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Abstract1

The equilibrium gap principle offers a good trade-off between robustness and accuracy for reg-2

ularizing motion tracking, as it simply enforces that the tracked motion corresponds to a body3

deforming under arbitrary loadings. This paper introduces an extension of the equilibrium gap4

principle in the large deformation setting, a novel regularization term to control surface tractions,5

both in the context of finite element motion tracking, and an inverse problem consistent reformu-6

lation of the tracking problem. Tracking performance of the proposed method, with displacement7

resolution down to the pixel size, is demonstrated on synthetic images representing various motions8

with various signal-to-noise ratios.9

Keywords10

Motion tracking; Mechanical regularization; Equilibrium gap principle; Finite element method;11

Inverse problems.12

1 Introduction13

Motion tracking is an important field of image processing, with many application domains from14

experimental mechanics to biomedical engineering. In experimental mechanics, especially in the15

content of material parameter identification, it induced a true change of paradigm, as it is no longer16

necessary to perform delicate experiments with simple kinematics like pure tension or compression;17

instead rather complex experiments can now be performed, involving potentially many deformation18

mechanisms, as long as the potentially complex kinematics can be tracked based on surface or19

volume images [Chu et al. 1985; Hild et al. 2006; Lenoir et al. 2007; Tueni et al. 2020]. In biomedical20

engineering, it allows for the quantitative analysis of biomedical images, hence to derive objective21

and quantitative biomarkers for improved diagnosis, either directly based on kinematics [Garot22

et al. 2000; Zou, Xi, et al. 2018], or by merging physical models and imaging data into so called23

digital twins [Smith et al. 2011; Patte et al. 2022].24

Many approaches have been developed over the past decades, based on many variants of the many25

aspects of the method, such as harmonic/Fourier vs. intensity/features tracking, local vs. global26

approaches, etc. [Bornert et al. 2009; Hild et al. 2012; Sotiras et al. 2013; Tobon-Gomez et al.27

2013]. In this paper, we use an intensity-based global tracking approach, which is the most natural28

to integrate our novel regularization approach, though other tracking approaches could have been29

considered as well. Existing intensity-based global approaches differ notably in their motion models30

(splines, finite elements, etc.), image similarity metrics (mean squared error, structural similarity31

index, mutual information, etc.), optimization methods (gradient descent, Gauss-Newton, Newton,32

etc.), etc. [Sotiras et al. 2013; Tobon-Gomez et al. 2013].33

One key question in motion tracking is the regularization, i.e., the a priori knowledge introduced34

in the process to improve the quality of the tracking. It is required by the intrinsic ill-posedness35

of the problem (we are looking for a vector field —the displacement— from an input scalar field36

—the image—), as well as image finite resolution, noise and bias. As in any inverse or optimization37

problem, efficient regularization requires a fine trade-off, here between providing enough constraint38

to help the tracking quality and robustness, while providing enough freedom so as to not interfere39

with the actual motion. In some sense regularization allows for a control, through penalization, of40

the function space into which the solution is sought. Many regularization terms have been proposed41

in the literature, such as Laplacian smoothing [Passieux and Périé 2012], fluid-like mechanical42

regularization [Christensen et al. 1996], incompressibility [Mansi et al. 2011], hyperelastic energy43

[Veress et al. 2005], etc., some of which will be discussed in details in this paper. An optimal44

trade-off is arguably reached by the so-called equilibrium gap regularization [Hild et al. 2006;45

Genet, Stoeck, et al. 2018], which puts no direct constraint on the kinematics, while enforcing that46

the motion is close to a solution of a mechanics problem, in a sense that will be specified later in47

the paper.48
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The equilibrium gap principle was originally formulated, at the discrete level and in the linear1

setting, in the context of material parameter identification based on full-field measurement, in2

[Claire et al. 2004], and was later used in the context of motion tracking notably in [Leclerc et al.3

2010]. An extension to the non linear setting was proposed, at the continuous level, in [Genet,4

Stoeck, et al. 2018; Lee et al. 2019; Berberoğlu, Stoeck, Moireau, et al. 2019], with multiple5

applications to biomedical images [Xi et al. 2016; Zou, Leng, et al. 2020; Castellanos et al. 2021].6

In this paper, we propose another extension, still in the nonlinear finite strain setting but at the7

discrete level —hence allowing to better distinguish the equilibrium gaps induced by the motion8

itself and the finite element discretization, as will be detailed in the paper—, and show that it9

performs better than all previous formulations.10

As already mentioned, and discussed in details later in the paper, the equilibrium gap regularization11

consists in enforcing that the obtained displacement is close to a solution of a mechanics problem12

with generic material behavior and arbitrary imposed surface tractions [Leclerc et al. 2010; Genet,13

Stoeck, et al. 2018]. To actually obtain some regularization of the problem, this arbitrariness14

must be handled, and the surface tractions must be somehow controlled independently of the15

discretization of the displacement field [Leclerc et al. 2010]. A surface Laplacian of the displacement16

was used as an additional regularization term in [Leclerc et al. 2010], which unfortunately does not17

generalize to the large motion setting. One option would be to use a separate discretization for the18

displacement and the tractions, which however would represent a significant technical difficulty.19

Instead, in this paper, we propose an additional regularization term based on the surface gradient20

of the normal and tangential components of the surface tractions, and show that it performs as21

expected.22

The rest of the paper is organized as follows. We first formulate the general motion tracking problem23

(Section 2.1), then we provide a short literature review on mechanical regularization (Section 2.2),24

and we describe our proposed regularization term, including body (Section 2.3.1) and boundary25

(Section 2.3.2) terms. Then, we give an inverse problem formulation to the regularized motion26

tracking problem (Section 2.4), and we describe our numerical strategy for the resolution (Section27

2.5). We finish the Methods section with a description of the synthetic images that will be used28

for the validation of our method (Section 2.6), and then analyse tracking Results in the case of29

rigid motion (Section 3.1), non rigid but homogeneous motion (3.2) and non homogeneous motion30

(Section 3.3), as well as in the case of refined meshes (Section 3.4).31

2 Methods32

2.1 The motion tracking problem33

Let us start by precising the problem setting and notations. totowefwef We consider I0 and I, two34

images (i.e., image intensity fields) representing the same body B at two instants t0 and t:35

I0 :

{

□0 → R

X 7→ I0 (X)
, I :

{

□→ R

x 7→ I (x)
, (1)

where □0 and □ are the image domains at t0 and t, which are usually identical. The domains36

occupied by the body B at t0 and t are denoted by Ω0 and ω, respectively. The problem is to find37

the smooth mapping Φ, or equivalently the smooth displacement field U, between material points38

of the reference and deformed domains:39

Φ :

{

Ω0 → ω

X 7→ x = Φ (X)
, U :

{

Ω0 → R3

X 7→ U (X) := Φ (X) – X
, (2)

where X and x denote the position of a given material point in the reference and deformed config-40

urations, respectively. Due to its intrinsic ill-posedness, the problem is formulated as a regularized41

minimization problem:42

Find Usol := argmin{U}

{

J (U) := (1 – β)
Jima (U)

Jima
0

+ β
Jreg (U)

Jreg
0

}

, (3)
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where Jima is the image similarity metric, or “correlation energy”, Jreg is the regularization energy,1

Jima
0 and Jreg

0 are normalization terms, and β defines the regularization strength. The normalization2

terms Jima
0 and Jreg

0 allow for the consistent addition of “energies” with very different physical units,3

and are typically taken equal to the value of Jima and Jreg for a chosen displacement field [Leclerc4

et al. 2010], for instance a plane wave displacement with a period of 10 finite element characteristic5

lengths and a unit magnitude. The correlation energy is assumed to be convex, at least in the6

neighborhood of the solution, though it is in general not quadratic.7

In image intensity-based global approaches, the following correlation energy is generally used:8

Jima (U) :=
1
2

∫

Ω0

(I (X + U (X)) – I0 (X))2 dΩ0. (4)

Other metrics have been proposed; however, we retain this one notably because it can be differen-9

tiated straightforwardly.10

We will employ the finite element method to discretize this problem, such that the displacement11

field is approximated as U (X) ≈ tN (X) ·U with N the array of shape functions. Thus, the problem12

becomes a finite dimensional problem:13

Find U
sol := argmin{U}

{

J (U) := (1 – β)
Jima (U)

Jima
0

+ β
Jreg (U)

Jreg
0

}

, (5)

where14

Jima (U) :=
1
2

∫

Ω0

(

I
(

X + t
N (X) · U

)

– I0 (X)
)2

dΩ0. (6)

Note that even without mechanical regularization, finite element discretization introduces some15

kind of kinematical regularization, as the richness of the approximation space is controlled by the16

mesh size and shape functions degree.17

2.2 Short literature review on mechanical regularization18

Many regularization terms have been proposed in the literature, see for instance [Sotiras et al.19

2013]. Here we will briefly recall the major classes of proposals with mechanical content. All20

these approaches require to define a constitutive law, though it does not need to model the actual21

behavior of the tracked body: generic material laws can be used, and the material stiffness simply22

controls the strength of the regularization.23

Elastic [Miller et al. 1993] and hyperelastic [Veress et al. 2005] regularizations have been proposed,24

which consist in penalizing the strain energy of the body:25

Jreg,el (U) :=
∫

Ω0

ρ0Ψ (U) dΩ0, (7)

where ρ0 is the reference mass density and Ψ the reference specific free energy—in practice, generic26

laws such as Hooke or neohookean are usually used. This was probably inspired by the fact that the27

elastostatic problem can often be formulated as a minimization problem with the system potential28

energy that is the sum of the elastic and loading potential energies. However, by only considering29

the elastic energy beside the image similarity metric, and no specific loading energy, it is implicitly30

assumed that the only load applied to the body is a body force associated to image dissimilarity,31

and no boundary tractions. Moreover, this regularization penalizes strain itself, as only rigid body32

motions have zero elastic energy.33

Another, arguably more mechanically consistent, regularization approach is based on the equilib-34

rium gap principle [Claire et al. 2004]. It was formulated in the linear setting, and directly at the35

discrete level, in [Réthoré et al. 2009; Leclerc et al. 2010]. We first define K :=
∫

Ω0
B : K : tB dΩ036

the system stiffness matrix, with K the material stiffness tensor (like for elastic regularization,37

a generic isotropic Hooke law is usually used, such that K = λ1 ⊗ 1 + 2µ1 with λ and µ the38
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Lamé constants) and B the array of shape functions symmetric gradients (i.e., such that ε (X) :=1

(

Grad (U) (X)
)

sym
= 1

2

(

tGrad (U) (X) + Grad (U) (X)
)

≈ tB (X) · U). Then the regularization is2

expressed as3

Jreg,eq,lin (U) :=
1
2

t
U · tK∗ ·K∗ · U, (8)

where K∗ is a modified system stiffness matrix in which all lines associated to boundary degrees of4

freedom at which the external force in unknown have been set to 0. The implicit assumption here5

is that the body is in equilibrium with some arbitrary/unknown boundary tractions (though the6

smoothness of the surface displacement is usually controlled by an additional surface Laplacian7

term [Leclerc et al. 2010]) and no body force (though known body forces such as gravity could8

easily be taken into account). Thus, it does not penalize strain, only deviation from equilibrium,9

as any equilibrium solution, even with very large strain, cancels the equilibrium gap “energy”.10

A first attempt toward extending this principle to the large deformation nonlinear setting has been11

made in [Genet, Stoeck, et al. 2018]. The main idea is to directly penalize the non verification of the12

internal linear momentum equilibrium equation (Div
(

P
)

= 0, where P is the first Piola-Kirchhoff13

stress tensor associated to the displacement field U through the chosen constitutive law) through14

the following equivalent norm:15

Jreg,eq,cont (U) :=
1
2

∑

E

∫

E
∥Div

(

P
)

∥2dE +
1
2h

∑

F

∫

F

[[

P ·N
]]2 dF (9)

where E is the set of finite elements, F the set of interior faces, N the faces normal, and h a16

characteristic length of the finite element discretization. Note that the internal angular momentum17

equilibrium (tP · tF–1 = F–1 ·P, where F is the deformation gradient associated to the displacement18

field U) is usually exactly verified through the constitutive relation, hence it does not need to be19

penalized. Thanks to this equivalent norm (inspired by discontinuous Galerkin approaches; it20

is necessary because under standard finite element discretization the finite element stress field is21

discontinuous across finite element faces, so that its divergence is not defined there, and thus cannot22

be directly integrated over the mesh), all terms of the regularization (9) are proper element or face23

integrals and can be computed using standard finite element integration techniques (for instance, in24

practice, if one uses first order polynomial shape functions, the stress field is constant by element,25

so that the first term vanishes, and one simply has to compute the normal stress jump across all26

internal faces of the mesh). Thus, the underlying assumption is the same as with regularization (8),27

i.e., that the body is in equilibrium with some arbitrary boundary tractions and no body force,28

although the geometrically nonlinear formulation allows to correctly handle large deformations,29

including large rotations. Nevertheless, one limitation of this approach is that the penalization30

(9) encompasses not just the equilibrium gap arising from the potential non-equilibrium nature of31

the considered displacement field (i.e., as it might not be an equilibrium solution of a mechanical32

problem), but also accounts for the equilibrium gap resulting from the finite element discretization33

itself (i.e., even an actual finite element solution of a mechanical problem leads to a nonzero34

regularization energy (9), as a finite element solution verifies the equilibrium equation only weakly,35

not strongly). This calls for an improvement of the approach, which is described in the following36

Section.37

2.3 The nonlinear discrete equilibrium gap regularization38

2.3.1 Body stresses regularization39

In order to avoid the limitation of the regularization term (9), we propose here a novel formulation40

of the equilibrium gap principle, still in the general context of nonlinear mechanics, but which41

allows to completely exclude the discretization-induced equilibrium gap from the regularization42

term. The general idea is still to penalize the non-verification of the internal linear momentum43

balance (Div
(

P
)

= 0 in Ω0, since the body force is neglected for the sake of simplicity, though it44

could be considered as well). However, after standard finite element discretization, the divergence45

of the stress tensor is not defined on the element faces (in 3D) or edges (in 2D) thus it is not square46
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integrable, so we define its projection Πb onto a space of square integrable functions, typically a1

standard continuous finite element space denoted Vh:2

Πb ∈ Vh |
∫

Ω0

Πb ·Π
∗
b = –

∫

Ω0

Div
(

P
)

·Π∗
b ∀Π∗

b ∈ Vh
0 , (10)

where Vh
0 denotes the space of functions of Vh that vanish at the boundary, i.e., Π∗

b (∂Ω0) = 0.3

Indeed, for now we are only interested in body equilibrium gap. Thus, after integration by parts,4

we obtain:5

Πb ∈ Vh |
∫

Ω0

Πb ·Π
∗
b =

∫

Ω0

P : Grad (Π∗
b) ∀Π∗

b ∈ Vh
0 (11)

Similar projections, though often performed element-by-element, are used in a posteriori error6

estimation methods, to quantify the distance between the finite element solution and an actual7

equilibrium solution, i.e., the discretization error [Ladevèze et al. 2005; Zienkiewicz et al. 2013].8

However, the objective here is opposite, i.e., we want to discard the discretization error and quantify9

the intrinsic equilibrium gap of the considered finite element field.10

Nevertheless, thanks to the proposed projection, we can actually define the regularization term in11

a consistent manner:12

Jreg,eq
b (U) :=

1
2

∫

Ω0

Πb ·Πb dΩ0 (12)

A key question is the calculation of this term in the finite element context. Projection (11) simply13

leads to the following linear system:14

M ·Πb = Rb (13)

with M :=
∫

Ω0
N · tN dΩ0 the mass matrix, Πb such that Πb = tN ·Πb, and15

(Rb)i :=







∫

Ω0

P : Grad
(

Ni
)

dΩ0 if i body d.o.f.

0 if i boundary d.o.f.
, (14)

where Ni is the (vector) shape function associated to the degree of freedom (d.o.f.) i, i.e., the ith16

line of the N array. Thus, the norm (12) can be expressed as17

Jreg,eq
b (U) =

1
2

tΠb ·M ·Πb =
1
2

t
Rb ·M

–1 · Rb (15)

Note that if we linearize this expression, we obtain Rb ≈ K∗ ·U and thus Jreg,eq
b ≈ 1

2
tU · tK∗ ·M–1 ·18

K∗ · U, i.e., an expression similar to (8), the mass matrix allowing to make the term consistent19

when refining the mesh.20

2.3.2 Boundary tractions regularization21

The regularization term proposed in Section 2.3.1 basically enforces that the motion solution cor-22

responds to the motion of a body in equilibrium with some arbitrary tractions applied on its23

boundary. The arbitrary nature of these tractions can be problematic, especially as the compu-24

tational mesh is refined and the variations of these tractions is not controlled. In [Leclerc et al.25

2010], it was proposed to add a penalization term corresponding to the Laplacian of the bound-26

ary displacement, which however does not generalize to the large motion context. Thus, here we27

propose a new term, consistent with the body term that involves internal stresses directly, which28

consists in penalizing the surface tractions gradients.29

It is important, however, to note that surface tractions can vary intrinsically but also because of30

the surface curvature. For instance, a simple homogeneous pressure applied onto a curved surface31

corresponds to a vector that varies in space. To avoid penalizing the surface curvature itself, we32

propose to penalize the surface gradient of the normal and tangential components of the boundary33

6



tractions separately. In 2D, the tangential part is scalar; in 3D we propose to take the norm of the1

tangential force vector.2

Let us start with the regularization term associated to the normal traction, i.e., Fn (U) := tN ·3

P (U) · N where N is the body outward normal. The problem is the same as for the equilibrium4

equation, i.e., the surface gradient of the boundary tractions associated to a standard finite element5

displacement field is not defined on the boundary elements edges (in 3D) or points (in 2D) thus it6

is not integrable. Hence we propose to use the same technique, i.e., we first define its projection7

onto a space of square integrable functions, again a typical finite element space, continuous on the8

domain boundary and denoted ∂Vh:9

Πn ∈ ∂Vh |
∫

∂Ω0

Πn ·Π
∗
n = –

∫

∂Ω0

Grads (Fn) ·Π∗
n ∀Π∗

n ∈ ∂Vh, (16)

where Grads (Fn) = Π · Grad (Fn) with Π := 1 – N ⊗ N the projection operator onto the domain10

boundary [Brandner et al. 2021]. After integration by parts of the right hand side we obtain:11

Πn ∈ ∂Vh |
∫

∂Ω0

Πn ·Π
∗
n =

∫

∂Ω0

Fn ·Divs

(

Π∗
n

)

∀Π∗
n ∈ ∂Vh, (17)

where Divs

(

Π∗
n

)

= tr
(

Π ·Grad
(

Π∗
n

)

·Π
)

[Brandner et al. 2021]. Then, the regularization term12

is actually defined as:13

Jreg,eq
n (U) :=

1
2

∫

∂Ω0

Πn ·Πn d∂Ω0 (18)

The discretization procedure is similar to the bulk term (15):14

Jreg,eq
n (U) =

1
2

t
Rn ·M

–1
∂Ω0
· Rn (19)

where M∂Ω0
:=
∫

∂Ω0
N · tN d∂Ω0 is the “mass” matrix of the domain boundary, and15

(Rn)i :=







0 if i body d.o.f.
∫

∂Ω0

Fn ·Divs
(

Ni
)

d∂Ω0 if i boundary d.o.f.
. (20)

Regarding the regularization term associated to tangential tractions, in 2D the tangential force is16

a scalar, defined as Ft,2D (U) := tT · P (U) · N where T is the body tangential vector, so it is the17

same formulation as the normal traction (19):18

Jreg,eq
t,2D (U) =

1
2

t
Rt,2D ·M

–1
∂Ω0
· Rt,2D (21)

where19

(

Rt,2D

)

i
:=







0 if i body d.o.f.
∫

∂Ω0

Ft,2D ·Divs
(

Ni
)

d∂Ω0 if i boundary d.o.f.
. (22)

In 3D the tangential force is a vector, defined as Ft,3D (U) := Π ·
(

P (U) ·N
)

, and we propose to20

simply penalize the gradient of its norm, which leads to:21

Jreg,eq
t,3D (U) =

1
2

t
Rt,3D ·M

–1
∂Ω0
· Rt,3D (23)

where22

(

Rt,3D

)

i
:=







0 if i body d.o.f.
∫

∂Ω0

∥Ft,3D∥ ·Divs
(

Ni
)

d∂Ω0 if i boundary d.o.f.
. (24)
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2.4 Inverse problem reformulation1

Because the proposed regularization has a strong mechanical sense, the regularized tracking prob-2

lem can be reformulated as an inverse problem, where the unknown is the traction field applied on3

the domain boundary, and which can be formulated as a constrained optimization problem:4

Find Tsol := argmin{T}

{

J (T) := (1 – β) ∥I ◦Φ (T) – I0∥2Ω0
+ β ∥T∥2∂Ω0

}

, (25)

where Φ (T) is the mapping solution associated to the traction field T, i.e., which verifies con-5

stitutive and equilibrium equations, and β is the regularization strength. Norms will be specified6

later on. The meaning of this formulation is that we search for a traction field which gener-7

ates a displacement field (through a chosen generic mechanical behavior and standard mechanical8

equilibrium) that allows to match the two image intensities, the regularization term allowing to9

control the smoothness of the traction field. In optimization, such constraints can be enforced10

strongly through Lagrange multipliers, or approximately through penalization [Allaire 2007]. Here11

we propose to simply use penalization, such that the problem becomes:12

Find
(

Tsol, Usol
)

:= argmin{T,U}

{

J (T, U) := (1 – β) ∥I ◦Φ – I0∥2Ω0

+β ∥T∥2∂Ω0
+ γ

(

∥Div
(

P
)

∥2Ω0
+ ∥tP · tF–1 – F–1 · P∥2Ω0

+ ∥P ·N – T∥2∂Ω0

)}

, (26)

where γ is the penalization coefficient, while the three additional terms represent the balance13

of linear momentum (without imposed force, though it could be introduced straightforwardly),14

the balance of angular momentum (which is usually verified exactly thanks to the constitutive15

framework), and the balance with applied tractions, respectively. In this formulation, Φ, F and16

P are the mapping, deformation gradient and first Piola-Kirchhoff stress tensor associated to the17

displacement field U. Again, the norms will be specified later on. To simplify the formulation, we18

can remove the traction field variable by enforcing strongly the last balance term, i.e., T = P (U)·N,19

leading to the following formulation:20

Find Usol := argmin{U}

{

J (U) := (1 – β) ∥I ◦Φ – I0∥2Ω0
+β ∥P ·N∥2∂Ω0

+ γ ∥Div
(

P
)

∥2Ω0

}

. (27)

This formulation corresponds formally (i.e., using the right norms) to the original formulation (3),21

when using Jreg,eq
b for the bulk regularization and Jreg,eq

n/t
for the surface terms. This gives another22

point of view on each term, i.e., that the bulk term can be seen as a penalization term, while23

the actual regularization comes from the surface terms. Also, it is important to notice that this24

reformulation only makes sense for “equilibrium gap” regularization terms: if one would consider25

the motion tracking problem (3) with elastic regularization term (7) as an inverse problem, the26

associated direct problem would not have a proper physical meaning, as it would correspond to a27

body deforming under a body force induced by the image mismatch and no boundary force.28

2.5 Numerical resolution29

After describing existing and new regularization terms, we recall that the general motion tracking30

problem formulation was given by Equation (5), with the image correlation term Jima given by31

Equation (6), and where the regularization term Jreg may take the form Jreg,el (Equation (7)),32

Jreg,eq,cont (Equation (9)), Jreg,eq
b (Equation (12)), Jreg,eq

n (Equation (18)), Jreg,eq
t (Equation (22)33

in 2D, (24) in 3D), or combinations of such terms. Indeed, as already discussed, it is often necessary34

to combine bulk and boundary terms. In such cases one might want to use different weights for35

each regularization term [Leclerc et al. 2010]; however, to simplify the analysis of the performance36

of the various terms considered here, we propose to simply sum them, such that they have the37

same weight, and there is only one parameter controlling the regularization strength, namely β.38

Minimization problem (5) is actually formulated as a root finding problem:39

U | ∇J (U) = (1 – β)∇Jima (U) + β∇Jreg (U) = 0 (28)
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where the gradient of the image term is simply:1

∇Jima (U) :=
∫

Ω0

(

I
(

X + t
N · U

)

– I0
) ∂I

∂x

(

X + t
N · U

)

· N dΩ0, (29)

and the gradients of the proposed regularization terms are:2

∇Jreg,eq
b (U) := tdRb (U) ·M–1 · Rb (U) (30)

with3

(dRb)ij :=











∫

Ω0

Grad
(

Ni
)

:
∂P
∂F

: Grad
(

Nj

)

dΩ0 if i body d.o.f.

0 if i boundary d.o.f.
, (31)

and4

∇Jreg,eq
n/t

(U) := tdRn/t (U) ·M∂Ω0

–1 · Rn/t (U) (32)

with5

(

dRn/t

)

ij
:=











0 if i body d.o.f.
∫

∂Ω0

Divs
(

Ni
) ∂Fn/t

∂F
: Grad

(

Nj

)

d∂Ω0 if i boundary d.o.f.
. (33)

We propose to solve this problem using a Gauss-Newton method, which was shown to have good6

convergence properties for the image correlation problem in the thorough compared analysis of the7

performance of multiple variants of the method proposed in [Passieux and Bouclier 2019]. Details8

were given in [Genet, Stoeck, et al. 2018] in the context of the regularization term Jreg,eq,cont
9

(Equation (9)). The key point is that the Jacobian associated to the image term only contains the10

image gradient product term, not the image hessian term which usually degrades the convergence11

due to the double derivative of the noise; in principle the second derivation of the regularization12

terms could be computed exactly, however it is tedious and not necessary, so we employ the same13

approach as for the image term. Thus, at each Newton iteration we solve the following linear14

system:15

∆U |
(

(1 – β)∇∇Jima + β∇∇Jreg
)

· ∆U = –
(

(1 – β)∇Jima + β∇Jreg
)

, (34)

where16

∇∇Jima :=
∫

Ω0

N ·

(

∂I
∂x
·
t ∂I

∂x

)

· tN dΩ0, (35)

which corresponds to a mass matrix weighted by the deformed image gradients, and17

∇∇Jreg,eq
b/n/t

:= tdRb/n/t ·MΩ0/∂Ω0

–1 · dRb/n/t. (36)

As a stopping criterion for the Newton iterations, we propose to simply use the relative displacement18

with a prescribed tolerance, which is well adapted for the motion tracking problem:19

err :=
∥∆U∥

∥U∥
< tol. (37)

20

Nevertheless, in practice, we found that such Gauss-Newton iterations do not always converge21

toward a solution for such a highly stiff problem. Indeed, they often lead to inverted elements, for22

which the mechanical model cannot be evaluated. This is a situation the regularization is supposed23

to prevent through the use of a proper energy potential with an infinite energy barrier (for instance,24

the Ogden-Ciarlet-Geymonat has a – ln (J) term, where J denotes the volume change [Ogden 1972;25

Ciarlet et al. 1982]), but the Newton iterations can sometimes pass this energy barrier. Indeed,26

it is possible, and it is actually the case for the Ogden-Ciarlet-Geymonat potential, that even27

though the potential is only defined for non-inverted elements, the expression of its derivative is28

well defined for inverted elements. This is a common issue in large deformation computation,29

9



which is usually solved using adaptation time stepping [Le Tallec 1994; Genet 2019]. However, it is1

not possible here because the “time” increment is controlled by the image temporal discretization.2

Hence, we augment the Newton iterations with a backtracking line search [Press et al. 2007] that3

prevents the passing of energy barriers.4

Finally, the image series integrator is described in Algorithm 1, the nonlinear solver in Algorithm5

2, and the line search in Algorithm 3.6

Initialisation
Read initial image I0
Instantiate finite element solution: U← 0

foreach frame index t = 1, 2, . . . do
Read current image It
Compute current displacement: U← nonlinear_solver (I0, It)

end

Algorithm 1: Image series integrator. The nonlinear_solver is detailed Algorithm 2.
Note that in this basic version, the Newton iterations at frame t are naturally initialized
with the converged solution at frame t – 1. A multi-level version is presented in Algorithm
4.

while err > tol do
Assemble residual, Jacobian: ∇J, ∇∇J

Compute solution increment: ∆U← linear_solver
(

∇J,∇∇J
)

Update error: err← ∥∆U∥
∥U∥

Compute relaxation: α← line_search (U, ∆U)
Update solution: U← U + α ∆U

end

Algorithm 2: Nonlinear solver. In practice we use a tolerance of tol = 1%.

Initialisation
Compute initial energy: J0 ← J (U)
Initialise relaxation counter: k← 0

while J > J0 do

Define current relaxation: α← fk

Compute current energy: J← J (U + α ∆U)
Update relaxation counter: k← k + 1

end

Algorithm 3: Backtracking line search. In practice we use a backtracking factor of f = 0.5.
Here J refers to the full cost function, encompassing both the image and regularization
terms, as defined Problem (5).

The richness of the displacement solution space is controlled by the finite element mesh and in-7

terpolation degree. When using a coarse mesh, with many pixels per element, the mesh itself acts8

as some kind of kinematical regularization, limiting the size of the displacement solution space.9

Conversely, when solving for very fine meshes, for instance when elements reach the size of the10

image pixels, convergence becomes problematic as the displacement solution space becomes huge11

and there is very little information per element; in this case mechanical regularization compen-12

sates for the lack of information, but it might not be enough to obtain a robust convergence of13

the nonlinear iterations. Thus, multi-resolution is often necessary to perform motion tracking on14

very fine meshes [Bornert et al. 2009; Leclerc et al. 2010], which consists in performing tracking on15

successively refined meshes, initiating the nonlinear iterations of a given frame and given refine-16

ment level by the converged solution obtained at the same frame but at the previous refinement17

level, instead of the converged solution obtained at the same refinement level but at the previous18

10



frame, as it is naturally the case in the single-refinement-level Algorithm 1. Since two triangula-1

tions of the same geometric domain might not overlap, for instance if the domain has a curved2

boundary, and especially if the triangulations have different characteristic sizes, one cannot simply3

interpolate the displacement field from the coarse grid to the fine one. Instead we propose to use4

a projection. The multi-resolution frame integrator is detailed in Algorithm 4. In order to speed5

up the multi-resolution algorithm, pyramidal filtering can be applied to the images, such that the6

tracking of successively refined meshes is performed on successively more resolved images, until7

the final mesh is used to track the original high-resolution images [Fedele et al. 2013]; however, for8

the sake of simplicity, here we use the full images at all mesh refinement levels.9

foreach refinement level k = 1, 2, . . . do

Initialisation
Read initial image I0
Instantiate finite element solution Uk

foreach frame index t = 1, 2, . . . do
Read current image It
if k > 1 then

Initialize displacement: Uk ← Uk–1
t

Compute current displacement: Uk ← nonlinear_solver (I0, It)
Save displacement: Uk

t ← Uk

end

end

Algorithm 4: Image series integrator with multi-resolution. Compared to the single-
refinement-level Algorithm 1, here the Newton iterations at frame t of refinement level
k are initialized with the converged solution at frame t of refinement level k – 1.

These algorithms have been implemented in an open-source library [Genet 2023a] written in python10

and based on the FEniCS [Logg et al. 2012; Alnæs et al. 2015] and VTK [Schroeder et al. 2006] li-11

braries. It is currently freely available online at https://gitlab.inria.fr/mgenet/dolfin_warp.12

We also provide the code to reproduce the results of this paper under the form of jupyter notebooks13

[Genet 2023b]: static versions are given in the appendix of the paper while interactive versions14

are currently available online at https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/15

index.html.16

2.6 Synthetic data17

In order to establish the tracking performance of the proposed method, we generated synthetic18

images corresponding to various objects (simple square, cardiac-like ring) and motions (rigid trans-19

lation and rotation, homogeneous compression and shear, cardiac-like contraction and twist) with20

various noise levels. To focus on the regularization term itself, we limited ourselves to highly re-21

solved (though the impact of image resolution could be investigated as well [Berberoğlu, Stoeck,22

Kozerke, et al. 2022]), and textured (with used a tagged-MRI-like pattern, see [Rutz et al. 2008])23

images. The images occupy the spatial domain [0; 1]2 (arbitrary unit), the temporal domain [0; 1]24

(arbitrary unit), are discretized with 100×100 pixels spatially and 21 frames temporally.25

For the simple (analytical) motion of the square, we define the initial domain as Ωt
0 := [0.1; 0.7]×26

[0.2; 0.8] for the translation case and Ω
r,c,s
0 := [0.2; 0.8]2 for the rotation, compression and shear27

cases. The motion models are given by28























xt (X, t) := X + t D with D :=
(

0.2
0

)

xr (X, t) := X0 + R ·
(

X – X0
)

with X0 :=
(

0.5
0.5

)

, R :=
(

+cos(θ) –sin(θ)
+sin(θ) +cos(θ)

)

, θ = tπ
4

xc (X, t) := X0 + Fc ·
(

X – X0
)

with X0 :=
(

0.5
0.5

)

, Fc :=
(√

1–2t0.2 0
0 1

)

xs (X, t) := X0 + Fs ·
(

X – X0
)

with X0 :=
(

0.5
0.5

)

, Fs :=
(

1 0.2
0 1

)

, (38)

which represent a 0.2 (arbitrary unit) translation, a π
4 rad rotation, a 20% compression and a 20%29

11
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shear, respectively.1

Then, for each case, the image generation consisted in the following steps: for each frame (time2

t), for each pixel (position x), the initial (i.e., first time frame) position of the pixel (X (x, t)) was3

determined through inversion of the mappings (38) and the intensity was given by4

I (x, t) := I0 (X (x, t)) with I0 (X) :=

√

|sin
(

πX
s

)

||sin
(

πY
s

)

| (39)

Note that a more complex imaging model [Berberoğlu, Stoeck, Kozerke, et al. 2022] could have5

been considered as well.6

For the cardiac-like case, a ring(center X0 :=
(

0.5
0.5

)

, internal radius 0.2, external radius 0.4 (ar-7

bitrary units)) was defined, and an hyperelastic (neo-Hookean and Ogden-Ciarlet-Geymonat po-8

tentials with unit Young modulus and 0.3 Poisson coefficient) finite element model with very fine9

mesh (element size equal to the image pixel size) was run with prescribed displacement applied to10

the internal (inward displacement of 0.1 and rotation of – π
4 rad) and external (inward displacement11

of 0.05 and rotation of – π
8 rad) edges, mimicking the in-plane motion of a cardiac slice. And to12

generate the images, we employed the following approach: for each time frame (time t) the refer-13

ence mesh was warped by applying the computed displacement field, and the displacement field14

was projected onto the image, such that for each pixel (position x) the reference position of the15

pixel was computed as X (x, t) = x – U (x, t). Finally, the texture model (39) was applied.16

Noise was eventually added to the images, characterized by the signal-to-noise ratio (SNR). The17

magnitude of the signal here is 1, and we added random Gaussian noise with zero mean and18

standard deviation of 0.1, 0.2 and 0.3, corresponding to SNR of 10, 5 and 3.3, respectively. Note19

that, like for the imaging model, more complex noise models, for instance including spatial and/or20

temporal correlations [Berberoğlu, Stoeck, Kozerke, et al. 2022], could have been considered.21

3 Results and Discussion22

To establish the tracking performance of the proposed method (described in Section 2.3), we now23

present tracking results on various synthetic images (described in Section 2.6), for various regular-24

ization terms, namely elastic (Equation (7), continuous version of the equilibrium gap (Equation25

(9)), discrete version of the equilibrium gap (Equation (12)) and discrete version of the nonlinear26

equilibrium gap including surface traction regularization terms (Equations (12), (18), (22) and/or27

(24))). For each regularization term, we considered both a small strain approximation with a28

Hooke strain energy potential, and a large strain formulation with the neo-Hookean and Ogden-29

Ciarlet-Geymonat potentials. For all models, we considered a unit Young modulus and null Poisson30

ratio.31

The tracking performance is evaluated in terms of a normalized tracking error defined as32

err :=

√

1
T

∫ T

0

1
|Ω0|

∫

Ω0

∥U – Uex∥2

√

1
T

∫ T

0

1
|Ω0|

∫

Ω0

∥Uex∥2

, (40)

where U is the tracked displacement and Uex is the ground truth used to generate the images.33

3.1 Rigid body motion34

We start with simple rigid motions, namely pure translation and pure rotation. Figures 1 & 235

show normalized tracking error as a function of regularization strength β ∈ [0; 1], for various levels36

of image SNR and for various regularization terms. In the plots, dots represent noise realizations,37

and lines represent their average.38
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Let us first discuss the pure translation case, i.e., Figure 1. For noiseless images, the tracking error1

is below 0.1% for all regularization terms and all regularization strengths. Increasing noise level2

leads to an increase of both the tracking error mean and dispersion. For all considered regularization3

terms, increasing the regularization strength decreases the mean error, though the dispersion is4

little impacted. Basically, for such a simple motion, all regularization terms perform rather well.5

This is explained by the fact that a rigid translation cancels all considered regularization terms,6

allowing to filter noise-induced spurious motions without interfering with the tracking itself.7

One can see that elastic (first row in Figure 1a) and continuous equilibrium gap (second row in8

Figure 1a) terms behave better than the discrete equilibrium gap terms (third & fourth rows in9

Figure 1a). This is due to the fact that these terms basically prevent the mesh from deforming, or10

from deforming in a non affine way, which is compatible with the exact solution here, hence the11

good tracking performance. However, as we will see later, this constraint will prove problematic12

for more complex motions.13

Focusing on the regularization term introduced in this paper (third & fourth rows in Figure 1a), one14

can see that the error dispersion becomes significant for images with low SNR. This is due to the15

fact that these terms represent a much lighter constraint on the displacement field, solely enforcing16

that it is close to an equilibrium solution; this is, however, the very reason why it performs well on17

basically any motion as we will see later. Nevertheless, one can also see that adding the boundary18

traction terms (fourth row in Figure 1a), which penalizes the non smoothness of the normal and19

tangential tractions at the edges, helps decreasing the tracking error mean and dispersion compared20

to bulk terms only (third row in Figure 1a).21

Let us now discuss the pure rotation case, i.e., Figure 2. For the nonlinear elastic (upper right in22

Figure 2a) and all equilibrated (second, third & fourth rows in Figure 2a) regularization terms,23

the conclusions are the same as for the pure translation case. For the linear elastic regularization24

term (upper left in Figure 2a), however, the result is quite different. Indeed, if increasing slightly25

the regularization strength allows to decrease the tracking error, increasing it further completely26

degrades the tracking. This is due to the fact that finite rotations generate nonzero infinitesimal27

strains, thus nonzero elastic energy; hence the algorithm, which tries to minimize this energy, tends28

to underestimate rotations (see Figure 2c). This is not the case for hyperelastic regularization29

(upper right in Figure 2a), as in the finite strain setting, rigid rotations do not generate any strain.30

Interestingly, this is also not the case for other regularization terms with linearized kinematics31

and behaviors (left column, second to fourth rows in Figure 2a), because here the spurious strain32

induced by the finite rotation is homogeneous, hence the associated stress is also homogeneous and33

thus equilibrated, i.e., it does not generate any spurious equilibrium gap.34
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(a) Normalized displacement error (40) as a function of regularization strength (parameter β), for various
levels of image noise, for various regularization terms (first row: Jreg,el (7); second row: Jreg,eq,cont (9);
third row: Jreg,eq

b
(12); fourth row: Jreg,eq

b
(12), Jreg,eq

n (18) and Jreg,eq
t,2D

(22)), and for various constitutive
laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-
Geymonat law). For such a simple motion, basically all regularization terms allow to reduce the tracking
error. (Next subfigure is on the following page.)

Figure 1: Translation case.
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(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization (18) & (22), with regularization strength β = 0.1, for various noise levels: 0 (red),
0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels.

Figure 1: Translation case.
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(a) Normalized displacement error (40) as a function of regularization strength (parameter β), for various
levels of image noise, for various regularization terms (first row: Jreg,el (7); second row: Jreg,eq,cont (9);
third row: Jreg,eq

b
(12); fourth row: Jreg,eq

b
(12), Jreg,eq

n (18) and Jreg,eq
t,2D

(22)), and for various constitutive
laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-
Geymonat law). The linear elastic regularization term interferes with the tracking because finite rotation
lead to nonzero infinitesimal strain, thus generating spurious elastic energy. (Next subfigure is on the
following page.)

Figure 2: Rotation case.
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(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization (18) & (22), with regularization strength β = 0.1, for various noise levels: 0 (red),
0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is
on the following page.)

Figure 2: Rotation case.
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(c) Tracking solutions for the linear elastic regularization term (7), with regularization strength β = 0.8,
for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The linear elastic regularization term
tends to reduce rotations because they generate spurious elastic energy, which degrades the tracking.

Figure 2: Rotation case.
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3.2 Nonrigid Homogeneous deformation1

We now consider nonrigid —though still homogeneous— deformations, namely compression (Figure2

3) and shear (Figure 4). Conclusions are the same as for rigid transformations for all regularization3

terms based on the equilibrium gap principle (i.e., second, third & fourth rows in Figures 3a &4

4a), which perform very well. Regularization terms based on the elastic energy (i.e., first row in5

Figures 3a & 4a) are, on the contrary, very problematic as they tend to prevent the mesh from6

deforming. This illustrates very well the fact that such regularization terms should not be used7

when tracking nonrigid deformations, as they interfere pathologically with the tracking.8

One can also notice that the continuous formulation of the equilibrium gap regularization (second9

row in Figures 3a & 4a) seems to perform better than the discrete formulation (third & fourth rows10

in Figures 3a & 4a); as we will see later, this is actually due to the fact that Jreg,eq,cont (9) contains11

the equilibrium gap induced by the discretization in addition to the equilibrium gap induced by the12

images, and tends to minimize it, i.e., to maintain the stress as homogeneous as possible, which13

helps the tracking here because the exact solution has indeed an homogeneous stress field, but14

which will prove highly pathological for non homogeneous cases.15

It is important to notice also that for the compression case, only the tangential term (22) was16

included in the boundary traction terms (fourth row in Figure 3a). Indeed, the exact solution17

has highly non-smooth tractions (which are nonzero on left & right edges, zero on bottom & top18

edges), so that penalizing the surface gradient of the normal surface traction would not make sense.19

Similarly, in the shear case, only the normal term (18) was included in the boundary tractions terms20

(fourth row in Figure 4a).21

19
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(a) Normalized displacement error (40) as a function of regularization strength (parameter β), for various
levels of image noise, for various regularization terms (first row: Jreg,el (7); second row: Jreg,eq,cont (9);
third row: Jreg,eq

b
(12); fourth row: Jreg,eq

b
(12) and Jreg,eq

t,2D
(22)), and for various constitutive laws (left

column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat
law). The elastic regularization terms interfere with the tracking because they basically prevent the mesh
from deforming. (Next subfigure is on the following page.)

Figure 3: Compression case.
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(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization (22), with regularization strength β = 0.1, for various noise levels: 0 (red), 0.1
(blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on
the following page.)

Figure 3: Compression case.
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(c) Tracking solutions for the elastic regularization term (7), with regularization strength β = 0.8, for
various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The elastic regularization terms tends
to prevent the mesh from deforming, which degrades the tracking.

Figure 3: Compression case.
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(a) Normalized displacement error (40) as a function of regularization strength (parameter β), for various
levels of image noise, for various regularization terms (first row: Jreg,el (7); second row: Jreg,eq,cont (9);
third row: Jreg,eq

b
(12); fourth row: Jreg,eq

b
(12) and Jreg,eq

n (18)), and for various constitutive laws (left
column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-Geymonat
law). The elastic regularization terms interfere with the tracking because they basically prevent the mesh
from deforming. (Next subfigure is on the following page.)

Figure 4: Shear case.
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(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization (18), with regularization strength β = 0.1, for various noise levels: 0 (red), 0.1
(blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next subfigure is on
the following page.)

Figure 4: Shear case.
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(c) Tracking solutions for the elastic regularization term (7), with regularization strength β = 0.8, for
various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). The elastic regularization terms tends
to prevent the mesh from deforming, which degrades the tracking.

Figure 4: Shear case.
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3.3 Nonrigid Heterogeneous deformation1

Let us now consider more realistic images, mimicking cardiac tagged magnetic resonance imaging2

slices. Tracking results are presented in Figure 5. Elastic regularization (first row of Figure 5a)3

has the same limitation as for homogeneous deformations, in that it tends to prevent the mesh4

from deforming and thus interferes with the tracking. Interestingly, the continuous formulation5

of the equilibrium gap principle (second row of Figure 5a) presents similar limitations, though6

somewhat weaker for large regularization strengths. This can be explained by the fact that this7

“energy” contains the equilibrium gap induced by the finite element discretization, thus it tends to8

minimize the discretization error, i.e., it tends to force the mesh to deform homogeneously, which9

was compatible with the ground truth of the simple examples of Sections 3.1 & 3.2, but not in10

more realistic cases. The discrete version of the equilibrium gap principle (third & fourth rows of11

Figure 5a), on the other hand, which characterizes the equilibrium gap induced by the motion itself12

but not the one induced by the discretization thanks to the projection step, does not have such13

pathological behavior, and allows the reduce the tracking error basically for all regularization levels.14

One can see that the nonlinear version (based on the finite strain framework and neoHookean &15

Ogden-Ciarlet-Geymonat potentials) performs slightly better than the linear version (based on the16

infinitesimal stain framework ant the Hooke law). Also, the surface traction regularization terms17

(fourth row in figure 5a) help reducing the tracking error mean and dispersion compared to the18

tracking with the bulk term only (third row in Figure 5a)).19
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(a) Normalized displacement error (40) as a function of regularization strength (parameter β), for various
levels of image noise, for various regularization terms (first row: Jreg,el (7); second row: Jreg,eq,cont (9);
third row: Jreg,eq

b
(12); fourth row: Jreg,eq

b
(12), Jreg,eq

n (18) and Jreg,eq
t,2D

(22)), and for various constitutive
laws (left column: small strain, Hooke law; right column: large strain, neo-Hookean & Ogden-Ciarlet-
Geymonat law). The elastic regularization terms interfere with the tracking because they basically prevent
the mesh from deforming. (Next subfigure is on the following page.)

Figure 5: Cardiac-like case.
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(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization terms (18) & (22), with regularization strength β = 0.1, for various noise levels:
0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple). Tracking is visually satisfying for all noise levels. (Next
subfigure is on the following page.)

Figure 5: Cardiac-like case.
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(c) Tracking solutions for the continuous version of the nonlinear equilibrium gap regularization term (9),
with regularization strength β = 0.8, for various noise levels: 0 (red), 0.1 (blue), 0.2 (green), 0.3 (purple).
The continuous version of the nonlinear equilibrium gap regularization term tends to prevent the mesh
from deforming non homogeneously (which generates a discretization-induced equilibrium gap), which
degrades the tracking.

Figure 5: Cardiac-like case.
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3.4 Impact of mesh size1

We now investigate in details the impact of mesh size on tracking. Indeed, there is a fundamental2

trade-off between the richness of the motion model and the robustness of the tracking—the finite3

element discretization of the tracking already represents some kind of “kinematical” regularization,4

in the sense that the mesh controls the size of the finite dimensional functional space of the5

displacement field. Figure 6 shows tracking results for the cardiac-like problem, for various mesh6

sizes (from 0.1, which corresponds to the characteristic size of the image texture, like in the previous7

examples, to 0.1/24 = 0.00625, which is smaller than the image pixel), for various levels of noise8

(0 & 0.1) and regularization strengths (0 & 0.1), and for two different mesh refinement strategies:9

either we simply track the images with the different meshes independently (left in Figure 6a), or10

we track with successively refined meshes while initializing the tracking at a given mesh refinement11

level with the converged solution of the previous mesh refinement level (right in Figure 6a). First,12

one can see that directly tracking images with fine meshes is impossible—mechanical regularization13

helps a little in some cases, but not enough to obtain satisfying solutions. Thus, to obtain fine14

solutions, one needs to perform multi-resolution. However, one can also see that multi-resolution15

is not enough, and mechanical regularization is necessary to obtain fine solutions.16
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(a) Normalized displacement error (40) as a function of mesh size, for various levels of image noise, for
the discrete version of the nonlinear equilibrium gap (12) including surface traction regularization terms
(18) & (22), with various regularization strength.

(b) Tracking solutions for the discrete version of the nonlinear equilibrium gap (12) including surface
traction regularization terms (18) & (22), with regularization strength β = 0.1.

Figure 6: Cardiac-like case, impact of mesh size.
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4 Conclusion1

In this paper, we introduced a consistent formulation, in the nonlinear large deformation setting, of2

the discrete equilibrium gap principle, and used it as a regularization for the large motion tracking3

problem. This principle enforces that the tracked motion corresponds to the motion of a body in4

equilibrium with some tractions applied on its boundary. We also introduced a novel regularization5

of the boundary tractions involved in the equilibrium gap principle, which naturally applies to both6

the finite and infinitesimal strain settings.7

In summary, we validated our approach by generating images representing various motions and8

with different signal-to-noise ratios, and then running our motion tracking algorithm with various9

regularization terms and regularization strengths. Basically we concluded that the finite strain10

framework is necessary when large motion —especially large rotation— is involved. We showed that11

elastic regularization interferes pathologically with nonrigid motion tracking, and should essentially12

not be used in such cases. In the case of heterogenous motion, which is the most representative13

of actual applications of motion tracking [Genet, Lee, et al. 2014; Finsberg et al. 2019], we also14

concluded that our previous “continuous” formulation of the equilibrium gap principle interferes15

with the tracking, while our new “discrete” formulation performs well. Finally, we also showed16

that, combining multi-level resolution and our mechanical regularization, we were able to track17

rather large motion with a displacement discretization as fine as the image discretization itself, so18

that all features of the images motion can be tracked.19

In order to promote open and reproducible science, the general motion tracking algorithm as well as20

all regularization terms have been implemented in an open-source finite element motion tracking li-21

brary [Genet 2023a] (currently at https://gitlab.inria.fr/mgenet/dolfin_warp), and the spe-22

cific code to reproduce the results of this paper is also freely available [Genet 2023b] (in the appendix23

and currently at https://mgenet.gitlabpages.inria.fr/N-DEG-paper-demos/index.html).24

25

There are multiple limitations to our current approach, at various levels. The formulation of the26

equilibrium gap principle introduced here only considers a single homogeneous domain, which might27

be limiting when tracking motion of highly heterogeneous structures such as diseases organs [Patte28

et al. 2022; Laville et al. 2023]. In such case, one might need to extend the formulation to multiple29

zones. Another option would be to estimate the material parameters of the mechanical model used30

for the regularization term at the same time as the tracking [Mathieu et al. 2015]. Actually, the31

equilibrium gap principle could also be used as a cost function for direct (i.e., without the need for32

a resolution of the direct mechanics problem) material parameter estimation from displacement33

measured by any method—the small stain formulation has already been used successfully [Claire34

et al. 2004], but in large strain only the virtual fields method has been used, which represents an35

approximation of the equilibrium gap method as it only satisfies the equilibrium in a weak sense36

for a selected member of test functions [Avril et al. 2008].37

Another limitation, especially in terms of applications, is that the performance of the method38

comes at a significant computational cost, limiting its use notably in the clinics. Thus, our method39

could be used to generate ground truth and/or validation data for machine learning algorithms,40

which could then perform tracking almost instantaneously. This is an active field of research today41

[Leiner et al. 2019; Friedrich et al. 2021; Koehler et al. 2022; López et al. 2022].42

43

An important perspective of our motion tracking algorithm is toward low resolution images, which44

have been proven to drastically impact the tracking quality [Berberoğlu, Stoeck, Moireau, et al.45

2021]. One option is to combine images from multiple modalities and combine the strength of46

both images [Berberoğlu, Stoeck, Kozerke, et al. 2022]. Another option to consider is to introduce47

a model of the imaging modality (e.g., MRI [Škardová et al. 2019]), in order to control the bias48

induced by the image discretization. Thus, by combining models of the imaging process and the49

mechanical deformation, we will be able to perform high quality tracking even with low quality50

images.51
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Appendix1

A Code for Figures 1, 2, 3 and 42

Imports3

[ ]: import dolfin # https://fenicsproject.org

import IPython # https://ipython.org

import vtk # https://vtk.org

import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp

from generate_images_and_meshes_from_Struct import generate_images_and_meshes_from_Struct

from plot_disp_error_vs_regul_strength import plot_disp_error_vs_regul_strength

from lib_viewer import Viewer
4

Parameters5

[ ]: n_dim = 2

images_folder = "generate_images"

n_voxels = 100

structure_deformation_type_lst = [ ]

structure_deformation_type_lst += [["square", "translation"]]

structure_deformation_type_lst += [["square", "rotation" ]]

structure_deformation_type_lst += [["square", "compression"]]

structure_deformation_type_lst += [["square", "shear" ]]

texture_type_lst = [ ]

texture_type_lst += ["tagging"]

noise_level_lst = [ ]

noise_level_lst += [0.0]

noise_level_lst += [0.1]

noise_level_lst += [0.2]

noise_level_lst += [0.3]

n_runs_for_noisy_images = 10

working_folder = "run_warp"

mesh_size_lst = [ ]

mesh_size_lst += [0.1]

regul_type_lst = [ ]

regul_type_lst += ["continuous-linear-elastic" ]

regul_type_lst += ["continuous-linear-equilibrated" ]

regul_type_lst += ["continuous-elastic" ]

regul_type_lst += ["continuous-equilibrated" ]

regul_type_lst += ["discrete-simple-elastic" ]

regul_type_lst += ["discrete-simple-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]

regul_type_lst += ["discrete-equilibrated" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential" ]

regul_level_lst = [ ]

regul_level_lst += [0.99 ]

regul_level_lst += [0.1*2**3]
6
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regul_level_lst += [0.1*2**2]

regul_level_lst += [0.1*2**1]

regul_level_lst += [0.1 ]

regul_level_lst += [0.1/2**1]

regul_level_lst += [0.1/2**2]

regul_level_lst += [0.1/2**3]

regul_level_lst += [0.0 ]

do_generate_images = 1

do_generate_meshes = 1

do_run_warp = 1

do_plot_disp_error_vs_regul_strength = 1
1

Synthetic images2

[ ]: if (do_generate_images):

for structure_type, deformation_type in structure_deformation_type_lst:

for texture_type in texture_type_lst :

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

print("*** generate_images ***" )

print("structure_type:" , structure_type )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

generate_images_and_meshes_from_Struct(

n_dim = n_dim ,

n_voxels = n_voxels ,

structure_type = structure_type ,

deformation_type = deformation_type ,

texture_type = texture_type ,

noise_level = noise_level ,

k_run = k_run if (n_runs > 1) else None,

generate_images = 1 ,

compute_meshes = 0 )
3

Ground truth motion4

[ ]: if (do_generate_meshes):

for structure_type, deformation_type in structure_deformation_type_lst:

for mesh_size in mesh_size_lst :

print("*** generate_meshes ***" )

print("structure_type:" , structure_type )

print("deformation_type:", deformation_type)

print("mesh_size:" , mesh_size )

generate_images_and_meshes_from_Struct(

n_dim = n_dim ,

n_voxels = n_voxels ,

structure_type = structure_type ,

deformation_type = deformation_type,

texture_type = "no" ,

noise_level = 0 ,

mesh_size = mesh_size ,

generate_images = 0 ,

compute_meshes = 1 )
5
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Tracking1

[ ]: if (do_run_warp):

for structure_type, deformation_type in structure_deformation_type_lst:

for texture_type in texture_type_lst :

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

for mesh_size in mesh_size_lst :

for regul_type in regul_type_lst :

for regul_level in regul_level_lst :

if any([_ in regul_type for _ in ["linear", "simple"]]):

regul_model = "hooke"

else:

regul_model = "ciarletgeymonatneohookean"

regul_poisson = 0.0

print("*** run_warp ***" )

print("structure_type:" , structure_type )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

print("mesh_size:" , mesh_size )

print("regul_type:" , regul_type )

print("regul_model:" , regul_model )

print("regul_level:" , regul_level )

print("regul_poisson:" , regul_poisson )

images_basename = structure_type

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (n_runs > 1):

images_basename += "-run="+str(k_run).zfill(2)

mesh_folder = images_folder

mesh_basename = structure_type

mesh_basename += "-"+deformation_type

mesh_basename += "-h="+str(mesh_size)

if (structure_type == "heart"):

mesh_basename += "-mesh"

working_basename = images_basename

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

dwarp.warp(

working_folder = working_folder ,

working_basename = working_basename,

images_folder = images_folder ,

images_basename = images_basename ,

mesh_folder = mesh_folder ,

mesh_basename = mesh_basename ,

regul_type = regul_type ,

regul_model = regul_model ,

regul_level = regul_level ,

regul_poisson = regul_poisson ,

relax_type = "backtracking" ,

normalize_energies = 1 ,
2
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tol_dU = 1e-2 ,

n_iter_max = 100 ,

continue_after_fail = 1 ,

write_VTU_files = 1 ,

write_VTU_files_with_preserved_connectivity = 1 )
1

Visualization2

[ ]: structure_type = "square"

deformation_type = "translation"

# deformation_type = "rotation"

# deformation_type = "compression"

# deformation_type = "shear"

texture_type = "tagging"

noise_level = 0.

# noise_level = 0.1

# noise_level = 0.2

# noise_level = 0.3

k_run = 0

mesh_size = 0.1

# regul_type = "continuous-linear-elastic"

# regul_type = "continuous-linear-equilibrated"

# regul_type = "continuous-elastic"

# regul_type = "continuous-equilibrated"

# regul_type = "discrete-simple-elastic"

# regul_type = "discrete-simple-equilibrated"

# regul_type = "discrete-linear-equilibrated"

# regul_type = "discrete-linear-equilibrated-tractions-normal"

# regul_type = "discrete-linear-equilibrated-tractions-tangential"

# regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"

# regul_type = "discrete-equilibrated"

# regul_type = "discrete-equilibrated-tractions-normal"

# regul_type = "discrete-equilibrated-tractions-tangential"

regul_type = "discrete-equilibrated-tractions-normal-tangential"

# regul_level = 0.99

# regul_level = 0.1*2**3

# regul_level = 0.1*2**2

# regul_level = 0.1*2**1

regul_level = 0.1

# regul_level = 0.1/2**1

# regul_level = 0.1/2**2

# regul_level = 0.1/2**3

# regul_level = 0.0

images_basename = structure_type

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (k_run > 0):

images_basename += "-run="+str(k_run).zfill(2)

working_basename = images_basename

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

viewer = Viewer(

images=images_folder+"/"+images_basename+"_*.vti",
3
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meshes=working_folder+"/"+working_basename+"_*.vtu")

viewer.view()
1

Plot2

[ ]: if (do_plot_disp_error_vs_regul_strength):

for structure_type, deformation_type in structure_deformation_type_lst:

for texture_type in texture_type_lst :

for regul_type in regul_type_lst :

print("*** plot_disp_error_vs_regul_strength ***")

print("structure_type:" , structure_type )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("regul_type:" , regul_type )

plot_disp_error_vs_regul_strength(

images_folder = images_folder ,

sol_folder = working_folder ,

structure_type = structure_type ,

deformation_type = deformation_type ,

texture_type = texture_type ,

regul_type = regul_type ,

noise_level_lst = noise_level_lst ,

n_runs_for_noisy_images = n_runs_for_noisy_images,

regul_level_lst = regul_level_lst ,

regul_level_for_zero = 1e-3 ,

generate_datafile = 1 ,

generate_plotfile = 1 ,

generate_plot = 1 )

plotfile_basename = "plot_disp_error_vs_regul_strength"

plotfile_basename += "/"+structure_type

plotfile_basename += "-"+deformation_type

plotfile_basename += "-"+texture_type

plotfile_basename += "-"+regul_type

IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
3

B Code for Figure 54

Imports5

[ ]: import dolfin # https://fenicsproject.org

import IPython # https://ipython.org

import vtk # https://vtk.org

import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp

from generate_images_and_meshes_from_HeartSlice import generate_images_and_meshes_from_HeartSlice

from plot_disp_error_vs_regul_strength import plot_disp_error_vs_regul_strength

from lib_viewer import Viewer
6

Parameters7

[ ]: images_folder = "generate_images"

n_voxels = 100

deformation_type_lst = [ ]

deformation_type_lst += ["contractandtwist"]

texture_type_lst = [ ]

texture_type_lst += ["tagging"]
8
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noise_level_lst = [ ]

noise_level_lst += [0.0]

noise_level_lst += [0.1]

noise_level_lst += [0.2]

noise_level_lst += [0.3]

n_runs_for_noisy_images = 10

working_folder = "run_warp"

mesh_size_lst = [ ]

mesh_size_lst += [0.1]

regul_type_lst = [ ]

regul_type_lst += ["continuous-linear-elastic" ]

regul_type_lst += ["continuous-linear-equilibrated" ]

regul_type_lst += ["continuous-elastic" ]

regul_type_lst += ["continuous-equilibrated" ]

regul_type_lst += ["discrete-simple-elastic" ]

regul_type_lst += ["discrete-simple-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]

regul_type_lst += ["discrete-equilibrated" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential" ]

regul_level_lst = [ ]

regul_level_lst += [0.99 ]

regul_level_lst += [0.1*2**3]

regul_level_lst += [0.1*2**2]

regul_level_lst += [0.1*2**1]

regul_level_lst += [0.1 ]

regul_level_lst += [0.1/2**1]

regul_level_lst += [0.1/2**2]

regul_level_lst += [0.1/2**3]

regul_level_lst += [0.0 ]

do_generate_images = 1

do_generate_meshes = 1

do_run_warp = 1

do_plot_disp_error_vs_regul_strength = 1
1

Synthetic images2

[ ]: if (do_generate_images):

for deformation_type in deformation_type_lst:

print("*** running model ***" )

print("deformation_type:", deformation_type)

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type,

texture_type = "no" ,

noise_level = 0 ,

run_model = 1 ,

generate_images = 0 )

for texture_type in texture_type_lst:

for noise_level in noise_level_lst :

3
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n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

print("*** generate_images ***" )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type ,

texture_type = texture_type ,

noise_level = noise_level ,

k_run = k_run if (n_runs > 1) else None,

run_model = 0 ,

generate_images = 1 )
1

Ground truth motion2

[ ]: if (do_generate_meshes):

for deformation_type in deformation_type_lst:

for mesh_size in mesh_size_lst :

print("*** generate_meshes ***" )

print("deformation_type:", deformation_type)

print("mesh_size:" , mesh_size )

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type,

texture_type = "no" ,

noise_level = 0 ,

run_model = 1 ,

generate_images = 0 ,

mesh_size = mesh_size )
3

Tracking4

[ ]: if (do_run_warp):

for deformation_type in deformation_type_lst:

for texture_type in texture_type_lst :

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

for mesh_size in mesh_size_lst :

for regul_type in regul_type_lst :

for regul_level in regul_level_lst :

if any([_ in regul_type for _ in ["linear", "simple"]]):

regul_model = "hooke"

else:

regul_model = "ciarletgeymonatneohookean"

regul_poisson = 0.3

print("*** run_warp ***")

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )
5
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print("mesh_size:" , mesh_size )

print("regul_type:" , regul_type )

print("regul_model:" , regul_model )

print("regul_level:" , regul_level )

print("regul_poisson:" , regul_poisson )

images_basename = "heart"

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (n_runs > 1):

images_basename += "-run="+str(k_run).zfill(2)

mesh_folder = images_folder

mesh_basename = "heart"

mesh_basename += "-"+deformation_type

mesh_basename += "-h="+str(mesh_size)

mesh_basename += "-mesh"

working_basename = images_basename

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

dwarp.warp(

working_folder = working_folder ,

working_basename = working_basename,

images_folder = images_folder ,

images_basename = images_basename ,

mesh_folder = mesh_folder ,

mesh_basename = mesh_basename ,

regul_type = regul_type ,

regul_model = regul_model ,

regul_level = regul_level ,

regul_poisson = regul_poisson ,

relax_type = "backtracking" ,

normalize_energies = 1 ,

tol_dU = 1e-2 ,

n_iter_max = 100 ,

continue_after_fail = 1 ,

write_VTU_files = 1 ,

write_VTU_files_with_preserved_connectivity = 1 )
1

Visualization2

[ ]: deformation_type = "contractandtwist"

texture_type = "tagging"

noise_level = 0.

# noise_level = 0.1

# noise_level = 0.2

# noise_level = 0.3

k_run = 0

mesh_size = 0.1

# regul_type = "continuous-linear-elastic"

# regul_type = "continuous-linear-equilibrated"

# regul_type = "continuous-elastic"

# regul_type = "continuous-equilibrated"

# regul_type = "discrete-simple-elastic"

# regul_type = "discrete-simple-equilibrated"
3

44



# regul_type = "discrete-linear-equilibrated"

# regul_type = "discrete-linear-equilibrated-tractions-normal"

# regul_type = "discrete-linear-equilibrated-tractions-tangential"

# regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"

# regul_type = "discrete-equilibrated"

# regul_type = "discrete-equilibrated-tractions-normal"

# regul_type = "discrete-equilibrated-tractions-tangential"

regul_type = "discrete-equilibrated-tractions-normal-tangential"

# regul_level = 0.99

# regul_level = 0.1*2**3

# regul_level = 0.1*2**2

# regul_level = 0.1*2**1

regul_level = 0.1

# regul_level = 0.1/2**1

# regul_level = 0.1/2**2

# regul_level = 0.1/2**3

# regul_level = 0.0

images_basename = "heart"

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (k_run > 0):

images_basename += "-run="+str(k_run).zfill(2)

working_basename = images_basename

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

viewer = Viewer(

images=images_folder+"/"+images_basename+"_*.vti",

meshes=working_folder+"/"+working_basename+"_*.vtu")

viewer.view()
1

Plot2

[ ]: if (do_plot_disp_error_vs_regul_strength):

for deformation_type in deformation_type_lst:

for texture_type in texture_type_lst :

for regul_type in regul_type_lst :

print("*** plot_disp_error_vs_regul_strength ***")

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("regul_type:" , regul_type )

plot_disp_error_vs_regul_strength(

images_folder = images_folder ,

sol_folder = working_folder ,

structure_type = "heart" ,

deformation_type = deformation_type ,

texture_type = texture_type ,

regul_type = regul_type ,

noise_level_lst = noise_level_lst ,

n_runs_for_noisy_images = n_runs_for_noisy_images,

regul_level_lst = regul_level_lst ,

regul_level_for_zero = 1e-3 ,

generate_datafile = 1 ,

generate_plotfile = 1 ,

generate_plot = 1 )

plotfile_basename = "plot_disp_error_vs_regul_strength"

plotfile_basename += "/"+"heart"
3
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plotfile_basename += "-"+deformation_type

plotfile_basename += "-"+texture_type

plotfile_basename += "-"+regul_type

IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
1

C Code for Figure 62

Imports3

[ ]: import dolfin # https://fenicsproject.org

import IPython # https://ipython.org

import vtk # https://vtk.org

import dolfin_warp as dwarp # https://gitlab.inria.fr/mgenet/dolfin_warp

from generate_images_and_meshes_from_HeartSlice import generate_images_and_meshes_from_HeartSlice

from plot_disp_error_vs_mesh_size import plot_disp_error_vs_mesh_size

from lib_viewer import Viewer
4

Parameters5

[ ]: images_folder = "generate_images"

n_voxels = 100

deformation_type_lst = [ ]

deformation_type_lst += ["contractandtwist"]

texture_type_lst = []

texture_type_lst += ["tagging"]

noise_level_lst = []

noise_level_lst += [0.0]

noise_level_lst += [0.1]

noise_level_lst += [0.2]

noise_level_lst += [0.3]

n_runs_for_noisy_images = 10

working_folder = "run_warp"

mesh_size_lst = [ ]

mesh_size_lst += [0.1 ]

mesh_size_lst += [0.1/2**1]

mesh_size_lst += [0.1/2**2]

mesh_size_lst += [0.1/2**3]

mesh_size_lst += [0.1/2**4]

regul_type_lst = [ ]

regul_type_lst += ["continuous-linear-elastic" ]

regul_type_lst += ["continuous-linear-equilibrated" ]

regul_type_lst += ["continuous-elastic" ]

regul_type_lst += ["continuous-equilibrated" ]

regul_type_lst += ["discrete-simple-elastic" ]

regul_type_lst += ["discrete-simple-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-linear-equilibrated-tractions-normal-tangential"]

regul_type_lst += ["discrete-equilibrated" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal" ]

regul_type_lst += ["discrete-equilibrated-tractions-tangential" ]

regul_type_lst += ["discrete-equilibrated-tractions-normal-tangential" ]

6
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regul_level_lst = [ ]

regul_level_lst += [0.0 ]

regul_level_lst += [0.1/2**3]

regul_level_lst += [0.1/2**2]

regul_level_lst += [0.1/2**1]

regul_level_lst += [0.1 ]

regul_level_lst += [0.1*2**1]

regul_level_lst += [0.1*2**2]

regul_level_lst += [0.1*2**3]

regul_level_lst += [0.99 ]

do_generate_images = 1

do_generate_meshes = 1

do_run_warp = 1

do_run_warp_and_refine = 1

do_plot_disp_error_vs_mesh_size = 1

do_plot_disp_error_vs_mesh_size_with_refine = 1
1

Synthetic images2

[ ]: if (do_generate_images):

for deformation_type in deformation_type_lst:

print("*** running model ***" )

print("deformation_type:", deformation_type)

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type,

texture_type = "no" ,

noise_level = 0 ,

run_model = 1 ,

generate_images = 0 )

for texture_type in texture_type_lst:

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

print("*** generate_images ***" )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type ,

texture_type = texture_type ,

noise_level = noise_level ,

k_run = k_run if (n_runs > 1) else None,

run_model = 1 ,

generate_images = 0 )
3

Ground truth motion4

[ ]: if (do_generate_meshes):

for deformation_type in deformation_type_lst:

for mesh_size in mesh_size_lst :

print("*** generate_meshes ***" )

print("deformation_type:", deformation_type)
5
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print("mesh_size:" , mesh_size )

generate_images_and_meshes_from_HeartSlice(

n_voxels = n_voxels ,

deformation_type = deformation_type,

texture_type = "no" ,

noise_level = 0 ,

run_model = 1 ,

generate_images = 0 ,

mesh_size = mesh_size )
1

Tracking (single-level)2

[ ]: if (do_run_warp):

for deformation_type in deformation_type_lst:

for texture_type in texture_type_lst :

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

for mesh_size in mesh_size_lst :

for regul_type in regul_type_lst :

for regul_level in regul_level_lst :

if any([_ in regul_type for _ in ["linear", "simple"]]):

regul_model = "hooke"

else:

regul_model = "ciarletgeymonatneohookean"

regul_poisson = 0.3

print("*** run_warp ***" )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

print("mesh_size:" , mesh_size )

print("regul_type:" , regul_type )

print("regul_model:" , regul_model )

print("regul_level:" , regul_level )

print("regul_poisson:" , regul_poisson )

images_basename = "heart"

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (n_runs > 1):

images_basename += "-run="+str(k_run).zfill(2)

mesh_folder = images_folder

mesh_basename = "heart"

mesh_basename += "-"+deformation_type

mesh_basename += "-h="+str(mesh_size)

mesh_basename += "-mesh"

working_basename = images_basename

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

dwarp.warp(

working_folder = working_folder ,

working_basename = working_basename,
3
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images_folder = images_folder ,

images_basename = images_basename ,

mesh_folder = mesh_folder ,

mesh_basename = mesh_basename ,

regul_type = regul_type ,

regul_model = regul_model ,

regul_level = regul_level ,

regul_poisson = regul_poisson ,

relax_type = "backtracking" ,

normalize_energies = 1 ,

tol_dU = 1e-2 ,

n_iter_max = 100 ,

continue_after_fail = 1 ,

write_VTU_files = 1 ,

write_VTU_files_with_preserved_connectivity = 1 ,

print_iterations = 0 )
1

Tracking (multi-level)2

[ ]: if (do_run_warp_and_refine):

for deformation_type in deformation_type_lst:

for texture_type in texture_type_lst :

for noise_level in noise_level_lst :

n_runs = n_runs_for_noisy_images if (noise_level > 0) else 1

for k_run in range(1, n_runs+1):

for regul_type in regul_type_lst :

for regul_level in regul_level_lst :

if any([_ in regul_type for _ in ["linear", "simple"]]):

regul_model = "hooke"

else:

regul_model = "ciarletgeymonatneohookean"

regul_poisson = 0.3

print("*** run_warp_and_refine ***" )

print("deformation_type:", deformation_type)

print("texture_type:" , texture_type )

print("noise_level:" , noise_level )

print("k_run:" , k_run )

print("regul_type:" , regul_type )

print("regul_model:" , regul_model )

print("regul_level:" , regul_level )

print("regul_poisson:" , regul_poisson )

images_basename = "heart"

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (n_runs > 1):

images_basename += "-run="+str(k_run).zfill(2)

mesh_folder = "generate_images"

mesh_basenames = []

for mesh_size in mesh_size_lst:

mesh_basename = "heart"

mesh_basename += "-"+deformation_type

mesh_basename += "-h="+str(mesh_size)

mesh_basename += "-mesh"

mesh_basenames += [mesh_basename]

3
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working_basename = images_basename

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

dwarp.warp_and_refine(

working_folder = working_folder ,

working_basename = working_basename ,

images_folder = images_folder ,

images_basename = images_basename ,

mesh_folder = mesh_folder ,

mesh_basenames = mesh_basenames ,

regul_type = regul_type ,

regul_model = regul_model ,

regul_level = regul_level ,

regul_poisson = regul_poisson ,

relax_type = "backtracking" ,

normalize_energies = 1 ,

tol_dU = 1e-2 ,

n_iter_max = 100 ,

continue_after_fail = 1 )
1

Visualization2

[ ]: deformation_type = "contractandtwist"

texture_type = "tagging"

noise_level = 0.

# noise_level = 0.1

# noise_level = 0.2

# noise_level = 0.3

k_run = 0

mesh_size = 0.1 ; k_mesh_size = 0

# mesh_size = 0.1/2**1; k_mesh_size = 1

# mesh_size = 0.1/2**2; k_mesh_size = 2

# mesh_size = 0.1/2**3; k_mesh_size = 3

# mesh_size = 0.1/2**4; k_mesh_size = 4

with_refine = 1

# regul_type = "continuous-linear-elastic"

# regul_type = "continuous-linear-equilibrated"

# regul_type = "continuous-elastic"

# regul_type = "continuous-equilibrated"

# regul_type = "discrete-simple-elastic"

# regul_type = "discrete-simple-equilibrated"

# regul_type = "discrete-linear-equilibrated"

# regul_type = "discrete-linear-equilibrated-tractions-normal"

# regul_type = "discrete-linear-equilibrated-tractions-tangential"

# regul_type = "discrete-linear-equilibrated-tractions-normal-tangential"

# regul_type = "discrete-equilibrated"

# regul_type = "discrete-equilibrated-tractions-normal"

# regul_type = "discrete-equilibrated-tractions-tangential"

regul_type = "discrete-equilibrated-tractions-normal-tangential"

# regul_level = 0.99

# regul_level = 0.1*2**3

# regul_level = 0.1*2**2

# regul_level = 0.1*2**1

regul_level = 0.1

# regul_level = 0.1/2**1

# regul_level = 0.1/2**2

# regul_level = 0.1/2**3
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# regul_level = 0.0

images_basename = "heart"

images_basename += "-"+deformation_type

images_basename += "-"+texture_type

images_basename += "-noise="+str(noise_level)

if (k_run > 0):

images_basename += "-run="+str(k_run).zfill(2)

working_basename = images_basename

if not (with_refine):

working_basename += "-h="+str(mesh_size)

working_basename += "-"+regul_type

working_basename += "-regul="+str(regul_level)

if (with_refine):

working_basename += "-refine="+str(k_mesh_size)

viewer = Viewer(

images=images_folder+"/"+images_basename+"_*.vti",

meshes=working_folder+"/"+working_basename+"_*.vtu")

viewer.view()
1

Plot2

[ ]: if (do_plot_disp_error_vs_mesh_size) or (do_plot_disp_error_vs_mesh_size_with_refine):

with_refine_lst = []

if (do_plot_disp_error_vs_mesh_size ): with_refine_lst += [False]

if (do_plot_disp_error_vs_mesh_size_with_refine): with_refine_lst += [True ]

for with_refine in with_refine_lst :

for deformation_type in deformation_type_lst:

for texture_type in texture_type_lst :

for regul_type in regul_type_lst :

plot_disp_error_vs_mesh_size(

images_folder = images_folder ,

sol_folder = working_folder ,

structure_type = "heart" ,

deformation_type = deformation_type ,

texture_type = texture_type ,

regul_type = regul_type ,

noise_level_lst = noise_level_lst ,

n_runs_for_noisy_images = n_runs_for_noisy_images,

regul_level_lst = regul_level_lst ,

mesh_size_lst = mesh_size_lst ,

error_for_nan = 10 ,

with_refine = with_refine ,

generate_datafile = 1 ,

generate_plotfile = 1 ,

generate_plot = 1 )

plotfile_basename = "plot_disp_error_vs_mesh_size"

if (with_refine):

plotfile_basename += "-with_refine"

plotfile_basename += "/"+"heart"

plotfile_basename += "-"+deformation_type

plotfile_basename += "-"+texture_type

plotfile_basename += "-"+regul_type

IPython.display.display(IPython.display.Image(filename=plotfile_basename+'.png'))
3
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