

# Finite Strain Formulation of the Discrete Equilibrium Gap Principle: Application to Mechanically Consistent Regularization for Large Motion Tracking

Martin Genet

## ▶ To cite this version:

Martin Genet. Finite Strain Formulation of the Discrete Equilibrium Gap Principle: Application to Mechanically Consistent Regularization for Large Motion Tracking. 2023. hal-04132311v3

# HAL Id: hal-04132311 https://hal.science/hal-04132311v3

Preprint submitted on 23 Nov 2023 (v3), last revised 19 Jan 2024 (v4)

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1 | Finite Strain Formulation of the Discrete Equilibrium Gap                             |
|---|---------------------------------------------------------------------------------------|
| 2 | Principle: Application to Mechanically Consistent                                     |
| 3 | Regularization for Large Motion Tracking                                              |
| 4 | Martin Genet                                                                          |
|   | Laboratoire de Mécanique des Solides, École Polytechnique/IPP/CNRS, Palaiseau, France |
|   | Équipe MEDISIM, INRIA, Palaiseau, France                                              |
| 5 | 22 August 2023                                                                        |
|   |                                                                                       |

| 6                                                                    | Contents                                                              |                                                                        |  |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| 7                                                                    | Abstract                                                              | <b>2</b>                                                               |  |  |  |
| 8                                                                    | Keywords                                                              | <b>2</b>                                                               |  |  |  |
| 9                                                                    | 1 Introduction                                                        | <b>2</b>                                                               |  |  |  |
| 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>20<br>21<br>22 | <ul> <li>2 Methods</li> <li>2.1 The motion tracking problem</li></ul> | <b>3</b><br>3<br>4<br>5<br>6<br>8<br>11<br><b>12</b><br>12<br>19<br>26 |  |  |  |
| 23                                                                   | 3.4 Impact of mesh size                                               | 30                                                                     |  |  |  |
| 24                                                                   | 4 Conclusion                                                          | 32                                                                     |  |  |  |
| 25                                                                   | Acknowledgements                                                      | 33                                                                     |  |  |  |
| 26                                                                   | References                                                            | 33                                                                     |  |  |  |
| 27                                                                   | Appendix 31                                                           |                                                                        |  |  |  |
| 28                                                                   | A Code for Figures 1, 2, 3 and 4                                      | 37                                                                     |  |  |  |
| 29                                                                   | B Code for Figure 5                                                   | 41                                                                     |  |  |  |
| 30                                                                   | C Code for Figure 6                                                   | 46                                                                     |  |  |  |

### <sup>1</sup> Abstract

The equilibrium gap principle offers a good trade-off between robustness and accuracy for regularizing motion tracking, as it simply enforces that the tracked motion corresponds to a body deforming under arbitrary loadings. This paper introduces an extension of the equilibrium gap principle in the large deformation setting, a novel regularization term to control surface tractions, both in the context of finite element motion tracking, and an inverse problem consistent reformulation of the tracking problem. Tracking performance of the proposed method, with displacement resolution down to the pixel size, is demonstrated on synthetic images representing various motions with various signal-to-noise ratios.

### 10 Keywords

Motion tracking; Mechanical regularization; Equilibrium gap principle; Finite element method;
 Inverse problems.

### 13 1 Introduction

Motion tracking is an important field of image processing, with many application domains from 14 experimental mechanics to biomedical engineering. In experimental mechanics, especially in the 15 content of material parameter identification, it induced a true change of paradigm, as it is no longer 16 necessary to perform delicate experiments with simple kinematics like pure tension or compression; 17 instead rather complex experiments can now be performed, involving potentially many deformation 18 mechanisms, as long as the potentially complex kinematics can be tracked based on surface or 19 volume images [Chu et al. 1985; Hild et al. 2006; Lenoir et al. 2007; Tueni et al. 2020]. In biomedical 20 engineering, it allows for the quantitative analysis of biomedical images, hence to derive objective 21 and quantitative biomarkers for improved diagnosis, either directly based on kinematics [Garot 22 et al. 2000; Zou, Xi, et al. 2018, or by merging physical models and imaging data into so called 23 digital twins [Smith et al. 2011; Patte et al. 2022]. 24

Many approaches have been developed over the past decades, based on many variants of the many 25 aspects of the method, such as harmonic/Fourier vs. intensity/features tracking, local vs. global 26 approaches, etc. [Bornert et al. 2009; Hild et al. 2012; Sotiras et al. 2013; Tobon-Gomez et al. 27 2013]. In this paper, we use an intensity-based global tracking approach, which is the most natural 28 to integrate our novel regularization approach, though other tracking approaches could have been 29 considered as well. Existing intensity-based global approaches differ notably in their motion models 30 (splines, finite elements, etc.), image similarity metrics (mean squared error, structural similarity 31 index, mutual information, etc.), optimization methods (gradient descent, Gauss-Newton, Newton, 32 etc.), etc. [Sotiras et al. 2013; Tobon-Gomez et al. 2013]. 33

One key question in motion tracking is the regularization, *i.e.*, the *a priori* knowledge introduced 34 in the process to improve the quality of the tracking. It is required by the intrinsic ill-posedness 35 of the problem (we are looking for a vector field —the displacement— from an input scalar field 36 —the image—), as well as image finite resolution, noise and bias. As in any inverse or optimization 37 problem, efficient regularization requires a fine trade-off, here between providing enough constraint 38 to help the tracking quality and robustness, while providing enough freedom so as to not interfere 39 with the actual motion. In some sense regularization allows for a control, through penalization, of 40 the function space into which the solution is sought. Many regularization terms have been proposed 41 in the literature, such as Laplacian smoothing [Passieux and Périé 2012], fluid-like mechanical 42 regularization [Christensen et al. 1996], incompressibility [Mansi et al. 2011], hyperelastic energy 43 [Veress et al. 2005], etc., some of which will be discussed in details in this paper. An optimal 44 trade-off is arguably reached by the so-called equilibrium gap regularization [Hild et al. 2006; 45 Genet, Stoeck, et al. 2018, which puts no direct constraint on the kinematics, while enforcing that 46 the motion is close to a solution of a mechanics problem, in a sense that will be specified later in 47 the paper. 48

The equilibrium gap principle was originally formulated, at the discrete level and in the linear setting, in the context of material parameter identification based on full-field measurement, in 2 [Claire et al. 2004], and was later used in the context of motion tracking notably in [Leclerc et al. 3 2010]. An extension to the non linear setting was proposed, at the continuous level, in [Genet, Stoeck, et al. 2018; Lee et al. 2019; Berberoğlu, Stoeck, Moireau, et al. 2019, with multiple 5 applications to biomedical images [Xi et al. 2016; Zou, Leng, et al. 2020; Castellanos et al. 2021]. 6 In this paper, we propose another extension, still in the nonlinear finite strain setting but at the discrete level —hence allowing to better distinguish the equilibrium gaps induced by the motion 8 itself and the finite element discretization, as will be detailed in the paper—, and show that it 9 performs better than all previous formulations. 10

As already mentioned, and discussed in details later in the paper, the equilibrium gap regularization 11 consists in enforcing that the obtained displacement is close to a solution of a mechanics problem 12 with generic material behavior and arbitrary imposed surface tractions [Leclerc et al. 2010; Genet, 13 Stoeck, et al. 2018]. To actually obtain some regularization of the problem, this arbitrariness 14 must be handled, and the surface tractions must be somehow controlled independently of the 15 discretization of the displacement field [Leclerc et al. 2010]. A surface Laplacian of the displacement 16 was used as an additional regularization term in [Leclerc et al. 2010], which unfortunately does not 17 generalize to the large motion setting. One option would be to use a separate discretization for the 18 displacement and the tractions, which however would represent a significant technical difficulty. 19 Instead, in this paper, we propose an additional regularization term based on the surface gradient 20 of the normal and tangential components of the surface tractions, and show that it performs as 21 expected. 22

The rest of the paper is organized as follows. We first formulate the general motion tracking problem 23 (Section 2.1), then we provide a short literature review on mechanical regularization (Section 2.2), 24 and we describe our proposed regularization term, including body (Section 2.3.1) and boundary 25 (Section 2.3.2) terms. Then, we give an inverse problem formulation to the regularized motion 26 tracking problem (Section 2.4), and we describe our numerical strategy for the resolution (Section 27 2.5). We finish the Methods section with a description of the synthetic images that will be used 28 for the validation of our method (Section 2.6), and then analyse tracking Results in the case of 29 rigid motion (Section 3.1), non rigid but homogeneous motion (3.2) and non homogeneous motion 30 (Section 3.3), as well as in the case of refined meshes (Section 3.4). 31

### $_{32}$ 2 Methods

#### 33 2.1 The motion tracking problem

Let us start by precising the problem setting and notations. We consider  $I_0$  and I, two images (*i.e.*, image intensity fields) representing the same body  $\mathcal{B}$  at two instants  $t_0$  and t:

$$I_{0}: \begin{cases} \Box_{0} \to \mathbb{R} \\ \underline{X} \mapsto I_{0}(\underline{X}) \end{cases}, \qquad I: \begin{cases} \Box \to \mathbb{R} \\ \underline{x} \mapsto I(\underline{x}) \end{cases}, \qquad (1)$$

where  $\Box_0$  and  $\Box$  are the image domains at  $t_0$  and t, which are usually identical. The domains occupied by the body  $\mathcal{B}$  at  $t_0$  and t are denoted by  $\Omega_0$  and  $\omega$ , respectively. The problem is to find the smooth mapping  $\underline{\Phi}$ , or equivalently the smooth displacement field  $\underline{U}$ , between material points of the reference and deformed domains:

$$\underline{\Phi}: \begin{cases} \Omega_0 \to \omega \\ \underline{X} \mapsto \underline{x} = \underline{\Phi}(\underline{X}) \end{cases}, \quad \underline{U}: \begin{cases} \Omega_0 \to \mathbb{R}^3 \\ \underline{X} \mapsto \underline{U}(\underline{X}) := \underline{\Phi}(\underline{X}) - \underline{X} \end{cases}, \tag{2}$$

40 where  $\underline{X}$  and  $\underline{x}$  denote the position of a given material point in the reference and deformed config-

<sup>41</sup> urations, respectively. Due to its intrinsic ill-posedness, the problem is formulated as a regularized

<sup>42</sup> minimization problem:

Find 
$$\underline{\mathrm{U}^{\mathrm{sol}}} := \operatorname{argmin}_{\{\underline{U}\}} \left\{ J\left(\underline{U}\right) := (1-\beta) \frac{J^{\mathrm{ima}}\left(\underline{U}\right)}{J_{0}^{\mathrm{ima}}} + \beta \frac{J^{\mathrm{reg}}\left(\underline{U}\right)}{J_{0}^{\mathrm{reg}}} \right\},$$
 (3)

where  $J^{ima}$  is the image similarity metric, or "correlation energy",  $J^{reg}$  is the regularization energy,  $J_0^{ima}$  and  $J_0^{reg}$  are normalization terms, and  $\beta$  defines the regularization strength. The normalization terms  $J_0^{ima}$  and  $J_0^{reg}$  allow for the consistent addition of "energies" with very different physical units, and are typically taken equal to the value of  $J^{ima}$  and  $J^{reg}$  for a chosen displacement field [Leclerc et al. 2010], for instance a plane wave displacement with a period of 10 finite element characteristic lengths and a unit magnitude. The correlation energy is assumed to be convex, at least in the neighborhood of the solution, though it is in general not quadratic.

<sup>8</sup> In image intensity-based global approaches, the following correlation energy is generally used:

$$\mathbf{J}^{\mathrm{ima}}\left(\underline{\mathbf{U}}\right) := \frac{1}{2} \int_{\Omega_0} \left(\mathbf{I}\left(\underline{\mathbf{X}} + \underline{\mathbf{U}}\left(\underline{\mathbf{X}}\right)\right) - \mathbf{I}_0\left(\underline{\mathbf{X}}\right)\right)^2 \mathrm{d}\Omega_0. \tag{4}$$

Other metrics have been proposed; however, we retain this one notably because it can be differen tiated straightforwardly.

<sup>11</sup> We will employ the finite element method to discretize this problem, such that the displacement <sup>12</sup> field is approximated as  $\underline{U}(\underline{X}) \approx {}^{t}\underline{\mathbb{N}}(\underline{X}) \cdot \underline{\mathbb{U}}$  with  $\underline{\mathbb{N}}$  the array of shape functions. Thus, the problem

<sup>13</sup> becomes a finite dimensional problem:

Find 
$$\underline{\mathbb{U}^{\text{sol}}} := \operatorname{argmin}_{\{\underline{\mathbb{U}}\}} \left\{ J\left(\underline{\mathbb{U}}\right) := (1 - \beta) \frac{J^{\text{ima}}\left(\underline{\mathbb{U}}\right)}{J_0^{\text{ima}}} + \beta \frac{J^{\text{reg}}\left(\underline{\mathbb{U}}\right)}{J_0^{\text{reg}}} \right\},$$
 (5)

14 where

$$\mathbf{J}^{ima}\left(\underline{\mathbb{U}}\right) := \frac{1}{2} \int_{\Omega_0} \left( \mathbf{I}\left(\underline{\mathbf{X}} + {}^{\mathbf{t}}\underline{\underline{\mathbb{N}}}\left(\underline{\mathbf{X}}\right) \cdot \underline{\underline{\mathbb{U}}}\right) - \mathbf{I}_0\left(\underline{\mathbf{X}}\right) \right)^2 \mathrm{d}\Omega_0.$$
(6)

Note that even without mechanical regularization, finite element discretization introduces some kind of kinematical regularization, as the richness of the approximation space is controlled by the mesh size and shape functions degree.

#### <sup>18</sup> 2.2 Short literature review on mechanical regularization

<sup>19</sup> Many regularization terms have been proposed in the literature, see for instance [Sotiras et al. <sup>20</sup> 2013]. Here we will briefly recall the major classes of proposals with mechanical content. All <sup>21</sup> these approaches require to define a constitutive law, though it does not need to model the actual <sup>22</sup> behavior of the tracked body: generic material laws can be used, and the material stiffness simply <sup>23</sup> controls the strength of the regularization.

Elastic [Miller et al. 1993] and hyperelastic [Veress et al. 2005] regularizations have been proposed,
which consist in penalizing the strain energy of the body:

$$\mathbf{J}^{\mathrm{reg,el}}\left(\underline{\mathbf{U}}\right) := \int_{\Omega_0} \rho_0 \Psi\left(\underline{\mathbf{U}}\right) \mathrm{d}\Omega_0,\tag{7}$$

where  $\rho_0$  is the reference mass density and  $\Psi$  the reference specific free energy—in practice, generic 26 laws such as Hooke or neohookean are usually used. This was probably inspired by the fact that the 27 elastostatic problem can often be formulated as a minimization problem with the system potential 28 energy that is the sum of the elastic and loading potential energies. However, by only considering 29 the elastic energy beside the image similarity metric, and no specific loading energy, it is implicitly 30 assumed that the only load applied to the body is a body force associated to image dissimilarity, 31 and no boundary tractions. Moreover, this regularization penalizes strain itself, as only rigid body 32 motions have zero elastic energy. 33

Another, arguably more mechanically consistent, regularization approach is based on the equilibrium gap principle [Claire et al. 2004]. It was formulated in the linear setting, and directly at the discrete level, in [Réthoré et al. 2009; Leclerc et al. 2010]. We first define  $\underline{\mathbb{K}} := \int_{\Omega_0} \underline{\mathbb{B}} : \underline{\mathbb{K}} : \overset{\mathrm{t}}{\underline{\mathbb{B}}} \mathrm{d}\Omega_0$ the system stiffness matrix, with  $\underline{\mathbb{K}}$  the material stiffness tensor (like for elastic regularization, a generic isotropic Hooke law is usually used, such that  $\underline{\mathbb{K}} = \lambda \underline{\mathbb{I}} \otimes \underline{\mathbb{I}} + 2\mu \underline{\mathbb{I}}$  with  $\lambda$  and  $\mu$  the <sup>1</sup> Lamé constants) and  $\underline{\mathbb{B}}$  the array of shape functions symmetric gradients (*i.e.*, such that  $\underline{\underline{\varepsilon}}(\underline{\mathbf{X}}) :=$ 

$$\frac{(\underline{\operatorname{Grad}}(\underline{U})(\underline{X}))_{\operatorname{sym}}}{\operatorname{expressed as}} = \frac{1}{2} \left( \frac{^{t}\underline{\operatorname{Grad}}(\underline{U})(\underline{X}) + \underline{\operatorname{Grad}}(\underline{U})(\underline{X})}{\underline{\operatorname{Grad}}(\underline{U})(\underline{X})} \right) \approx \frac{^{t}\underline{\mathbb{B}}(\underline{X}) \cdot \underline{U}}{\underline{\mathbb{D}}}.$$
 Then the regularization is expressed as

$$\mathbf{J}^{\mathrm{reg,eq,lin}}\left(\underline{\mathbb{U}}\right) := \frac{1}{2} \,^{\mathrm{t}}\underline{\mathbb{U}} \cdot {}^{\mathrm{t}}\underline{\mathbb{K}^{*}} \cdot \underline{\mathbb{K}^{*}} \cdot \underline{\mathbb{U}},\tag{8}$$

where <u>K</u>\* is a modified system stiffness matrix in which all lines associated to boundary degrees of
freedom at which the external force in unknown have been set to 0. The implicit assumption here
is that the body is in equilibrium with some arbitrary/unknown boundary tractions (though the
smoothness of the surface displacement is usually controlled by an additional surface Laplacian
term [Leclerc et al. 2010]) and no body force (though known body forces such as gravity could
easily be taken into account). Thus, it does not penalize strain, only deviation from equilibrium,
as any equilibrium solution, even with very large strain, cancels the equilibrium gap "energy".

A first attempt toward extending this principle to the large deformation nonlinear setting has been made in [Genet, Stoeck, et al. 2018]. The main idea is to directly penalize the non verification of the internal linear momentum equilibrium equation  $(\underline{\text{Div}}(\underline{P}) = 0)$ , where  $\underline{P}$  is the first Piola-Kirchhoff stress tensor associated to the displacement field  $\underline{U}$  through the chosen constitutive law) through the following equivalent norm:

$$\mathbf{J}^{\mathrm{reg,eq,cont}}\left(\underline{\mathbf{U}}\right) := \frac{1}{2} \sum_{\mathbf{E}} \int_{\mathbf{E}} \|\underline{\mathrm{Div}}\left(\underline{\mathbf{P}}\right)\|^2 \mathrm{d}\mathbf{E} + \frac{1}{2\mathbf{h}} \sum_{\mathbf{F}} \int_{\mathbf{F}} \left[\left[\underline{\mathbf{P}} \cdot \underline{\mathbf{N}}\right]\right]^2 \mathrm{d}\mathbf{F}$$
(9)

where E is the set of finite elements, F the set of interior faces, N the faces normal, and h a 16 characteristic length of the finite element discretization. Note that the internal angular momentum 17 equilibrium  $({}^{t}\underline{\underline{P}}, {}^{t}\underline{\underline{F}}^{-1} = \underline{\underline{F}}^{-1}, \underline{\underline{P}},$  where  $\underline{\underline{F}}$  is the deformation gradient associated to the displacement field  $\underline{\underline{U}}$ ) is usually exactly verified through the constitutive relation, hence it does not need to be 18 19 penalized. Thanks to this equivalent norm (inspired by discontinuous Galerkin approaches; it 20 is necessary because under standard finite element discretization the finite element stress field is 21 discontinuous across finite element faces, so that its divergence is not defined there, and thus cannot 22 be directly integrated over the mesh), all terms of the regularization (9) are proper element or face 23 integrals and can be computed using standard finite element integration techniques (for instance, in 24 practice, if one uses first order polynomial shape functions, the stress field is constant by element, 25 so that the first term vanishes, and one simply has to compute the normal stress jump across all 26 internal faces of the mesh). Thus, the underlying assumption is the same as with regularization (8), 27 *i.e.*, that the body is in equilibrium with some arbitrary boundary tractions and no body force, 28 although the geometrically nonlinear formulation allows to correctly handle large deformations, 29 including large rotations. Nevertheless, one limitation of this approach is that the penalization 30 (9) encompasses not just the equilibrium gap arising from the potential non-equilibrium nature of 31 the considered displacement field (*i.e.*, as it might not be an equilibrium solution of a mechanical 32 33 problem), but also accounts for the equilibrium gap resulting from the finite element discretization itself (*i.e.*, even an actual finite element solution of a mechanical problem leads to a nonzero 34 regularization energy (9), as a finite element solution verifies the equilibrium equation only weakly, 35 not strongly). This calls for an improvement of the approach, which is described in the following 36 Section. 37

### <sup>38</sup> 2.3 The nonlinear discrete equilibrium gap regularization

#### <sup>39</sup> 2.3.1 Body stresses regularization

In order to avoid the limitation of the regularization term (9), we propose here a novel formulation of the equilibrium gap principle, still in the general context of nonlinear mechanics, but which allows to completely exclude the discretization-induced equilibrium gap from the regularization term. The general idea is still to penalize the non-verification of the internal linear momentum balance ( $\underline{\text{Div}}(\underline{P}) = 0$  in  $\Omega_0$ , since the body force is neglected for the sake of simplicity, though it could be considered as well). However, after standard finite element discretization, the divergence of the stress tensor is not defined on the element faces (in 3D) or edges (in 2D) thus it is not square integrable, so we define its projection  $\Pi_{\rm b}$  onto a space of square integrable functions, typically a

standard continuous finite element space denoted V<sup>h</sup>: 2

$$\underline{\Pi_{\mathbf{b}}} \in \mathbf{V}^{\mathbf{h}} \mid \int_{\Omega_{0}} \underline{\Pi_{\mathbf{b}}} \cdot \underline{\Pi_{\mathbf{b}}^{*}} = -\int_{\Omega_{0}} \underline{\mathrm{Div}}\left(\underline{\mathbf{P}}\right) \cdot \underline{\Pi_{\mathbf{b}}^{*}} \quad \forall \underline{\Pi_{\mathbf{b}}^{*}} \in \mathbf{V}_{0}^{\mathbf{h}}, \tag{10}$$

where  $V_0^h$  denotes the space of functions of  $V^h$  that vanish at the boundary, *i.e.*,  $\underline{\Pi}_b^*(\partial \Omega_0) = 0$ .

Indeed, for now we are only interested in body equilibrium gap. Thus, after integration by parts, we obtain:

$$\underline{\Pi}_{\underline{b}} \in \mathbf{V}^{\mathbf{h}} \mid \int_{\Omega_{0}} \underline{\Pi}_{\underline{b}} \cdot \underline{\Pi}_{\underline{b}}^{*} = \int_{\Omega_{0}} \underline{\underline{\mathbf{P}}} : \underline{\underline{\operatorname{Grad}}} \left( \Pi_{\underline{b}}^{*} \right) \quad \forall \underline{\Pi}_{\underline{b}}^{*} \in \mathbf{V}_{0}^{\mathbf{h}}$$
(11)

Similar projections, though often performed element-by-element, are used in a posteriori error 6 estimation methods, to quantify the distance between the finite element solution and an actual equilibrium solution, *i.e.*, the discretization error [Ladevèze et al. 2005; Zienkiewicz et al. 2013]. 8 However, the objective here is opposite, *i.e.*, we want to discard the discretization error and quantify 9 the intrinsic equilibrium gap of the considered finite element field. 10

Nevertheless, thanks to the proposed projection, we can actually define the regularization term in 11 a consistent manner: 12

$$\mathbf{J}_{\mathbf{b}}^{\mathrm{reg,eq}}\left(\underline{\mathbf{U}}\right) := \frac{1}{2} \int_{\Omega_{0}} \underline{\Pi}_{\underline{\mathbf{b}}} \cdot \underline{\Pi}_{\underline{\mathbf{b}}} \, \mathrm{d}\Omega_{0} \tag{12}$$

A key question is the calculation of this term in the finite element context. Projection (11) simply 13

leads to the following linear system: 14

$$\underline{\underline{\mathbb{M}}} \cdot \underline{\underline{\mathbb{\Pi}}}_{\mathbf{b}} = \underline{\mathbb{R}}_{\mathbf{b}} \tag{13}$$

with  $\underline{\underline{\mathbb{M}}} := \int_{\Omega_0} \underline{\underline{\mathbb{N}}} \cdot {}^t\underline{\underline{\mathbb{N}}} \, d\Omega_0$  the mass matrix,  $\underline{\underline{\mathbb{\Pi}}}_b$  such that  $\underline{\underline{\mathbb{\Pi}}}_b = {}^t\underline{\underline{\mathbb{N}}} \cdot \underline{\underline{\mathbb{\Pi}}}_b$ , and 15

$$\left(\mathbb{R}_{b}\right)_{i} := \begin{cases} \int_{\Omega_{0}} \underline{\underline{P}} : \underline{\underline{\operatorname{Grad}}}\left(\underline{\mathbb{N}_{i}}\right) \, \mathrm{d}\Omega_{0} & \text{if i body d.o.f.} \\ 0 & \text{if i boundary d.o.f.} \end{cases},$$
(14)

where  $\mathbb{N}_i$  is the (vector) shape function associated to the degree of freedom (d.o.f.) i, *i.e.*, the ith 16 line of the  $\underline{\mathbb{N}}$  array. Thus, the norm (12) can be expressed as 17

$$J_{b}^{reg,eq}\left(\underline{\mathbb{U}}\right) = \frac{1}{2} {}^{t}\underline{\mathbb{\Pi}}_{\underline{b}} \cdot \underline{\mathbb{M}} \cdot \underline{\mathbb{\Pi}}_{\underline{b}} = \frac{1}{2} {}^{t}\underline{\mathbb{R}}_{\underline{b}} \cdot \underline{\mathbb{M}}^{-1} \cdot \underline{\mathbb{R}}_{\underline{b}}$$
(15)

18

Note that if we linearize this expression, we obtain  $\underline{\mathbb{R}}_{\mathbf{b}} \approx \underline{\mathbb{K}^*} \cdot \underline{\mathbb{U}}$  and thus  $\mathbf{J}_{\mathbf{b}}^{\mathrm{reg,eq}} \approx \frac{1}{2} \mathbf{t} \underline{\mathbb{U}} \cdot \mathbf{t} \underline{\mathbb{K}^*} \cdot \underline{\mathbb{M}}^{-1} \cdot \underline{\mathbb{K}^*} \cdot \underline{\mathbb{U}}$ , *i.e.*, an expression similar to (8), the mass matrix allowing to make the term consistent 19 when refining the mesh. 20

#### 2.3.2 Boundary tractions regularization 21

The regularization term proposed in Section 2.3.1 basically enforces that the motion solution cor-22 responds to the motion of a body in equilibrium with some arbitrary tractions applied on its 23 boundary. The arbitrary nature of these tractions can be problematic, especially as the compu-24 tational mesh is refined and the variations of these tractions is not controlled. In [Leclerc et al. 25 2010], it was proposed to add a penalization term corresponding to the Laplacian of the bound-26 ary displacement, which however does not generalize to the large motion context. Thus, here we 27 propose a new term, consistent with the body term that involves internal stresses directly, which 28 consists in penalizing the surface tractions gradients. 29

It is important, however, to note that surface tractions can vary intrinsically but also because of 30 the surface curvature. For instance, a simple homogeneous pressure applied onto a curved surface 31 corresponds to a vector that varies in space. To avoid penalizing the surface curvature itself, we 32 propose to penalize the surface gradient of the normal and tangential components of the boundary 33

tractions separately. In 2D, the tangential part is scalar; in 3D we propose to take the norm of the tangential force vector.

Let us start with the regularization term associated to the normal traction, *i.e.*,  $F_n(\underline{U}) := {}^t\underline{N} \cdot \underline{P}(\underline{U}) \cdot \underline{N}$  where  $\underline{N}$  is the body outward normal. The problem is the same as for the equilibrium equation, *i.e.*, the surface gradient of the boundary tractions associated to a standard finite element displacement field is not defined on the boundary elements edges (in 3D) or points (in 2D) thus it is not integrable. Hence we propose to use the same technique, *i.e.*, we first define its projection onto a space of square integrable functions, again a typical finite element space, continuous on the domain boundary and denoted  $\partial V^h$ :

$$\underline{\Pi_{n}} \in \partial V^{h} \mid \int_{\partial \Omega_{0}} \underline{\Pi_{n}} \cdot \underline{\Pi_{n}^{*}} = -\int_{\partial \Omega_{0}} \underline{\operatorname{Grad}}_{s} (F_{n}) \cdot \underline{\Pi_{n}^{*}} \quad \forall \underline{\Pi_{n}^{*}} \in \partial V^{h},$$
(16)

where  $\underline{\operatorname{Grad}}_{s}(F_{n}) = \underline{\Pi} \cdot \underline{\operatorname{Grad}}(F_{n})$  with  $\underline{\Pi} := \underline{1} - \underline{N} \otimes \underline{N}$  the projection operator onto the domain boundary [Brandner et al. 2021]. After integration by parts of the right hand side we obtain:

$$\underline{\Pi_{n}} \in \partial V^{h} \mid \int_{\partial \Omega_{0}} \underline{\Pi_{n}} \cdot \underline{\Pi_{n}^{*}} = \int_{\partial \Omega_{0}} F_{n} \cdot \operatorname{Div}_{s} \left( \underline{\Pi_{n}^{*}} \right) \quad \forall \underline{\Pi_{n}^{*}} \in \partial V^{h},$$
(17)

where  $\operatorname{Div}_{s}\left(\underline{\Pi_{n}^{*}}\right) = \operatorname{tr}\left(\underline{\underline{\Pi}} \cdot \underline{\operatorname{Grad}}\left(\underline{\Pi_{n}^{*}}\right) \cdot \underline{\underline{\Pi}}\right)$  [Brandner et al. 2021]. Then, the regularization term is actually defined as:

$$\mathbf{J}_{\mathbf{n}}^{\mathrm{reg,eq}}\left(\underline{\mathbf{U}}\right) := \frac{1}{2} \int_{\partial \Omega_{0}} \underline{\Pi}_{\underline{\mathbf{n}}} \cdot \underline{\Pi}_{\underline{\mathbf{n}}} \, \mathrm{d}\partial \Omega_{0} \tag{18}$$

<sup>14</sup> The discretization procedure is similar to the bulk term (15):

$$\mathbf{J}_{\mathbf{n}}^{\mathrm{reg,eq}}\left(\underline{\mathbb{U}}\right) = \frac{1}{2} \,^{\mathrm{t}}\underline{\mathbb{R}}_{\mathbf{n}} \cdot \underbrace{\mathbb{M}_{\partial \underline{\Omega}_{0}}^{-1}}_{\underline{\mathbb{M}}_{\partial \underline{\Omega}_{0}}} \cdot \underline{\mathbb{R}}_{\mathbf{n}} \tag{19}$$

<sup>15</sup> where  $\underline{\mathbb{M}}_{\partial\Omega_0} := \int_{\partial\Omega_0} \underline{\mathbb{N}} \cdot {}^{\mathbf{t}}\underline{\mathbb{N}} \, \mathrm{d}\partial\Omega_0$  is the "mass" matrix of the domain boundary, and

$$\left(\mathbb{R}_{n}\right)_{i} := \begin{cases} 0 & \text{if } i \text{ body d.o.f.} \\ \int_{\partial\Omega_{0}} F_{n} \cdot \operatorname{Div}_{s}\left(\underline{\mathbb{N}_{i}}\right) \ d\partial\Omega_{0} & \text{if } i \text{ boundary d.o.f.} \end{cases}$$
(20)

<sup>16</sup> Regarding the regularization term associated to tangential tractions, in 2D the tangential force is

<sup>17</sup> a scalar, defined as  $F_{t,2D}(\underline{U}) := {}^{t}\underline{T} \cdot \underline{\underline{P}}(\underline{U}) \cdot \underline{N}$  where  $\underline{T}$  is the body tangential vector, so it is the <sup>18</sup> same formulation as the normal traction (19):

$$\mathbf{J}_{t,2D}^{\mathrm{reg,eq}}\left(\underline{\mathbb{U}}\right) = \frac{1}{2} \, \mathbf{\underline{\mathbb{T}}}_{\underline{\mathbf{L}},2D} \cdot \mathbf{\underline{\mathbb{T}}}_{\underline{\mathbf{M}},2\Omega_{0}} \cdot \mathbf{\underline{\mathbb{T}}}_{\underline{\mathbf{M}},2\Omega_{0}} \cdot \mathbf{\underline{\mathbb{T}}}_{\underline{\mathbf{L}},2D} \tag{21}$$

19 where

$$\left(\mathbb{R}_{t,2D}\right)_{i} := \begin{cases} 0 & \text{if i body d.o.f.} \\ \int_{\partial\Omega_{0}} F_{t,2D} \cdot \operatorname{Div}_{s}\left(\underline{\mathbb{N}_{i}}\right) \ d\partial\Omega_{0} & \text{if i boundary d.o.f.} \end{cases}$$
(22)

In 3D the tangential force is a vector, defined as  $\underline{F}_{t,3D}(\underline{U}) := \underline{\underline{\Pi}} \cdot (\underline{\underline{P}}(\underline{U}) \cdot \underline{\underline{N}})$ , and we propose to simply penalize the gradient of its norm, which leads to:

$$J_{t,3D}^{\text{reg,eq}}\left(\underline{\mathbb{U}}\right) = \frac{1}{2} t \underbrace{\mathbb{R}_{t,3D}}_{\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}}} \cdot \underbrace{\mathbb{M}_{\partial\Omega_0}^{-1}}_{\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}}} \cdot \underbrace{\mathbb{R}_{t,3D}}_{\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R},\underline{\mathbb{R}},\underline{\mathbb{R},\underline{\mathbb{R}},\underline{\mathbb{R},\underline{\mathbb{R}},\underline{\mathbb{R},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{\mathbb{R}},\underline{$$

22 where

$$\left(\mathbb{R}_{t,3D}\right)_{i} := \begin{cases} 0 & \text{if i body d.o.f.} \\ \int_{\partial\Omega_{0}} \|\underline{F}_{t,3D}\| \cdot \operatorname{Div}_{s}\left(\underline{\mathbb{N}_{i}}\right) \ d\partial\Omega_{0} & \text{if i boundary d.o.f.} \end{cases}$$
(24)

#### <sup>1</sup> 2.4 Inverse problem reformulation

Because the proposed regularization has a strong mechanical sense, the regularized tracking prob lem can be reformulated as an inverse problem, where the unknown is the traction field applied on

<sup>4</sup> the domain boundary, and which can be formulated as a constrained optimization problem:

Find 
$$\underline{\mathrm{T}^{\mathrm{sol}}} := \operatorname{argmin}_{\{\underline{\mathrm{T}}\}} \left\{ J\left(\underline{\mathrm{T}}\right) := (1 - \beta) \| \mathbf{I} \circ \underline{\Phi}\left(\underline{\mathrm{T}}\right) - \mathbf{I}_0 \|_{\Omega_0}^2 + \beta \| \underline{\mathrm{T}} \|_{\partial\Omega_0}^2 \right\},$$
 (25)

<sup>5</sup> where  $\underline{\Phi}(\underline{T})$  is the mapping solution associated to the traction field  $\underline{T}$ , *i.e.*, which verifies con-<sup>6</sup> stitutive and equilibrium equations, and  $\beta$  is the regularization strength. Norms will be specified <sup>7</sup> later on. The meaning of this formulation is that we search for a traction field which gener-<sup>8</sup> ates a displacement field (through a chosen generic mechanical behavior and standard mechanical <sup>9</sup> equilibrium) that allows to match the two image intensities, the regularization term allowing to <sup>10</sup> control the smoothness of the traction field. In optimization, such constraints can be enforced <sup>11</sup> strongly through Lagrange multipliers, or approximately through penalization [Allaire 2007]. Here <sup>12</sup> we propose to simply use penalization, such that the problem becomes:

Find 
$$\left(\underline{\mathbf{T}^{\text{sol}}}, \underline{\mathbf{U}^{\text{sol}}}\right) := \operatorname{argmin}_{\{\underline{\mathrm{T}}, \underline{\mathrm{U}}\}} \left\{ J\left(\underline{\mathrm{T}}, \underline{\mathrm{U}}\right) := (1 - \beta) \| \mathbf{I} \circ \underline{\Phi} - \mathbf{I}_0 \|_{\Omega_0}^2 + \beta \| \underline{\mathrm{T}} \|_{\partial\Omega_0}^2 + \gamma \left( \| \underline{\mathrm{Div}}\left(\underline{\underline{\mathrm{P}}}\right) \|_{\Omega_0}^2 + \| \underline{\underline{\mathrm{P}}} \cdot {}^{\mathrm{t}}\underline{\underline{\mathrm{F}}}^{-1} - \underline{\underline{\mathrm{F}}}^{-1} \cdot \underline{\underline{\mathrm{P}}} \|_{\Omega_0}^2 + \| \underline{\underline{\mathrm{P}}} \cdot \underline{\mathrm{N}} - \underline{\mathrm{T}} \|_{\partial\Omega_0}^2 \right) \right\}, \quad (26)$$

where  $\gamma$  is the penalization coefficient, while the three additional terms represent the balance 13 of linear momentum (without imposed force, though it could be introduced straightforwardly), 14 the balance of angular momentum (which is usually verified exactly thanks to the constitutive 15 framework), and the balance with applied tractions, respectively. In this formulation,  $\Phi$ , <u>F</u> and 16  $\underline{P}$  are the mapping, deformation gradient and first Piola-Kirchhoff stress tensor associated to the 17 displacement field U. Again, the norms will be specified later on. To simplify the formulation, we 18 can remove the traction field variable by enforcing strongly the last balance term, *i.e.*,  $T = P(U) \cdot N$ , 19 leading to the following formulation: 20

Find 
$$\underline{\mathbf{U}^{\text{sol}}} := \operatorname{argmin}_{\{\underline{\mathbf{U}}\}} \left\{ \mathbf{J}\left(\underline{\mathbf{U}}\right) := (1-\beta) \|\mathbf{I} \circ \underline{\Phi} - \mathbf{I}_0\|_{\Omega_0}^2 + \beta \|\underline{\underline{\mathbf{P}}} \cdot \underline{\mathbf{N}}\|_{\partial\Omega_0}^2 + \gamma \|\underline{\underline{\mathrm{Div}}}\left(\underline{\underline{\mathbf{P}}}\right)\|_{\Omega_0}^2 \right\}.$$
 (27)

<sup>21</sup> This formulation corresponds formally (*i.e.*, using the right norms) to the original formulation (3), <sup>22</sup> when using  $J_b^{reg,eq}$  for the bulk regularization and  $J_{n/t}^{reg,eq}$  for the surface terms. This gives another <sup>23</sup> point of view on each term, *i.e.*, that the bulk term can be seen as a penalization term, while <sup>24</sup> the actual regularization comes from the surface terms. Also, it is important to notice that this <sup>25</sup> reformulation only makes sense for "equilibrium gap" regularization terms: if one would consider <sup>26</sup> the motion tracking problem (3) with elastic regularization term (7) as an inverse problem, the <sup>27</sup> associated direct problem would not have a proper physical meaning, as it would correspond to a <sup>28</sup> body deforming under a body force induced by the image mismatch and no boundary force.

#### <sup>29</sup> 2.5 Numerical resolution

After describing existing and new regularization terms, we recall that the general motion tracking 30 problem formulation was given by Equation (5), with the image correlation term J<sup>ima</sup> given by 31 Equation (6), and where the regularization term  $J^{reg}$  may take the form  $J^{reg,el}$  (Equation (7)),  $J^{reg,eq}_{b}$  (Equation (9)),  $J^{reg,eq}_{b}$  (Equation (12)),  $J^{reg,eq}_{n}$  (Equation (18)),  $J^{reg,eq}_{t}$  (Equation (22)) 32 33 in 2D, (24) in 3D), or combinations of such terms. Indeed, as already discussed, it is often necessary 34 to combine bulk and boundary terms. In such cases one might want to use different weights for 35 each regularization term [Leclerc et al. 2010]; however, to simplify the analysis of the performance 36 of the various terms considered here, we propose to simply sum them, such that they have the 37 same weight, and there is only one parameter controlling the regularization strength, namely  $\beta$ . 38

<sup>39</sup> Minimization problem (5) is actually formulated as a root finding problem:

$$\underline{\mathbb{U}} \mid \underline{\nabla \mathbb{J}} (\underline{\mathbb{U}}) = (1 - \beta) \, \underline{\nabla \mathbb{J}^{\text{ima}}} (\underline{\mathbb{U}}) + \beta \underline{\nabla \mathbb{J}^{\text{reg}}} (\underline{\mathbb{U}}) = 0 \tag{28}$$

<sup>1</sup> where the gradient of the image term is simply:

$$\underline{\nabla \mathbb{J}^{\text{ima}}}\left(\underline{\mathbb{U}}\right) := \int_{\Omega_0} \left( I\left(\underline{X} + {}^{t}\underline{\mathbb{N}} \cdot \underline{\mathbb{U}}\right) - I_0 \right) \frac{\partial I}{\partial \underline{x}} \left(\underline{X} + {}^{t}\underline{\mathbb{N}} \cdot \underline{\mathbb{U}}\right) \cdot \underline{\mathbb{N}} \, \mathrm{d}\Omega_0, \tag{29}$$

<sup>2</sup> and the gradients of the proposed regularization terms are:

7

$$\underline{\nabla \mathbb{J}_{b}^{\text{reg,eq}}}\left(\underline{\mathbb{U}}\right) := \overset{t}{\underline{\mathbb{I}}} \underline{\mathbb{I}}_{\underline{\mathbb{D}}}\left(\underline{\mathbb{U}}\right) \cdot \underline{\underline{\mathbb{M}}}^{-1} \cdot \underline{\mathbb{R}}_{\underline{b}}\left(\underline{\mathbb{U}}\right)$$
(30)

 $_3$  with

$$(d\mathbb{R}_{b})_{ij} := \begin{cases} \int_{\Omega_{0}} \underline{\underline{\operatorname{Grad}}}\left(\underline{\mathbb{N}_{i}}\right) : \frac{\partial \underline{\underline{\mathbb{P}}}}{\partial \underline{\underline{\mathbb{F}}}} : \underline{\underline{\operatorname{Grad}}}\left(\underline{\mathbb{N}_{j}}\right) \ d\Omega_{0} & \text{if i body d.o.f.} \\ 0 & \text{if i boundary d.o.f.} \end{cases},$$
(31)

4 and

$$\nabla \mathbb{J}_{n/t}^{\text{reg,eq}}(\underline{\mathbb{U}}) := \underbrace{{}^{t} \mathrm{d}\mathbb{R}_{n/t}}_{\underline{\mathbb{I}}}(\underline{\mathbb{U}}) \cdot \underbrace{\mathbb{M}_{\partial\Omega_{0}}}_{\underline{\mathbb{I}}}^{-1} \cdot \underbrace{\mathbb{R}_{n/t}}_{\underline{\mathbb{I}}}(\underline{\mathbb{U}})$$
(32)

5 with

$$\left( d\mathbb{R}_{n/t} \right)_{ij} := \begin{cases} 0 & \text{if i body d.o.f.} \\ \int_{\partial\Omega_0} \operatorname{Div}_s\left(\underline{\mathbb{N}_i}\right) \frac{\partial F_{n/t}}{\partial \underline{F}} : \underline{\underline{\operatorname{Grad}}}\left(\underline{\mathbb{N}_j}\right) \, \mathrm{d}\partial\Omega_0 & \text{if i boundary d.o.f.} \end{cases}$$
(33)

We propose to solve this problem using a Gauss-Newton method, which was shown to have good 6 convergence properties for the image correlation problem in the thorough compared analysis of the 7 performance of multiple variants of the method proposed in [Passieux and Bouclier 2019]. Details 8 were given in [Genet, Stoeck, et al. 2018] in the context of the regularization term J<sup>reg,eq,cont</sup> (Equation (9)). The key point is that the Jacobian associated to the image term only contains the 10 image gradient product term, not the image hessian term which usually degrades the convergence 11 due to the double derivative of the noise; in principle the second derivation of the regularization 12 terms could be computed exactly, however it is tedious and not necessary, so we employ the same 13 approach as for the image term. Thus, at each Newton iteration we solve the following linear 14 system: 15

$$\underline{\Delta \mathbb{U}} \mid \left( (1-\beta) \underline{\nabla \nabla \mathbb{J}^{\text{ima}}} + \beta \underline{\nabla \nabla \mathbb{J}^{\text{reg}}} \right) \cdot \underline{\Delta \mathbb{U}} = -\left( (1-\beta) \underline{\nabla \mathbb{J}^{\text{ima}}} + \beta \underline{\nabla \mathbb{J}^{\text{reg}}} \right), \tag{34}$$

16 where

$$\underline{\underline{\nabla}\nabla\mathbb{J}^{\text{ima}}} := \int_{\Omega_0} \underline{\mathbb{N}} \cdot \left(\frac{\partial I}{\partial \underline{x}} \cdot \overset{t}{\partial} \frac{\partial I}{\partial \underline{x}}\right) \cdot \overset{t}{\underline{\mathbb{N}}} d\Omega_0, \tag{35}$$

<sup>17</sup> which corresponds to a mass matrix weighted by the deformed image gradients, and

$$\nabla \nabla \mathbb{J}_{\mathbf{b}/\mathbf{n}/\mathbf{t}}^{\mathrm{reg,eq}} \coloneqq \stackrel{\mathbf{t}}{=} \stackrel{\mathbf{t}}{=} \stackrel{\mathrm{d}\mathbb{R}_{\mathbf{b}/\mathbf{n}/\mathbf{t}}}{\underbrace{\blacksquare}_{\mathbf{D}_{0}/\partial\Omega_{0}}} \stackrel{\mathbf{t}}{=} \stackrel{\mathrm{d}\mathbb{R}_{\mathbf{b}/\mathbf{n}/\mathbf{t}}}{\underbrace{\blacksquare}_{\mathbf{b}/\mathbf{n}/\mathbf{t}}}.$$
(36)

 $_{18}$  As a stopping criterion for the Newton iterations, we propose to simply use the relative displacement

<sup>19</sup> with a prescribed tolerance, which is well adapted for the motion tracking problem:

$$\operatorname{err} := \frac{\|\underline{\Delta}\underline{\mathbb{U}}\|}{\|\underline{\mathbb{U}}\|} < \operatorname{tol.}$$
(37)

20

Nevertheless, in practice, we found that such Gauss-Newton iterations do not always converge 21 toward a solution for such a highly stiff problem. Indeed, they often lead to inverted elements, for 22 which the mechanical model cannot be evaluated. This is a situation the regularization is supposed 23 to prevent through the use of a proper energy potential with an infinite energy barrier (for instance, 24 the Ogden-Ciarlet-Geymonat has  $a - \ln(J)$  term, where J denotes the volume change [Ogden 1972; 25 Ciarlet et al. 1982), but the Newton iterations can sometimes pass this energy barrier. Indeed, 26 it is possible, and it is actually the case for the Ogden-Ciarlet-Geymonat potential, that even 27 though the potential is only defined for non-inverted elements, the expression of its derivative is 28 well defined for inverted elements. This is a common issue in large deformation computation, 29

<sup>1</sup> which is usually solved using adaptation time stepping [Le Tallec 1994; Genet 2019]. However, it is

 $_{\rm 2}$   $\,$  not possible here because the "time" increment is controlled by the image temporal discretization.

<sup>3</sup> Hence, we augment the Newton iterations with a backtracking line search [Press et al. 2007] that

<sup>4</sup> prevents the passing of energy barriers.

<sup>5</sup> Finally, the image series integrator is described in Algorithm 1, the nonlinear solver in Algorithm

<sup>6</sup> 2, and the line search in Algorithm 3.

Algorithm 1: Image series integrator. The nonlinear\_solver is detailed Algorithm 2. Note that in this basic version, the Newton iterations at frame t are naturally initialized with the converged solution at frame t - 1. A multi-level version is presented in Algorithm 4.

 $\begin{array}{l} \textbf{while } \operatorname{err} > \operatorname{tol} \ \textbf{do} \\ & \text{Assemble residual, Jacobian: } \underline{\nabla \mathbb{J}}, \, \underline{\nabla \nabla \mathbb{J}} \\ & \text{Compute solution increment: } \underline{\Delta \mathbb{U}} \leftarrow \texttt{linear_solver}\left(\underline{\nabla \mathbb{J}}, \underline{\nabla \nabla \mathbb{J}}\right) \\ & \text{Update error: } \operatorname{err} \leftarrow \frac{\|\underline{\Delta \mathbb{U}}\|}{\|\underline{\mathbb{U}}\|} \\ & \text{Compute relaxation: } \alpha \leftarrow \texttt{line_search}\left(\underline{\mathbb{U}}, \underline{\Delta \mathbb{U}}\right) \\ & \text{Update solution: } \underline{\mathbb{U}} \leftarrow \underline{\mathbb{U}} + \alpha \, \underline{\Delta \mathbb{U}} \\ & \textbf{end} \end{array}$ 

Algorithm 2: Nonlinear solver. In practice we use a tolerance of tol = 1%.

#### Initialisation

 $\left| \begin{array}{c} Compute \mbox{ initial energy: } J_0 \leftarrow J\left(\underline{\mathbb{U}}\right) \\ \mbox{ Initialise relaxation counter: } k \leftarrow 0 \\ \mbox{ while } J > J_0 \mbox{ do} \\ \mbox{ Define current relaxation: } \alpha \leftarrow f^k \\ \mbox{ Compute current energy: } J \leftarrow J\left(\underline{\mathbb{U}} + \alpha \ \underline{\Delta \mathbb{U}}\right) \\ \mbox{ Update relaxation counter: } k \leftarrow k+1 \\ \mbox{ end} \\ \end{array} \right.$ 

Algorithm 3: Backtracking line search. In practice we use a backtracking factor of f = 0.5. Here J refers to the full cost function, encompassing both the image and regularization terms, as defined Problem (5).

The richness of the displacement solution space is controlled by the finite element mesh and interpolation degree. When using a coarse mesh, with many pixels per element, the mesh itself acts 8 as some kind of kinematical regularization, limiting the size of the displacement solution space. q Conversely, when solving for very fine meshes, for instance when elements reach the size of the 10 image pixels, convergence becomes problematic as the displacement solution space becomes huge 11 and there is very little information per element; in this case mechanical regularization compen-12 sates for the lack of information, but it might not be enough to obtain a robust convergence of 13 the nonlinear iterations. Thus, multi-resolution is often necessary to perform motion tracking on 14 very fine meshes [Bornert et al. 2009; Leclerc et al. 2010], which consists in performing tracking on 15 successively refined meshes, initiating the nonlinear iterations of a given frame and given refine-16 ment level by the converged solution obtained at the same frame but at the previous refinement 17 level, instead of the converged solution obtained at the same refinement level but at the previous 18

frame, as it is naturally the case in the single-refinement-level Algorithm 1. Since two triangulations of the same geometric domain might not overlap, for instance if the domain has a curved 2 boundary, and especially if the triangulations have different characteristic sizes, one cannot simply 3 interpolate the displacement field from the coarse grid to the fine one. Instead we propose to use 4 a projection. The multi-resolution frame integrator is detailed in Algorithm 4. In order to speed 5 up the multi-resolution algorithm, pyramidal filtering can be applied to the images, such that the 6 tracking of successively refined meshes is performed on successively more resolved images, until 7 the final mesh is used to track the original high-resolution images [Fedele et al. 2013]; however, for the sake of simplicity, here we use the full images at all mesh refinement levels. 9

foreach refinement level  $k = 1, 2, \dots$  do Initialisation Read initial image  $I_0$ Instantiate finite element solution  $\mathbb{U}^k$ foreach frame index  $t = 1, 2, \ldots$  do Read current image I<sub>t</sub>  $\mathbf{if}\ k>1\ \mathbf{then}$ end end

Algorithm 4: Image series integrator with multi-resolution. Compared to the singlerefinement-level Algorithm 1, here the Newton iterations at frame t of refinement level k are initialized with the converged solution at frame t of refinement level k-1.

These algorithms have been implemented in an open-source library [Genet 2023a] written in python 10 and based on the FEniCS [Logg et al. 2012; Alnæs et al. 2015] and VTK [Schroeder et al. 2006] li-11 braries. It is currently freely available online at https://gitlab.inria.fr/mgenet/dolfin\_warp. 12 We also provide the code to reproduce the results of this paper under the form of jupyter notebooks 13 [Genet 2023b]: static versions are given in the appendix of the paper while interactive versions 14 are currently available online at https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/ 15 index.html. 16

#### 2.6Synthetic data 17

In order to establish the tracking performance of the proposed method, we generated synthetic 18 images corresponding to various objects (simple square, cardiac-like ring) and motions (rigid trans-19 lation and rotation, homogeneous compression and shear, cardiac-like contraction and twist) with 20 various noise levels. To focus on the regularization term itself, we limited ourselves to highly re-21 solved (though the impact of image resolution could be investigated as well [Berberoğlu, Stoeck, 22 Kozerke, et al. 2022), and textured (with used a tagged-MRI-like pattern, see [Rutz et al. 2008]) 23 images. The images occupy the spatial domain  $[0; 1]^2$  (arbitrary unit), the temporal domain [0; 1]24 (arbitrary unit), are discretized with 100×100 pixels spatially and 21 frames temporally. 25

26

For the simple (analytical) motion of the square, we define the initial domain as  $\Omega_0^t := [0.1; 0.7] \times [0.2; 0.8]$  for the translation case and  $\Omega_0^{r,c,s} := [0.2; 0.8]^2$  for the rotation, compression and shear 27 cases. The motion models are given by 28

$$\begin{cases} \underline{\mathbf{x}^{t}}(\underline{\mathbf{X}}, \mathbf{t}) \coloneqq \underline{\mathbf{X}} + \mathbf{t} \ \underline{\mathbf{D}} & \text{with } \underline{\mathbf{D}} \coloneqq \begin{pmatrix} 0.2 \\ 0 \end{pmatrix} \\ \underline{\mathbf{x}^{r}}(\underline{\mathbf{X}}, \mathbf{t}) \coloneqq \underline{\mathbf{X}}_{0} + \underline{\mathbf{R}} \cdot (\underline{\mathbf{X}} - \underline{\mathbf{X}}_{0}) & \text{with } \underline{\mathbf{X}}_{0} \coloneqq \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \underline{\mathbf{R}} \coloneqq \begin{pmatrix} +\cos(\theta) & -\sin(\theta) \\ +\sin(\theta) & +\cos(\theta) \end{pmatrix}, \theta = \frac{\mathbf{t}\pi}{4} \\ \underline{\mathbf{x}^{c}}(\underline{\mathbf{X}}, \mathbf{t}) \coloneqq \underline{\mathbf{X}}_{0} + \underline{\mathbf{F}^{c}} \cdot (\underline{\mathbf{X}} - \underline{\mathbf{X}}_{0}) & \text{with } \underline{\mathbf{X}}_{0} \coloneqq \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \underline{\mathbf{F}^{c}} \coloneqq \begin{pmatrix} \sqrt{1-2\mathbf{tol}\cdot\mathbf{2}} & 0 \\ 0 & 1 \end{pmatrix} \\ \underline{\mathbf{x}^{s}}(\underline{\mathbf{X}}, \mathbf{t}) \coloneqq \underline{\mathbf{X}}_{0} + \underline{\mathbf{F}^{s}} \cdot (\underline{\mathbf{X}} - \underline{\mathbf{X}}_{0}) & \text{with } \underline{\mathbf{X}}_{0} \coloneqq \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}, \underline{\mathbf{F}^{s}} \coloneqq \begin{pmatrix} \sqrt{1-2\mathbf{tol}\cdot\mathbf{2}} & 0 \\ 0 & 1 \end{pmatrix} \end{cases}, \tag{38}$$

which represent a 0.2 (arbitrary unit) translation, a  $\frac{\pi}{4}$  rad rotation, a 20% compression and a 20%

<sup>1</sup> shear, respectively.

<sup>2</sup> Then, for each case, the image generation consisted in the following steps: for each frame (time <sup>3</sup> t), for each pixel (position  $\underline{\mathbf{x}}$ ), the initial (*i.e.*, first time frame) position of the pixel ( $\underline{\mathbf{X}}(\underline{\mathbf{x}}, t)$ ) was <sup>4</sup> determined through inversion of the mappings (38) and the intensity was given by

$$I(\underline{x},t) := I_0(\underline{X}(\underline{x},t)) \quad \text{with} \quad I_0(\underline{X}) := \sqrt{|\sin\left(\frac{\pi X}{s}\right)||\sin\left(\frac{\pi Y}{s}\right)|}$$
(39)

Note that a more complex imaging model [Berberoğlu, Stoeck, Kozerke, et al. 2022] could have
 been considered as well.

For the cardiac-like case, a ring(center  $\underline{X}_0 := \begin{pmatrix} 0.5\\ 0.5 \end{pmatrix}$ , internal radius 0.2, external radius 0.4 (arbitrary units)) was defined, and an hyperelastic (neo-Hookean and Ogden-Ciarlet-Geymonat po-8 tentials with unit Young modulus and 0.3 Poisson coefficient) finite element model with very fine q mesh (element size equal to the image pixel size) was run with prescribed displacement applied to 10 the internal (inward displacement of 0.1 and rotation of  $-\frac{\pi}{4}$  rad) and external (inward displacement 11 of 0.05 and rotation of  $-\frac{\pi}{8}$  rad) edges, mimicking the in-plane motion of a cardiac slice. And to 12 generate the images, we employed the following approach: for each time frame (time t) the refer-13 ence mesh was warped by applying the computed displacement field, and the displacement field 14 was projected onto the image, such that for each pixel (position  $\underline{x}$ ) the reference position of the 15 pixel was computed as  $\underline{X}(\underline{x},t) = \underline{x} - \underline{U}(\underline{x},t)$ . Finally, the texture model (39) was applied. 16

<sup>17</sup> Noise was eventually added to the images, characterized by the signal-to-noise ratio (SNR). The
<sup>18</sup> magnitude of the signal here is 1, and we added random Gaussian noise with zero mean and
<sup>19</sup> standard deviation of 0.1, 0.2 and 0.3, corresponding to SNR of 10, 5 and 3.3, respectively. Note
<sup>20</sup> that, like for the imaging model, more complex noise models, for instance including spatial and/or
<sup>21</sup> temporal correlations [Berberoğlu, Stoeck, Kozerke, et al. 2022], could have been considered.

### <sup>22</sup> 3 Results and Discussion

To establish the tracking performance of the proposed method (described in Section 2.3), we now 23 present tracking results on various synthetic images (described in Section 2.6), for various regular-24 ization terms, namely elastic (Equation (7), continuous version of the equilibrium gap (Equation 25 (9), discrete version of the equilibrium gap (Equation (12)) and discrete version of the nonlinear 26 equilibrium gap including surface traction regularization terms (Equations (12), (18), (22) and/or 27 (24))). For each regularization term, we considered both a small strain approximation with a 28 Hooke strain energy potential, and a large strain formulation with the neo-Hookean and Ogden-29 Ciarlet-Geymonat potentials. For all models, we considered a unit Young modulus and null Poisson 30 ratio. 31

<sup>32</sup> The tracking performance is evaluated in terms of a normalized tracking error defined as

$$\operatorname{err} := \frac{\sqrt{\frac{1}{T} \int_{0}^{T} \frac{1}{|\Omega_{0}|} \int_{\Omega_{0}} ||\underline{U} - \underline{U}^{\mathrm{ex}}||^{2}}}{\sqrt{\frac{1}{T} \int_{0}^{T} \frac{1}{|\Omega_{0}|} \int_{\Omega_{0}} ||\underline{U}^{\mathrm{ex}}||^{2}}},$$
(40)

<sup>33</sup> where  $\underline{U}$  is the tracked displacement and  $\underline{U^{ex}}$  is the ground truth used to generate the images.

#### <sup>34</sup> 3.1 Rigid body motion

 $_{35}\,$  We start with simple rigid motions, namely pure translation and pure rotation. Figures 1 & 2

show normalized tracking error as a function of regularization strength  $\beta \in [0; 1]$ , for various levels

of image SNR and for various regularization terms. In the plots, dots represent noise realizations,

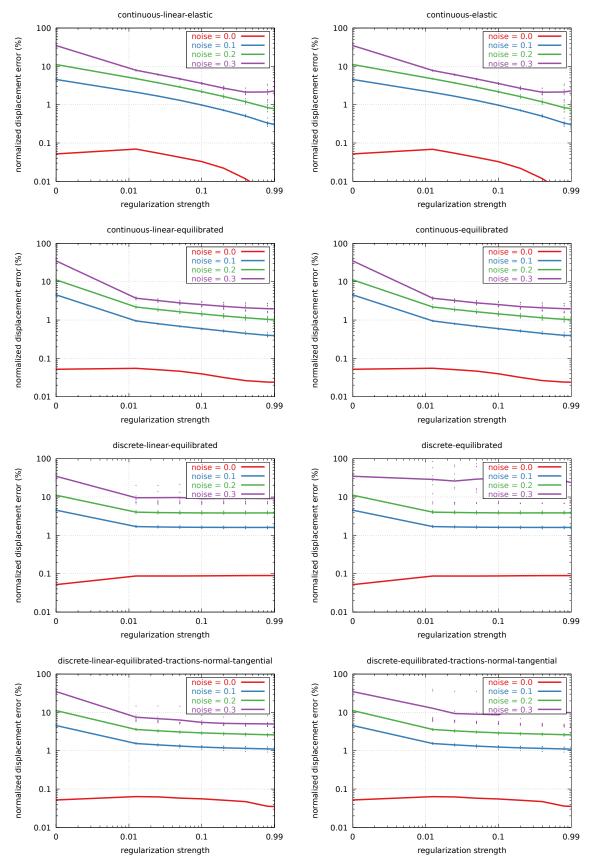
<sup>38</sup> and lines represent their average.

Let us first discuss the pure translation case, *i.e.*, Figure 1. For noiseless images, the tracking error is below 0.1% for all regularization terms and all regularization strengths. Increasing noise level leads to an increase of both the tracking error mean and dispersion. For all considered regularization terms, increasing the regularization strength decreases the mean error, though the dispersion is little impacted. Basically, for such a simple motion, all regularization terms perform rather well. This is explained by the fact that a rigid translation cancels all considered regularization terms, allowing to filter noise-induced spurious motions without interfering with the tracking itself.

<sup>8</sup> One can see that elastic (first row in Figure 1a) and continuous equilibrium gap (second row in <sup>9</sup> Figure 1a) terms behave better than the discrete equilibrium gap terms (third & fourth rows in <sup>10</sup> Figure 1a). This is due to the fact that these terms basically prevent the mesh from deforming, or <sup>11</sup> from deforming in a non affine way, which is compatible with the exact solution here, hence the <sup>12</sup> good tracking performance. However, as we will see later, this constraint will prove problematic <sup>13</sup> for more complex motions.

Focusing on the regularization term introduced in this paper (third & fourth rows in Figure 1a), one 14 can see that the error dispersion becomes significant for images with low SNR. This is due to the 15 fact that these terms represent a much lighter constraint on the displacement field, solely enforcing 16 that it is close to an equilibrium solution; this is, however, the very reason why it performs well on 17 basically any motion as we will see later. Nevertheless, one can also see that adding the boundary 18 traction terms (fourth row in Figure 1a), which penalizes the non smoothness of the normal and 19 tangential tractions at the edges, helps decreasing the tracking error mean and dispersion compared 20 to bulk terms only (third row in Figure 1a). 21

Let us now discuss the pure rotation case, *i.e.*, Figure 2. For the nonlinear elastic (upper right in 22 Figure 2a) and all equilibrated (second, third & fourth rows in Figure 2a) regularization terms, 23 the conclusions are the same as for the pure translation case. For the linear elastic regularization 24 term (upper left in Figure 2a), however, the result is quite different. Indeed, if increasing slightly 25 the regularization strength allows to decrease the tracking error, increasing it further completely 26 degrades the tracking. This is due to the fact that finite rotations generate nonzero infinitesimal 27 strains, thus nonzero elastic energy; hence the algorithm, which tries to minimize this energy, tends 28 to underestimate rotations (see Figure 2c). This is not the case for hyperelastic regularization 29 (upper right in Figure 2a), as in the finite strain setting, rigid rotations do not generate any strain. 30 Interestingly, this is also not the case for other regularization terms with linearized kinematics 31 and behaviors (left column, second to fourth rows in Figure 2a), because here the spurious strain 32 induced by the finite rotation is homogeneous, hence the associated stress is also homogeneous and 33 thus equilibrated, *i.e.*, it does not generate any spurious equilibrium gap. 34

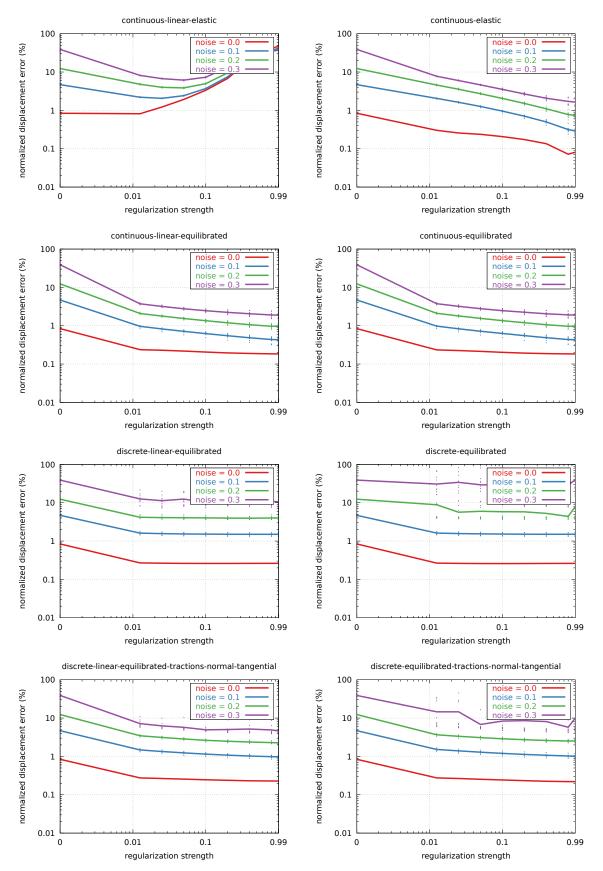


(a) Normalized displacement error (40) as a function of regularization strength (parameter  $\beta$ ), for various levels of image noise, for various regularization terms (first row:  $J_{\rm b}^{\rm reg,eq}$  (7); second row:  $J_{\rm b}^{\rm reg,eq,cont}$  (9); third row:  $J_{\rm b}^{\rm reg,eq}$  (12); fourth row:  $J_{\rm b}^{\rm reg,eq}$  (12),  $J_{\rm n}^{\rm reg,eq}$  (18) and  $J_{\rm t,2D}^{\rm reg,eq}$  (22)), and for various constitutive laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat law). For such a simple motion, basically all regularization terms allow to reduce the tracking error. (Next subfigure is on the following page.)

Figure 1: Translation case.

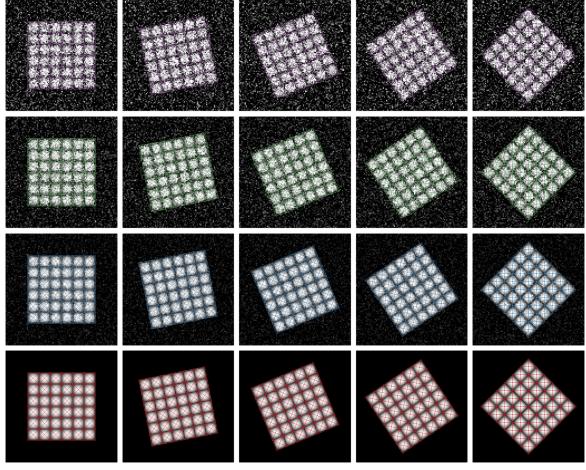
(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization (18) & (22), with regularization strength  $\beta = 0.1$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels.

Figure 1: Translation case.



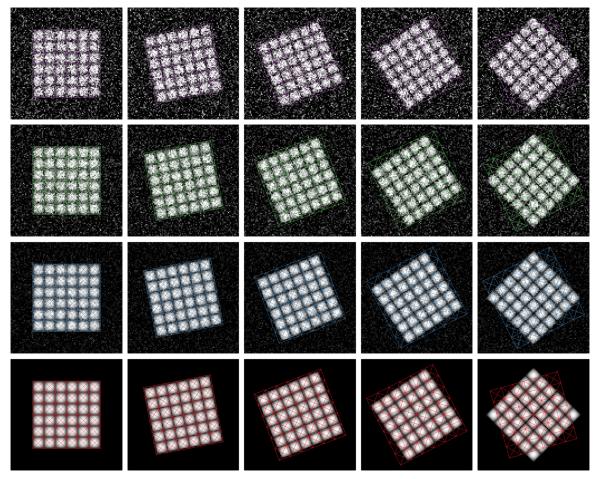
(a) Normalized displacement error (40) as a function of regularization strength (parameter  $\beta$ ), for various levels of image noise, for various regularization terms (first row:  $J_{reg,eq}^{reg,el}$  (7); second row:  $J_{reg,eq,cont}^{reg,eq,cont}$  (9); third row:  $J_{b}^{reg,eq}$  (12); fourth row:  $J_{b}^{reg,eq}$  (12),  $J_{n}^{reg,eq}$  (18) and  $J_{t,2D}^{reg,eq}$  (22)), and for various constitutive laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat law). The linear elastic regularization term interferes with the tracking because finite rotation lead to nonzero infinitesimal strain, thus generating spurious elastic energy. (Next subfigure is on the following page.)

Figure 2: Rotation case.



(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization (18) & (22), with regularization strength  $\beta = 0.1$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on the following page.)

Figure 2: Rotation case.



(c) Tracking solutions for the linear elastic regularization term (7), with regularization strength  $\beta = 0.8$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The linear elastic regularization term tends to reduce rotations because they generate spurious elastic energy, which degrades the tracking.

Figure 2: Rotation case.

#### 1 3.2 Nonrigid Homogeneous deformation

We now consider nonrigid —though still homogeneous—deformations, namely compression (Figure 3) and shear (Figure 4). Conclusions are the same as for rigid transformations for all regularization terms based on the equilibrium gap principle (*i.e.*, second, third & fourth rows in Figures 3a & 4a), which perform very well. Regularization terms based on the elastic energy (*i.e.*, first row in Figures 3a & 4a) are, on the contrary, very problematic as they tend to prevent the mesh from deforming. This illustrates very well the fact that such regularization terms should not be used when tracking nonrigid deformations, as they interfere pathologically with the tracking.

<sup>9</sup> One can also notice that the continuous formulation of the equilibrium gap regularization (second

<sup>10</sup> row in Figures 3a & 4a) seems to perform better than the discrete formulation (third & fourth rows

<sup>11</sup> in Figures 3a & 4a); as we will see later, this is actually due to the fact that J<sup>reg,eq,cont</sup> (9) contains

 $_{12}$  the equilibrium gap induced by the discretization in addition to the equilibrium gap induced by the

<sup>13</sup> images, and tends to minimize it, *i.e.*, to maintain the stress as homogeneous as possible, which

helps the tracking here because the exact solution has indeed an homogeneous stress field, but
 which will prove highly pathological for non homogeneous cases.

<sup>16</sup> It is important to notice also that for the compression case, only the tangential term (22) was <sup>17</sup> included in the boundary traction terms (fourth row in Figure 3a). Indeed, the exact solution

<sup>17</sup> included in the boundary traction terms (fourth row in Figure 3a). Indeed, the exact solution <sup>18</sup> has highly non-smooth tractions (which are nonzero on left & right edges, zero on bottom & top

edges), so that penalizing the surface gradient of the normal surface traction would not make sense.

Similarly, in the shear case, only the normal term (18) was included in the boundary tractions terms

<sup>21</sup> (fourth row in Figure 4a).

2

3

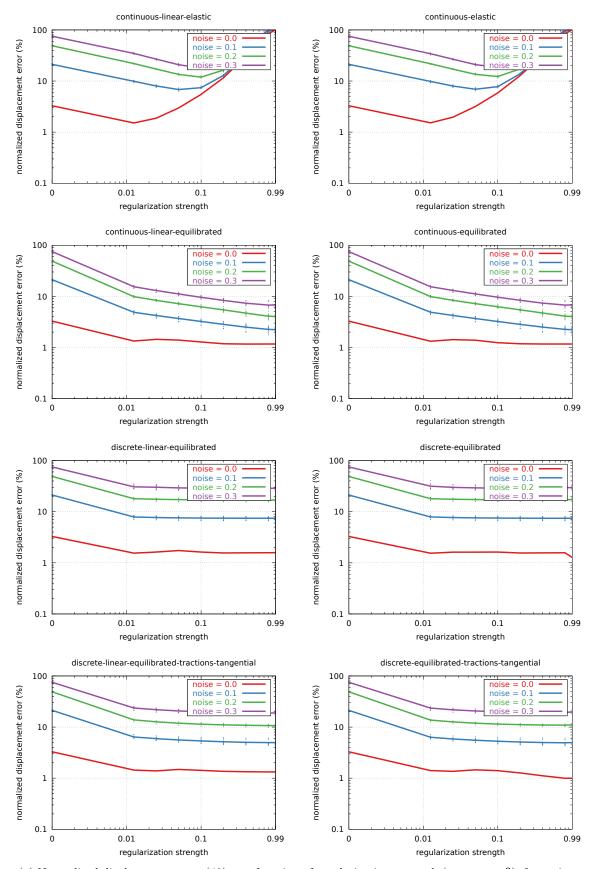
4

5

6

7

8



(a) Normalized displacement error (40) as a function of regularization strength (parameter  $\beta$ ), for various levels of image noise, for various regularization terms (first row:  $J^{reg,el}_{t,2D}$  (7); second row:  $J^{reg,eq,cont}_{t,2D}$  (9); third row:  $J^{reg,eq}_{t,2D}$  (12); fourth row:  $J^{reg,eq}_{t,2D}$  (12) and  $J^{reg,eq}_{t,2D}$  (22)), and for various constitutive laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat law). The elastic regularization terms interfere with the tracking because they basically prevent the mesh from deforming. (Next subfigure is on the following page.)

Figure 3: Compression case.

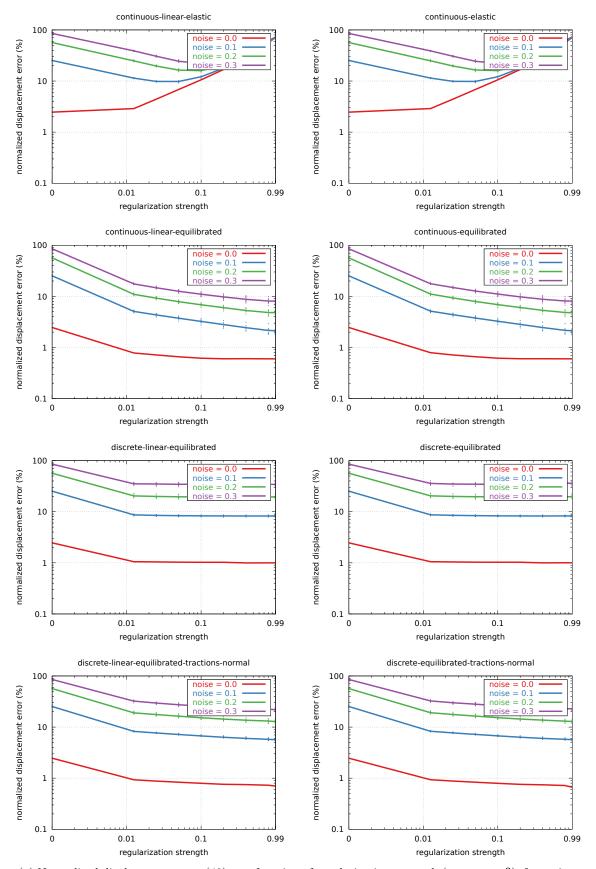
(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization (22), with regularization strength  $\beta = 0.1$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on the following page.)

Figure 3: Compression case.

|  |  | #28203<br>128260<br>200409<br>00000<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>200409<br>2004000<br>2004000<br>2004000<br>2004000<br>200400000000 |
|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

(c) Tracking solutions for the elastic regularization term (7), with regularization strength  $\beta = 0.8$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The elastic regularization terms tends to prevent the mesh from deforming, which degrades the tracking.

Figure 3: Compression case.



(a) Normalized displacement error (40) as a function of regularization strength (parameter  $\beta$ ), for various levels of image noise, for various regularization terms (first row:  $J^{reg,el}$  (7); second row:  $J^{reg,eq,cont}$  (9); third row:  $J^{reg,eq}_b$  (12); fourth row:  $J^{reg,eq}_b$  (12) and  $J^{reg,eq}_n$  (18)), and for various constitutive laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat law). The elastic regularization terms interfere with the tracking because they basically prevent the mesh from deforming. (Next subfigure is on the following page.)

Figure 4: Shear case.

(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization (18), with regularization strength  $\beta = 0.1$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on the following page.)

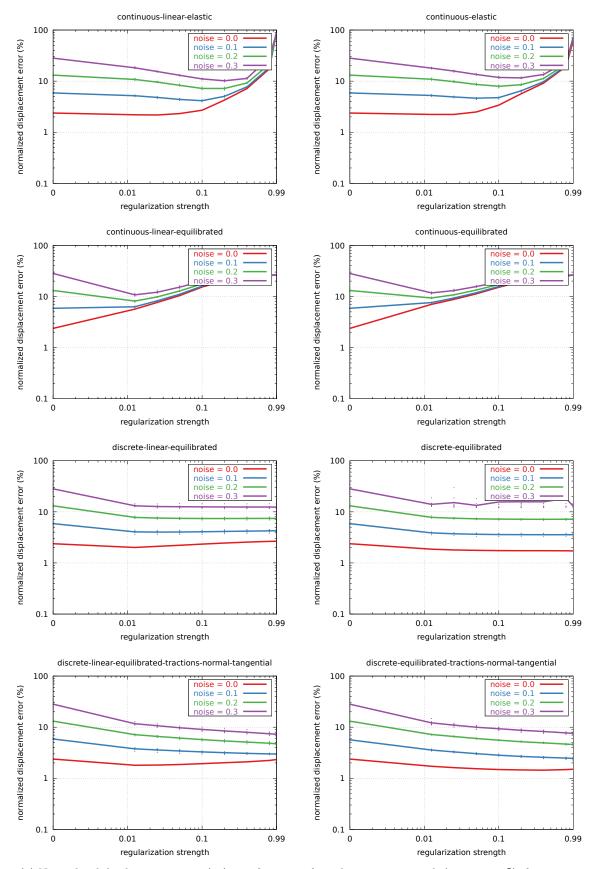
Figure 4: Shear case.

(c) Tracking solutions for the elastic regularization term (7), with regularization strength  $\beta = 0.8$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The elastic regularization terms tends to prevent the mesh from deforming, which degrades the tracking.

Figure 4: Shear case.

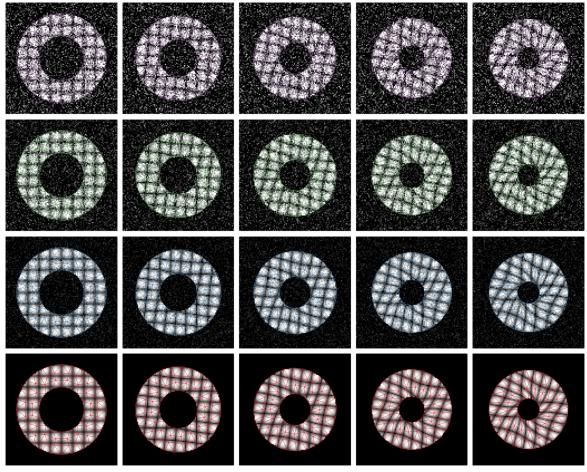
#### 1 3.3 Nonrigid Heterogeneous deformation

Let us now consider more realistic images, mimicking cardiac tagged magnetic resonance imaging 2 slices. Tracking results are presented in Figure 5. Elastic regularization (first row of Figure 5a) 3 has the same limitation as for homogeneous deformations, in that it tends to prevent the mesh 4 from deforming and thus interferes with the tracking. Interestingly, the continuous formulation 5 of the equilibrium gap principle (second row of Figure 5a) presents similar limitations, though 6 somewhat weaker for large regularization strengths. This can be explained by the fact that this 7 "energy" contains the equilibrium gap induced by the finite element discretization, thus it tends to 8 minimize the discretization error, *i.e.*, it tends to force the mesh to deform homogeneously, which q was compatible with the ground truth of the simple examples of Sections 3.1 & 3.2, but not in 10 more realistic cases. The discrete version of the equilibrium gap principle (third & fourth rows of 11 Figure 5a), on the other hand, which characterizes the equilibrium gap induced by the motion itself 12 but not the one induced by the discretization thanks to the projection step, does not have such 13 pathological behavior, and allows the reduce the tracking error basically for all regularization levels. 14 One can see that the nonlinear version (based on the finite strain framework and neoHookean & 15 Ogden-Ciarlet-Geymonat potentials) performs slightly better than the linear version (based on the 16 infinitesimal stain framework and the Hooke law). Also, the surface traction regularization terms 17 (fourth row in figure 5a) help reducing the tracking error mean and dispersion compared to the 18 tracking with the bulk term only (third row in Figure 5a)). 19



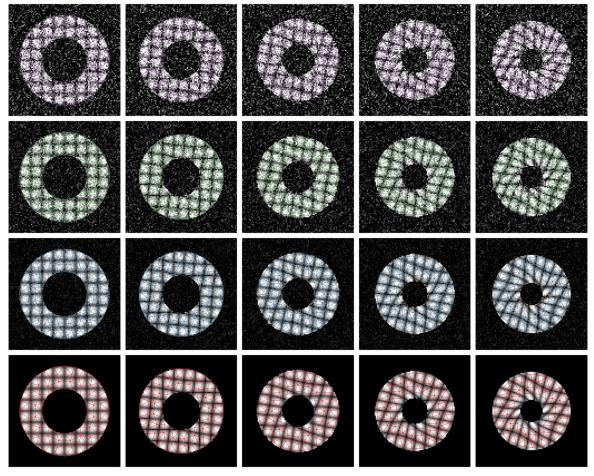
(a) Normalized displacement error (40) as a function of regularization strength (parameter  $\beta$ ), for various levels of image noise, for various regularization terms (first row:  $J_{reg,eq}^{reg,eq}$  (7); second row:  $J_{reg,eq,cont}^{reg,eq,cont}$  (9); third row:  $J_{b}^{reg,eq}$  (12); fourth row:  $J_{b}^{reg,eq}$  (12),  $J_{n}^{reg,eq}$  (18) and  $J_{t,2D}^{reg,eq}$  (22)), and for various constitutive laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat law). The elastic regularization terms interfere with the tracking because they basically prevent the mesh from deforming. (Next subfigure is on the following page.)

Figure 5: Cardiac-like case.



(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization terms (18) & (22), with regularization strength  $\beta = 0.1$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on the following page.)

Figure 5: Cardiac-like case.

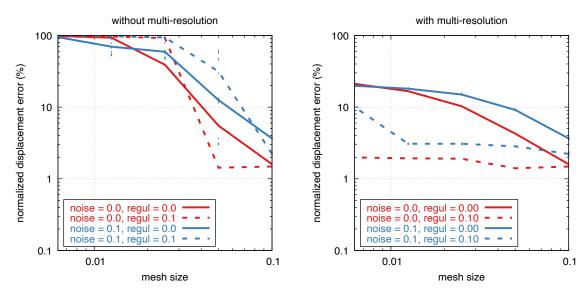


(c) Tracking solutions for the continuous version of the nonlinear equilibrium gap regularization term (9), with regularization strength  $\beta = 0.8$ , for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The continuous version of the nonlinear equilibrium gap regularization term tends to prevent the mesh from deforming non homogeneously (which generates a discretization-induced equilibrium gap), which degrades the tracking.

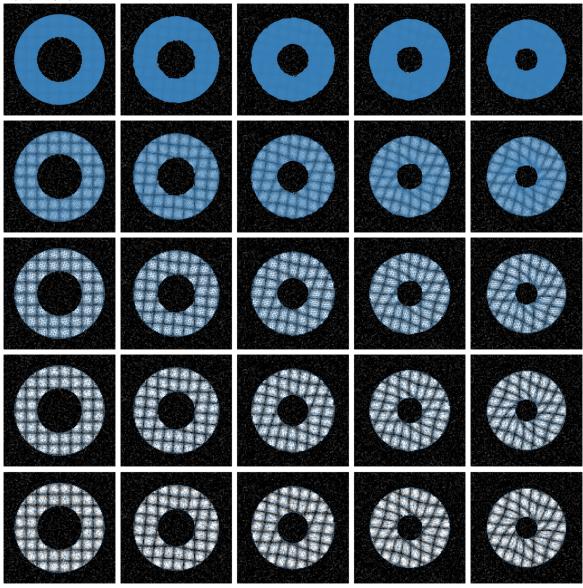
Figure 5: Cardiac-like case.

#### <sup>1</sup> 3.4 Impact of mesh size

We now investigate in details the impact of mesh size on tracking. Indeed, there is a fundamental 2 trade-off between the richness of the motion model and the robustness of the tracking—the finite 3 element discretization of the tracking already represents some kind of "kinematical" regularization, 4 in the sense that the mesh controls the size of the finite dimensional functional space of the 5 displacement field. Figure 6 shows tracking results for the cardiac-like problem, for various mesh 6 sizes (from 0.1, which corresponds to the characteristic size of the image texture, like in the previous 7 examples, to  $0.1/2^4 = 0.00625$ , which is smaller than the image pixel), for various levels of noise 8 (0 & 0.1) and regularization strengths (0 & 0.1), and for two different mesh refinement strategies: 9 either we simply track the images with the different meshes independently (left in Figure 6a), or 10 we track with successively refined meshes while initializing the tracking at a given mesh refinement 11 level with the converged solution of the previous mesh refinement level (right in Figure 6a). First, 12 one can see that directly tracking images with fine meshes is impossible—mechanical regularization 13 helps a little in some cases, but not enough to obtain satisfying solutions. Thus, to obtain fine 14 solutions, one needs to perform multi-resolution. However, one can also see that multi-resolution 15 is not enough, and mechanical regularization is necessary to obtain fine solutions. 16



(a) Normalized displacement error (40) as a function of mesh size, for various levels of image noise, for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization terms (18) & (22), with various regularization strength.



(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization terms (18) & (22), with regularization strength  $\beta = 0.1$ .

Figure 6: Cardiac-like case, impact of mesh size.

### <sup>1</sup> 4 Conclusion

In this paper, we introduced a consistent formulation, in the nonlinear large deformation setting, of
the discrete equilibrium gap principle, and used it as a regularization for the large motion tracking
problem. This principle enforces that the tracked motion corresponds to the motion of a body in
equilibrium with some tractions applied on its boundary. We also introduced a novel regularization
of the boundary tractions involved in the equilibrium gap principle, which naturally applies to both
the finite and infinitesimal strain settings.

In summary, we validated our approach by generating images representing various motions and 8 with different signal-to-noise ratios, and then running our motion tracking algorithm with various 9 regularization terms and regularization strengths. Basically we concluded that the finite strain 10 framework is necessary when large motion —especially large rotation— is involved. We showed that 11 elastic regularization interferes pathologically with nonrigid motion tracking, and should essentially 12 not be used in such cases. In the case of heterogenous motion, which is the most representative 13 of actual applications of motion tracking [Genet, Lee, et al. 2014; Finsberg et al. 2019], we also 14 concluded that our previous "continuous" formulation of the equilibrium gap principle interferes 15 with the tracking, while our new "discrete" formulation performs well. Finally, we also showed 16 that, combining multi-level resolution and our mechanical regularization, we were able to track 17 rather large motion with a displacement discretization as fine as the image discretization itself, so 18 that all features of the images motion can be tracked. 19

In order to promote open and reproducible science, the general motion tracking algorithm as well as all regularization terms have been implemented in an open-source finite element motion tracking library [Genet 2023a] (currently at https://gitlab.inria.fr/mgenet/dolfin\_warp), and the specific code to reproduce the results of this paper is also freely available [Genet 2023b] (in the appendix and currently at https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html).

There are multiple limitations to our current approach, at various levels. The formulation of the 26 equilibrium gap principle introduced here only considers a single homogeneous domain, which might 27 be limiting when tracking motion of highly heterogeneous structures such as diseases organs [Patte 28 et al. 2022; Laville et al. 2023]. In such case, one might need to extend the formulation to multiple 29 zones. Another option would be to estimate the material parameters of the mechanical model used 30 for the regularization term at the same time as the tracking [Mathieu et al. 2015]. Actually, the 31 equilibrium gap principle could also be used as a cost function for direct (*i.e.*, without the need for 32 a resolution of the direct mechanics problem) material parameter estimation from displacement 33 measured by any method—the small stain formulation has already been used successfully [Claire 34 et al. 2004], but in large strain only the virtual fields method has been used, which represents an 35 approximation of the equilibrium gap method as it only satisfies the equilibrium in a weak sense 36 for a selected member of test functions [Avril et al. 2008]. 37

Another limitation, especially in terms of applications, is that the performance of the method comes at a significant computational cost, limiting its use notably in the clinics. Thus, our method could be used to generate ground truth and/or validation data for machine learning algorithms, which could then perform tracking almost instantaneously. This is an active field of research today [Leiner et al. 2019; Friedrich et al. 2021; Koehler et al. 2022; López et al. 2022].

An important perspective of our motion tracking algorithm is toward low resolution images, which 44 have been proven to drastically impact the tracking quality [Berberoğlu, Stoeck, Moireau, et al. 45 46 2021]. One option is to combine images from multiple modalities and combine the strength of both images [Berberoğlu, Stoeck, Kozerke, et al. 2022]. Another option to consider is to introduce 47 a model of the imaging modality (e.g., MRI [Skardová et al. 2019]), in order to control the bias 48 induced by the image discretization. Thus, by combining models of the imaging process and the 49 mechanical deformation, we will be able to perform high quality tracking even with low quality 50 51 images.

## Acknowledgements

MG would like to thank Philippe Moireau, Patrick Le Tallec and Pierre Kerfriden for fruitful
 discussions.

### A References

Allaire, G. (2007). Conception Optimale Des Structures. Mathématiques & Applications 58. Berlin:
 Springer. 278 pp.

7 Alnæs, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.

<sup>8</sup> Rognes, and G. N. Wells (2015). "The FEniCS Project Version 1.5". In: Archive of Numerical

<sup>9</sup> Software Vol 3. In collab. with A. O. N. Software. DOI: 10.11588/ans.2015.100.20553.

- <sup>10</sup> Avril, S., M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S.
- Pagano, E. Pagnacco, and F. Pierron (2008). "Overview of Identification Methods of Mechanical
   Parameters Based on Full-field Measurements". In: *Experimental Mechanics* 48.4, pp. 381–402.
- DOI: 10.1007/s11340-008-9148-y.

Berberoğlu, E., C. T. Stoeck, S. Kozerke, and M. Genet (2022). "Quantification of Left Ventricular
 Strain and Torsion by Joint Analysis of 3D Tagging and Cine MR Images". In: *Medical Image* Analysis 82, p. 102598. DOI: 10.1016/j.media.2022.102598.

Berberoğlu, E., C. T. Stoeck, P. Moireau, S. Kozerke, and M. Genet (2019). "Validation of Fi nite Element Image Registration-based Cardiac Strain Estimation from Magnetic Resonance
 Images". In: *PAMM* 19.1. DOI: 10.1002/pamm.201900418.

(2021). "In-Silico Study of Accuracy and Precision of Left-Ventricular Strain Quantification from 3D Tagged MRI". In: *PLOS ONE* 16.11, e0258965. DOI: 10.1371/journal.pone.0258965.

Bornert, M., F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J.
 Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse (2009). "Assessment
 of Digital Image Correlation Measurement Errors: Methodology and Results". In: *Experimental*

<sup>25</sup> Mechanics 49.3, pp. 353–370. DOI: 10.1007/s11340-008-9204-7.

Brandner, P., T. Jankuhn, S. Praetorius, A. Reuksen, and A. Voigt (2021). "Finite Element Dis cretization Methods for Velocity-Pressure and Stream Function Formulations of Surface Stokes
 Equations".

Castellanos, D. A., K. Škardová, A. Bhattaru, E. Berberoğlu, G. Greil, A. Tandon, J. Dillenbeck,
B. Burkhardt, T. Hussain, M. Genet, and R. Chabiniok (2021). "Left Ventricular Torsion Obtained Using Equilibrated Warping in Patients with Repaired Tetralogy of Fallot". In: *Pediatric*

<sup>32</sup> *Cardiology*. DOI: 10.1007/s00246-021-02608-y.

<sup>33</sup> Christensen, G. E., R. D. Rabbitt, and M. I. Miller (1996). "Deformable Templates Using Large
 <sup>34</sup> Deformation Kinematics". In: *IEEE transactions on image processing : a publication of the* <sup>35</sup> *IEEE Signal Processing Society* 5.10, pp. 1435–47. DOI: 10.1109/83.536892.

- <sup>36</sup> Chu, T. C., W. F. Ranson, and M. A. Sutton (1985). "Applications of Digital-Image-Correlation
   <sup>37</sup> Techniques to Experimental Mechanics". In: *Experimental Mechanics* 25.3, pp. 232–244. DOI:
   <sup>38</sup> 10.1007/BF02325092.
- <sup>39</sup> Ciarlet, P. G. and G. Geymonat (1982). "Sur Les Lois de Comportement En Élasticité Non-Linéaire
   <sup>40</sup> Compressible". In: Comptes Rendus de l'Académie des Sciences Série II 295, pp. 423–426.
- <sup>41</sup> Claire, D., F. Hild, and S. Roux (2004). "A Finite Element Formulation to Identify Damage Fields:
- The Equilibrium Gap Method". In: International Journal for Numerical Methods in Engineering 61.2, pp. 189–208. DOI: 10.1002/nme.1057.
- Fedele, R., L. Galantucci, and A. Ciani (2013). "Global 2D Digital Image Correlation for Motion
   Estimation in a Finite Element Framework: A Variational Formulation and a Regularized,
- <sup>45</sup> Pyramidal, Multi-Grid Implementation". In: International Journal for Numerical Methods in
   <sup>47</sup> Engineering 96.12, pp. 739–762. DOI: 10.1002/nme.4577.
- 48 Finsberg, H., C. Xi, X. Zhao, J. L. Tan, M. Genet, J. Sundnes, L. C. Lee, L. Zhong, and S. T.
- 49 Wall (2019). "Computational Quantification of Patient-Specific Changes in Ventricular Dynam-
- ics Associated with Pulmonary Hypertension". In: American Journal of Physiology-Heart and
   Circulatory Physiology 317.6, H1363-H1375. DOI: 10.1152/ajpheart.00094.2019.
- <sup>52</sup> Friedrich, S., S. Groß, I. R. König, S. Engelhardt, M. Bahls, J. Heinz, C. Huber, L. Kaderali,
- M. Kelm, A. Leha, J. Rühl, J. Schaller, C. Scherer, M. Vollmer, T. Seidler, and T. Friede

(2021). "Applications of Artificial Intelligence/Machine Learning Approaches in Cardiovascular 1 Medicine: A Systematic Review with Recommendations". In: European Heart Journal - Digital 2 Health 2.3, pp. 424-436. DOI: 10.1093/ehjdh/ztab054. 3 Garot, J., D. A. Bluemke, N. F. Osman, C. E. Rochitte, E. R. McVeigh, E. A. Zerhouni, J. L. Prince, and J. A. C. Lima (2000). "Fast Determination of Regional Myocardial Strain Fields 5 From Tagged Cardiac Images Using Harmonic Phase MRI". In: Circulation 101.9, pp. 981–988. 6 DOI: 10.1161/01.CIR.101.9.981. Genet, M. (2019). "A Relaxed Growth Modeling Framework for Controlling Growth-Induced Resid-8 ual Stresses". In: Clinical Biomechanics 70, pp. 270–277. DOI: 10.1016/j.clinbiomech.2019. 9 08.015. 10 (2023a). Dolfin\_warp. URL: https://doi.org/10.5281/zenodo.8010275. 11 (2023b). N-DEG-paper-demos. URL: https://doi.org/10.5281/zenodo.8010517. 12 Genet, M., L. C. Lee, R. Nguyen, H. Haraldsson, G. Acevedo-Bolton, Z. Zhang, L. Ge, K. Ordovas, 13 S. Kozerke, and J. M. Guccione (2014). "Distribution of Normal Human Left Ventricular My-14 ofiber Stress at End Diastole and End Systole: A Target for in Silico Design of Heart Failure 15 Treatments". In: Journal of Applied Physiology 117, pp. 142–152. DOI: 10.1152/japplphysiol. 16 00255.2014 17 Genet, M., C. T. Stoeck, C. von Deuster, L. C. Lee, and S. Kozerke (2018). "Equilibrated Warping: 18 Finite Element Image Registration with Finite Strain Equilibrium Gap Regularization". In: 19 Medical Image Analysis 50, pp. 1-22. DOI: 10.1016/j.media.2018.07.007. 20 Hild, F. and S. Roux (2012). "Comparison of Local and Global Approaches to Digital Image 21 Correlation". In: Experimental Mechanics 52.9, pp. 1503–1519. DOI: 10.1007/s11340-012-22 9603-7. 23 Hild, F. and S. Roux (2006). "Digital Image Correlation: From Displacement Measurement to 24 Identification of Elastic Properties - a Review". In: Strain 42.2, pp. 69–80. DOI: 10.1111/j. 25 1475-1305.2006.00258.x. 26 Koehler, S., T. Hussain, H. Hussain, D. Young, S. Sarikouch, T. Pickardt, G. Greil, and S. En-27 gelhardt (2022). "Self-Supervised Motion Descriptor for Cardiac Phase Detection in 4D CMR 28 Based on Discrete Vector Field Estimations". In: Statistical Atlases and Computational Models 29 of the Heart. Regular and CMRxMotion Challenge Papers. Ed. by O. Camara, E. Puyol-Antón, 30 C. Qin, M. Sermesant, A. Suinesiaputra, S. Wang, and A. Young. Vol. 13593. Cham: Springer 31 Nature Switzerland, pp. 65–78. DOI: 10.1007/978-3-031-23443-9\_7. 32 Ladevèze, P. and J. P. Pelle (2005). Mastering Calculations in Linear and Nonlinear Mechanics. 33 Mechanical Engineering Series. New York: Springer Science. 413 pp. 34 Laville, C., C. Fetita, T. Gille, P.-Y. Brillet, H. Nunes, J.-F. Bernaudin, and M. Genet (2023). 35 "Comparison of Optimization Parametrizations for Regional Lung Compliance Estimation Us-36 ing Personalized Pulmonary Poromechanical Modeling". In: Biomechanics and Modeling in 37 Mechanobiology. DOI: 10.1007/s10237-023-01691-9. 38 Le Tallec, P. (1994). "Numerical Methods for Nonlinear Elasticity". In: Handbook of Numerical 39 Analysis. Vol. 3, pp. 465–622. DOI: 10.1016/S1570-8659(05)80018-3. 40 Leclerc, H., J.-N. Périé, S. Roux, and F. Hild (2010). "Voxel-Scale Digital Volume Correlation". In: 41 Experimental Mechanics 51.4, pp. 479–490. DOI: 10.1007/s11340-010-9407-6. 42 Lee, L. C. and M. Genet (2019). "Validation of Equilibrated Warping-Image Registration with 43 Mechanical Regularization-On 3D Ultrasound Images". In: Functional Imaging and Modeling 44 of the Heart (FIMH). Ed. by Y. Coudière, V. Ozenne, E. Vigmond, and N. Zemzemi. Vol. 11504. 45 Cham: Springer International Publishing, pp. 334–341. DOI: 10.1007/978-3-030-21949-9\_36. 46 Leiner, T., D. Rueckert, A. Suinesiaputra, B. Baeßler, R. Nezafat, I. Išgum, and A. A. Young (2019). 47 "Machine Learning in Cardiovascular Magnetic Resonance: Basic Concepts and Applications". 48 In: Journal of Cardiovascular Magnetic Resonance 21.1, pp. 1–14. DOI: 10.1186/s12968-019-49 0575-y. 50 Lenoir, N., M. Bornert, J. Desrues, P. Bésuelle, and G. Viggiani (2007). "Volumetric Digital Image 51 Correlation Applied to X-ray Microtomography Images from Triaxial Compression Tests on 52 Argillaceous Rock". In: Strain 43.3, pp. 193–205. DOI: 10.1111/j.1475-1305.2007.00348.x. 53 Logg, A., K.-A. Mardal, and G. Wells, eds. (2012). Automated Solution of Differential Equations 54 by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and 55 Engineering 84. Heidelberg: Springer. 723 pp. 56

López, P. A., H. Mella, S. Uribe, D. E. Hurtado, and F. S. Costabal (2022). WarpPINN: Cine-MR
 Image Registration with Physics-Informed Neural Networks. URL: http://arxiv.org/abs/
 2211.12549. preprint.

- Mansi, T., X. Pennec, M. Sermesant, H. Delingette, and N. Ayache (2011). "iLogDemons: A
   Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues".
   In: International Journal of Computer Vision 92.1, pp. 92–111. DOI: 10.1007/s11263-010 0405-z.
- Mathieu, F., H. Leclerc, F. Hild, and S. Roux (2015). "Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC". In: *Experimental Mechanics* 55.1, pp. 105–119. DOI: 10.1007/s11340-014-9888-9.
- Miller, M. I., G. E. Christensen, Y. Amit, and U. Grenander (1993). "Mathematical Textbook
   of Deformable Neuroanatomies." In: *Proceedings of the National Academy of Sciences* 90.24,
   pp. 11944–11948. DOI: 10.1073/pnas.90.24.11944.
- Ogden, R. W. (1972). "Large Deformation Isotropic Elasticity: On the Correlation of Theory and
   Experiment for Compressible Rubberlike Solids". In: *Proceedings of the Royal Society of London.* A. Mathematical and Physical Sciences 328.1575, pp. 567–583. DOI: 10.1098/rspa.1972.0096.
- Passieux, J.-C. and J.-N. Périé (2012). "High Resolution Digital Image Correlation Using Proper
   Generalized Decomposition: PGD-DIC". In: International Journal for Numerical Methods in
   Engineering 92.6, pp. 531–550. DOI: 10.1002/nme.4349.
- Passieux, J.-C. and R. Bouclier (2019). "Classic and Inverse Compositional Gauss-Newton in Global
   DIC". In: International Journal for Numerical Methods in Engineering 119.6, pp. 453–468. DOI:
   10.1002/nme.6057.
- Patte, C., P.-Y. Brillet, C. Fetita, T. Gille, J.-F. Bernaudin, H. Nunes, D. Chapelle, and M. Genet
   (2022). "Estimation of Regional Pulmonary Compliance in Idiopathic Pulmonary Fibrosis Based
   on Personalized Lung Poromechanical Modeling". In: Journal of Biomechanical Engineering.
   DOI: 10.1115/1.4054106.
- Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007). Numerical Recipes:
   The Art of Scientific Computing. 3rd ed. Cambridge, UK ; New York: Cambridge University
   Press. 1235 pp.
- Réthoré, J., S. Roux, and F. Hild (2009). "An extended and integrated digital image correlation
   technique applied to the analysis of fractured samples: The equilibrium gap method as a me chanical filter". In: European Journal of Computational Mechanics 18.3-4, pp. 285–306. DOI:
- <sup>33</sup> 10.3166/ejcm.18.285-306.
- Rutz, A. K., S. Ryf, S. Plein, P. Boesiger, and S. Kozerke (2008). "Accelerated Whole-Heart 3D
   CSPAMM for Myocardial Motion Quantification." In: *Magnetic resonance in medicine* 59.4,
   pp. 755–63. DOI: 10.1002/mrm.21363.
- Schroeder, W., K. Martin, and B. Lorensen (2006). The Visualization Toolkit: An Object-Oriented
   Approach to 3D Graphics. 4. ed. Clifton Park, NY: Kitware, Inc. 512 pp.
- Škardová, K., M. Rambausek, R. Chabiniok, and M. Genet (2019). "Mechanical and Imaging Models-Based Image Registration". In: *VipIMAGE 2019*. Ed. by J. M. R. S. Tavares and R. M.
  Natal Jorge. Vol. 34. Cham: Springer International Publishing, pp. 77–85. DOI: 10.1007/978-3-030-32040-9\_9.
- 43 Smith, N. P., A. de Vecchi, M. McCormick, D. A. Nordsletten, O. Camara, A. F. Frangi, H.
  44 Delingette, M. Sermesant, J. Relan, N. Ayache, M. W. Krueger, W. H. W. Schulze, R. Hose,
- 45 I. Valverde, P. Beerbaum, C. Staicu, M. Siebes, J. Spaan, P. J. Hunter, J. Weese, H. Lehmann,
- D. Chapelle, and R. Rezavi (2011). "euHeart: Personalized and Integrated Cardiac Care Using
- Patient-Specific Cardiovascular Modelling". In: Interface focus 1.3, pp. 349–64. DOI: 10.1098/
   rsfs.2010.0048.
- <sup>49</sup> Sotiras, A., C. Davatzikos, and N. Paragios (2013). "Deformable Medical Image Registration: A
- Survey". In: *IEEE Transactions on Medical Imaging* 32.7, pp. 1153–1190. DOI: 10.1109/TMI.
   2013.2265603.
- 52 Tobon-Gomez, C., M. De Craene, K. McLeod, L. Tautz, W. Shi, A. Hennemuth, A. Prakosa, H.
- <sup>53</sup> Wang, G. S. Carr-White, S. Kapetanakis, A. Lutz, V. Rasche, T. Schaeffter, C. Butakoff, O.
- 54 Friman, T. Mansi, M. Sermesant, X. Zhuang, S. Ourselin, H.-O. Peitgen, X. Pennec, R. Razavi,
- D. Rueckert, A. F. Frangi, and K. S. Rhode (2013). "Benchmarking Framework for Myocardial

Tracking and Deformation Algorithms: An Open Access Database". In: *Medical Image Analysis* 17.6, pp. 632–648. DOI: 10.1016/j.media.2013.03.008.

- Tueni, N., J. Vizet, M. Genet, A. Pierangelo, and J.-M. Allain (2020). "Microstructural Deformation
   Observed by Mueller Polarimetry during Traction Assay on Myocardium Samples". In: Scientific
   Reports 10.1, p. 20531. DOI: 10.1038/s41598-020-76820-w.
- Veress, A. I., G. T. Gullberg, and J. A. Weiss (2005). "Measurement of Strain in the Left Ventricle during Diastole with Cine-MRI and Deformable Image Registration". In: *Journal of Biomechanical Engineering* 127.7, p. 1195. DOI: 10.1115/1.2073677.
- Xi, C., C. Latnie, X. Zhao, J. L. Tan, S. T. Wall, M. Genet, L. Zhong, and L. C. Lee (2016). "Patient Specific Computational Analysis of Ventricular Mechanics in Pulmonary Arterial Hyperten-
- sion". In: Journal of Biomechanical Engineering 138.11, p. 111001. DOI: 10.1115/1.4034559.
- Zienkiewicz, O., R. Taylor, and J. Zhu (2013). "Ch. 15 Errors, Recovery Processes, and Error
   Estimates". In: *The Finite Element Method: Its Basis and Fundamentals*. Elsevier, pp. 493–543.
   DOI: 10.1016/B978-1-85617-633-0.00015-0.
- Zou, H., S. Leng, C. Xi, X. Zhao, A. S. Koh, F. Gao, J. L. Tan, R.-S. Tan, J. C. Allen, L. C. Lee, M.
   Genet, and L. Zhong (2020). "Three-Dimensional Biventricular Strains in Pulmonary Arterial
   Hypertension Patients Using Hyperelastic Warping". In: Computer Methods and Programs in
- Biomedicine 189, p. 105345. DOI: 10.1016/j.cmpb.2020.105345.
- <sup>19</sup> Zou, H., C. Xi, X. Zhao, A. S. Koh, F. Gao, Y. Su, R.-S. Tan, J. Allen, L. C. Lee, M. Genet,
- and L. Zhong (2018). "Quantification of Biventricular Strains in Heart Failure With Preserved
- Ejection Fraction Patient Using Hyperelastic Warping Method". In: Frontiers in Physiology 9.
   DOI: 10.3389/fphys.2018.01295.

- <sup>1</sup> Appendix
- <sup>2</sup> A Code for Figures 1, 2, 3 and 4
- 3 Imports

```
[]: import dolfin # https://fenicsproject.org
import IPython # https://ipython.org
import vtk # https://vtk.org
import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp
from generate_images_and_meshes_from_Struct import generate_images_and_meshes_from_Struct
from plot_disp_error_vs_regul_strength import plot_disp_error_vs_regul_strength
from lib_viewer import Viewer
```

5 Parameters

```
[]: n_dim = 2
     images_folder = "generate_images"
     n_voxels = 100
     structure_deformation_type_lst = [
     structure_deformation_type_lst += [["square", "translation"]]
     structure_deformation_type_lst += [["square", "rotation"
                                                                 ]]
     structure_deformation_type_lst += [["square", "compression"]]
     structure_deformation_type_lst += [["square", "shear"
                                                                 11
     texture_type_lst = [
     texture_type_lst += ["tagging"]
     noise_level_lst = [ ]
     noise_level_lst += [0.0]
     noise_level_lst += [0.1]
     noise_level_lst += [0.2]
     noise_level_lst += [0.3]
     n_runs_for_noisy_images = 10
     working_folder = "run_warp"
     mesh_size_lst = [
                         ٦
     mesh_size_lst += [0.1]
     regul_type_lst = [
                                                                                   ]
     regul_type_lst += ["continuous-linear-elastic"
                                                                                   ]
     regul_type_lst += ["continuous-linear-equilibrated"
                                                                                   ]
     regul_type_lst += ["continuous-elastic"
                                                                                   ٦
     regul_type_lst += ["continuous-equilibrated"
                                                                                   ٦
     regul_type_lst += ["discrete-simple-elastic"
                                                                                   ٦
     regul_type_lst += ["discrete-simple-equilibrated"
     regul_type_lst += ["discrete-linear-equilibrated"
     regul_type_lst += ["discrete-linear-equilibrated-tractions-normal"
     regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential"
                                                                                   ٦
     regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]
     regul_type_lst += ["discrete-equilibrated"
                                                                                   ٦
     regul_type_lst += ["discrete-equilibrated-tractions-normal"
                                                                                   ]
     regul_type_lst += ["discrete-equilibrated-tractions-tangential"
                                                                                   ]
     regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential"
                                                                                   ٦
     regul_level_lst = [
                                  ]
     regul_level_lst += [0.99
                                 ٦
     regul_level_lst += [0.1*2**3]
```

```
regul_level_lst += [0.1*2**2]
regul_level_lst += [0.1*2**1]
regul_level_lst += [0.1 ]
regul_level_lst += [0.1/2**1]
regul_level_lst += [0.1/2**2]
regul_level_lst += [0.1/2**3]
regul_level_lst += [0.0 ]
do_generate_images = 1
do_generate_meshes = 1
do_run_warp = 1
do_plot_disp_error_vs_regul_strength = 1
```

### <sup>2</sup> Synthetic images

```
[]: if (do_generate_images):
      for structure_type, deformation_type in structure_deformation_type_lst:
       for texture_type
                                          in texture_type_lst
        for noise_level
                                           in noise_level_lst
                                                                            :
         n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
         for k_run in range(1, n_runs+1):
             print("*** generate_images ***"
                                                      )
             print("structure_type:" , structure_type )
             print("deformation_type:", deformation_type)
            print("texture_type:" , texture_type
                                                    )
             print("noise_level:"
                                    , noise_level
                                                      )
             print("k_run:"
                                                      )
                                    , k_run
            generate_images_and_meshes_from_Struct(
                           = n_dim
                n_dim
                n_voxels
                                = n_voxels
                 structure_type = structure_type
                 deformation_type = deformation_type
                 texture_type = texture_type
                 noise_level
                                = noise_level
                                 = k_run if (n_runs > 1) else None,
                 k_run
                 generate_images = 1
                 compute_meshes = 0
                                                                 )
```

# 4 Ground truth motion

```
[]: if (do_generate_meshes):
      for structure_type, deformation_type in structure_deformation_type_lst:
       for mesh_size
                                          in mesh_size_lst
         print("*** generate_meshes ***"
         print("structure_type:" , structure_type )
         print("deformation_type:", deformation_type)
        print("mesh_size:"
                                , mesh_size
                                                  )
         generate_images_and_meshes_from_Struct(
                   = n_dim
            n_dim
            n_voxels
                           = n_voxels
            structure_type = structure_type ,
            deformation_type = deformation_type,
                           = "no"
            texture_type
                            = 0
            noise_level
            mesh_size
                            = mesh_size
            generate_images = 0
            compute_meshes
                           = 1
                                              )
```

<sup>1</sup> Tracking

```
[]: if (do_run_warp):
       for structure_type, deformation_type in structure_deformation_type_lst:
                                                 in texture_type_lst
        for texture_type
                                                                                      :
         for noise_level
                                                  in noise_level_lst
                                                                                        :
          n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
          for k_run
                           in range(1, n_runs+1):
           for mesh_size in mesh_size_lst
                                                    :
            for regul_type in regul_type_lst
                                                      :
             for regul_level in regul_level_lst :
               if any([_ in regul_type for _ in ["linear", "simple"]]):
                   regul_model = "hooke"
               else:
                   regul_model = "ciarletgeymonatneohookean"
               regul_poisson = 0.0
               print("*** run_warp ***"
                                                               )
               print("structure_type:" , structure_type )
               print("deformation_type:", deformation_type)
              print("deformation_type:", deformation_type)
print("texture_type:", texture_type)
print("noise_level:", noise_level)
print("k_run:", k_run, )
print("mesh_size:", mesh_size)
print("regul_type:", regul_type)
print("regul_model:", regul_model)
print("regul_level:", regul_level)
               print("regul_poisson:" , regul_poisson )
               images_basename = structure_type
               images_basename += "-"+deformation_type
               images_basename += "-"+texture_type
               images_basename += "-noise="+str(noise_level)
               if (n_runs > 1):
                    images_basename += "-run="+str(k_run).zfill(2)
               mesh_folder = images_folder
               mesh_basename = structure_type
               mesh_basename += "-"+deformation_type
               mesh_basename += "-h="+str(mesh_size)
               if (structure_type == "heart"):
                   mesh_basename += "-mesh"
               working_basename = images_basename
               working_basename += "-h="+str(mesh_size)
               working_basename += "-"+regul_type
               working_basename += "-regul="+str(regul_level)
               dwarp.warp(
                   working_folder
                                                                     = working_folder ,
                   working_basename
                                                                     = working_basename,
                   images_folder
                                                                     = images_folder ,
                   images_basename
                                                                     = images_basename ,
                   mesh_folder
                                                                     = mesh_folder
                                                                     = mesh_basename ,
                   mesh_basename
                   regul_type
                                                                     = regul_type
                   regul_model
                                                                     = regul_model
                   regul_level
                                                                     = regul_level
                                                                     = regul_poisson
                   regul_poisson
                   relax_type
                                                                     = "backtracking"
                                                                     = 1
                   normalize_energies
```

,

,

,

,

,

| tol_dU                                      | = 1e-2 | , |
|---------------------------------------------|--------|---|
| n_iter_max                                  | = 100  | , |
| continue_after_fail                         | = 1    | , |
| write_VTU_files                             | = 1    | , |
| write_VTU_files_with_preserved_connectivity | = 1    | ) |

## <sup>2</sup> Visualization

```
[]: structure_type = "square"
     deformation_type = "translation"
     # deformation_type = "rotation"
     # deformation_type = "compression"
     # deformation_type = "shear"
     texture_type = "tagging"
     noise_level = 0.
     # noise_level = 0.1
     # noise_level = 0.2
     # noise_level = 0.3
     k_run = 0
     mesh_size = 0.1
     # regul_type = "continuous-linear-elastic"
     # regul_type = "continuous-linear-equilibrated"
     # regul_type = "continuous-elastic"
     # regul_type = "continuous-equilibrated"
     # regul_type = "discrete-simple-elastic"
     # regul_type = "discrete-simple-equilibrated"
     # regul_type = "discrete-linear-equilibrated"
     # regul_type = "discrete-linear-equilibrated-tractions-normal"
     # regul_type = "discrete-linear-equilibrated-tractions-tangential"
     # regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"
     # regul_type = "discrete-equilibrated"
     # regul_type = "discrete-equilibrated-tractions-normal"
     # regul_type = "discrete-equilibrated-tractions-tangential"
     regul_type = "discrete-equilibrated-tractions-normal-tangential"
     # regul_level = 0.99
     # regul_level = 0.1*2**3
     # regul_level = 0.1*2**2
     # regul_level = 0.1*2**1
     regul_level = 0.1
     # regul_level = 0.1/2**1
     # regul_level = 0.1/2**2
     # regul_level = 0.1/2**3
     # regul_level = 0.0
     images_basename = structure_type
     images_basename += "-"+deformation_type
     images_basename += "-"+texture_type
     images_basename += "-noise="+str(noise_level)
     if (k_run > 0):
         images_basename += "-run="+str(k_run).zfill(2)
     working_basename = images_basename
     working_basename += "-h="+str(mesh_size)
     working_basename += "-"+regul_type
     working_basename += "-regul="+str(regul_level)
     viewer = Viewer(
         images=images_folder+"/"+images_basename+"_*.vti",
```

```
meshes=working_folder+"/"+working_basename+"_*.vtu")
viewer.view()
```

# <sup>2</sup> Plot

1

```
[]: if (do_plot_disp_error_vs_regul_strength):
      for structure_type, deformation_type in structure_deformation_type_lst:
                                          in texture_type_lst
       for texture_type
                                           in regul_type_lst
       for regul_type
                                                                            :
         print("*** plot_disp_error_vs_regul_strength ***")
         print("structure_type:" , structure_type )
         print("deformation_type:", deformation_type)
         print("texture_type:" , texture_type
                                                   )
         print("regul_type:"
                                 , regul_type
                                                   )
         plot_disp_error_vs_regul_strength(
                                = images_folder
             images_folder
                                  = working_folder
             sol_folder
                                  = structure_type
             structure_type
             deformation_type
                                  = deformation_type
                                  = texture_type
             texture_type
             regul_type = regul_type
noise_level_lst = noise_level_lst
             n_runs_for_noisy_images = n_runs_for_noisy_images,
             regul_level_lst = regul_level_lst
             regul_level_for_zero = 1e-3
             generate_datafile = 1
             generate_plotfile
                                    = 1
                                    = 1
                                                             )
             generate_plot
         plotfile_basename = "plot_disp_error_vs_regul_strength"
         plotfile_basename += "/"+structure_type
         plotfile_basename += "-"+deformation_type
         plotfile_basename += "-"+texture_type
         plotfile_basename += "-"+regul_type
         IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
```

#### -

# <sup>4</sup> B Code for Figure 5

#### 5 Imports

```
[]: import dolfin # https://fenicsproject.org
import IPython # https://ipython.org
import vtk # https://utk.org
import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp
from generate_images_and_meshes_from_HeartSlice import generate_images_and_meshes_from_HeartSlice
from plot_disp_error_vs_regul_strength import plot_disp_error_vs_regul_strength
from lib_viewer import Viewer
```

### 7 Parameters

```
[]: images_folder = "generate_images"
n_voxels = 100
deformation_type_lst = [ ]
deformation_type_lst += ["contractandtwist"]
texture_type_lst = [ ]
texture_type_lst += ["tagging"]
```

```
noise_level_lst = [ ]
noise_level_lst += [0.0]
noise_level_lst += [0.1]
noise_level_lst += [0.2]
noise_level_lst += [0.3]
n_runs_for_noisy_images = 10
working_folder = "run_warp"
mesh_size_lst = [ ]
mesh_size_lst += [0.1]
                                                                             ]
regul_type_lst = [
regul_type_lst += ["continuous-linear-elastic"
                                                                             ٦
regul_type_lst += ["continuous-linear-equilibrated"
                                                                             ]
regul_type_lst += ["continuous-elastic"
                                                                             ٦
regul_type_lst += ["continuous-equilibrated"
                                                                             ٦
regul_type_lst += ["discrete-simple-elastic"
                                                                             ]
regul_type_lst += ["discrete-simple-equilibrated"
                                                                             ٦
regul_type_lst += ["discrete-linear-equilibrated"
                                                                             ٦
regul_type_lst += ["discrete-linear-equilibrated-tractions-normal"
                                                                             ]
regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential"
                                                                             ]
regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]
regul_type_lst += ["discrete-equilibrated"
                                                                             ٦
regul_type_lst += ["discrete-equilibrated-tractions-normal"
                                                                             Т
regul_type_lst += ["discrete-equilibrated-tractions-tangential"
                                                                             1
regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential"
                                                                             1
regul_level_lst = [
                            ٦
regul_level_lst += [0.99
                            ]
regul_level_lst += [0.1*2**3]
regul_level_lst += [0.1*2**2]
regul_level_lst += [0.1*2**1]
regul_level_lst += [0.1
                           ]
regul_level_lst += [0.1/2**1]
regul_level_lst += [0.1/2**2]
regul_level_lst += [0.1/2**3]
regul_level_lst += [0.0
                           1
do_generate_images
                                     = 1
do_generate_meshes
                                     = 1
do_run_warp
                                     = 1
do_plot_disp_error_vs_regul_strength = 1
```

### <sup>2</sup> Synthetic images

```
[]: if (do_generate_images):
      for deformation_type in deformation_type_lst:
         print("*** running model ***"
                                                  )
         print("deformation_type:", deformation_type)
         generate_images_and_meshes_from_HeartSlice(
            n_voxels = n_voxels
             deformation_type = deformation_type,
            texture_type = "no"
                             = 0
             noise_level
                             = 1
             run_model
             generate_images = 0
                                              )
         for texture_type in texture_type_lst:
          for noise_level in noise_level_lst :
```

```
n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
for k_run in range(1, n_runs+1):
    print("*** generate_images ***"
                                                  )
    print("deformation_type:", deformation_type)
    print("texture_type:" , texture_type )
print("noise_level:" , noise_level )
                             , k_run
    print("k_run:"
                                                  )
    generate_images_and_meshes_from_HeartSlice(
        n_voxels = n_voxels
        deformation_type = deformation_type
        texture_type = texture_type
noise_level = noise_level
                          = k_run if (n_runs > 1) else None,
        k_run
        run_model = 0
        generate_images = 1
                                                              )
```

<sup>2</sup> Ground truth motion

```
[]: if (do_generate_meshes):
     for deformation_type in deformation_type_lst:
      for mesh_size in mesh_size_lst
                                             :
        print("*** generate_meshes ***"
                                               )
        print("deformation_type:", deformation_type)
        print("mesh_size:" , mesh_size
                                              )
        generate_images_and_meshes_from_HeartSlice(
            n_voxels = n_voxels
            deformation_type = deformation_type,
            texture_type = "no"
                                           ,
            noise_level
                           = 0
                                            ,
                        = 1
            run_model
                                           ,
            generate_images = 0
            mesh_size = mesh_size
                                           )
```

## 4 Tracking

```
[]: if (do_run_warp):
      for deformation_type in deformation_type_lst:
       for texture_type in texture_type_lst
                                                   :
        for noise_level
                             in noise_level_lst
                                                     :
         n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
                        in range(1, n_runs+1):
         for k_run
          for mesh_size in mesh_size_lst
                                              :
           for regul_type in regul_type_lst
                                                :
            for regul_level in regul_level_lst :
             if any([_ in regul_type for _ in ["linear", "simple"]]):
                 regul_model = "hooke"
             else:
                 regul_model = "ciarletgeymonatneohookean"
             regul_poisson = 0.3
             print("*** run_warp ***")
             print("deformation_type:", deformation_type)
             print("texture_type:" , texture_type )
print("noise_level:" , noise_level )
                                     , k_run
             print("k_run:"
                                                         )
```

```
, mesh_size
print("mesh_size:"
print("regul_type:" , regul_type
print("regul_model:" , regul_model
print("regul_level:" , regul_level

                                             )
                                             )
                          , regul_level
                                             )
print("regul_poisson:" , regul_poisson
                                             )
images_basename = "heart"
images_basename += "-"+deformation_type
images_basename += "-"+texture_type
images_basename += "-noise="+str(noise_level)
if (n_runs > 1):
    images_basename += "-run="+str(k_run).zfill(2)
mesh_folder = images_folder
mesh_basename = "heart"
mesh_basename += "-"+deformation_type
mesh_basename += "-h="+str(mesh_size)
mesh_basename += "-mesh"
working_basename = images_basename
working_basename += "-h="+str(mesh_size)
working_basename += "-"+regul_type
working_basename += "-regul="+str(regul_level)
dwarp.warp(
    working_folder
                                                   = working_folder ,
    working_basename
                                                   = working_basename,
                                                  = images_folder ,
    images_folder
    images_basename
                                                   = images_basename ,
                                                  = mesh_folder ,
    mesh_folder
                                                  = mesh_basename ,
    mesh_basename
    regul_type
                                                   = regul_type
                                                                     ,
    regul_model
                                                   = regul_model
                                                                     ,
    regul_level
                                                   = regul_level
                                                                     ,
                                                  = regul_poisson
    regul_poisson
                                                   = "backtracking"
    relax_type
                                                                     ,
                                                   = 1
    normalize_energies
                                                                      ,
                                                  = 1e-2
    tol_dU
                                                                     ,
                                                   = 100
    n_iter_max
                                                                      ,
    continue_after_fail
                                                  = 1
                                                                     ,
    write_VTU_files
                                                   = 1
    write_VTU_files_with_preserved_connectivity = 1
                                                                     )
```

### <sup>2</sup> Visualization

1

```
texture_type = "tagging"
noise_level = 0.
# noise_level = 0.1
# noise_level = 0.2
# noise_level = 0.3
k_run = 0
mesh_size = 0.1
# regul_type = "continuous-linear-elastic"
# regul_type = "continuous-linear-equilibrated"
# regul_type = "continuous-elastic"
# regul_type = "discrete-simple-elastic"
# regul_type = "discrete-simple-equilibrated"
```

[]: deformation\_type = "contractandtwist"

```
# regul_type = "discrete-linear-equilibrated"
# regul_type = "discrete-linear-equilibrated-tractions-normal"
# regul_type = "discrete-linear-equilibrated-tractions-tangential"
# regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"
# regul_type = "discrete-equilibrated"
# regul_type = "discrete-equilibrated-tractions-normal"
# regul_type = "discrete-equilibrated-tractions-tangential"
regul_type = "discrete-equilibrated-tractions-normal-tangential"
# regul_level = 0.99
# regul_level = 0.1*2**3
# regul_level = 0.1*2**2
# regul_level = 0.1*2**1
regul_level = 0.1
# regul_level = 0.1/2**1
# regul_level = 0.1/2**2
# regul_level = 0.1/2**3
# regul_level = 0.0
images_basename = "heart"
images_basename += "-"+deformation_type
images_basename += "-"+texture_type
images_basename += "-noise="+str(noise_level)
if (k_run > 0):
    images_basename += "-run="+str(k_run).zfill(2)
working_basename = images_basename
working_basename += "-h="+str(mesh_size)
working_basename += "-"+regul_type
working_basename += "-regul="+str(regul_level)
viewer = Viewer(
    images=images_folder+"/"+images_basename+"_*.vti",
    meshes=working_folder+"/"+working_basename+"_*.vtu")
viewer.view()
```

### $_2$ Plot

```
[]: if (do_plot_disp_error_vs_regul_strength):
       for deformation_type in deformation_type_lst:
        for texture_type in texture_type_lst :
         for regul_type
                              in regul_type_lst
                                                       :
          print("*** plot_disp_error_vs_regul_strength ***")
          print("deformation_type:", deformation_type)
          print("texture_type:" , texture_type )
          print("regul_type:"
                                                        )
                                   , regul_type
          plot_disp_error_vs_regul_strength(
              images_folder = images_folder
sol_folder = working_folder
structure_type = "heart"
deformation_type = deformation_type
texture_type = texture_type
              texture_type
              regul_type = regul_type
noise_level_lst = noise_level_lst
              n_runs_for_noisy_images = n_runs_for_noisy_images,
              regul_level_lst = regul_level_lst
              regul_level_for_zero = 1e-3
                                                                    ,
              generate_datafile = 1
                                                                    ,
              generate_plotfile
                                      = 1
              generate_plot
                                       = 1
                                                                    )
          plotfile_basename = "plot_disp_error_vs_regul_strength"
          plotfile_basename += "/"+"heart"
```

```
plotfile_basename += "-"+deformation_type
plotfile_basename += "-"+texture_type
plotfile_basename += "-"+regul_type
IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
```

# <sup>2</sup> C Code for Figure 6

#### 3 Imports

```
[]: import dolfin # https://fenicsproject.org
import IPython # https://ipython.org
import vtk # https://vtk.org
import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp
from generate_images_and_meshes_from_HeartSlice import generate_images_and_meshes_from_HeartSlice
from plot_disp_error_vs_mesh_size import plot_disp_error_vs_mesh_size
from lib_viewer import Viewer
```

#### 5 Parameters

```
[]: images_folder = "generate_images"
     n_voxels = 100
     deformation_type_lst = [
     deformation_type_lst += ["contractandtwist"]
     texture_type_lst = []
     texture_type_lst += ["tagging"]
     noise_level_lst = []
     noise_level_lst += [0.0]
     noise_level_lst += [0.1]
     noise_level_lst += [0.2]
     noise_level_lst += [0.3]
     n_runs_for_noisy_images = 10
     working_folder = "run_warp"
     mesh_size_lst = [
                                ٦
     mesh_size_lst += [0.1
                               ٦
     mesh_size_lst += [0.1/2**1]
     mesh_size_lst += [0.1/2**2]
     mesh_size_lst += [0.1/2**3]
     mesh_size_lst += [0.1/2**4]
                                                                                   ]
     regul_type_lst = [
     regul_type_lst += ["continuous-linear-elastic"
                                                                                   ]
     regul_type_lst += ["continuous-linear-equilibrated"
                                                                                   ٦
     regul_type_lst += ["continuous-elastic"
                                                                                   ٦
     regul_type_lst += ["continuous-equilibrated"
                                                                                   ٦
     regul_type_lst += ["discrete-simple-elastic"
                                                                                    ٦
     regul_type_lst += ["discrete-simple-equilibrated"
                                                                                    ٦
     regul_type_lst += ["discrete-linear-equilibrated"
                                                                                    ٦
     regul_type_lst += ["discrete-linear-equilibrated-tractions-normal"
                                                                                    ٦
     regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential"
                                                                                   ]
     regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]
     regul_type_lst += ["discrete-equilibrated"
                                                                                   ]
     regul_type_lst += ["discrete-equilibrated-tractions-normal"
                                                                                   ٦
     regul_type_lst += ["discrete-equilibrated-tractions-tangential"
                                                                                   ٦
     regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential"
                                                                                   ٦
```

| regul_level_lst = [ ]                       |     |
|---------------------------------------------|-----|
| regul_level_lst += [0.0 ]                   |     |
| regul_level_lst += [0.1/2**3]               |     |
| regul_level_lst += [0.1/2**2]               |     |
| regul_level_lst += [0.1/2**1]               |     |
| regul_level_lst += [0.1 ]                   |     |
| regul_level_lst += [0.1*2**1]               |     |
| regul_level_lst += [0.1*2**2]               |     |
| regul_level_lst += [0.1*2**3]               |     |
| regul_level_lst += [0.99 ]                  |     |
|                                             |     |
| do_generate_images                          | = 1 |
| do_generate_meshes                          | = 1 |
| do_run_warp                                 | = 1 |
| do_run_warp_and_refine                      | = 1 |
| do_plot_disp_error_vs_mesh_size             | = 1 |
| do_plot_disp_error_vs_mesh_size_with_refine | = 1 |
|                                             |     |

# <sup>2</sup> Synthetic images

1

```
[]: if (do_generate_images):
      for deformation_type in deformation_type_lst:
         print("*** running model ***"
                                                    )
         print("deformation_type:", deformation_type)
         generate_images_and_meshes_from_HeartSlice(
             n_voxels = n_voxels
             deformation_type = deformation_type,
             texture_type = "no"
             noise_level = 0
                                                ,
                                                 ,
             generate_images = 0
                                                )
         for texture_type in texture_type_lst:
          for noise_level in noise_level_lst :
             n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
             for k_run in range(1, n_runs+1):
                 print("*** generate_images ***"
                                                            )
                 print("deformation_type:", deformation_type)
                 print("texture_type:" , texture_type
print("noise_level:" , noise_level
                                                            )
                                                            )
                 print("k_run:"
                                         , k_run
                                                            )
                 generate_images_and_meshes_from_HeartSlice(
                                 = n_voxels
                     n_voxels
                     deformation_type = deformation_type
                     texture_type = texture_type
                     noise_level
                                    = noise_level
                                     = k_run if (n_runs > 1) else None,
                     k_run
                     run_model
                                    = 1
                     generate_images = 0
                                                                       )
```

Ground truth motion

```
[]: if (do_generate_meshes):
    for deformation_type in deformation_type_lst:
        for mesh_size in mesh_size_lst :
            print("*** generate_meshes ***" )
            print("deformation_type:", deformation_type)
```

```
print("mesh_size:" , mesh_size )
generate_images_and_meshes_from_HeartSlice(
    n_voxels = n_voxels ,
    deformation_type = deformation_type,
    texture_type = "no" ,
    noise_level = 0 ,
    run_model = 1 ,
    generate_images = 0 ,
    mesh_size = mesh_size )
```

<sup>2</sup> Tracking (single-level)

```
[]: if (do_run_warp):
       for deformation_type in deformation_type_lst:
        for texture_type in texture_type_lst
                                                        :
         for noise_level
                               in noise_level_lst
                                                           :
          n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
          for k_run
                           in range(1, n_runs+1):
           for mesh_size in mesh_size_lst
                                                     :
            for regul_type in regul_type_lst
              for regul_level in regul_level_lst
               if any([_ in regul_type for _ in ["linear", "simple"]]):
                   regul_model = "hooke"
               else:
                   regul_model = "ciarletgeymonatneohookean"
               regul_poisson = 0.3
               print("*** run_warp ***"
                                                               )
               print("deformation_type:", deformation_type)
               print("texture_type:" , texture_type )
print("noise_level:" , noise_level )
              , noise_level
, k_run
print("mesh_size:" , k_run
print("regul_type:" , regul_type
print("regul_model:" , regul_model
print("regul_level:" , regul_level
                                                               )
                                                               )
                                                               )
                                                               )
               print("regul_level:" , regul_level
print("regul_poisson:" , regul_poisson
                                                               )
                                                               )
               images_basename = "heart"
               images_basename += "-"+deformation_type
               images_basename += "-"+texture_type
               images_basename += "-noise="+str(noise_level)
               if (n_runs > 1):
                    images_basename += "-run="+str(k_run).zfill(2)
               mesh_folder = images_folder
               mesh_basename = "heart"
               mesh_basename += "-"+deformation_type
               mesh_basename += "-h="+str(mesh_size)
               mesh_basename += "-mesh"
               working_basename = images_basename
               working_basename += "-h="+str(mesh_size)
               working_basename += "-"+regul_type
               working_basename += "-regul="+str(regul_level)
               dwarp.warp(
                   working_folder
                                                                     = working_folder
                   working_basename
                                                                     = working_basename,
```

| <pre>images_folder</pre> |                                | = | images_folder   | , |
|--------------------------|--------------------------------|---|-----------------|---|
| images_basena            | ne                             | = | images_basename | 3 |
| mesh_folder              |                                | = | mesh_folder     | , |
| mesh_basename            |                                | = | mesh_basename   | , |
| regul_type               |                                | = | regul_type      | , |
| regul_model              |                                | = | regul_model     | , |
| regul_level              |                                | = | regul_level     | , |
| regul_poisson            |                                | = | regul_poisson   | , |
| relax_type               |                                | = | "backtracking"  | , |
| normalize_ene:           | rgies                          | = | 1               | , |
| tol_dU                   |                                | = | 1e-2            | , |
| n_iter_max               |                                | = | 100             | , |
| continue_afte:           | r_fail                         | = | 1               | , |
| write_VTU_fil            | es                             | = | 1               | , |
| write_VTU_file           | es_with_preserved_connectivity | = | 1               | , |
| print_iterati            | ons                            | = | 0               | ) |
|                          |                                |   |                 |   |

<sup>2</sup> Tracking (multi-level)

```
[]: if (do_run_warp_and_refine):
       for deformation_type in deformation_type_lst:
        for texture_type in texture_type_lst
                                                        :
         for noise_level
                               in noise_level_lst
                                                          :
          n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1
                          in range(1, n_runs+1):
          for k_run
           for regul_type in regul_type_lst
                                                    :
            for regul_level in regul_level_lst
                                                    :
               if any([_ in regul_type for _ in ["linear", "simple"]]):
                  regul_model = "hooke"
               else:
                   regul_model = "ciarletgeymonatneohookean"
               regul_poisson = 0.3
              print("*** run_warp_and_refine ***"
                                                              )
               print("deformation_type:", deformation_type)
              print("texture_type:" , texture_type
print("noise_level:" , noise_level
                                                              )
                                                              )
              print("k_run:" , k_run
print("regul_type:" , regul_type
print("regul_model:" , regul_model
print("regul_lowel:"
                                                              )
                                                              )
                                                              )
              print("regul_level:"
              print("regul_level:" , regul_level
print("regul_poisson:" , regul_poisson
                                                              )
                                                              )
               images_basename = "heart"
               images_basename += "-"+deformation_type
               images_basename += "-"+texture_type
               images_basename += "-noise="+str(noise_level)
               if (n_runs > 1):
                   images_basename += "-run="+str(k_run).zfill(2)
               mesh_folder = "generate_images"
              mesh_basenames = []
              for mesh_size in mesh_size_lst:
                   mesh_basename = "heart"
                   mesh_basename += "-"+deformation_type
                   mesh_basename += "-h="+str(mesh_size)
                   mesh_basename += "-mesh"
                   mesh_basenames += [mesh_basename]
```

```
working_basename = images_basename
working_basename += "-"+regul_type
working_basename += "-regul="+str(regul_level)
dwarp.warp_and_refine(
    working_folder = working_folder ,
    working_basename = working_basename ,
    images_folder = images_folder ,
    images_basename = images_basename ,
    mesh_folder = mesh_folder ,
    mesh_basenames = mesh_basenames ,
    regul_type = regul_type ,
    regul_level = regul_model ,
    regul_level = regul_level ,
    regul_poisson = regul_poisson ,
    relax_type = "backtracking" ,
    normalize_energies = 1 ,
    tol_dU = 1e-2 ,
    n_iter_max = 100 ,
    continue_after_fail = 1 )
```

# <sup>2</sup> Visualization

```
[]: deformation_type = "contractandtwist"
     texture_type = "tagging"
     noise_level = 0.
     # noise_level = 0.1
     # noise_level = 0.2
     # noise_level = 0.3
     k_run = 0
     mesh_size = 0.1 ; k_mesh_size = 0
     # mesh_size = 0.1/2**1; k_mesh_size = 1
     # mesh_size = 0.1/2**2; k_mesh_size = 2
     # mesh_size = 0.1/2**3; k_mesh_size = 3
     # mesh_size = 0.1/2**4; k_mesh_size = 4
     with_refine = 1
     # regul_type = "continuous-linear-elastic"
     # regul_type = "continuous-linear-equilibrated"
     # regul_type = "continuous-elastic"
      # regul_type = "continuous-equilibrated"
      # regul_type = "discrete-simple-elastic"
      # regul_type = "discrete-simple-equilibrated"
      # regul_type = "discrete-linear-equilibrated"
      # regul_type = "discrete-linear-equilibrated-tractions-normal"
      # regul_type = "discrete-linear-equilibrated-tractions-tangential"
      # regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"
      # regul_type = "discrete-equilibrated"
      # regul_type = "discrete-equilibrated-tractions-normal"
      # regul_type = "discrete-equilibrated-tractions-tangential"
     regul_type = "discrete-equilibrated-tractions-normal-tangential"
     # regul_level = 0.99
     # regul_level = 0.1*2**3
     # regul_level = 0.1*2**2
     # regul_level = 0.1*2**1
     regul_level = 0.1
     # regul_level = 0.1/2**1
     # regul_level = 0.1/2**2
     # regul_level = 0.1/2**3
```

```
# regul_level = 0.0
images_basename = "heart"
images_basename += "-"+deformation_type
images_basename += "-"+texture_type
images_basename += "-noise="+str(noise_level)
if (k_run > 0):
    images_basename += "-run="+str(k_run).zfill(2)
working_basename = images_basename
if not (with_refine):
    working_basename += "-h="+str(mesh_size)
working_basename += "-"+regul_type
working_basename += "-regul="+str(regul_level)
if (with_refine):
    working_basename += "-refine="+str(k_mesh_size)
viewer = Viewer(
    images=images_folder+"/"+images_basename+"_*.vti",
    meshes=working_folder+"/"+working_basename+"_*.vtu")
viewer.view()
```

#### <sup>2</sup> Plot

```
[]: if (do_plot_disp_error_vs_mesh_size) or (do_plot_disp_error_vs_mesh_size_with_refine):
         with_refine_lst = []
         if (do_plot_disp_error_vs_mesh_size
                                                       ): with_refine_lst += [False]
         if (do_plot_disp_error_vs_mesh_size_with_refine): with_refine_lst += [True ]
         for with_refine
                            in with_refine_lst
                                                    :
         for deformation_type in deformation_type_lst:
           for texture_type in texture_type_lst
                                                    :
            for regul_type
                                in regul_type_lst
                                                       :
             plot_disp_error_vs_mesh_size(
                 images_folder = images_folder
sol_folder = working_folder
                                      = "heart"
                 structure_type
                 structure_type
deformation_type
                                      = deformation_type
                                       = texture_type
                 texture_type
                 regul_type
                                       = regul_type
                                   = noise_level_lst
                 noise_level_lst
                 n_runs_for_noisy_images = n_runs_for_noisy_images,
                 regul_level_lst = regul_level_lst
                 mesh_size_lst
                                       = mesh_size_lst
                 error_for_nan
                                       = 10
                 with_refine
                                       = with_refine
                 generate_datafile
                                       = 1
                 generate_plotfile
                                        = 1
                                                                 )
                 generate_plot
                                        = 1
             plotfile_basename = "plot_disp_error_vs_mesh_size"
             if (with_refine):
                 plotfile_basename += "-with_refine"
             plotfile_basename += "/"+"heart"
             plotfile_basename += "-"+deformation_type
             plotfile_basename += "-"+texture_type
             plotfile_basename += "-"+regul_type
             IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
```