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Abstract

Mixed-State conditionally heteroscedastic latent factor models attempt to describe

a complex nonlinear dynamic system with a succession of linear latent factor models

indexed by a switching variable. Unfortunately, despite the framework’s simplicity ex-

act state and parameter estimation are still intractable because of the interdependency

across the latent factor volatility processes. Recently, a broad class of learning and

inference algorithms for time series models have been successfully cast in the frame-

work of dynamic Bayesian networks (DBN). This paper describes a novel DBN-based

switching conditionally heteroscedastic latent factor model. The key methodologi-

cal contribution of this paper is the novel use of the Generalized Pseudo-Bayesian

method GPB2, a structured variational learning approach and an approximated ver-

sion of the Viterbi algorithm in conjunction with the EM algorithm for overcoming the

intractability of exact inference in mixed-state latent factor model. The conditional

EM algorithm that we have developed for the maximum likelihood estimation, is based

on an extended switching Kalman filter approach which yields inferences about the

unobservable path of the common factors and their variances, and the latent variable

of the state process. Extensive Monte Carlo simulations show promising results for

tracking, interpolation, synthesis, and classification using learned models.

JEL classification: C51; C52; C61 and C63

Keywords: Latent Factor Models; EM Algorithm; GQARCH Processes; HMM;

Viterbi Approximation; GPB method; Variational approximation; Time series seg-

mentation; Finance.
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1 Introduction

Most traditional time series models are based on the assumption of stationarity: the

underlying generator of the data is assumed to be globally time invariant. However,

it is well known that for many financial time series this assumption breaks down. For

instance, one of the obstacles to the effective forecasting of exchange rates is a nonconstant

conditional variance, known as heteroscedasticity. GARCH models have been developed

to estimate a time-dependent variance (see Bollerslev, 1986).

A local assumption of stationarity is nevertheless acceptable if the system switches

between different regimes but each regime is (approximately) locally stationary. In fields

from econometrics to control engineering, hybrid approaches have been developed in order

to model this behavior. One example is the mixture of experts (see Jacobs et al., 1991),

(Shi and Weigend, 1997) which decomposes the global model into several (linear or non-

linear) local models (known as experts as each specialises in modeling a small region of

input space). One limitation of these models is that the gating network which combines

the local models has no dynamics. It is controlled only by the current value of the time

series. One way to address this limitation is to use a hidden Markov model (which does

have dynamics) to switch between local models. Autoregressive hidden Markov models

(ARHMMs) switch between autoregressive models, where the predictions are a linear

combination of past values. ARHMMs have been applied to financial engineering in order

to model high frequency foreign exchange data and have shown promising results (Shi and

Weigend, 1997).

Switching conditionally heteroscedastic latent factor models consist of multiple linear

factor models controlled by a dynamic switch. These models assume that the behavior

of the system can be characterized by a finite number of conditionally heteroscedastic

latent factor models with hidden states, each of which tracks the dynamics in a different

regime. The approach is motivated by the fact that market behavior at different time

periods might be explained by different underlying regimes. Using a switching condition-

ally heteroscedastic latent factor model allows us both to create a predictive model and to

discover at what times transitions occur between regimes (i.e. to segment the time series).

A long standing limitation of these models is that the complexity of the exact training

algorithm grows exponentially with order mn, where m is the number of models and

n is the length of the time sequence. During the last decade, various approximations

have been proposed and studied theatrically and numerically in order to overcome the

complexity problems related to the inference of latent structures in switching state space

models (see Ghahramani and Hinton, 1998 and others). Recently, Saidane and Lavergne

(2007a, 2007b) introduced the switching conditionally heteroscedastic latent factor model

and proposed two efficient and principled approximate algorithms for training these models

in a maximum likelihood approach. In this paper a new expectation maximization (EM)

algorithm combined with a mixed-state version of the Viterbi algorithm is derived for

maximum likelihood estimation.

The remaining of this article is organized as follows. In section 2, we introduce the gen-

eral form of the model. In sections 3 and 4, we show how the parameters can be learned by
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using the generalized pseudo bayesian algorithm (Saidane and Lavergne, 2007a), the struc-

tured variational method( Saidane and Lavergne, 2007b) and the approximated version of

the Viterbi algorithm, which constitutes the major contribution of this paper. In section

5, the model selection problem is considered and we derived possible penalized criteria for

choosing among several specific models. In the last section we evaluate, through a simu-

lation study, the performance of the new maximum likelihood approach. We demonstrate

the application of these learned models to segmentation and tracking tasks.

2 The Mixed-State Latent Factor Model

The model that we propose supposes that excess returns depend both on unobservable

factors that are common across the multivariate time series, and on unobservable differ-

ent regimes that describe the different states of volatility. This new specification, called

switching conditionally heteroscedastic latent factor model, is defined by:

St ∼ P (St = j|St−1 = i)

t = 1, ..., n and i, j = 1, ...,m

fst = H
1/2
st f∗t where f∗t ∼ N (0, Ik)

yt = Xstfst + εst with εst ∼ N (θst ,Ψst)

where St ∼ P (St = j|St−1 = i) 1 is an homogenous hidden Markov chain indicating the

state or the regime at the date t, and yt is a (q× 1) random vector of observable variables

(financial returns in our case). The HMM state transition probabilities from state i to state

j are represented by pij . In an unspecified state St = j, 0 and Hjt are, respectively, the

(k × 1) mean vectors and (k× k) diagonal and definite-positive covariance matrices of the

latent common factors ft; θj and Ψj are, respectively, the (q×1) mean vectors and (q× q)

diagonal and definite-positive covariance matrices of the (q × 1) vectors of idiosyncratic

noises εt; Xj are the (q × k) factor loadings matrices. In this framework the common

variances (diagonal elements of Hjt) are supposed to be time varying and their parameters

change according to the regime. In particular, we suppose that these variances follow

switching Generalized Quadratic Autoregressive Conditionally Heteroscedastic processes

GQARCH(1,1), the l-th diagonal element of the matrix Hjt under a particular regime

St = j since St−1 = i is given by:

h
(j)
lt = wl

j + γl
jf

(i)
lt−1 + αl

jf
(i) 2
lt−1 + δl

jh
(i)
lt−1 for l = 1, ..., k

To guarantee the positivity of the conditional common variances and the covariance sta-

tionarity, we impose the constraints wl
j, α

l
j , δ

l
j > 0, γl 2

j ≤ 4ωl
jα

l
j and αl

j + δl
j < 1, ∀ j, l.

For model identification we suppose that q ≥ k and rank (Xj) = k, ∀ j. We suppose also

1 The ∼ symbol in St ∼ P (St|St−1) is used to represent a discrete Markov chain.
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that the common and idiosyncratic factors are uncorrelated, and that ft and εt′ are mu-

tually independent for all t, t′ (for more details on the identification problem, the reader

is referred to Sentana and Fiorentini, 2001 and Carneo et al., 2004).

3 Inference in Mixed-Sate Latent Factor Models

The goal of inference in complex mixed-sate latent factor models is to estimate the poste-

rior probability of the hidden states of the system (St and ft) given some known sequence

of observations Yn = {y1,y2, ...,yn} and the known model parameters. Specifically, we

need to find the sufficient statistics of the posterior p(Fn,Sn|Yn). Given the form of p it is

easy to show that these are the first and the second order statistics: mean and covariance

among hidden states ft, ft−1, St, St−1.

If there were no switching dynamics, the inference would be straightforward – we could

infer ft from Yn using Rauch-Tung-Striebel (RTS) smoothing (Rauch, 1963; Rauch et al.,

1965). However, the presence of switching dynamics embedded in the transition matrix P

makes exact inference more complicated. To see that, assume that the initial distribution

of f0 at t = 0 is Gaussian, at t = 1 the probability density function of the physical system

state becomes a mixture of m Gaussian densities since we need to marginalize over m

possible but unknown plant models. At time t we will have a mixture of mt Gaussians,

which is clearly intractable for even moderate sequence lengths. It is therefore necessary to

explore approximate inference techniques that will result in a tractable learning method.

A generalized pseudo-Bayesian inference method and a structured variational learning

approach were presented in Saidane and Lavergne (2007a, 2007b) and evaluated experi-

mentally. We briefly review them in sections 3.1 and 3.2. In Section 3.3 we present our

new approximate Viterbi inference algorithm. We then present in section 6 an exten-

sive comparative simulation study of the three proposed algorithms in order to verify the

correctness and effectiveness of these methods.

3.1 Approximate Generalized Pseudo Bayesian Inference

The Generalized Psuedo Bayesian (Bar-Shalom and Li, 1993; Kim, 1994) GPB approx-

imation scheme is based on the general idea of ”collapsing”, i.e. representing a mixture

of mt Gaussians with a mixture of mr Gaussians, where r < t (see Murphy, 1998 for a

detailed review). While there are several variations on this idea, our focus is the GPB2

algorithm (Saidane and Lavergne, 2007a), which maintains a mixture of m2 Gaussians

over time and can be reformulated to include smoothing as well as filtering.2

GPB2 is closely related to the Viterbi approximation of section 3.3. It differs in that

instead of picking the most likely previous switching state i at every time step t and

2Other similar pseudo Bayesian algorithms of Bar-Shalom and Li (1993), GBP1 and IMM, do not

have an obvious smoothing reformulation. The interacting multiple models IMM, can be obtained by first

collapsing the prior to a single Gaussian (by moment matching), and then updating it using M different

Kalman filters, one per value of St. Unfortunately, it is hard to extend IMM to the smoothing case, unlike

GPB2.
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switching state j, we collapse the m Gaussians (one for each possible value of i) down into

a single Gaussian.

3.1.1 A Switching State-Space Representation

Our switching conditionally heteroscedastic factor model developed in section 2 can be

regarded as a random field with indices i = 1, ..., q, t = 1, ..., n and j = 1, ...,m. The

idiosyncratic covariance matrix is assumed diagonal, and the variances of the factors are

parameterized as univariate ARCH models, but taking into account that the values of the

factors are unobserved. In particular for the GQARCH(1,1) formulation of Sentana (1995)

the state-space representation of our model, with continuous state variable ft, is given by:

[Measurement Equation] yt = θst + Xstfst + εst

[Transition Equation] fst = 0.fst−1 + fst

For the implementation of the filtering and smoothing algorithms, we start by intro-

ducing some notation.

f
i(j)
t|τ = E [ft|Y1:τ , St−1 = i, St = j]

f
(j)k
t|τ = E [ft|Y1:τ , St = j, St+1 = k]

f
j
t|τ = E [ft|Y1:τ , St = j]

hj
lt|τ = V ar (flt|Y1:τ , St = j)

h
i(j)
lt|t−1 = V ar (flt|Y1:t−1, St−1 = i, St = j)

Mt−1,t|τ (i, j) = p (St−1 = i, St = j|Y1:τ )

Mt|τ (j) = p(St = j|Y1:τ )

3.1.2 Filtering Algorithm

We perform the following steps in sequence.

f
i(j)
t|t−1 = 0.f i

t−1|t−1 = 0 ∀ i, j = 1, ...,m and (1)

h
i(j)
lt|t−1 = wlj + γljf

i
lt−1|t−1 + αlj

[
f i 2

lt−1|t−1 + hi
lt−1|t−1

]
+ δljh

i
lt−1|t−2 (2)

Then we compute the prediction error et(i, j) = yt − θj −Xjf
i(j)
t|t−1, the variance of the

error Σ
i(j)
t|t−1 = XjH

i(j)
t|t−1X

′
j + Ψj , the Kalman gain matrix Kt(i, j) = H

i(j)
t|t−1X

′
jΣ

i(j) −1
t|t−1 ,

the likelihood of this observation Lt(i, j) = N
[
0 ,Σ

i(j)
t|t−1

]
and we update our estimates of

the mean and variance:

f
i(j)
t|t = f

i(j)
t|t−1 + Kt(i, j)et(i, j) (3)

H
i(j)
t|t = H

i(j)
t|t−1 − Kt(i, j)Σ

i(j)
t|t−1Kt(i, j)

′ (4)
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The fundamental problem with switching Kalman filters is that the belief state grows

exponentially with time. To dealing with this problem we have used the collapsing tech-

nique. This method consists in approximating the mixture of mt Gaussians with a mix-

ture of r Gaussians. This is called the Generalized Pseudo Bayesian algorithm of order

r (GPBr). When r = 1, we approximate a mixture of Gaussians with a single Gaussian

using moment matching; this can be shown (e.g., Lauritzen, 1996) to be the best (in the

Kullback-Leibler sense) single Gaussian approximation. For the implementation of this

algorithm we calculate the probabilities

Zi|j(t) = p(St−1 = i|St = j,Y1:t) =
Mt−1,t|t(i, j)

Mt|t(j)

where

Mt|t(j) =
m∑

i=1

Mt−1,t|t(i, j)

and

Mt−1,t|t(i, j) =
Lt(i, j)pijMt−1|t−1(i)

m∑
i=1

m∑
j=1

Lt(i, j)pijMt−1|t−1(i)

Finally, we update our estimates of the mean and volatilities.

f
j
t|t =

m∑

i=1

Zi|j(t)f
i(j)
t|t

hj
lt|t =

m∑

i=1

Zi|j(t)h
i(j)
lt|t +

m∑

i=1

Zi|j(t)
[
f

i(j)
lt|t − f j

lt|t

] [
f

i(j)
lt|t − f j

lt|t

]′

hj
lt|t−1 =

m∑

i=1

Zi|j(t)h
i(j)
lt|t−1 +

m∑

i=1

Zi|j(t)
[
f

i(j)
lt|t−1 − f j

lt|t−1

] [
f

i(j)
lt|t−1 − f j

lt|t−1

]′

3.1.3 Smoothing Algorithm

Given the degenerate nature of the (time-series) transition equation, the smoother gain

matrix is always null, hence smoothing is unnecessary in this case: f
(j)k
t|n = f

j
t|t and H

(j)k
t|n =

H
j
t|t. For updating the parameters, we have need of the probabilities: Mt,t+1|n(j, k) =

U
j|k
t|t+1Mt+1|n(k) and Mt|n(j) =

m∑
k=1

Mt,t+1|n(j, k), where

U
j|k
t|t+1 = p(St = j|St+1 = k,Y1:n) ≃

Mt|t(j)pjk
m∑

j′=1

Mt|t(j′)pj′k

the approximation arises because St is not conditionally independent of the future evidence

yt+1, ...,yn, given St+1. This approximation will not be too bad provided future evidence

does not contain much information about St beyond what is contained in St+1.
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3.2 Approximate Variational Inference

An other efficient learning algorithm for the parameters of our switching factor model can

be derived by generalizing the Expectation Maximization (EM) algorithm (Dempster, et

al., 1977). EM alternates between optimizing a distribution over the hidden states (the

E-step) and optimizing the parameters given the distribution over hidden states (the M-

step). Any distribution over the complete sequence of hidden states, Q(S,F), can be used

to define a lower bound, B, on the log-probability of the observed data:

log p(Y|Θ) = log

[
∑

S

∫
p(S,F ,Y|Θ) dF

]

= log

[
∑

S

∫
Q(S,F)

{
p(S,F ,Y|Θ)

Q(S,F)

}
dF

]

≥
∑

S

∫
Q(S,F) log

{
p(S,F ,Y|Θ)

Q(S,F)

}
dF = B(Q,Θ) (5)

where Θ denotes the parameters of the model and we have made use of Jensen’s inequality

to establish (5). The E-step holds the parameters fixed and sets Q to be the posterior

distribution over the hidden states given the parameters,

Q(S,F) = P (S,F|Y,Θ)

This maximizes B with respect to the distribution, turning the lower bound into an equal-

ity, which can be easily seen by substitution. The M-step holds the distribution fixed and

computes the parameters that maximize B for that distribution. Given the change in the

parameters produced by the M-step, the distribution produced by the previous E-step is

typically no longer optimal, so the whole procedure must be iterated.

Unfortunately, the exact E-step for our switching conditionally heteroscedastic fac-

tor model is intractable, because the posterior probability of the real-valued states is a

Gaussian mixture with mn terms. In order to derive an efficient learning algorithm for

this system, we relax the EM algorithm by approximating the posterior probability of the

hidden states. The basic idea is that, since expectations with respect to P are intractable,

rather than setting Q(S,F) = P (S,F|Y) in the E-step, a tractable distribution Q is used

to approximate P . The difference between the bound B and the log likelihood is given by

the Kullback-Liebler (KL) divergence between Q and P :

KL(Q‖P ) =
∑

S

∫
Q(S,F) log

[
Q(S,F)

P (S,F|Y)

]
dF

While there are many possible approximations to the posterior distribution of the

hidden variables that one could use for learning and inference in switching factor models,

we focus on the following:
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Q(S,F) =
1

ZQ

[
P(S1)

n∏

t=2

P(St|St−1)

] [
P(f1)

n∏

t=2

P(ft|ft−1)

]

where the P are unnormalized probabilities, which we will call potential functions and de-

fine soon, and ZQ is a normalization constant ensuring that Q integrates to one. The terms

involving the switch variables St define a discrete Markov chain and the terms involving

the state vectors ft define m uncoupled factor models. Like in mean field approximations

we have removed the stochastic coupling between the chains that results from the fact that

the observation at time t depends on all the hidden variables at time t. However, we retain

the coupling between the hidden variables at successive time steps since these couplings

can be handled exactly using the forward-backward and Kalman smoothing recursions.

The discrete switching process is defined by

P(S1 = j) = p(S1 = j)q
(j)
1

P(St = j|St−1) = p(St = j|St−1)q
(j)
t

where the q
(j)
t are variational parameters of the Q distribution. These parameters scale

the probabilities of each of the states of the switch variable at each time step, so that q
(j)
t

plays exactly the same role as the observation probability p(yt|St = j) would play in a

regular hidden Markov model (see Saidane and Lavergne, 2006).

The uncoupled factor models in the approximation Q are also defined by potential

functions which are related to probabilities in the original system. These potentials are

the prior and transition probabilities for ft multiplied by a factor that changes these

potentials to try to account for the data:

P
(
f
j
1

)
= [p (f1|S1 = j) p(y1|f1, S1 = j)]ξ

(j)
1

P
(
f
j
t |ft−1

)
= [p (ft|ft−1, St = j) p(yt|ft, St = j)]ξ

(j)
t

where the ξ
(j)
t are variational parameters of Q. The vector ξt plays a role very similar to

the switch variable St. Each component ξ
(j)
t can range between 0 and 1. When ξ

(j)
t = 0

the posterior probability of f
j
t under Q does not depend on the observation at time t.

When ξ
(j)
t = 1, the posterior probability of f

j
t under Q includes a term which assumes

that factor model j generated yt. We call ξ
(j)
t the responsibility assigned to factor model

j for the observation vector yt.

In order to maximize the lower bound on the log-likelihood, KL(Q‖P ) is minimized

with respect to the variational parameters ξ
(j)
t and q

(j)
t separately for each sequence of

observations. For convenience we will express the probability density P in the log domain,

through its associated energy function or hamiltonian, H. The probability density is

related to the hamiltonian through the usual Boltzmann distribution (at a temperature

of 1), P (.) = 1
Z exp {−H(.)}, where Z is a normalization constant required such that P
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integrates to unity. We then similarly express the approximating distribution Q through

its hamiltonian HQ.

Comparing HQ with H we see that the interaction between the S
(j)
t and the f

j
t variables

has been eliminated, while introducing two sets of variational parameters.3 In order to

obtain the approximation Q which maximizes the lower bound on the log-likelihood, we

minimize KL(Q‖P ) as a function of these variational parameters,

KL(Q‖P ) = EQ

[
H−HQ

]
− log ZQ + log Z

where EQ denotes expectation over the approximating distribution Q. Both Q and P define

distributions in the exponential family. As a consequence, the zeros of the derivatives

of KL with respect to the variational parameters can be obtained simply by equating

derivatives of EQ(H) and EQ(HQ) with respect to corresponding sufficient statistics S
(j)
t ,

f
j
t and Rj

t , where Rj
t = EQ[f j

t f
j′
t ] − EQ[f j

t ]EQ[f j
t ]′ is the covariance of f

j
t under Q. Many

terms cancel when we subtract the two hamiltonians

HQ −H = −
n∑

t=1

m∑

j=1

S
(j)
t log q

(j)
t

+
1

2

m∑

j=1

n∑

t=1

(
ξ
(j)
t − S

(j)
t

)(
yt − Xjf

j
t − θj

)′
Ψ−1

j

(
yt − Xjf

j
t − θj

)

+
1

2

m∑

j=1

n∑

t=1

(
ξ
(j)
t − S

(j)
t

) [
f
j′
t H

j −1
t f

j
t + log |Ψj | + log |Hj

t |
]

Taking derivatives and equating to zero, we get the fixed-point equations for q
(j)
t and ξ

(j)
t : 4

ξ
(j)
t = Q(St = j)

q
(j)
t = exp

{
−

1

2
EQ

[(
yt − Xjf

j
t − θj

)′
Ψ−1

j

(
yt − Xjf

j
t − θj

)]

−
1

2
log |Ψj | −

1

2
EQ

[
f
j′
t H

j −1
t f

j
t

]
−

1

2
log |Hj

t |

}

To compute ξ
(j)
t it is necessary to sum Q over all the Sτ variables not including St.

This can be done efficiently using the forward-backward algorithm on the switch state

variables, with q
(j)
t playing exactly the same role as an observation probability associated

with each setting of the switch variable. To compute q
(j)
t it is necessary to calculate the

expectations of f j
t and f

j
t f

j′
t under Q. These expectations can be computed efficiently using

the Kalman smoothing algorithm on each state-space approximation of the factor model

(see Saidane and Lavergne, 2007b for more details), where for model j at time t, the data

is weighted by the responsibilities ξ
(j)
t .

3where S
(j)
1 = 1 if the switch state is in state j, and 0 otherwise.

4 The equations are satisfied when ξ
(j)
t = EQ[S

(j)
t ]. Using the fact that EQ[S

(j)
t ] = Q(St = j), we get

the fixed-point equation for ξ
(j)
t .
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3.3 Viterbi Approximation for Latent Structure Inference

This section presents a powerful new approximation to the mixed-state latent factor model.

The approximation is based on a Viterbi technique which finds the best sequence of switch-

ing states St and common factors ft that minimizes the Hamiltonian cost in equation (6)

for a given observation sequence Y1:n.

H(F1:n,S1:n,Y1:n) ≃ Constant +

n∑

t=2

S′
t(− log P)St−1 + S′

1(− log π)

+
1

2

n∑

t=1

m∑

j=1

[
(yt − Xjfjt − θj)

′Ψ−1
j (yt − Xjfjt − θj) + log |Ψj |

]
St(j)

+
1

2

n∑

t=1

m∑

j=1

[
f ′jtH

−1
jt fjt + log |Hjt|

]
St(j) (6)

where F1:τ = {f1, f2, ..., fτ}, π the vector of initial state probabilities, P the HMM tran-

sition matrix so that its i-th row is equal to [pi1 . . . pim] for i = 1, ...,m and St =

[St(1), ..., St(m)]′, where St(j) = 1 if St = j and 0 otherwise.

If the best sequence of switching states is denoted S∗
1:n we can approximate the desired

posterior p(F1:n,S1:n|Y1:n) as:

p(F1:n,S1:n|Y1:n) = p(F1:n|S1:n,Y1:n)p(S1:n|Y1:n)

≃ p(F1:n|S1:n,Y1:n)µ(S1:n − S∗
1:n)

i.e. the switching sequence posterior p(S1:n|Y1:n) is approximated by its mode, where

µ(x) = 1 for x = ∅ and zero otherwise. More formally, we are looking for the switching

sequence S∗
1:n such that

S∗
1:n = arg max

S1:n

p(S1:n|Y1:n)

It is easy to show that a (suboptimal) solution to this problem can be obtained by recursive

optimization of the probability of the best sequence at time t:

Jt,j = max
S1:t−1

p(S1:t−1, St = j,Y1:t)

≃ max
i

{
p(yt|St = j, St−1 = i,S∗

1:t−2(i),Y1:t−1)p(St = j|St−1 = i)

× max
S1:t−2

p(S1:t−2, St−1 = i,Y1:t−1)

}

where S∗
1:t−2(i) = arg max

S1:t−2

Jt−1,i is the ”best” switching sequence up to time t − 1 when

the system is in state i at time t − 1.

Define first the ”best” partial cost up to time t of the measurement sequence Y1:t when

the switch is in state j at time t:

10



Jt,j = min
S1:t−1,F1:t

H
[
F1:t, {S1:t−1, St = j},Y1:t

]
(7)

Namely, this cost is the least cost over all possible sequences of switching states S1:t−1

and corresponding factor model states F1:t. For a given switch state transition i → j, the

associated innovation cost Jt,t−1,i,j is given by:

Jt,t−1,i,j =
1

2
et(i, j)

′Σ
i(j)−1
t|t−1 et(i, j +

1

2
log
∣∣∣Σi(j)

t|t−1

∣∣∣− log pij (8)

One portion of this innovation cost reflects the continuous state transition, as indicated

by the innovation terms in equation (3). The remaining cost (− log pij) is due to switching

from state i to state j. Obviously, for every current switching state j there are m possible

previous switching states from which the system could have originated from. To minimize

the overall cost at every time step t and for every switching state j, one ”best” previous

state i is selected:

Jt,j = min
i
{Jt,t−1,i,j + Jt−1,i}

δt−1,j = arg min
i

{Jt,t−1,i,j + Jt−1,i}

The index of this state is kept in the state transition record δt−1,j . Consequently,

we now obtain a set of m best filtered continuous states and their variances at time t:

f
j
t|t = f

δt−1,j (j)

t|t and H
j
t|t = H

δt−1,j (j)

t|t with hj
lt|t−1 = h

δt−1,j (j)

lt|t−1 for l = 1, ..., k. Once all

n observations Y1:n have been fused, the best overall cost is obtained as J∗
n = min

j
Jn,j.

To decode the ”best” switching state sequence, one uses the index of the best final state,

j∗n = arg min
j

Jn,j, then traces back through the state transition record δt−1,j in order to

obtain the optimal state at each time step: j∗t = δt,j∗t+1
.

Given the degenerate nature of the transition equation, the smoother gain matrix J
(j)k
t

is always zero, J
(j)k
t = H

j
t|t0

′
kH

(j)k−1
t+1|t = 0. Hence, smoothing is unnecessary in this case

because there are no dynamics in the mean specification of the factors. The smoothing

equations are simply:

f
(j)k
t|n = f

j
t|t + J

(j)k
t

[
fk
t+1|n − f

j(k)
t+1|t

]
= f

j
t|t

H
(j)k
t|n = H

j
t|t + J

(j)k
t

[
Hk

t+1|n − H
j(k)
t+1|t

]
J

(j)k′
t = H

j
t|t

The Switching model’s sufficient statistics are now simply given by E(St|·) = St(j
∗) and

E(StS
′
t−1|·) = St(j

∗)St−1(j
∗)′. The operator E(|·) denotes conditional expectation with

respect to the posterior distribution, e.g. E(ft|·) =
∑
S

∫
F ftp(F ,S|Y). Given the ”best”

switching state sequence, the sufficient conditionally heteroscedastic factor model statistics

can be easily obtained using the Rauch-Tung-Streiber smoothing (for a review see Rosti

and Gales, 2001). For example
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E(ft, St(j)|.) =

{
f
j∗t
t|n j = j∗t

0 otherwise

4 The EM Algorithm

An efficient learning algorithm for the parameters of our model can be derived by gen-

eralizing the EM algorithm (Dempster et al., 1977). The algorithm can be broken down

into three steps: the expectation step (E) and two conditional maximization steps. We

assume that the data can separated into two components, Y and (F , S) (observed and

latent variables). The E step finds Q(Θ,Θ(i)), the expected value of the log-likelihood of

Θ, L(Θ|Y,F ,S), where the expectation is taken with respect to F and S conditioned on Y

and Θ(i), the current guess of Θ. For a sequence of observation vectors Y = {y1,y2, ...,yn},

a sequence of continuous state vectors F = {f1, f2, ..., fn} and a sequence of discrete HMM

states S = {S1, S2, ..., Sn}, can be written as:

L(Θ|Y,F ,S) = log

[
p(S1)

n∏

t=2

p(St|St−1)
n∏

t=1

p(ft|St,D1:t−1)p(yt|ft, St,D1:t−1)

]

where D1:t−1 = {Y1:t−1,F1:t−1,S1:t−1}, is the information set at time t − 1, p(S1) = πs1:

the initial state probability and p(St|St−1) = pst−1st : the transition probabilities. The

auxiliary function that will be maximized is given by:

Q(Θ,Θ(i)) = E

[
log p(Y,F ,S|Θ(i))|Y,Θ

]

=
∑

∀S

∫
p(F|Y,S,Θ)p(S|Y,Θ) log p(Y,F ,S|Θ(i)) dF

The maximization steps then find Θ(i+1), the value of Θ that maximizes Q(Θ,Θ(i))

over all values possible values of Θ. Θ(i+1) replaces Θ(i) in the E-step and Θ(i+2) is chosen

to maximize Q(Θ,Θ(i+1)). This procedure is repeated until the sequence Θ(0), Θ(1), Θ(2),

... converges. The EM algorithm is constructed in such a way that the sequence of Θ(i)’s

converges to the maximum likelihood estimate of Θ.

For D
(i)
n =

{
Y1:n,Θ(i)

}
and ỹjt = yt−Xjf

j
t , the conditional expectation of the complete

log-likelihood function L(Θ|Y,F ,S) can be written as:

Q(Θ,Θ(i)) ≃
m∑

j=1

S1(j) log p(S1) −
n∑

t=2

m∑

i=1

m∑

j=1

St(j)St−1(i) log pij

−
1

2

m∑

j=1

n∑

t=1

St(j)
[
log |Ψj | + E

{
(ỹjt − θj)

′Ψ−1
j (ỹjt − θj)|D

(i)
n

}]

−
1

2

m∑

j=1

k∑

l=1

n∑

t=1

St(j)E

[
log(hj

lt) +
f2

lt

hj
lt

|D(i)
n

]
(9)
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The first maximization step is defined by substituting the expectations computed in

the E-step for the complete-data sufficient statistics on the right-hand side of the above

expressions to obtain expressions for the new iterates of the initial state probabilities πj,

transition probabilities pij, observation noise mean vectors θj , factor loadings Xj and

idiosyncratic variances Ψj .

Maximizing this function with respect to the discrete initial state probabilities, πj ,

can be carried out using the Lagrange multiplier together with the sum to unity constraint
m∑

j=1
πj = 1. The new discrete initial state probabilities can be written as

π̂j =
S1(j)

m∑
i=1

S1(i)

Maximizing the function (9) with respect to the discrete state transition probabilities,

pij, can also be carried out using the Lagrange multiplier together with the sum to unity

constraint
m∑

j=1
pij = 1. The new discrete state transition probabilities can be written as

p̂ij =

n∑
t=2

St(j)St−1(i)

n∑
t=2

St−1(i)

Maximizing the auxiliary function in equation (9) with respect to the observation noise

mean vector, θj, yields

θ̂j =
1

n∑
t=1

St(j)

n∑

t=1

St(j)
(
yt − Xjf

j
t|n

)

The new factor loadings matrix, Xj, has to be optimized row by row. The l-th row

vector x̂jl of the new factor loadings matrix can be written as

x̂jl =

[
n∑

t=1

St(j)(ytl − θjl)f
j
t|n

]′ [ n∑

t=1

St(j)
[
H

j
t|n + f

j
t|nf

j′
t|n

]]−1

where ytl and θjl are, respectively, the l-th elements of the current observation and the

observation noise mean vectors under regime j.

Given the new factor loadings matrix, the idiosyncratic variances can be optimized

using the following formulae

Ψ̂j =
1

n∑
t=1

St(j)

n∑

t=1

St(j)diag

[(
yt − Xjf

j
t|n − θj

)(
yt −Xjf

j
t|n − θj

)′
+ XjH

j
t|nX

′
j

]
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Now, being given the new values of πj, pij, θj, Xj and Ψj , if the factors and the

discrete states were observed we would have:

(
yt

ft

)
|D1:t−1, St = j ∼ N

[(
θj

0

)
,

(
XjHjtX

′
j + Ψj XjHjt

HjtX
′
j Hjt

)]

However, the f ′ts and S′
ts are unobserved, but in a such situation and for the estimation

of the parameters of the model, we can approximate the distribution of the yt’s, conditional

on the information actually available at time t − 1, by the following distribution (Harvey,

Ruiz and Sentana, 1992):

yt|Y1:t−1, St = j,S1:t−1 ≈ N
[
θj,Σ

(j)
t|t−1

]

where ” ≈ ” stands for ”approximately distributed”, Σ
(j)
t|t−1 = XjH

(j)
t|t−1X

′
j +Ψj and H

(j)
t|t−1

is the expectation of Ht, conditional on Y1:t−1 and S1:t, obtained via the quasi-optimal

version of the Kalman filter. Here, the l-th diagonal element of the covariance matrix

H
(j)
t|t−1 is given by hj

lt|t−1 = h
δt−1,j(j)

lt|t−1 . Therefore, ignoring initial conditions, the pseudo

log-likelihood function is given by:

L∗ = c −
1

2

n∑

t=1

m∑

j=1

St(j)
[
log |Σ

(j)
t|t−1| + (yt − θj)

′Σ
(j)−1
t|t−1 (yt − θj)

]
(10)

The maximization of the function (9) with respect to (πj , pij, θj , Xj and Ψj) can be

done ignoring the last two terms. However, if we were to assume that ft = H
1/2
t|t−1f

∗
t , this

would no longer be true because hj
lt|t−1 indirectly depends on θj, Xj and Ψj. In that case

it is conceptually possible that the parameter values that maximize the first part of (9)

might actually decrease the second part. Nevertheless, provided that these parameters

increase the whole expression, the generalized EM principle still applies (see Demos and

Sentana, 1998). Hence, we just need to find the conditional expectations in the first two

lines of equation (9). These conditional expectations can be derived using the Kalman

filter.

Unfortunately, the conditional variance parameters φ = {ω, γ, α, δ} are in practice

unknown. The most obvious possibility is to apply the EM algorithm to estimate these as

well. However, as explained above, this is not easy because of the nonlinear dependence

structure in the variances of the common latent factors. An alternative possibility is based

on the following idea. In the first step, we maximize the log-likelihood function in (9) with

respect to the parameters in πj, pij , θj , Xj and Ψj by means of the EM algorithm, holding

the factor variances’ parameters fixed at the value of the previous iteration. In the second

maximization step, using πj, pij, θj, Xj and Ψj parameter values found in the first step,

we maximize the observed log-likelihood function (10) with respect to the conditional

variance parameters, and so on until convergence. The final parameter estimates obtained

in this way will be the maximum likelihood estimates of our model.
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For the implementation of the optimization algorithm it is necessary to identify the

optimal sequence of the Markovian hidden states, which can be carried out by using the

approximated version of the Viterbi algorithm, the hidden markovian states posterior

probabilities given by the smoothing algorithm (see, Saidane and Lavergne, 2007a), or the

variational parameters ξ
(j)
t (Saidane and Lavergne 2007b). Once this sequence is known,

on each segment of data the function L∗ is maximized through the fmincon constrained

optimization Matlab function. fmincon finds the constrained minimum of a scalar func-

tion of several variables starting at an initial estimate. This is generally referred to as

constrained nonlinear optimization.

5 Choosing an Honest Model

The various model selection criteria such as AIC (Akaike, 1974) and BIC (Schwarz, 1978)

implicitly assume that the sampling distribution belongs to, at least, one of the models in

competition. This assumption is most often unrealistic and can lead to under-penalized

complex models (see Burnham and Anderson, 1998). Taking into account the modeling

purpose can counter this tendency efficiently. This approach is sensible for hidden struc-

ture models. In this setting, discovering the hidden structure to derive a reliable clustering

of the dataset is often of primary interest to the user . Thus, we propose a model selection

criterion favoring minimal missing information models. This criterion, the so called ICL

criterion previously proposed in (Biernacki et al., 2000) for mixture models, can be gener-

alized to any hidden structure model. In such a case though, it seems preferable to base

the selection of a model on the maximization of the integrated complete log-likelihood

function defined by:

p(Y,Z|M) =

∫
p(Y,Z|M,ΘM)π(ΘM)dΘM

where M = {Mi, i = 1, ..., I} be the candidates of desired parametric models and Z

indicates the hidden variables: the latent common factors and the discrete hidden state

variables. An equivalent approximation for the integrated complete log-likelihood function

is given by:

ICL(M) = BIC(M) + log p(Z|Y, Θ̂M)

log p(Z|Y, Θ̂M) being a measurement of the missing information carried by the model M.

This expression highlights that the ICL criterion over-penalizes the models at significant

missing information as compared to BIC.

As defined, the ICL criterion is not calculable since the states Z are not observed. A

natural approximation to log p(Z|Y, Θ̂M) is:

log p(Z|Y, Θ̂M) = max
Z

[
log p(Z|Y, Θ̂M)

]

In the case of our model, this problem can be resolved by the Viterbi algorithm.
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6 Monte Carlo Experiments

There are two important empirical questions that should be addressed for the class of

mixed-state conditionally heteroscedastic latent factor models:

1. Which approximation inference scheme in mixed-state factor models results in the

best learning performance?

2. An other important question is the choice of a reliable model, containing enough

parameters to ensure a realistic fit to the learning dataset.

In this section we report some early progress in addressing these questions.

6.1 Model Learning and Stability of the Estimates

The example used here has q = 6 observable variables and only one GQARCH(1,1) latent

factor. We consider the case of three states model with the initial state S1 = 1 and a

transition matrix

P =




0.95 0.05 0

0.05 0.90 0.05

0 0.05 0.95




The iterations of the EM algorithm stop when the relative change in the likelihood function

between two subsequent iterations is smaller than a threshold value = 10−4. In this

experiment we try to estimate the parameters of a switched dynamic model and to study

the behavior of the estimates when the size of the sequence n increases. With this intention,

we generated sequences of observations of sizes n = 600, 900, 1200 and 1500. Here the

constant term of the conditionally heteroscedastic component is assumed to be known

(ωj = 1 ∀ j = 1, 2, 3 and the initializations given in table 1 were used.

The goal is to estimate the different dynamics and to measure the distance between

estimates Θ̃ and true parameters Θ0 through the empirical Kullback-Leibler divergence

(see Juang and Rabiner, 1985). For each value of n, the estimation procedure was carried

out a hundred times, and the KL distances between each of the hundred estimators and

the true parameter were evaluated on a new sequence, independent of the first hundred

sequences used to obtain the estimators. Table 2 shows the mean and standard deviation

of the estimates with n = 900. In this case the estimated transition matrix P̃ is given by

P̃ =




0.9481 0.0510 0.0009

(0.0041) (0.0063) (0.0014)

0.0435 0.9079 0.0486

(0.0029) (0.0066) (0.0017)

0.0006 0.0519 0.9475

(0.0032) (0.0041) (0.0013)
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Table 1: Simulation parameters.

θ X diag(Ψ) φ

1.0000 (0.0000) 1.0000 (0.5000) 1.0000 (0.5000) 0.5000 (0.1200)

1.0000 (1.0000) 2.0000 (1.0000) 1.0000 (0.5000) 0.1000 (0.1800)

State 1 1.0000 (0.5000) 3.0000 (1.0000) 1.0000 (0.5000) 0.8000 (0.3800)

2.0000 (1.0000) 4.0000 (1.5000) 1.0000 (0.5000)

2.0000 (0.0000) 5.0000 (1.5000) 1.0000 (0.5000)

2.0000 (0.5000) 6.0000 (2.5000) 1.0000 (0.5000)

1.0000 (1.0000) 2.0000 (1.0000) 2.0000 (0.5000) 0.1000 (0.2900)

2.0000 (1.0000) 2.0000 (0.5000) 2.0000 (0.5000) 0.3000 (0.1200)

State 2 1.0000 (1.0000) 2.0000 (0.5000) 2.0000 (0.5000) 0.4000 (0.7800)

2.0000 (1.0000) 3.0000 (1.0000) 2.0000 (0.5000)

1.0000 (1.0000) 3.0000 (0.5000) 2.0000 (0.5000)

2.0000 (1.0000) 3.0000 (0.5000) 2.0000 (0.5000)

2.0000 (1.0000) 1.0000 (1.0000) 3.0000 (0.5000) 0.2000 (0.6000)

3.0000 (1.0000) 3.0000 (0.5000) 3.0000 (0.5000) 0.2000 (0.5400)

State 3 2.0000 (1.0000) 1.0000 (0.5000) 3.0000 (0.5000) 0.6000 (0.2000)

3.0000 (1.0000) 2.0000 (1.0000) 3.0000 (0.5000)

2.0000 (1.0000) 4.0000 (0.5000) 3.0000 (0.5000)

3.0000 (1.0000) 4.0000 (0.5000) 3.0000 (0.5000)

. Parameter values for the true model, (.) Initial values for the EM algorithm.

Values into brackets represent standard deviation of the estimates. The sets of distances

for the various values of n are presented under a unified scale in figure 1. This figure clearly

shows that the average amplitude of fluctuations increases with the GPB2 and variational

methods when the number of observations is relatively small (not more than 900). This

figure shows also a general decrease in average and spread of the distances with increasing

n. Given that small values of KL imply similarity between Θ0 and Θ̃n, the results of this

experiment suggest an increasing accuracy and stability of the estimators obtained with

the EM-based Viterbi approximation algorithm as n increases.

To investigate the asymptotic distribution of Θ̃n, we have used the Shapiro-Francia

(1972) statistic in order to test the univariate normality of each component of Θ̃n. This is

an omnibus test, and is generally considered better than the Shapiro-Wilk (1965) test for

Leptokurtic Samples. All the results presented in table 3, for the simulation with n = 900,

show that the Shapiro-Francia test fails to reject the null hypothesis (the Θi are a random

sample from N (µ, σ), with µ and σ unknown) at the significance level α = 5%.

6.2 Model Selection

In this experiment we illustrate the estimation of the numbers of the discrete hidden

states and common latent factors which describe the trajectories best. For this purpose

we consider two different situations with factor models which differ by their dynamic
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Figure 1: The KL distances for the different values of n.

Table 2: Averages and standard deviations (.) for the EM parameter estimates from the

simulated data with n = 900.

θ X diag(Ψ) φ

0.9952 (0.0817) 1.9921 (0.0631) 0.9938 (0.0451) 0.4982 (0.0731)

1.0211 (0.0932) 1.9981 (0.0655) 1.0058 (0.0461) 0.1022 (0.0447)

State 1 1.0136 (0.0866) 2.9947 (0.0591) 0.9931 (0.0582) 0.7931 (0.0352)

1.9906 (0.0883) 3.9986 (0.0582) 0.9916 (0.0633)

1.9947 (0.0922) 4.9961 (0.0591) 0.9936 (0.0591)

2.0772 (0.0859) 5.9913 (0.0622) 1.0011 (0.0473)

0.9914 (0.0732) 1.9977 (0.0552) 2.0117 (0.0622) 0.1026 (0.0752)

1.9934 (0.0739) 2.0061 (0.0602) 2.0117 (0.0573) 0.3011 (0.0442)

State 2 1.0610 (0.0758) 2.0094 (0.0588) 1.9937 (0.0654) 0.4011 (0.0361)

1.9911 (0.0866) 2.9980 (0.0562) 1.9966 (0.0641)

1.0361 (0.0839) 3.0097 (0.0588) 2.0089 (0.0679)

1.9952 (0.0786) 3.0109 (0.0535) 1.9977 (0.0612)

1.9733 (0.0837) 1.0141 (0.0468) 2.9971 (0.0576) 0.2039 (0.0771)

2.9811 (0.0878) 3.0056 (0.0483) 3.0051 (0.0558) 0.1996 (0.0373)

State 3 1.9718 (0.0855) 1.0072 (0.0467) 2.9819 (0.0687) 0.5989 (0.0277)

2.9813 (0.0951) 2.0069 (0.0456) 2.9901 (0.0662)

1.9911 (0.0985) 4.0114 (0.0510) 3.0062 (0.0687)

2.9721 (0.0811) 4.0097 (0.0506) 2.9983 (0.0708)

hidden structures. In the first case, parameters of the true model are given in table 1

(we consider here n = 900). In the second case the true model is a GQARCH(1,1) factor
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Table 3: Summary statistics for the Shapiro-Francia test [simulation with n = 900].

θ X diag(Ψ) φ
∗0.3971 (0.2608) 0.4625 (0.0940) 0.1264 (1.1434) 0.1448 (1.0588)

0.4815 (-0.0464) 0.3976 (0.2595) 0.2045 (0.8256) 0.2194 (-0.7741)

State 1 0.3688 (0.3350) 0.3690 (-0.3344) 0.4469 (-0.1335) 0.1530 (-1.0238)

0.4353 (-0.1630) 0.4901 (-0.0249) 0.2052 (-0.8233)

0.3975 (-0.2597) 0.2106 (-0.8045) 0.4572 (-0.1075)

0.4882 (0.0295) 0.4355 (0.1623) 0.4335 (-0.1674)

0.2751 (0.5976) 0.3384 (0.4169) 0.2272 (0.4782) 0.2692 (-0.6152)

0.1887 (0.8825) 0.2947 (-0.5398) 0.4210 (-0.1994) 0.4692 (0.0774)

State 2 0.3528 (0.3779) 0.4636 (0.0914) 0.4228 (-0.1947) 0.4603 (0.0996)

0.2029 (0.8315) 0.4955 (0.0112) 0.4019 (-0.2485)

0.1273 (1.1394) 0.3105 (0.4945) 0.4790 (0.0527)

0.2647 (0.6291) 0.2544 (0.6607) 0.3304 (-0.4389)

0.3074 (0.5031) 0.0568 (1.5820) 0.1478 (-1.0459) 0.3845 (0.2937)

0.2660 (0.6250) 0.3849 (-0.2927) 0.1741 (0.9379) 0.3516 (0.3810)

State 3 0.3028 (0.5162) 0.4429 (-0.1437) 0.4273 (0.1833) 0.4844 (-0.0390)

0.1981 (0.8484) 0.4324 (-0.1704) 0.1362 (-0.0978)

0.1270 (1.1405) 0.2751 (-0.5976) 0.3236 (-0.4577)

0.3187 (0.4713) 0.3495 (-0.3867) 0.4682 (0.0798)

∗ pval, (.) W statistic. All the pval are grater than 0.05, hence the Shapiro-Francia test fails to reject the

null hypothesis (the Θi are a random sample from N (µ, σ), with µ and σ unknown) at the significance

level α = 5%.

model with n = 800, m = k = 2 and the regime switching date t∗ = n/2 + 1.

The steps for the model selection procedure are as follows. For each selection criterion,

we train various model configurations (obtained by varying the number of states and the

number of factors), using the maximum likelihood criterion on the training dataset. In

the second example random initialization was used for the implementation of the learning

algorithm. In this case the initial parameters for the EM algorithm, were obtained by

randomly perturbing the true parameter values by up to 20% of their true value. Min-

imizing the selection criteria – computed after each EM running – allows us to find the

best model among the M models. Table 4 shows the results of the two examples obtained

with the EM-based Viterbi approximation algorithm. In the first example BIC and ICL

criteria choose 3 states and one factor. This is the best classification, since the use of one

or two states is not enough to represent the data, and choosing two factors corresponds

to an overfitting. In the second example, BIC and ICL choose also the true specification

with two states and two conditionally heteroscedastic factors.

To illustrate the evolution of the model estimates obtained by the EM-based Viterbi

approximation algorithm, figure 2 shows the HMM hidden states estimates at iteration 1,

3, 5 and 7. Each figure depicts the regime path process of the correct model. It can be

concluded that a good segmentation is achieved after 7 iterations.
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Figure 2: Evolution of the HMM state estimates using the true model: (a) iteration 1, (b)

iteration 3, (c) iteration 5, (d) iteration (7).

Identification of the state sequence adds to the understanding of the process, since it

enables the analyst to relate historical events to the state process. In previous works many

authors have used the maximal aposteriori probability method, by which they estimate St

by the state that maximizes the marginal aposteriori probability p(St|Y1:τ ; Θ), 1 ≤ τ ≤ n,

where Θ is substituted by its maximum likelihood estimate. If τ = t, these are given by

the filtering algorithm; if τ > t they are given by the smoothing algorithm, and if τ < t,

we will refer to them as predicted probabilities. Clearly, the most useful state estimates

from investors point of view is the one that enables the forecast of the next state St+1

based on the information set available at time t, Y1:t. We can similarly derive h-step

state predictions (see Saidane and Lavergne, 2007a for more details). Figure 3 compares

the decoding errors of the most likely hidden-state sequence given by the prediction,

smoothing (GPB2) and Viterbi algorithms obtained on the test set of simulated data with

a 3 state and one factor-conditionally heteroscedastic model. It shows that the Viterbi

approximation has a lower decoding error than the other three methods. From this figure

it can be seen that the best segmentation path is provided by the Viterbi approximation.

We see, also, that the two other methods are more globally sensitive to outliers and can not

give the best segmentation performance. Hence, our results suggest that this new method

is a promising technique which improves the segmentation quality and consistency and

gives more attractive performance compared to the GPB2 method. This finding is also

supported by the results of the model-selection exercise reported in figure 6.

Using the initial guesses given in table 1, the EM-based Viterbi approximation algo-

rithm converged to estimates of the GQARCH processes after approximately 50 iterations

as shown in figure 4. The same figure shows a weak convergence to the true parameter
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Figure 3: Example 1: Decoding errors of the most likely hidden-state sequence given by

the prediction, smoothing (GPB2) and Viterbi algorithms.

values when we use the GPB2 method. Figure 5 shows that the same comment applies

to the convergence of the likelihood function. In this case the GPB2 method, compared

to the Viterbi approximation one, leads to a relative slow convergence when the number

of hidden states is greater than 2. As a consequence, our results show that the GPB2

and variational methods lead either to an apparent over-estimation or under-estimation

of the mean and the volatility behavior of the common latent factor. Finally, the sample

autocorrelation functions of the estimation errors obtained with the Viterbi approximation

method show no autocorrelation. The Ljung-Box statistic for the serial correlation of the

squared residuals does not also reject the null hypothesis of uncorrelated squared residu-

als. Hence, all the covariance or correlations between the different series are explained by

the common and specific factors. Scatter plots of the residuals versus the factor estimates

show that the residuals do not exhibit any systematic structure which indicate that the

model fits the data well.

From these results we conclude that with the Viterbi approximation method the ac-

curacy of classification increases as the order of the switching states and the conditionally

heteroscedastic latent factor model order increase. Analysis of three different mixed-state

latent factor model inference schemes indicates that Viterbi scheme do seem to yields ap-

pealing classifications. However, the GPB2 and variational methods does not considerably

lack behind the mentioned scheme and sometimes even outperforms the first one. More-

over, inference process of GPB2 is clearly more involved than those of the Viterbi or the

variational approximation. Unlike Viterbi, GPB2 provides ”soft” estimates of switching

states at each time t. Like Viterbi GPB2 is a local approximation scheme and as such

does not guarantee global optimality inherent in the variational approximation. However,
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Figure 4: Example 1: Evolution of the conditionally heteroscedastic parameter estimates

during the EM iterations: γj (first column), αj (second column) and δj (third column).

some recent work (see Boyen and Firedman, 1999) on this type of local approximation

in general DBNs has emerged that provides conditions for it to be globally optimal. In

terms of computational complexity, Viterbi does seem to be the clear winner among the

mixed-state latent factor model schemes.

To assess the previous results Monte Carlo experiments were performed. We have

generated 100 different data experiments according to the true model for each example.

The best number of common factors and hidden states according to our proposed ICL

criterion was chosen. Figure 6 shows the choice frequencies for each specification. In the

two examples, ICL prefers the true model most of the time. Our Monte Carlo simulation

experiments show also that the EM-based Viterbi approximation algorithm increases the

precision of the new proposed ICL criterion. Here we can argue that the improvement in

accuracy is due entirely to the significant improvement in the identification of the most

probable path through the states of the model given by the Viterbi decoding.

7 Conclusion

We have introduced a new approach to dynamics learning based on switching conditionally

heteroscedastic factor models. We have proposed a Viterbi approximation technique which

overcomes the exponential complexity of exact inference. Our proposed model is general

enough that it allows for changing relationships among variables in the dataset without

imposing that these changes have occurred or assuming a date for the changes. It takes
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Figure 5: Log-likelihoods of the different specifications (with different values of m and k)

using Viterbi and GPB2 methods on the same datasets.

Table 4: Values of the AIC, BIC and ICL statistics for the chosen factor models estimated

on the same database. The values into brackets are the selection criteria of the second

example.

Criterion m = 1

k = 1 k = 2 k = 3

AIC 24310 (22610) 24082 (22494) 24016 (22414)

BIC 24411 (22708) 24226 (22635) 24203 (22597)

ICL 24409 (22704) 24223 (22635) 24201 (22594)

m = 2

23398 (22332) 23248 (22240) 23160 (22312)

23629 (22557) 23565 (22549) 23563 (22706)

23629 (22557) 23564 (22544) 23563 (22700)

m = 3

23190 (22324) 23412 (22248) 23544 (22380)

23550 (22675) 23902 (22726) 24164 (22984)

23548 (22675) 23902 (22724) 24161 (22982)

into account, simultaneously, the usual changing behavior of the common volatility due to

common economic forces, as well as the sudden discrete shift in common and idiosyncratic

volatilities that can be due to sudden abnormal events.

Our proposed algorithm has been tested on simulated data and it showed very promis-

ing results compared to the GPB2 and variational methods. There are several benefits to

use an EM-based Viterbi approximation algorithm for mixed-state latent factor models.
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Figure 6: Frequencies of choosing each model with ICL. Results of the Viterbi approxi-

mation in the first line. Those of the GPB2 and variational methods in the second and

third lines, respectively.

Most of these advantages revolve around the tractability of the learning and inference

processes and the improvement in the classification of the volatility behavior. Another

specific advantage of our new proposed algorithm is that it can accelerate the convergence

of the EM iterations. Indeed, if there are a large number of hidden states, it may be too

slow to perform m2 or even m Kalman Filtering updates, as required by GPB2 and IMM.

Our numerical experiments on simulated data of the resulting ICL criterion show that it

performs well both for choosing a mixed-state factor model and a relevant number of com-

mon conditionally heteroscedastic latent factors. With this new criterion we demonstrated

accurate discrimination between specifications characterized by different hidden structures.

In simulated events, this selection criterion with Viterbi approximation method gives the

right answer, about 91% of the time. In particular, ICL appears to be more robust than

AIC and BIC to violation of some of the mixed-state latent factor model assumptions and

it can select a number of hidden states and common latent factors leading to a sensible

partitioning of the data.

The fact that our proposed model can be learned from data may be an important

advantage in financial applications, where accurate on-line predictions of the time varying

covariance matrices are very useful for dynamic asset allocation, active portfolio manage-

ment and the analysis of options prices. The analysis in this paper can be also extended

in several ways. First, our model can be generalized to one where one allows the idiosyn-

cratic variances to be a stochastic function of time. Secondly, we can also think of the

case where the state transition probabilities are not homogeneous in time, but depend on

the previous state and the previously observed covariates levels. The study of such models
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would provide a further step in the extension of hidden Markov models to dynamic factor

analysis and allow for further flexibility in applications.
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