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Abstract

Factor models were first developed and dealt with in the case where observations
are assumed to be normally distributed. Estimation is then carried out using the
Expectation-Maximization (EM) algorithm based on the fact that the expectation of
the completed log-likelihood conditional to the data is available in such a case. More
recently, a less restrictive framework has been considered, in which the distribution
of the observations is assumed to belong to the exponential family. We call these
models Generalized Linear Factor Models (GLFM). For want of an explicit expression
of the expectation of the completed log-likelihood conditional to the data, estimation
of a GLFM is currently carried out using Monte-Carlo methods, which are compu-
tationally intensive. Here, we propose a quicker estimation technique, based on the
fact that the estimation of a Generalized Linear Model can be achieved using the
Fisher’s Score Algorithm (FSA), that iterates GLS on a locally linearized model. The
linearized model mimicking a classical normal factor model, it can be estimated with
the EM algorithm. So, our technique consists in nesting an EM algorithm within each
iteration of the FSA. Extensive Monte Carlo simulations show promising results of
the algorithm.

AMS Subject Classification: 62H25, 62J12, 62P05 and 62P20

Keywords: Factor Models; Generalized Linear Models; EM Algorithm; Scores Algo-
rithm; Simulations.

1 Introduction

Latent variable models are widely used in social sciences for studying the interrelationships
among observed variables. More specifically, latent variable models are used for reducing
the dimensionality of multivariate data, for assigning scores to sample members on the
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latent dimensions identified by the model, and for constructing measurement scales (e.g.,
in psychometrics). [10, 11] proposed a generalized linear latent variable model framework
for any type of observed data (metric or categorical) in the exponential family. They
extended the work of [9] and [16] for mixed binary and metric variables (the latter with
covariate effects as well) and [2] for categorical variables. A similar framework was also
discussed by [17] that includes multilevel models (random-effects models) as a special case.

In this paper we develop a general approach to factor analysis that involves observed
variables that are assumed to be distributed in the exponential family. It accommodates
a great variety of data, including rating, ordering, choice, frequency, and timing data and
entails a number of special cases of factor analysis not considered previously.

The framework is that of factor models (FM): a set of p observed random variables
(RV) {y1, ..., yp} is assumed to be produced by fewer (q ≤ p) unobserved (latent) ones,
{f1, ..., fq}, called factors. In the beginning, developments on FM’s were limited by the
assumption that {y1, ..., yp} were normally distributed, and used this specific distribution
to carry out their estimation, through the EM algorithm ([8] and [13, 14]). EM could be
used then because within the normal framework, the expectation of the derivative of the
completed log-likelihood conditional to the data can be calculated analytically.

Such a classical normal factor model was extended later, by considering y’s that had
a distribution belonging to the exponential family. In such a case, EM could not be
carried out, for want of an analytic expression of the expectation of the above-mentioned
derivative. So, this expectation had to be approximated to some extent. [10] used the
Gauss-Hermite quadrature to approximate integrals in the expectation. [18] used a Monte
Carlo method, namely a simulated EM, to approximate the expectation. Their model
considered factors not only normally distributed, but more generally distributed in the
exponential family. [11] applied the indirect inference technique proposed by [6], [4] and [5].
All these authors only dealt with a single factor model. Such methods are computationally
very intensive, which precludes their use on massive data. As a consequence, a quicker
estimation technique has to be used in this latter case.

The paper is organized as follows. In section 2, we give the structure of the GLFM. In
section 3, we build up our estimation technique by combining the Fisher’s score algorithm
with the EM algorithm. In section 4, we finally study the performance of this technique
on simulated data.

2 General structure of the Generalized Linear Factor Model

Variables {y1, ..., yp} are measured out on n independent observation units {1, ..., t, ... n}.
Conditional to the factors {f1, ..., fq}, each yi is modeled with a GLM taking these factors
as predictors. For identification purposes, the factors are taken uncorrelated and normally
distributed with 0 mean and unit variance:
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2.1 Model of the dependent variable vector conditional to factors

Let yt = (yit)i=1,p and ft = (fjt)j=1,q respectively be the vector of observed variables
{y1, ..., yp} and latent factors {f1, ..., fq} for observation t. We have:

∀ t ft ∼ N (0, Iq)

Conditional to factors ft, (yit)i=1,p are independently distributed according to a model
having an exponential structure [12], i.e. the density of which has the form:

li(yit|δit, φ) = exp
{

(yitδit − bi(δit))
ait(φ)

+ ci(yit, φ)
}

(1)

From:





E
(

∂li(yit|δit,φ)
∂δi

)
= 0

E
(

∂2li(yit|δit,φ)
∂δ2

i

)
+ E

((
∂li(yit|δit,φ)

∂δi

)2
)

= 0

one gets the following useful classical results. ∀i, t

µit = E(yit) = b′i(δit) (2)

V ar(yit) = ait(φ)b′′i (δit) = ait(φ)b′′i
[
b′−1
i (µit)

]
with vi(µit) = b′′i

([
b−1′
i (µit)

])
(3)

Independence of (yit)i=1,qconditional to ft implies that they have conditional variance
matrix:

V arft(yt) = diag {ait(φ)vi(µit)}i=1,...,q (4)

Table 1 gives the expressions of µ and v(µ) for the most usual distributions in the
exponential family.

Table 1: µ and v(µ) for usual distributions in the exponential family

Distribution µ a(φ) v(µ)
aB(n, p) p = eδ

1+eδ a µ(1− µ)
P(λ) λ = eδ 1 µ

G (
a, 1

λ

)
aλ = 1

δ 1 −µ2

N (µ, σ2) µ = δ σ2 1
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2.2 Linear predictors

For every i = 1, p, factors {f1, ..., fq} generate a predictor ηi underlying variable yi. This
predictor is assumed to be a linear combination of the factors:

∀ i, t ηit = θi + a′ift, ai ∈ Rp (5)

Let θ = (θ1, ..., θp)′ the vector of the predictor means. Most generally, these effects
may depend on covariates, but in order to simplify our developments, we here take them
constant. Let F = (f1, ..., ft, ..., fn)′ be the (n, q) factor matrix and A = (a1, ..., ap)′ be
the (p, q) factor coefficient matrix.

Let finally:

ηt = (ηit)i ; η = (ηit)i,t = (η1, ..., ηt, ..., ηn)

On observation level, (5) may then be written:

∀ t ηt = θ + Aft (6)

which, on global level, reads:

η
(p,n)

= θ
(p,1)

1′n
(1,n)

+ A
(p,q)

F
(q,n)

(7)

2.3 Link function

The linear predictor and the expectation of the dependent variable yi are linked through
a link function gi:

∀ i, t ηit = gi(µit) (8)

Amongst all link functions, that which allows to equate the linear predictor η and the
canonical parameter δ is called canonical link function. We have:

(2) and (8) ⇒ ηit = gi

(
b′i(δit)

)

So, the canonical link function is: gi = b′−1
i . Table 2 gives the canonical link functions

of the most usual distributions in the exponential family.

3 Estimation of the GLFM

As, conditional to the factors, the GLFM boils down to a GLM, we first recall the overall
structure of the GLM estimation algorithm, which also allows to introduce our notations.
Then, we give back their latent random variable status to the factors, and adapt the
estimation procedure to this situation by including an EM step in its current iteration.
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Table 2: Canonical link functions of usual distributions in the exponential family

aB(n, p) P(λ) G(a, 1
λ) N (µ, σ2)

g(x) = log
(

x
1−x

)
g(x) = log(x) g(x) = 1

x g(x) = x

3.1 Estimating a GLM through the Fisher’s score algorithm

3.1.1 Univariate GLM

Consider the GLM of some variable y, with µ = E(y). The explanatory variables {x1, ..., xq}
are observed. Let:

xt = (x1t, ..., xqt)′ ; X = (x1, ..., xq) = (x1, ...,xt, ...,xn)′

Let g be the link function, and η the linear predictor:

η = Xβ, β ∈ Rp

For each unit t, we have:

ηt = g(µt) ⇒ x′tβ = g
(
b′(δt)

)

The problem is to estimate β. The log-likelihood of the model is:

L(δ; y) =
n∑

t=1

Lt(δt; yt) =
n∑

t=1

[
ytδt − b(δt)

at(φ)
+ c(yt, φ)

]

Derivation with respect to β yields:

∂Lt

∂βj
=

∂ηt

∂βj

∂µt

∂ηt

∂δt

∂µt

∂Lt

∂δt
= xtj

1
g′(µt)

1
b′′(δt)

yt − µt

at(φ)

⇒ ∂L
∂βj

=
n∑

t=1

xtj
1

g′(µt)2var(yt)
g′(µt)(yt − µt)

Let:

Wβ = diag
[
g′(µt)2var(yt)

]
t=1,n

= diag
[
g′(µt)2at(φ)v(µt)

]
t=1,n

The expression of Wβ for usual models can be found in table 3.
Let also:

∂η

∂µ
= diag

(
∂ηt

∂µt

)

t=1,n

= diag
(
g′(µt)

)
t=1,n
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Table 3: Expression of Wβ for usual models in the exponential family

Distribution Wβ

aB(n, p) Wβ = diag
(
a

1+exp(x′tβ)
exp(x′tβ)

)

P(λ) Wβ = diag
(

1
exp(x′tβ)

)

G(a, 1
λ) Wβ = diag

(
a (exp(x′tβ))2

)

N (µ, σ2) Wβ = diag (ψt)

Then, likelihood equations can be written:

∇
β
L = 0 ⇔ X ′W−1

β

∂η

∂µ
(y − µ) = 0 (9)

This equation system not being linear in β, it is solved using an iterative process,
known as Fisher’s scores algorithm. If m[k] denotes the value of element m after iteration
k:

β[k+1] = β[k] −
(
E

[{
∂2L

∂β∂β′

}][k]
)−1 (

∂L
∂β

)[k]

= β[k] +
(
X ′W−1

β[k]X
)−1

X ′W−1
β[k]

(
∂η

∂µ

)[k] (
y − µ[k]

)

=
(
X ′W−1

β[k]X
)−1

X ′W−1
β[k]z

[k] (10)

where:

z[k] = Xβ[k] +
(

∂η

∂µ

)[k] (
y − µ[k]

)

Equation (10) may be interpreted as the normal equations of a linear model. Indeed,
let:

zβ = η +
∂η

∂µ
(y − µ) = Xβ +

∂η

∂µ
(y − µ) (11)

Then, (9) becomes:

X ′W−1
β (zβ −Xβ) = 0 (12)

Equations (12) with given zβ may be interpreted as GLS normal equations of the
following linear model:
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M : zβ = Xβ + ζ , where : E(ζ) = 0 ; V (ζ) = Wβ

(indeed: V (ζt) = V (zβ,t) = g′(µt)2V ar(yt))

So, current iteration k of the estimation algorithm consists in solving X ′W−1
β[k](zβ[k] −

Xβ) = 0 with respect to β, and updating β in Wβ and zβ with the solution.
We shall refer to M[k] : zβ[k] = Xβ + ζ [k]; E(ζ [k]) = 0; V (ζ [k]) = Wβ[k] as the

(current) linearized model. One important point is that GLS estimation of this model is
nothing but a Quasi-Likelihood Estimation (QLE). This estimation by maximum of QL
mimics MLE on each step, under a normality and independence assumption of the zβ,t’s
with a fixed covariance structure.

Notes:

1. In the particular case of the normal distribution, the linearized model is no other
than the initial linear model.

2. As the 1st order development of g at point µ yields:

g(y) ≈ g(µ) + g′(µ)(y − µ) = z

we may perform OLSR of g(y) on X, in order to get an initial value β[0]. When g(y) is
not defined owing to zero-values in data, we have to mix y up with some relevant quantity.
We propose to take:

∀ t = 1, n z
[0]
t = g [αyt + (1− α)y] , with α = 0.95

3.1.2 Multivariate GLM

Consider now that y1, ..., yp depend on the same explanatory variables {x1, ... , xq}, con-
ditional to which they are all independent.

The conditional independence assumption implies that:

∀ t = 1, n : l(yt|ηt) =
p∏

i=1

li(yit|ηit)

That is, in view of the independence of units:

l(Y|η) =
p∏

i=1

li(yi|ηi)

As a result, the corresponding linearized model in the FSA is the following:

M : ∀ i = 1, p : ziβ = Xβi + ζi

where the ζi’s are independent and ∀ i: E(ζi) = 0 ; V ar(ζi) = Wiβ with Wiβ =
diag

(
g′i(µit)2V ar(yit)

)
t=1,n

= diag
(
g′i(µit)2ait(φ)v(µit)

)
t=1,n

.
The FSA is used to estimate this model.
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3.2 Estimation of a normal FM

3.2.1 Homoskedastic model: basic application of the EM algorithm

Consider the following normal factor model:

∀ t = 1, n : yt = θ + Aft + εt ; V ar(εt|ft) = Ψ

(
yt

ft

)
∼ N

((
θ

0

)
;

(
AA′ + Ψ A

A′ Iq

))

1st order equations: A is estimated by using the expectation, conditional to obser-
vations, of the derivative with respect to parameters of the completed log-likelihood
(EDLCO):

∑
t

E
(
∇

A,Ψ
log l(yt, ft)|yt

)
= 0

This can be achieved because EDLCO is analytically determined. Let us give back
some landmarks in this EM estimation.

The completed log-likelihood of observations is:

−1
2

n∑

t=1

(
log |Ψ|+ (yt −Aft − θ)Ψ−1(yt −Aft − θ)

)
+ R

where R is a term independent from θ and A. Setting to zero its derivative with respect
to θ yields:

∑
t

(yt − Âft − θ̂) = 0 (13)

If ft were known, (13) could be used in the following updating formula:

θ̂[k+1] =
1
n

∑
t

(yt − Â[k]f
[k]
t )

As it is not, EM replaces ft with its expectation conditional to y, f̃t = E(ft|yt), which
gives:

θ̂[k+1] =
1
n

∑
t

(yt − Â[k]f̃
[k]
t ) where f̃

[k]
t = E(f [k]

t |yt) = γ(yt − θ̂[k]) (14)

In like manner, setting to zero the derivative with respect to A yields, and substituting
f̃t with gives:
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∑
t

(ytf̃
′
t − θ̂f̃ ′t − ÂS̃t) = 0 where S̃t = E(ftf

′
t |yt) (15)

(14) put into (15) yields:

[∑
t

ytf̃
′
t −

1
n

∑
t

yt

∑
t

f̃ ′t

]
= Â

[∑
t

S̃t − 1
n

∑
t

f̃t

∑
t

f̃ ′t

]

⇔ Â =

[∑
t

ytf̃
′
t −

1
n

∑
t

yt

∑
t

f̃ ′t

][∑
t

S̃t − 1
n

∑
t

f̃t

∑
t

f̃ ′t

]−1

(16)

with:

f̃t = γ(yt − θ̂) = Â′
(
ÂÂ′ + Ψ̂

)−1
(yt − θ̂) (17)

S̃t = I − Â′
(
ÂÂ′ + Ψ̂

)−1
Â + f̃tf̃

′
t (18)

Derivation with respect to inverse of the variance matrix gives:

∇
Ψ−1

∑
t

[
log |Ψ|+ ‖yt − θ̂ − Âft‖2

Ψ−1

]
= 0

⇔ Ψ̂ =
1
n

∑
t

(yt − θ̂ − Âft)(yt − θ̂ − Âft)′

the expectation of which is taken conditional to the observed data, giving:

Ψ̂ =
1
n

∑
t

[
(yt − θ̂)(yt − θ̂)′ − Âf̃t(yt − θ̂)′ − (yt − θ̂)f̃ ′tÂ + ÂS̃tÂ

′
]

(19)

Estimation of A and Ψ: The solution of system (16-19) can be viewed as the fixed
point of the following iterative procedure:

Â[k+1] =

[∑
t

ytf̃
[k]′
t − 1

n

∑
t

yt

∑
t

f̃
[k]′
t

][
S̃

[k]
t − 1

n

∑
t

f̃
[k]
t

∑
t

f̃
[k]′
t

]−1

(20)

with:

f̃
[k]
t = γ(yt − θ̂[k]) = Â[k]′

(
Â[k]Â[k]′ + Ψ̂[k]

)−1
(yt − θ̂[k]) (21)

S̃
[k]
t = I − Â[k]′

(
Â[k]Â[k]′ + Ψ̂[k]

)−1
Â[k] + f̃

[k]
t f̃

[k]′
t (22)

Ψ̂[k+1] =
1
n

∑
t

[
(yt − θ̂[k])(yt − θ̂[k])′ − Â[k]f̃

[k]
t (yt − θ̂[k])′ − (yt − θ̂[k])f̃ [k]′

t Â[k] + Â[k]S̃tÂ
[k]′

]
(23)
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Estimation of F: ft is estimated as its expectation conditional to yt: f̃
[∞]
t .

3.2.2 Adaptation of the EM algorithm to the Heteroskedastic model

Following [3] and [15], consider now the normal FM:

∀ t = 1, n : yt = θ + Aft + εt ; V ar(εt|ft) = Ψt (24)

The completed log-likelihood of observations is:

−1
2

n∑

t=1

(
log |Ψt|+ (yt −Aft − θ)′Ψ−1

t (yt −Aft − θ)
)

+ R (25)

Setting to zero its derivative with respect to θ yields:

∑
t

Ψ−1
t (yt − Âft − θ̂) = 0 (26)

So, we get:

θ̂ =

(∑
t

Ψ−1
t

)−1 ∑
t

Ψ−1
t (yt − Âft) (27)

leading to:

θ̂[k+1] =

(∑
t

Ψ[k]−1
t

)−1 ∑
t

Ψ[k]−1
t (yt − Â[k]f̃

[k]
t ) (28)

In like manner, setting to zero the derivative with respect to A leads to:

∑
t

Ψ−1
t

[
(yt − θ̂)f̃ ′t − ÂS̃t

]
= 0 (29)

⇔
∑

t

Ψ−1
t

[
(yt − θ̂)f̃ ′t

]
=

∑
t

Ψ−1
t ÂS̃t (30)

In case of a single factor, Ψt, f̃
[k]
t , S̃

[k]
t ∈ R, so the solution of system (28-30) is

straightforward:
(27) put into (29) yields:

∑
t

Ψ[k]−1
t





yt −

(∑
t

Ψ[k]−1
t

)−1 ∑
t

Ψ[k]−1
t (yt − Â[k]f̃

[k]
t )


 f̃

[k]′
t − Â[k]S̃

[k]
t


 = 0 (31)

10



which in this case, gives:

Â[k] =

[∑
t

Ψ[k]−1
t ytf̃

[k]′
t − 1

M [k]

∑
t

Ψ[k]−1
t

(∑
t

Ψ[k]−1
t yt

)
f̃

[k]′
t

]

×
[∑

t

Ψ[k]−1
t S̃

[k]
t − 1

M [k]

∑
t

Ψ[k]−1
t

(∑
t

Ψ[k]−1
t f̃

[k]
t

)
f̃

[k]′
t

]−1

(32)

where M [k] =
∑
t

Ψ[k]−1
t .

Let us now consider the case of several factors (we shall take k = 2 to make writing
simpler, but the technique holds in the most general situation). We can reason row by
row. In view of the fact that Ψ−1

t = diag
(
Ψi

t

)
i

(independence of {y1, ..., yp} conditional
to {f1, ..., fq}) , row i of equation (30) boils down to:

∑
t

yit − θi

Ψi
t

(
f̃1

t f̃2
t

)
=

(
âi1 âi2

)∑
t

1
Ψi

t

(
S̃11

t S̃12
t

S̃21
t S̃22

t

)

where Â = ((âij))i,j and S̃t =
(
(S̃ij

t )
)

i,j

We get the corresponding iterative equation system:

∑
t

yit − θ
[k]
i

Ψi[k]
t

(
f̃

1[k]
t f̃

2[k]
t

)
=

(
â

[k+1]
i1 â

[k+1]
i2

)∑
t

1

Ψi[k]
t

(
S̃

11[k]
t S̃

12[k]
t

S̃
21[k]
t S̃

22[k]
t

)

Solving this system yields row i of Â[k+1].
¥ Derivation with respect to inverse of the variance matrix gives:

∇
Ψ−1

t

[
log |Ψt|+ ‖yt − θ̂ − Âft‖2

Ψ−1
t

]
= 0

⇔ Ψ̂t = (yt − θ̂ − Âft)(yt − θ̂ − Âft)′

the expectation of which is taken conditional to the observed data, giving:

Ψ̂t =
[
(yt − θ̂)(yt − θ̂)′ − Âf̃t(yt − θ̂)′ − (yt − θ̂)f̃ ′tÂ + ÂS̃tÂ

′
]

(33)

Of course, if Ψt can be expressed as a function of other parameters, e.g. µt, such an
expression may provide a better estimator than that of (33).
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3.2.3 Identification constraints

As specified above (§3.2.1), the model is not identifiable: factors are defined except for an
orthogonal transform P . Indeed:

Aft = A∗f∗t with A∗ = AP−1 and f∗t = Pft

And

V ar(f∗t ) = PV ar(ft)P ′ = PP ′ = Iq

So, models:

yt = θ + Aft + εt and yt = θ + A∗f∗t + εt with V ar(ε|ft) = Ψ

meet exactly the same hypotheses. To make factors identifiable, we must impose
constraints to coefficient matrix A. There are several options that may be taken [refs].
We used that of hierarchical constraints, explained hereafter.

Matrix A has dimensions (p, q) with q ≤ p. So, we can write, in a unique manner:

A =

(
A1

A2

)
, where A1 is a (q, q) matrix

Now, assuming that A1 is a full rank matrix, there is a unique orthogonal transform
P such that A1P

′ is a lower triangular matrix with positive diagonal elements.

Proof: M = A1A
′
1 is symmetric definite positive, so it can be written:

M = LDL′

where L is lower triangular and D is diagonal with positive diagonal elements. Then
L1 = LD

1
2 is the unique lower triangular matrix with positive diagonal elements that

verifies Cholesky’s decomposition:

M = L1L
′
1

So, P = L−1
1 A1 is such that:

PP ′ = L−1
1 A1A

′
1L

−1′
1 = L−1

1 LDL′L−1′
1 = D− 1

2 L−1LDL′L−1′D− 1
2 = Iq

and

12



A1P
′ = A1P

−1 = A1A
−1
1 L1 = L1

So, in order to make the model identifiable, we constrain coefficient matrix A to have
the following form:

A =

(
A1

A2

)
, where A1 is a lower triangular matrix

⇔ A = ((aij)) i = 1, p

j = 1, q

with aij = 0 ∀ j > i

3.2.4 Constrained EM estimation

Following [1] and [15], the hierarchical constraint proves handy: while solving (30) row
by row, one just has to set to zero all coefficients âij that must equal zero in A1. More
precisely, if in row i, coefficients {aij , j > i} are to be 0, then only the first i elements

of row i are kept, both in matrices
∑
t

Ψ−1
t ÂS̃t and

∑
t

Ψ−1
t

[
(yt − θ̂)f̃ ′t

]
, providing the

equation system yielding coefficients {âij , j ≤ i}.

3.3 Estimation of a GLFM

3.3.1 The principle

So, in the case of a classical FM, the EM algorithm takes advantage of the fact that all
variables are normally distributed to use analytic expressions of all required expectations
conditional to y. According to section 2, such a normality assumption may be formally
used with the linearized GLM within current step k, since GLS mimics normal MLE.

In the case of a GLFM, the estimation principle we propose is then informally straight-
forward. We consider the model alternately as:

− a GLM model conditional to F in the linearization step.

− a FM within the current estimation step of this GLM, as this step uses the previously
produced linearized version of the GLM.

3.3.2 The linearization step

Conditional to the current values of θ ,A , F and following (11), we introduce the pseudo-
dependent working variable z, which is then known:

∀ i = 1, p : zi,F = θi1′n + Fai +
∂ηi,F

∂µi,F
(yi − µi,F ) = θi1′n + Fai + g′(µi,F )(yi − µi,F )

13



let ζi,F = g′(µi,F )εi,F with εi,F = yi − µi,F

Let ∀ t, zt = (z1t, ..., zpt)′, and Z = (z1, ..., zt, ..., zn)′. Given Z, F and V ar(ζ|F ), we
have the linearized conditional model :

∀ t = 1, n : zt = θ + Aft + ζt (34)

Of course, according to section 3.1.1, the variance of residuals in this model is such
that:

V ar(ζ|F ) = diag
(
g′(µit)2V ar(εit|F )

)
t=1,n

(35)

In the case of the canonical link, we have: V ar(ζiF |F ) = WiAF and expressions of W

corresponding to the usual distributions can again be found in table 3.

3.3.3 The estimation step

Given Z and V ar(ζ), we now give back its random nature to ft , and thus, view (34) as
a FM called the linearized marginal model [7]. Its expectation is:

∀ t : ft ∼ N (0, Ik) ⇒ E(Zt) = θ (36)

But this is a heteroskedastic model, since its variance structure depends on the obser-
vation. We shall, in this step, consider it known, its value being estimated by (35). So,
we shall take:

Ψt = g′2(µi,ft)V ar(εit|ft)

If g is the canonical link function, we have:

V ar(εit|ft) = V ar(yit|ft) = ait(φ)b′′i
(
b′−1
i (µit)

)
= ait(φ)g−1′

i (gi(µit)) = ait(φ)/g′i(µit)

⇒ Ψt = ait(φ)g′(µi,ft)

14



3.3.4 The algorithm

To sum things up, here is the structure of the algorithm:

(0) Initialization:

Calculate:

∀ t = 1, n; ∀ i = 1, p : z
[0]
it = g(αyit + (1− α)yi), with α = 0.95

and, for instance:

∀ t = 1, n : Ψ[0]
t = Ip

N.B. If g is the canonical link, Ψ[0]
t may be initialized more accurately with:

∀ t = 1, n : Ψ[0]
t = diag

(
g′i(mit)2ait(φ)ν(mit)

)
i=1,p

where mit = αyit + (1− α)yi

(i) Given Z and V ar(ζ), we have the linearized marginal model:

∀ t = 1, n : zt = θ + Aft + ζt

viewed as a non-standard FM (with heterogenous variance structure V ar(ζt) = Ψt),
estimated through an EM step, yielding F .

(ii) Given F , we have the linearized conditional model, viewed as a GLM: FSA updates
θ and A using variance matrix:

V ar(zt|Ft) = V ar(ζt) = Ψt

(iii) Conditional to θ, A, F , calculate Z and V ar(ζ):

∀ i = 1, p : εi,F = yi − µi,F ; ζi,F = g′(µi,F )εi,F ; zi,F = θi1n + Fai + ζi,F

∀ t = 1, n : V ar(ζt) = Ψt = diag
(
ait(φ)g′(µi,ft)

)
i=1,p

Go to (i).
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4 Experimental results

We present simulations carried out on a GLFM with one, two and three common la-
tent factors, based respectively on the Poisson and the binomial distributions (g = log x,
respectively log x

1−x). The simulated data vector has size q = 40 with n = 800. The
convergence threshold N was taken equal to 10−5.1

N = max
i∈{1,...,k}

{
n∑

t=1

(
f

[e+1]
it − f

[e]
it

)2
}

Initial parameter values for the EM algorithm were obtained through random perturbation
of the real parameter values.

4.1 Example 1: a Poisson GLFM

As EM also requires an initial value for z, we used the following approximation:

∀ i = 1, q ; t = 1, n z
[0]
it = log [αyit + (1− α)yi] , with α = 0.95

The rationale behind the use of α < 1 is to circle difficulties due to zero-values in
data. Our tests showed a good behaviour of the algorithm both at parameter and factor
estimation.

Results from the regression of the simulated factors ft on the estimated factors f̃t (e.g.,
f1t = β1f̃1t + γ1f̃2t + δ1f̃3t + νt, f2t = β2f̃1t + γ2f̃2t + δ2f̃3t + νt and f3t = β3f̃1t + γ3f̃2t +
δ3f̃3t + νt) given in figure 1 show that the regression coefficients β1, γ2 and δ3 converge
to one, while γ1, δ1, β2, δ2, β3 and γ3 are close to zero. This figure shows also that the
correlations between simulated factors and their estimation was very close to 1 (r

f1,f̃1
,

r
f2,f̃2

, r
f3,f̃3

> 90%, and r
f1,f̃2

≈ r
f2,f̃1

≈ ... ≈ 0). In this case the convergence threshold
was reached after approximately 35 iterations (Figure 3).

4.2 Example 2: a Binomial GLFM

All the results are given in figures 2, 3 and 4 and tables 6, 7 and 8.
Results from the regression of the simulated factors ft on the estimated factors f̃t

given in figure 2 show that the regression coefficients β1, γ2 and δ3 converge to one, while
γ1, δ1, β2, δ2, β3 and γ3 are close to zero. This figure shows also that the correlations
between simulated factors and their estimation was very close to 1. Figure 3 shows that
the convergence threshold was reached after approximately 28 iterations.

1[e] is the iteration number
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Figure 1: (a Poisson GLFM P(λ) with k = 3 common latent factors). In the first panel,
blue lines represent the behaviour of the regression coefficient of the first factor; red lines
the second factor and green lines the third one. The second panel shows the behaviour of
the correlations coefficients.

Table 4: The correlations between the estimated and true parameter values in the case of
a Poisson GLFM P(λ) with k = 3 common latent factors.

Vrai modèle Modèle estimé m X

1F 0.9902 0.9939
1F 2F 0.9898 0.9934

3F 0.9873 0.9866
1F 0.9696 0.6857

2F 2F 0.9830 0.9884 0.9954
3F 0.9829 0.9880 0.9904
1F 0.9066 0.6735

3F 2F 0.9536 0.9776 0.8373
3F 0.9898 0.9984 0.9936 0.9978

5 Conclusion

This paper discusses generalized linear latent factor models GLFMs as a tool to model
longitudinal and (other forms of) clustered data. In sections 2 and 3 the most important
concepts on model formulation, estimation, inference and prediction are summarized. A

17



Table 5: The parameter estimation errors in the case of a Poisson GLFM P(λ) with k = 3
common latent factors.

Vrai modèle Modèle estimé m X

1F 0.0038 0.0042
1F 2F 0.0040 0.0043

3F 0.0048 0.0079
1F 0.0073 0.3238

2F 2F 0.0068 0.0095
3F 0.0078 0.0115
1F 0.0823 1.8412

3F 2F 0.0255 1.2914
3F 0.0085 0.3240
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Figure 2: (a Binomial GLFM B(3, p) with k = 3 common latent factors). In the first panel,
blue lines represent the behaviour of the regression coefficient of the first factor; red lines
the second factor and green lines the third one. The second panel shows the behaviour of
the correlations coefficients.

new estimation method combining the Fisher’s score algorithm and a local EM inference
step is presented.

Our proposed algorithm has been tested on simulated data and it showed very promis-
ing results. There are several benefits to use a local EM approximation for GLFM’s.
Most of these advantages revolve around the tractability of the learning and inference pro-
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Figure 3: Behaviour of the convergence threshold N .

0 10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Regression of the first simulated factor
on the three estimated ones

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Regression of the second simulated factor
on the three estimated ones

0 10 20 30 40 50
−1

−0.5

0

0.5

1

Regression of the third simulated factor
on the three estimated ones

0 10 20 30 40 50
0.765

0.77

0.775

0.78

0.785

0.79

0.795

Correlations between the first simulated
factor and the first estimated one

0 10 20 30 40 50
0.765

0.77

0.775

0.78

0.785

0.79

Correlations between the second simulated
factor and the second estimated one

0 10 20 30 40 50
0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

Correlations between the third simulated
factor and the third estimated one

Figure 4: (Estimation of a Poisson GLFM P(λ) with k = 3 common latent factors using
simulated data from a Binomial GLFM B(3, p) with k = 3). In the first panel, blue
lines represent the behaviour of the regression coefficient of the first factor; red lines the
second factor and green lines the third one. The second panel shows the behaviour of the
correlations coefficients.
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Table 6: The correlations between the estimated and true parameter values in the case of
a Binomial GLFM B(3, p) with k = 3 common latent factors.

Vrai modèle Modèle estimé m X

1F 0.9776 0.9971
1F 2F 0.9797 0.9968

3F 0.9804 0.9963
1F 0.6771 0.6572

2F 2F 0.9406 0.9737 0.9966
3F 0.9368 0.9734 0.9955
1F 0.8203 0.4541

3F 2F 0.8636 0.2012 0.8287
3F 0.9813 0.9856 0.9830 0.9902

Table 7: The parameter estimation errors in the case of a Binomial GLFM B(3, p) with
k = 3 common latent factors.

Vrai modèle Modèle estimé m X

1F 0.0048 0.0066
1F 2F 0.0055 0.0080

3F 0.0084 0.0105
1F 0.0945 0.2575

2F 2F 0.0427 0.0251
3F 0.0567 0.0281
1F 0.0982 0.1420

3F 2F 0.0494 0.4542
3F 0.0225 0.0331

Table 8: The estimation errors and the correlations between the estimated and true pa-
rameter values in the case of the estimation of a Poisson GLFM P(λ) with k = 3 common
latent factors using simulated data from a Binomial GLFM B(3, p) with k = 3. Values
into brackets represent the results from the true specification.

m X

Estimation errors 1.7023 0.7084
(0.0225) (0.0331)

Correlations 0.7020 0.8274 0.8901 -0.9496
(0.9813) (0.9856) (0.9830) (0.9902)

cesses and the increase in the processing speed and the improvement in the convergence
performance.

Further empirical work should apply these models to the study of other financial and
actuarial data. The main merits of GLFM’s in this context are twofold. Firstly, regression
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is no longer restricted to normal data, but extended to distributions from the exponential
family. This enables appropriate modelling of, for instance, frequency counts, skewed or
binary data. Secondly, a GLFM models the additive effect of explanatory variables and
common latent factors on a transformation of the mean, instead of the mean itself. In
addition, the approach adopted in this paper can be extended to allow for time-varying
and more than one latent state variables as well as other types of probability distributions
for the state variables. These extensions leave several interesting and challenging areas for
future research.
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