies P(2 

ε -ε (V k,- t -W k t )dt + k k ′ =1 Tk ′ = a) ≤ P( ε -ε (V k,- t -W k t )dt + 1 2 k k ′ =1 Tk ′ = a 2 , σ k,-≥ ε) + P(σ k,-< ε) ≤ P( ε 0 ( W k t -W k t )dt = a 2 - 0 -ε ( W k t -W k t )dt - σ k,- ε ( W k t -W k t )dt -1 2 k k ′ =1 Tk ′ ) + δ.
-t ε ( W k ε -W k 0 )) t∈[0,ε] is independent from ( W k t -W k -ε ) t∈[-ε,0] and ( W k t -W k 0 ) t∈[ε,ε]
, as these are Gaussian processes and the covariances are 0. Furthermore, these three processes are independent from W k , T1 , ..., Tk , so

( W k t -W k 0 -t ε ( W k ε -W k 0 )) t∈[0,ε] is independent from ( W k t -W k -ε ) t∈[-ε,0] , ( W k t -W k 0 ) t∈[ε,ε] , W k , T1 , ..., Tk . This implies ( W k t -W k 0 -t ε ( W k ε -W k 0 )) t∈[0,ε] is independent from ( W k t ) t∈[-ε,0] , ( W k t ) t∈[ε,ε]
, W k , T1 , ..., Tk . In addition, we may write ε 0 

( W k t -W k t )dt = ε 0 ( W k t - W k 0 -t ε ( W k ε -W k 0 ))dt + ε 0 ( W k 0 + t ε ( W k ε -W k 0 ) -W k t )
( W k t -W k 0 - t ε ( W k ε -W k 0 ))dt = ε/2 0 ( W k t -W k 0 -t ε ( W k ε -W k 0 ) -2 ε t( W k ε/2 -1 2 W k 0 -1 2 W k ε ))dt + ε ε/2 ( W k t -W k 0 -t ε ( W k ε -W k 0 ) - (2 -2 ε t)( W k ε/2 -1 2 W k 0 -1 2 W k ε )))dt + ε 2 ( W k ε/2 -1 2 W k 0 -1 2 W k ε ). Moreover, ε 2 ( W k ε/2 -1 2 W k 0 -1 2
W k ε ) is independent from the two integrands (one can check the covariances are 0), hence from the sum of the integrals. Furthermore,

ε 2 ( W k ε/2 -1 2 W k 0 -1 2 W k ε ) = ε 4 ( W k ε/2 -W k 0 ) + ε 4 ( W k ε/2 -W k ε ) has no atoms, therefore ε 0 ( W k t -W k 0 -t ε ( W k ε -W k 0 
))dt has no atoms, which ends the proof of Lemma 39. □ Finally, we give the proof of Claim 48, which is needed in the proof of Proposition 46 (the notations are defined there). 

  If a, b ∈ R, we set a ∧ b = min(a, b), a ∨ b = max(a, b), and a + = max(a, 0). For any set A and any function

Definition 3 .

 3 For any m ∈ N, we define random variables ζ m,±,B i , ζ m,±,E i for i ∈ Z as follows:

  Now, for any m ∈ N, we are going to construct random variables ζ m,±,I j , j ∈ Z, independent from F m such that "when L (more precisely, L m,-j or L m,+ j+1 ) is not too small, ζ m,±,I j = ζ m,±,E j, and the ζ m,±,I j , j ∈ Z are i.i.d. with law ρ 0 ". For m ≥ N θ/2, i ∈ Z, ι ∈ {+, -}, we will also define random variables ζm,±,I j , j ∈ Z, independent from ( ∆T ι m,i ,j ) j∈Z and equal to the ζ m,±,I j when (B m,i,ι 0 ) c is satisfied. We begin by constructing the (ζ m,-,I j

j∓ 1

 1 are easy to handle, since they have law ρ 0 which has exponential tails. The ζ m,±,B j also are easy to deal with. Indeed, by Proposition9, if (B m,i,ι 0 ) c occurs, ζ m,±,B j or ζ m,±,Bj is equal to a random variable of law ρ 0 , and ρ 0 has exponential tails. We now consider ζ m,-,E j with j ∈ { ī -⌊εn⌋ + 1, . . . , ī + ⌊εn⌋} (the ζ m,+,E j can be dealt with in the same way). Thanks to (1), ζ m,-,E j = η(L m,- j + 1) + 1/2 or η(L m,- j ) + 1/2 (depending on j) with η(0) = -∆ m,j . Recalling the definitions before Proposition 12, if (B m,i,ι 0 ) c occurs and n is large enough, we have ζ m,-,E j = η( L m,j + 1) + 1/2 or η( L m,j

"

  23), and prove that if the bad events B - m,1 , ..., B - m,6 defined in Section 4 do not occur, then S m,-,I is very close to ζ mevolve similarly to S m,-,I , thus the hard part will be to deal with what happens near ζ m,-,B j . We begin by recalling the definition of the reflected Brownian motion (the definition of a discrete-time reflected random walk is similar). Definition 21. Let a < b be real numbers, f : [a, b] → R a continuous function, and

Definition 22 .+ 1

 221 For any m ∈ N, we will define processes (S m,-,B i) i>Xm-⌊εn⌋ , (S m,-,E i ) i>Xm-⌊εn⌋ , (S m,+,B i ) i≤Xm+⌊εn⌋ , (S m,+,E i ) i≤Xm+⌊εn⌋ so that for Ξ = B or E,S m,-,Ξ Xm-⌊εn⌋+1 = 0 and ∀i ≥ X m -⌊εn⌋ + 1, S m,-,Ξ i+1 = S m,-,Ξ i + ζ m,-,Ξ i S m,+,Ξ Xm+⌊εn⌋ = 0 and ∀i ≤ X m + ⌊εn⌋ -1, S m,X m -⌊εn⌋ and L m,+ i = S m,+,E i -S m,+,B i for i ≤ X m + ⌊εn⌋. Definition 23. For any m ∈ N, we define the processes (S m,-,I i ) Xm-⌊εn⌋<i≤Xm and (S m,+,I i ) Xm<i≤Xm+⌊εn⌋ by S m,-,I Xm-⌊εn⌋+1 = 0 and ∀i ∈ {X m -⌊εn⌋ + 1, . . . , X m -1}, S m,-and ∀i ∈ {X m + 1, . . . , X m + ⌊εn⌋ -1}, S m,shows that "S m,±,I is the random walk ζ m

6 (εn) 3 / 2 .

 32 Now, since (B ⌊N θ⌋,⌊N x⌋,± 0 ) c occurs, n is large enough and X follows γ, by the definition of the ζ γ,k i we get that for any j ∈ I, ζ γ,k j = ζ T k ,+,I j and ζ γ,k ′ -2 j = ζ T k ′ -2 ,-,I j

  ), and absorbed by the barrier f on [0, 1]. We denote σ -= inf{t ≥ 0 | Wt = f (t)} the absorption time, and p -= P(σ -< 1) the probability of absorption. Similarly, we consider a process ( W + t ) t∈[-1,1] which is a Brownian motion starting with W + 1 = f (1), reflected on f above f on [0, 1], and absorbed by f on [-1, 0]. We denote σ + = sup{t ≤ 0 | W + t = f (t)} the absorption time, and p + = P(σ + > -1) the probability of absorption. We want to understand when we have p -+ p + = 1.

  is bounded from below by a positive constant, which ends the proof of Lemma 43. □We are now in position to prove Proposition 41 and Lemma 42.

  ] ) converges in distribution to the random variable ( Z1 , ..., ZK , (W 0 ) t∈[-2ε,2ε] , ..., (W K ) t∈[-2ε,2ε] ) when N tends to +∞. The convergence in distribution of Proposition 44 follows easily. Furthermore, Lemma 39 yields that the Tk and the k k ′ =1 Tk ′ , k ∈ {1, ..., K} have no atoms, which ends the proof of Proposition 44.□It now remains only to prove Proposition 46.Proof of Proposition 46. We recall the convention already used in Section 7: all the Brownian motions have variance equal to the variance of ρ 0 except when otherwise stated. Let us prove the proposition by induction on k. For k = 0, for any a > 0, we notice that Proposition 9 implies that if (B ⌊N θ⌋,⌊N x⌋,± 0

√n

  E N,- k,nt ) t∈[-ε,ε] ). By Claim 47, (Ξ N , ( 1 √ n ẼN,k,nt ) t∈[-ε,ε] ) converges in distribution to (Ξ, ( W k ) t∈[-ε,ε]) when N tends to +∞, so by the Skorohod Representation Theorem (Theorem 1.8 of Chapter 3 of[START_REF] Stewart | Markov processes: characterization and convergence[END_REF]), there exists a probability space containing random variables ( ΞN , ( 1√ n ÊN,k,nt ) t∈[-ε,ε] ) for any N ∈ N * and ( Ξ, ( Ŵ k ) t∈[-ε,ε] ) having the respective laws of (Ξ N , ( 1 √ n ẼN,k,nt ) t∈[-ε,ε] ) and (Ξ, ( W k ) t∈[-ε,ε]), and so that ( ΞN , ( 1√ n ÊN,k,nt ) t∈[-ε,ε] ) converges almost-surely to ( Ξ, ( Ŵ k ) t∈[-ε,ε]) when N tends to +∞. We denote by( 1 √ n ÊN k,nt) t∈[-a-ε,a+ε] the last coordinate of ΞN and by ( Ŵ k ) t∈[-a-ε,a+ε] the last coordinate of Ξ. We then have the following.Claim 48. F N (( 1 √ n ÊN,k,nt ) t∈[-ε,ε] , ( 1 √ n ÊN k,nt ) t∈[-ε,ε] ) converges in probability to F (( Ŵ k t ) t∈[-ε,ε] , ( Ŵ k t ) t∈[-ε,ε] ) when N tends to +∞.The proof of Claim 48 is detailed in the appendix. It basically comes down to proving that F is almost surely continuous at the limit point (( Ŵ k t ) t∈[-ε,ε] , ( Ŵ k t ) t∈[-ε,ε] 

1 √

 1 ) i∈Z is defined byE N,+ k,i = E N k,⌊εn⌋ + 1 + X T k +⌊εn⌋-1 j=X T k +i ζ T k ,+,E j for i < ⌊εn⌋ and E N,+ k,i = E N k,⌊εn⌋ + 1 for i ≥ ⌊εn⌋. We also define σ N k,+ = sup{i ≤ 0 | L T k ,+ X T k +i = 0}. By the same arguments as before, we can prove that(Ξ N , 1 n σ N k,+ , ( n E N,+ k,nt ) t∈[-ε,ε] ) converges in distribution to a random variable (Ξ, σ k,+ , (V k,+ t ) t∈[-ε,ε] ) when N tends to +∞, where V k,+ is a Brownian motion with V k,+ ε = W k ε above W k reflected on W k on [0, ε]and absorbed by W k on [-ε, 0], while σ k,+ is the absorption time.

1 ( 1 √ 2 ) = 1 . 2 . 2 √ 2 ,

 1121222 {σ k,-<ε} P(σ k,-< ε|Ξ) Ξ = E p k,-E Ψ -Ξ, ( W k,t ) t∈[-ε,ε] ΞIn the same way, E(Ψ + (Ξ, (V k,+ t) t∈[-ε,ε] )1 {σ k,+ >-ε} ) = E(p k,+ E(Ψ + (Ξ, ( W k,+ t ) t∈[-ε,ε] )|Ξ)), where p k,+ = P(σ k,+ > -ε|W k ) was also introduced in Definition 37. In addition, by Proposition 40 we have P(V k,- 0 |W k ) = 1 almost-surely, therefore by Proposition 35 p k,-+ p k,+ = 1 almost-surely. We deduce that when N tends to +∞,E(Ψ( ΞN , Z N k+1 , n E N k+1,nt ) [-a,a] )) converges to E(p k,-E(Ψ -(Ξ, ( W k,t ) t∈[-ε,ε] )|Ξ)) + E(p k,+ E(Ψ + (Ξ, ( W k,+ t ) t∈[-ε,ε] )|Ξ)) = E(Ψ( Ξ, ZN k+1 , (W k+1 t ) [-a,a] )) if t ≤ s ≤ t i } > δ 2 ) ≥ δ 1 . Moreover, the process ( Ŷ ψ(N ) t) t∈[0,+∞) has jumps of size 1/ψ(N ), which tends to 0 when N tends to +∞, so we can replace the previous limsup by lim sup N →+∞ P(∃ i ∈ {1, ..., M },max t i-1 ≤t≤t i | Ŷ ψ(N ) t -Ŷ ψ(N ) t i-1 | > 4δ 2 ) ≥ δ 1 . Therefore it is enough to show that for any ϑ ≥ 1, M ∈ N * and any 0 = t 0 < • • • < t M = ϑ, we have lim N →+∞ P(∃ i ∈ {1, ..., M }, max t i-1 ≤t≤t i | Ŷ ψ(N ) Let ϑ ≥ 1, M ∈ N * and 0 = t 0 < • • • < t M = ϑ. We notice that if there exist s, t ∈ [0, ϑ] so that |s -t| < min 1≤i≤M |t i -t i-1 | but | Ŷ ψ(N ) there exists i ∈ {1, ..., M } so that max t i-1 ≤t≤t i | Ŷ ψ(N ) We set x = 0, θ = √ ϑ T 0 = T - ⌊ψ(N )θ⌋,0 ; we will choose t = T 0 ψ(N ) 2 and s = T 1 ψ(N ) 2 , where T 1 is defined as inf{m ≥ T 0 | |X m -X T 0 | = ⌊θψ(N )/2⌋}(this definition differs slightly from the usual one: here ψ(N ) replaces N and θψ(N )/2 replaces εn). We then have | Ŷ ψ(N )

1 ψ

 1 (N ) 3/2 (T 1 -T 0 ) converges in distribution is sufficient. The proof is the same as in Proposition 44, except for a difference in the equivalent of Proposition 9. The definition of B ⌊ψ(N )θ⌋,0,-0 must be modified by replacing B ⌊ψ(N )θ⌋,0,-0,2 by {sup y∈R | 1 ψ(N ) ℓ + T 0 ,⌊ψ(N )y⌋ -(θ-|y| 2 ) + | ≥ θ/4} (and n (α-1)/4 ⌊εn⌋ by ⌊θψ(N )/2⌋ in B ⌊ψ(N )θ⌋,0,-0,1

Proof of Claim 48 .

 48 We denote F N (( 1 √ n ÊN,k,nt ) t∈[-ε,ε] , ( 1 √ n ÊN k,nt ) t∈[-ε,ε] ) = ( k,nt ) t∈[-ε,ε] ); we also denote F (( Ŵ k t ) t∈[-ε,ε] , ( Ŵ k t ) t∈[-ε,ε] ) = (σ k,-, ( V k,t ) t∈[-ε,ε]). We begin by proving that 1 n σN k,-converges in probability to σk,-. Let δ 1 , δ 2 > 0. For any δ ∈ R, we denote1 n σN k,-(δ) = inf{t ∈ [0, ε] + δ} and σk,-(δ) = inf{t ∈ [0, ε] | Ŵ k t ≤ Ŵ k t + δ}. By Proposition 40 we have P(V k,- 0 > W k 0 ) = 1, hence P( Ŵ k 0 > Ŵ k 0 ) = 1, hence

  +∞[, by Proposition 9 the ζγ,k i , i ∈ I are i.i.d. with law ρ 0 . Therefore it is enough to show that when n is large enough, if ζ i , i ∈ {1, ..., ⌈εn⌉} are i.i.d. with law ρ 0 and we denote S =

	⌈εn⌉ i=1	⌈εn⌉ j=i ζ j , then
	P(S ≥ r 2 6 (εn	

  Indeed, if Φ is a continous real bounded function accepting(Ξ N , 1 , which by Claim 48 converges to E(Φ( Ξ, F (( Ŵ k t ) t∈[-ε,ε] , ( Ŵ k t ) t∈[-ε,ε] ))) = E(Φ(Ξ, F (( W k t ) t∈[-ε,ε] , (W k t ) t∈[-ε,ε] ))) when N tends to +∞. Consequently, (Ξ N , 1 n σ N k,-, ( 1 √ n E N,- k,nt ) t∈[-ε,ε] ) converges in distribution to the random variable (Ξ, F (( W k t ) t∈[-ε,ε] , (W k t ) t∈[-ε,ε]

						n σ N k,-, ( 1 √ n E N,-k,nt ) t∈[-ε,ε] ) as argument, then
	E Φ Ξ N ,	1 n	σ N k,-,	1 √ n	E N,-k,nt	t∈[-ε,ε]	= E Φ Ξ N , F N		1 √ n	ẼN,-k,nt	t∈[-ε,ε]	,	1 √ n	(E N k,nt	t∈[-ε,ε]
				= E Φ ΞN , F N	1 √ n	ÊN,-k,nt	t∈[-ε,ε]	,	1 √ n	( ÊN k,nt	t∈[-ε,ε]

1 √ n E N,- k,nt ) t∈[-ε,ε] ).

  [-a,a] can be obtained as a continuous function of a deterministic modification of Ξ N , ( 1 whose convergence in distribution is implied by that of Ξ N and ( 1√ n E N,- k,nt ) t∈[-ε,ε], so in this case by an abuse of notation we write that we have Ψ( ΞN , Z N k+1 , ( 1√ n E N k+1,nt ) [-a,a] ) = Ψ -(Ξ N , ( 1 √ n E N,- k,nt ) t∈[-ε,ε]) with Ψ - continuous and bounded. Similarly, if σ N k,+ > -⌊εn⌋, we write Ψ( ΞN , Z N k+1 , ( 1

	1 √ n E N k+1,nt ) [-a,a] ). If σ N k,-≤ ⌊εn⌋, we have Z N k+1 = Z N k -1 and
	( 1 √ n E N k+1,nt ) √	n E N,-k,nt ) t∈[-ε,ε] and
	some 1 √ n E N k,i , 1 √ n E N,-k,i	

√ n E N k+1,nt ) [-a,a] ) = Ψ + (Ξ N , (

1

√ n E N,+ k,nt ) t∈[-ε,ε]

  =1 Tk ′ ) = 0. Now, we may consider a Brownian motion( W k t ) t∈[-ε,ε] so that W k -ε = W k -ε and ( W k t ) t∈[-ε,ε] is the Brownian motion ( W k t ) t∈[-ε,ε] reflected on W k on [-ε, 0] and free on [0, ε]. Then the process ( W k t -W k 0

					Consequently, we only have
	to prove that P( ε 0 ( W k t -W k t )dt = a 2 -	0 -ε ( W k t -W k t )dt -	σ k,-ε	( W k t -W k t )dt -1 2	k k ′
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( V k,+ -t ) t∈ [-ε,ε] . Let ε ∈ (0, ε), and let us denote by (V k,+,ε t

) t∈[-ε,ε] the process defined so that (V k,+,ε -t

) t∈[-ε,ε] and above it. It is "the same Brownian motion as (V k,+ t ) t∈[-ε,ε] , but starting from a lower point (and without absorption)", so if V k,+ε 0 > W k 0 then V k,+ 0 > W k 0 . We deduce P(V k,+ 0 = W k 0 ) ≤ P(V k,+ε 0 = W k 0 ). We now introduce some temporary notations: for any measure µ defined on the space of continuous processes on [-ε, ε], (W t ) t∈[-ε,ε] will be a process of law µ, and (W ′ t ) t∈[-ε,ε] will be defined so that W ′ ε = W ε and (W ′ -t ) t∈[-ε,ε] is a Brownian motion reflected on (W -t ) t∈[-ε,ε] above it. We then have

. We now choose ε so that for any f ∈ F ε we have µ k 0,ε (f ) ≤ 2 k-1 (µ -,ε (f ) + µ +,ε (f )) + (δ/2)∥f ∥ ∞ (we can choose ε < ε since it is easy to see that if the property holds for ε it also holds for all smaller ε). We then have P(V k,+ 0 = W k 0 ) ≤ 2 k-1 (µ -,ε (P(W ′ 0 = W 0 |W )) + µ +,ε (P(W ′ 0 = W 0 |W ))) + δ/2. This implies that for any ε′ ∈ (0, ε), we have

. Now, by Lemma 43, noticing that if (W t ) t∈[-ε,ε] has law µ ±,ε then (W -t ) t∈[-ε,ε] has law µ ∓,ε , there exists 0 < ε′ ≤ ε so that µ -,ε (P(∃t ∈ [-ε ′ , ε′ ], W ′ t ≤ W t |W )) ≤ δ/2 k+1 and µ +,ε (P(∃t ∈ [-ε ′ , ε′ ], W ′ t ≤ W t |W )) ≤ δ/2 k+1 . This implies P(V k,+ 0 = W k 0 ) ≤ 2 k-1 (δ/2 k+1 + δ/2 k+1 ) + δ/2 = δ, which ends the proof. □

Proof of Proposition 41. In order to shorten the notations in this proof, for any k ∈ N, any z ∈ Z and any real numbers a < a ′ , we will denote the process (W k zε+t -W k zε ) t∈[a,a ′ ] by W k,z [a,a ′ ] . We will prove Proposition 41 by induction on k. Here is a rough sketch of the proof. The idea is that if the statement of the proposition is true for k and if, say, Zk+1 = Zk + 1, then for any z ̸ ∈ {0, 1, 2}, W k+1,z [-ε,ε] is W k,z+1 [-ε,ε] which we control by the induction hypothesis. Moreover, for z = -2, we notice that W k,+ is conditioned to coalesce with W k before time -ε, so if we choose ε small enough, with high probability W k,+ coalesces with W k before time -ε + ε, thus W k+1,-2

[-ε,ε] which we control by the induction hypothesis. Furthermore, for z = -1, W k+1,-1

. Now, by the induction hypothesis, W k,0 [-ε,ε] has a "good" law, hence Lemma 42 implies that W k,+ is strictly above W k at 0 thus around 0, hence W k,+ behaves like an unconstrained Brownian motion around 0, so W k+1,-1

has the right law. Finally, for z = 0, we notice that W k+1,0 [-ε,ε] is W k,1 [0,ε] at the right of 0 and a Brownian motion reflected on W k,1 [-ε,0] at the right of 0, and by the induction hypothesis W k,1

[0,ε] has a law close to that of a Brownian motion, so the law of W k+1,0 [-ε,ε] is close to µ +,ε . We now begin the induction. For k = 0, Definition 37 yields that W 0 is a two-sided Brownian motion, which implies that for any z ∈ Z, ε > 0 we have µ 0 z,ε = µ ε. Now let k ∈ N and suppose the statement of Proposition 41 for k holds. Let δ > 0 and z ∈ Z. We first notice that by the induction hypothesis and Lemma 42 we have P(V k,- Case z ̸ ∈ {-2, -1, 0, 1, 2}. Then by Definition 37, given W k , with probability p k,-we have

. Now, we notice z-1, z+1 ̸ = 0, so by the induction hypothesis, there exists some ε1 > 0 (which does not depend on z) so that for any g ∈ F ε1 we have

Case z = ±2. We only treat the case z = -2, as the case z = 2 is similar. Given W k , with probability p k,-we have

[-ε,ε] and with probability 1 -p k,-we have W k+1,-2

). Now, given W k , by definition W k,+ has the law of V k,+ conditioned to coalesce with W k before time -ε, an event denoted by {σ k,+ > -ε} and satisfying

)∥f ∥ ∞ . Now, by the induction hypothesis, there exists ε′′ 2 > 0 so that for any g ∈ F ε′′ 2 we have

We only treat the case z = -1, as the case z = 1 is similar. Given W k , with probability p k,-we have

[-ε,ε] and with probability 1 -p k,-we have W k+1,-1

). Now, given W k , by definition W k,+ has the law of V k,+ conditioned to coalesce with W k before time -ε, an event denoted by {σ k,+ > -ε} and satisfying

] is a Brownian motion reflected and absorbed by (W k -t ) t∈[-ε,ε] ; let us say it was constructed as the reflection and absorption of the Brownian motion

We now need to deal with P((S ε′ ) c ). Let ε′′ ∈ (ε ′ , ε), and let us denote

and above it. It is "the same Brownian motion as (V k,+ t

) t∈[-ε ′′ ,ε ′′ ] , but starting from a lower point (and without absorption)",

. We now introduce a temporary notation. For any measure µ on continuous processes defined on [-ε ′′ , ε′′ ], (W t ) t∈[-ε ′′ ,ε ′′ ] will be a process with law µ, and (W ′ -t ) t∈[-ε ′′ ,ε ′′ ] will be a Brownian motion reflected on (W -t ) t∈[-ε ′′ ,ε ′′ ] and above it with W ′ ε′′ = W ε′′ . We then have P((S ε′ ) c ) ≤ E(P(∃t

. Now, by the induction hypothesis, there exists ε′ 3 ∈ (0, ε) so that for any g ∈ F ε′ 3 , for any z ∈ Z \ {0} we have

, but the argument will work in the same way). We then choose ε′′ = ε′ 3 and assume ε′ ≤ ε′ 3 . Then we have P(

Now, given W k , by definition W k,has the law of V k,-conditioned to coalesce with W k before time ε, an event denoted by {σ k,-< ε} and satisfying P(σ k,-< ε|W k ) = p k,-, so we have

In order to do that, we introduce temporary notations. For any measure µ on continuous processes defined on [-ε, ε], (W t ) t∈[-ε,ε] will be a process with law µ, and (W ′ t ) t∈[0,ε] will be defined thus:

is a Brownian motion reflected on (W t ) t∈[0,ε] and above it. We then have

We want to prove the convergence in distribution of

where V k,-is a Brownian motion reflected on W k on [-ε, 0] and absorbed by W k on [0, ε], while σ k,-is the absorption time. In order to do that, we will define another auxiliary process ( ẼN,k,i ) i∈Z . We will first prove that ( 1

converges in distribution to a Brownian motion reflected on W k on [-ε, 0] and free on [0, ε]. After that, we will write

to deduce the convergence of the former. The process ( ẼN,k,i ) i∈Z is defined as follows: for i > -⌊εn⌋, we set

and when i ≤ -⌊εn⌋ we set ẼN,-

. In order to have shorter notations, we will also write

Proof of claim 47. We will introduce two auxiliary processes, ( ȆN,-

) i∈Z reflected on the environment (E N k,i ) i∈Z until time 0 and free after time 0", and so will have the right convergence in distribution towards our target. The process ( ẼN,k,i ) i∈Z will be close to ( ȆN,k,i ) i∈Z , which will allow us to prove it satisfies the same convergence in distribution. We define (E N,-,I k,i

) i∈Z as follows: for any i ≤ -⌊εn⌋ we set E N,-,I k,i = E N k,-⌊εn⌋+1 , and for any i > -⌊εn⌋ we set E N,-,I k,i

We define ( ȆN,k,i ) i∈Z as follows: for any i ≤ -⌊εn⌋ we set ȆN,-

), and for any i > 0 we set ȆN,-

We begin by studying the convergence of ( ȆN,k,i ) i∈Z . We notice that Ξ N is F T k -mesurable, and that by Proposition 12 the (ζ T k ,-,I i ) i∈Z are independent from F T k and i.i.d. with law ρ 0 , hence the (ζ T k ,-,I X T k +i ) i∈Z are independent from F T k and i.i.d. with law ρ 0 . Therefore, Donsker's invariance principle yields that (Ξ N , ( 1

We now prove that ( ẼN,k,i ) i∈Z is close to ( ȆN,k,i ) i∈Z . For any i ≤ -⌊εn⌋ we have ẼN,k,i = ȆN,k,i by definition of the processes. We now deal with i ∈ {-⌊εn⌋ + 1, ..., 0}. Firstly, we notice that for any j > -⌊εn⌋, we have 

Consequently, we have ȆN,-

. Furthermore, by Proposition 10, if B c occurs and n is large enough,

r occurs and n is large enough,

We now deal with the case i ∈ {1, ..., ⌊εn⌋ + 1}. We can then write

We assume B c ∩ 6 r=0 B c r occurs and n is large enough so it implies 6 r=1 (B -

, and since (B - T k ,5 ) c occurs, for any j ∈ {X T k , ..., X T k + ⌊εn⌋} we have |ζ T k ,-,I j |, |ζ T k ,-,E j | ≤ (ln n) 2 . We deduce 10 . Moreover, we already proved that if 10 for any i ∈ {1, ..., ⌊εn⌋ + 1}. We deduce that if B c ∩ 6 r=0 B c r occurs and n is large enough, for any i ≤ ⌊εn⌋ 10 . In addition, Propositions 10 and 20 imply lim N →+∞ P(B ∪ 6 r=0 B r ) = 0. Furthermore, we proved that (Ξ N , ( 1 ) converges in distribution in the topology of continuous real processes on [0, +∞), it is enough to show the two following propositions.

Proposition 49. For any ℓ ∈ N * , for any

) converges in distribution when N → +∞. Proposition 50. For any ϑ > 0, for any δ 1 , δ 2 > 0, there exists δ 3 > 0 such that for N large enough, we have

Given Propositions 49 and 50, all that remains to prove Theorem 2 is to prove the following lemma.

Lemma 51. (Y N t ) t∈[0,+∞) does not converge in distribution to the null function in the topology of continuous real processes on [0, +∞).

We now prove Propositions 49 and 50, as well as Lemma 51.

Proof of Proposition 49. We first show ((Y N t 1 , ..., Y N t ℓ )) N ∈N * is tight. For this part of the proof, we choose ε = 1. We fix δ > 0. We notice that for any

. Furthermore, by Proposition 10, P(B) ≤ e -c ′ n ((α-1)/4)∧(1/10) when n is large enough, and by assumption n tends to +∞ when N tends to +∞, hence P(B) tends to 0 when N tends to +∞. Similarly, by Proposition 20, P( 6 r=0 B r ) ≤ e -c(ln n) 2 when n is large enough, hence P( 6 r=0 B r ) tends to 0 when N tends to +∞. In addition, if we choose K large enough so that K ≥ 240t ℓ ε3/2 r 2 and 1/2 K ≤ δ/2, then when n is large enough, by Proposition 32 we have

Therefore, for such a K, when N is large enough P((Y N t 1 , ..., Y N t ℓ ) ̸ ∈ [-K, K] ℓ ) ≤ δ, which is enough to prove the tightness of ((Y N t 1 , ..., Y N t ℓ )) N ∈N * . It remains to prove that all subsequences of ((Y N t 1 , ..., Y N t ℓ )) N ∈N * that converge do so to the same limit. Let ((Y

)) N ∈N * be a converging subsequence, and µ be its limit law. Let f : R ℓ → R be a continuous function with compact support. We are going to study µ(f ). Let δ 1 > 0. f is uniformly continuous, hence if we denote ∥(y 1 , ..., y ℓ )∥ ∞ = max 1≤ℓ ′ ≤ℓ |y ℓ ′ | for any (y 1 , ..., y ℓ ) ∈ R ℓ , there exists δ 2 > 0 such that if y, y ′ ∈ R ℓ satisfy ∥y-y ′ ∥ ∞ ≤ δ 2 then |f (y) -f (y ′ )| ≤ δ 1 . For any ε > 0, for any ℓ ′ ∈ {1, ..., ℓ}, we define

)) k∈N * converges in distribution to (( Zk , Tk )) k∈N * when N tends to +∞ (in the sense of convergence of the finite-dimensional marginals). Moreover,

)) k∈N * , and since by Proposition 44 the

for all ℓ ′ ∈ {1, ..., ℓ}, therefore almost-surely (( Zk , Tk )) k∈N * is a point of continuity of this function. Consequently, (Z N τ 1 , ..., Z N τ ℓ ) converges in distribution when N tends to +∞. We denote µ ε its limiting law, which is also the limiting law of ⌊εn⌋ n (Z N τ 1 , ..., Z N τ ℓ ). Now, from (17) we deduce |µ(f ) -µ ε (f )| ≤ δ 1 . To sum up, for any δ 1 > 0, when ε is small enough we have |µ(f ) -µ ε (f )| ≤ δ 1 , hence µ(f ) = lim ε→0 µ ε (f ). This means µ(f ) does not depend of the choice of the subsequence, thus µ does not depend on the choice of the subsequence, which ends the proof. □

Proof of Proposition 50. Let ϑ > 0, δ 1 , δ 2 > 0. In this proof, we will set ε = δ 1 3 . Then for any m, m ′ ∈ N, if there exists

We set K so that 1/2 K ≤ δ 2 /8 and ϑ ≤ K r 2 120 (ε) 3/2 . Then we have P(T K < ϑn 3/2 + T 0 ) ≤ P(T K -T 0 < K r 2 120 (εn) 3/2 , B c ∩ 6 r=0 B c r ) + P(B) + P( 6 r=0 B r ). Proposition 32, when N is large enough, the first term is at most δ 2 /6. By Proposition 10, P(B) tends to 0 when n tends to +∞, so if N is large enough, P(B) ≤ δ 2 /6. By Proposition 20, P( 6 r=0 B r ) ≤ e -c(ln n) 2 when n is large enough, so P( 6 r=0 B r ) ≤ δ 2 /6 when N is large enough. We deduce P(T K < ϑn 3/2 + T 0 ) ≤ δ 2 /2 when N is large enough.

Furthermore for any k ∈ {0, ..., K -1}, we notice

4K . In addition, Proposition 44 yields that for any k ∈ {0, ..., K -1} we have P( Tk+1 = 0) = 0, hence we can choose δ 3 > 0 so that for any k ∈ {0, ..., K -1}, P( Tk+1 ≤ δ 3 ) ≤ δ 2 4K . For such δ 3 , we obtain that for any k ∈ {0, ..., K -1} we have

2K when N is large enough. Consequently, there exists δ 3 > 0 such that P(sup 0≤s,t≤ϑ,|s-t|≤δ

Proof of Lemma 51. We assume by contradiction that (Y N t ) t∈[0,+∞) converges in distribution to the null function in the topology of continuous real processes on [0, +∞) when N tends to +∞. Then, by the Skorohod Representation Theorem, there exists a probability space containing random variables ( Ŷ N t ) t∈[0,+∞) for any N ∈ N * so that the ( Ŷ N t ) t∈[0,+∞) have the same distribution as the (Y N t ) t∈[0,+∞) , and ( Ŷ N t ) t∈[0,+∞) converges almost-surely to the null function in the topology of continuous real processes on [0, +∞) when N tends to +∞. Then for any M > 0 we have

) tends to 0 when N tends to +∞, thus P(sup t∈[0,M ] |Y N t | ≥ 1/2) tends to 0 when N tends to +∞. In this proof, we set ε = 1. Then for any M > 0 we have that P( 1 n 3/2 (T 1 -T 0 ) ≤ M ) tends to 0 when N tends to +∞. However, by Proposition 44, 1 n 3/2 (T 1 -T 0 ) converges in distribution to T1 when N tends to +∞, and T1 has no atoms. This implies that for any M > 0, we have P( T1 ≤ M ) = 0, which is impossible. This ends the proof. □ 9.2. Proof of Proposition 1. For any t ∈ R + , N ∈ N * , we denote

. By the definition of the Skorohod topology (see Theorem 10 of Chapter VI of [START_REF] Pollard | Convergence of stochastic processes[END_REF]), it is enough to prove that for any subsequence ( Ŷ ψ(N ) t

) N ∈N * , there exists δ 1 , δ 2 > 0 so that for any ϑ > 0 large enough, for any M ∈ N * and any

Appendix

In this appendix we give the proofs that were not included in the main body of the article so not to slow down the reader. The first proof is needed in the proof of Lemma 16. The definitions of the various quantities are given in the part of the proof in the main body of the article.

Proof of (2). Firstly, when n is large enough we have P((B m,i,ι 0

), which is smaller than C 3,1 e -c 3,1 (ln n) 2 with C 3,1 = C 3,1 (w) < +∞ and c 3,1 = c 3,1 (w) > 0 since ∆ m,j has law ρ -or ρ + , which have exponential tails.

We now bound

assuming n is large enough (if i w = 0, we simply remove the first term). For i w > 0, we notice that if |ξ(0

, as it is at least the probability that ξ((2i w -1)ℓ + 1) = ξ((2i w -1)ℓ) + 1, ξ((2i w -1)ℓ + 2) = ξ((2i w -1)ℓ) + 2,. . . until the chain reaches i w . This yields

). We notice that it is possible to construct i.i.d. random variables ( ξℓ ) ℓ∈N such that P( ξ0 = 1) = 1 -P( ξ0 = -1) = p w (we denote this law R(p w ) for short)

) by the Hoeffding inequality. This yields the existence of

. We now deal with P(A 3 ). We will begin by finding a constant c 3,3 = c 3,3 (w) > 0 so that for any ℓ ∈ N, we have E(e c 3,3 (E ℓ+1 -E ℓ ) ) < +∞. Since ξ is symmetric, the E ℓ+1 -E ℓ , ℓ ∈ N are i.i.d., so we study E 1 -E 0 . By the argument that allowed us to bound P(A 2 ||ξ(0)| < i w ), we can see that if i w > 0, for any ℓ ∈ N * , P(E

) ⌊(ℓ-1)/(2iw-1)⌋ . Moreover, we also have

where the ξℓ ′ , ℓ ′ ∈ N are i.i.d. with law R(p w ), and we can use the Hoeffding inequality to bound the last probability by e -(1-2pw) 2 (ℓ-1)/2 . We deduce that there exist constants C 3,3 = C 3,3 (w) < +∞ and c 3,3 = c 3,3 (w) > 0 such that P(E 1 -E 0 > ℓ) ≤ C 3,3 e -2c 3,3 ℓ , which implies E(e c 3,3 (E 1 -E 0 ) ) < +∞. Consequently, we have P(A 3 ) = P( P(T ′ > E 2ℓ ) ≤ e -c 3,4 P(T ′ > E 2(ℓ-1) ). We deduce that P(A 4 ) ≤ e -c 3,4 ⌊⌊c 3 (ln n) 2 ⌋/2⌋ , so P(A 4 ) ≤ e 3c 3,4 /2 e -c 3,4 c3 (ln n) 2 /2 , which ends the proof of [START_REF] Erdös | On the law of the iterated logarithm[END_REF]. □

We now detail the proof of Proposition 17, which states the existence of a constant c 4 = c 4 (w, ε) > 0 such that when n is large enough,

) ≤ e -c 4 (ln n) 2 and P((B m,i,ι 0

) ≤ e -c 4 (ln n) 2 . We will write the proof only for thecase, as the + case can be dealt with in the same way. The idea will be to look at L m,-as a random walk and to show that there are at most (ln n) 2 √ n "excursions of L m,-below (ln n) 3 ", each one having length at most (ln n) 8 since (B - m,1 ) c occurs. We will achieve it by noticing that the "excursions of L m,-below (ln n) 3 " are between "excursions above (ln n) 3 ". To control those, we see that by Observation 4 we have

, hence L m,- j will roughly be a random walk with i.i.d. increments. Therefore each "excursion of L m,-above (ln n) 3 " has probability roughly 1 √ n to have length at least n, thus to be the last "excursion" we see as we only consider an interval of size εn. Consequently, we will not see more than (ln n) 2 √ n "excursions of L m,-above (ln n) 3 ", which is enough.

We define J(0) = ī -⌊εn⌋, and for all ℓ ∈ N, J(ℓ

occurs and n is large enough, J(⌊(ln n) 2 √ n⌋) < ī. For any 1 ≤ ℓ < ⌊(ln n) 2 √ n⌋ such that J(ℓ + 1) < ī, we set D ℓ = {∃j ∈ {J(ℓ), . . . , J(ℓ + 1)} | j-1 j ′ =J(ℓ) ( ζ m,-,I

We are going to show that when n is large enough, for any

) c occurs and J(ℓ), J(ℓ + 1) < ī, D ℓ occurs. Let 1 ≤ ℓ < ⌊(ln n) 2 √ n⌋. Let j 0 be the smallest j ∈ {J(ℓ) + 1, . . . , J(ℓ + 1) -1} such that L m,j < (ln n) 3 . One can prove by induction on j ∈ {J(ℓ), . . . , j 0 } that L m,-

Indeed, it is true for j = J(ℓ); now suppose we have L m,-

+ ∆ m,j ′ + 1/2) for some j ∈ {J(ℓ), . . . , j 0 -1}. Since (B m,i,ι 0 ) c occurs and n is large enough, L m,- j = L m,j ≥ (ln n) 3 . Moreover, we notice that

occurs and n is large enough, we deduce L m,-j+1 = L m,-

In addition, L m,-J(ℓ) ≥ (ln n) 3 and L m,-

As a consequence, if n is large enough and (B m,i,ι 0

occurs, for all 1 ≤ ℓ < ⌊(ln n) 2 √ n⌋ we have that D ℓ occurs. We deduce that when n is large enough, P((B m,i,ι 0

n⌋-1 ℓ=1 D ℓ ), so it is enough to bound the latter probability. To do that, for any ī -⌊εn⌋ < j < ī, we define

, ∆ m,j ′ , j ′ < j; L m,j ′ , j ′ ≤ j). We stress that these are not the same G j as in the proof of Proposition 13, though they are "morally" the same thing: the σ-algebra of what happens at the left of j. We also set ζj = ζ m,-,I j 2 + ∆ m,j 2 + 1/2. To have more convenient notation, we also introduce i.i.d. random variables ζj , j ≥ ī, with law that of the sum of two independent random variables of law ρ 0 (we call this law ρ * 2 0 ), independent of everything else. The ζj , j > ī -⌊εn⌋, are then i.i.d. random variables with law ρ * 2 0 . Furthermore, for ī -⌊εn⌋ < j < ī, we define U j = {∀j 1 ∈ {j + 1, . . . , j + ⌊εn⌋} | j 1 -1 j 2 =j ζj ≥ 0}. We will prove that there exists a constant c4 = c4 (w, ε) > 0 such that when n is large enough for any ī -⌊εn⌋ < j < ī, P(U j |G j ) ≥ c4 √ n . Indeed, if this is true, we have the following when n is large enough (the third inequality is due to an induction, the fourth one to the fact that 1 -x ≤ e -x for any x ≥ 0):

which is enough. Consequently, we only have to show that there exists a constant c4 = c4 (w, ε) > 0 such that when n is large enough, for any ī -⌊εn⌋ < j < ī, P(U j |G j ) ≥ c4 √ n . For any ī -⌊εn⌋ < j < ī, the ζj ′ , j ′ ≥ j are independent from G j , so what we have to prove is that P(U) ≥ c4 √ n where U is defined as follows: ζj , j ∈ N are i.i.d. random variables with law ρ * 2 0 and U = {∀j ∈ {1, . . . , ⌊εn⌋} | j-1 j ′ =0 ζj ≥ 0}. In order to do that, we denote τ

In addition, if we denote U ′′ = {∀j ∈ {0, . . . , ⌊εn⌋ -1}, j j ′ =0 ζj ′ ≥ -√ εn}, we have P(U ′ |G ′ τ ∧τ ′ )) = P(U ′′ ), thus P(U) ≥ P({ ζ0 > 0} ∩ {τ < τ ′ })P(U ′′ ). We begin by dealing with P({ ζ0 > 0} ∩ {τ < τ ′ }). We can write P

We notice that since the ζj are i.i.d. with law ρ * 2 0 and ρ 0 has exponential tails, the ζj have expectation 0 and finite nonzero variance. Therefore, by the classical gambler's ruin result for i.i.d. random walks (see for example Theorem 5.1.7 of [START_REF] Lawler | Random walk: a modern introduction, volume 123 of Cambridge studies in advanced mathematics[END_REF]), there exists a constant c4 = c4 (w, ε) > 0 such that when n is large enough, P(τ < τ ′ | ζ0 = ℓ) ≥ c4 √ n . We deduce that when n is large enough,

, where c4 P( ζ0 > 0) is positive and depends only on w and ε. We now deal with P(U ′′ ). Let τ ′′ = inf{j ≥ 1 | j-1 j ′ =0 ζj ≤ -√ εn}, we then have P(U ′′ ) ≥ P(τ ′′ > ⌊εn⌋). Now, theorem 5.1.7 of [START_REF] Lawler | Random walk: a modern introduction, volume 123 of Cambridge studies in advanced mathematics[END_REF] yields that there exists a constant c′ 4 = c′ 4 (w) > 0 such that when n is large enough,

We conclude that when n is large enough, P(U) ≥ c4 √ n P( ζ0 > 0)c ′ 4 , with c4 c′ 4 P( ζ0 > 0) positive depending only on w and ε, which ends the proof. □

We now prove Lemma 39, which states that for all k ∈ N * , the random variables Tk and k k ′ =1 Tk ′ (defined in Definition 37) have no atoms.

Proof of Lemma 39. Set k ∈ N and let us prove that k+1 k ′ =1 Tk ′ has no atoms (the argument for Tk+1 is similar). By Definition 37 it is enough to show that for any a ≥ 0, we have P(2

Lemma 34 implies that P(|σ k,-(0) -σk,-(δ)| > δ 1 ) tends to 0 when δ tends to 0, thus there exists a δ 0 > 0 so that P(|σ k,-(0) -σk,-(±δ 0 )| > δ 1 ) ≤ δ 2 /4. We also denote

) when N tends to +∞, we deduce that P(I 1 (δ 0 /3)), P(I ′ 1 (δ 0 /3)) ≤ δ 2 /4 when N is large enough. Now, if (I 1 (δ 0 /3)) c and (I ′ 1 (δ 0 /3)) c occur, then for 0 ≤ t ≤ ε ∧ σk,-(δ 0 ) we have ÊN k,ns -δ 0 /3. Moreover, we already saw that P( Ŵ k 0 ≥ Ŵ k 0 ) = 1, so σk,-(-δ 0 ) > 0 almost-surely, which implies that 1 n < σk,-(-δ 0 ) when N is large enough. In addition, P( 1 If t ≤ σk,--δ 0 , we have V k,t = Ŵ k t , and we also have t ≤