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The vacuum energy density of free scalar quantum field with a distributional background spacetime also is considered. It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, sub-dominant contributions.

Here we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background distributional spacetime such BHs, to become dominant over any classical energydensity component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved spacetimes. In particular we obtain that the vacuum fluctuations 2 has a singular behavior on BHs horizon r :

2 r ~|r r | 2 . We argue that this vacuum dominance may bear importent astrophysical implications.The vacuum energy density of free scalar quantum field Φ in a Rindler distributional spacetime with distributional Levi-Cività connection also is considered.It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background spacetime with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional spacetime such a Rindler distributional background spacetime, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional spacetimes with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations 2 has a singular behavior on a Rindler horizon 0 : 2 ~ 4 , c 2 /a, a . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski's account doesn't violation of the Einstein equivalence principle.

singularity,Schwarzschild Horizon,smooth regularization,nonsmooth regularization,quantum fields on curved spacetime,vacuum fluctuations,vacuum dominance I.Introduction I.1.The breakdown of canonical formalism of Riemann geometry for the singular solutions of the Einstein field equations Einstein field equations was originally derived by Einstein in 1915 in respect with canonical formalism of Riemann geometry,i.e. by using the classical sufficiently smooth metric tensor, smooth Riemann curvature tensor, smooth Ricci tensor,smooth scalar curvature, etc.. However have soon been found singular solutions of the Einstein field equations with singular metric tensor and singular Riemann curvature tensor.

These singular solutions was formally accepted beyond rigorous canonical formalism of Riemannian geometry.

Remark 1.1.Note that if some components of the Riemann curvature tensor R klm i x become infinite at point x 0 one obtain the breakdown of canonical formalism of Riemann geometry in a sufficiently small neighborhood of the point x 0 , i.e. in such neighborhood Riemann curvature tensor R klm i x will be changed by formula (1.7) see remark 1.2.

Remark 1.2.Let be infinitesimal closed contour and let be the corresponding surface spanning by , see Pic.1. We assume now that: (i) christoffel symbol kl i x become infinite at singular point x 0 by formulae kl i x kl x x i x i 0 , 1 kl x C

1. 1 and (ii) x 0 . Let us derive now to similarly canonical calculation [START_REF] Tolman | Relativity, Thermodynamics and Cosmology[END_REF]- [START_REF] Landau | The Classical Theory of Fields[END_REF] the general formula for the regularized change A k in a vector A i x after parallel displacement around infinitesimal closed contour . This regularized change A k can clearly be written in the form

A k x x 0 A k , 1. 2
where x x 0 i 0 4

x i x i 0 2 , 1 and where the integral is taken over the given contour . Substituting in place of A k the canonical expression A k kl i x A k dx l (see [START_REF] Landau | The Classical Theory of Fields[END_REF],Eq.(85.5)) we obtain

A k x x 0 A k x x 0 kl i x A k dx l , 1. 3
where spanning by . Now applying Stokes' theorem (see [START_REF] Landau | The Classical Theory of Fields[END_REF],Eq.(6. [START_REF] Gelfand | Generalized functions. Vol. I: Properties and operations[END_REF])) to the integral (1.3) and considering that the area enclosed by the contour has the infinitesimal value f lm , we get

A k x x 0 kl i x A k dx l 1 2 km i x A i x x 0 x l kl i x A i x x 0 x m df lm km i x A i x x 0 x l kl i x A i x x 0 x m f lm 2 x x 0 km i x x 0 A i x l km i x A i x x 0 x l x x 0 kl i x A i x m kl i x A i x x 0 x m f lm 2 x x 0 km i x A i x l x x 0 kl i x A i x m A i x x x 0 2 km i x x l x l 0 A i x x x 0 2 kl i x x m x m 0 f lm 2 .
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Substituting the values of the derivatives (1.4) into Eq.(1.5), we get finally:

A k R klm i A i x x x 0 f lm 2 , 1. 6
where R klm i , is a tensor of the fourth rank

R klm i R klm i 2 km i x x l x l 0 kl i x x m x m 0 .
1. 7

Here R klm i is the classical Riemann curvature tensor.That R klm i is a tensor is clear from the fact that in (1.6) the left side is a vector-the difference A k between the values of vectors at one and the same point.

Remark 1.3. Note that similar result was obtained by many authors [START_REF] Vickers | A nonlinear theory of tensor distributions[END_REF]- [START_REF] Grosser | A global theory of nonlinear generalized functions[END_REF] by using Colombeau nonlinear generalized functions [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF]- [START_REF] Colombeau | Elementary Introduction to New Generalized Functions[END_REF]. 

Definition1
G km R km 1 2 g km R.
1. 10

Remark 1.4. Note that in physical literature the spacetime singularity usually is defined as location where the quantities that are used to measure the gravitational field become infinite in a way that does not depend on the coordinate system. These quantities are the classical scalar invariant curvatures of singular spacetime, which includes a measure of the density of matter.

Remark 1.5. In general relativity, many investigations have been derived with regard to singular exact vacuum solutions of the Einstein equation and the singularity structure of space-time. Such solutions have been formally derived under condition T x 0, 1. 11

where T x 0 represent the energy-momentum densities of the gravity source. This for example is the case for the well-known Schwarzschild solution, which is given by, in the Schwarzschild coordinates x 0 , r, , , ds 2 h r dx 0 2 h 1 r dr 2 r 2 d 2 sin 2 d 2 , h r 1 r s r , 1. 12 where, r s is the Schwarzschild radius r s 2GM/c 2 with G, M and c being the Newton gravitational constant, mass of the source, and the light velocity in vacuum Minkowski space-time, respectively. The metric (1.12) describe the gravitational field produced by a point-like particle located at r 0.

Remark 1.6. Note that when we say, on the basis of the canonical expression of the curvature square R r R r 12r s 2 1 r 6 1. 13

formally obtained from the metric (1.12), that r 0 is a singularity of the Schwarzschild space-time, the source is considered to be point-like and this metric is regarded as meaningful everywhere in space-time.

Remark 1.7. From the metric (1.12), the calculation of the canonical Einstein tensor proceeds in a straighforward manner gives for r 0

G t t r G r r r h r r

1 h r r 2 0 , G r G r h r 2 h r r 2 0, 1. 14

where h r 1 r s /r. Using Eq. (1.14) one formally obtain boundary conditions

G t t 0 r 0 lim G t t r 0, G r r 0 r 0 lim G r r r 0, G 0 r 0 lim G r 0, G 0 r 0 lim G r 0. 1. 15
However as pointed out above the canonical expression of the Einstein tensor in a sufficiently small neighborhood of the point r 0 and must be replaced by the generalized Einstein tensor G km (1.10). By simple calculation easy to see that

G t t 0 r 0 lim G t t r , G r r 0 r 0 lim G r r r , G 0 r 0 lim G r , G 0 r 0 lim G r .
1. 16

and therefore the boundary conditions (1.15) is completely wrong. But other hand as pointed out by many authors [START_REF] Vickers | A nonlinear theory of tensor distributions[END_REF]- [START_REF] Grosser | A global theory of nonlinear generalized functions[END_REF] that the canonical representation of the Einstein tensor, valid only in a weak (distributional) sense,i.e. [START_REF] Pantoja | Energy-momentum tensor valued distributions for the Schwarzschild and Reissner-Nordstrøm geometries[END_REF]: 

G b a x 8 m 0 a b 0 3 x 1. 17

I.2.The distributional Schwarzschild geometry

General relativity as a physical theory is governed by particular physical equations; the focus of interest is the breakdown of physics which need not coincide with the breakdown of geometry. It has been suggested to describe singularity at the origin as internal point of the Schwarzschild spacetime, where the Einstein field equations are satisfied in a weak (distributional) sense [START_REF] Vickers | A nonlinear theory of tensor distributions[END_REF]- [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF].

1.2.1.The smooth regularization of the singularity at the origin.

The two singular functions we will work with throughout this paper (namely the singular components of the Schwarzschild metric) are 1 r and 1 r r s , r s 0. Since 1 r L loc 1 3 , it obviously gives the regular distribution 1 r D 3 . By convolution with a mollifier ρ x (adapted to the symmetry of the spacetime, i.e. chosen radially symmetric) we embed it into the Colombeau algebra G R 3 [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]:

1 r 1 r 1 r 1 r , 1 3 ρ r , 0, 1 . 1. 18
Inserting (1.18) into (1.12) we obtain a generalized Colombeau object modeling the singular Schwarzschild spacetime [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]:

ds 2 h r dt 2 h 1 r dr 2 r 2 d 2 sin 2 d 2 ,
h r 1 r s 1 r , 0, 1 .
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Remark 1.8.Note that under regularization (1.18) for any 0, 1 the metric

ds 2 h r dt 2 h 1 r dr 2 r 2 d 2 sin 2 d 2
obviously is a classical Riemannian object and there no exist an the breakdown of canonical formalism of Riemannian geometry for these metrics, even at origin r 0. It has been suggested by many authors to describe singularity at the origin as an internal point, where the Einstein field equations are satisfied in a distributional sense [START_REF] Vickers | A nonlinear theory of tensor distributions[END_REF]- [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]. From the Colombeau metric (1. [START_REF] Gelfand | Generalized functions. Vol. I: Properties and operations[END_REF]) one obtain in a distributional sense [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]:

R 2 2 r, R 3 3 h r r 1 h r r 2 8 m r r 2 , R 0 0 r, R 1 1 1 2 h r 2 h r r 4 m r r 2 .
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Hence, the distributional Ricci tensor and the distributional curvature scalar R r are of δ-type, i.e. R r m r r 2 . Remark 1.9. Note that the formulae (1.20) should be contrasted with what is the expected result G b a x 8 m 0 a b 0 3 x given by Eq.(1.17). However the equations (1.20) are obviously given in spherical coordinates and therefore strictly speaking this is not correct, because the basis fields r , , are not globally defined.

Representing distributions concentrated at the origin requires a basis regular at the origin. Transforming the formulae for R ij ε into Cartesian coordinates associated with the spherical ones, i.e., r, θ, φ

x i , we obtain, e.g., for the Einstein tensor the expected result G b a x 8 m 0 a b 0 3 x given by Eq.(1.17), see [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF].

1.2.2.The nonsmooth regularization of the singularity at the origin.

The nonsmooth regularization of the Schwarzschild singularity at the origin r 0 is considered by N. R. Pantoja and H. Rago in paper [START_REF] Pantoja | Energy-momentum tensor valued distributions for the Schwarzschild and Reissner-Nordstrøm geometries[END_REF]. Pantoja non smooth regularization regularization of the Schwarzschild singularity are

h r 1 r s r r , 0, 1 , r r s . 1. 21
Here u is the Heaviside function and the limit 0 is understood in a distributional sense.Equation (1.19) with h as given in (1.21) can be considered as an regularized version of the Schwarzschild line element in curvature coordinates. From equation (1.21), the calculation of the distributional Einstein tensor proceeds in a straighforward manner. By simple calculation it gives [START_REF] Pantoja | Energy-momentum tensor valued distributions for the Schwarzschild and Reissner-Nordstrøm geometries[END_REF]:

G t t r, G r r r, h r r 1 h r r 2 r s r r 2 r s r r 2 1. 22 and G r, G r, h r 2 h r r 2 r s r r 2 r s r 2 d dr r r s r r 2 .
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which is exactly the result obtained in Ref. [START_REF] Balasin | On the distributional nature of the energy-momentum tensor of a black hole or What curves the Schwarzschild geometry ?[END_REF] using smoothed versions of the Heaviside function Θ r

. Transforming now the formulae for G b a r, ε into Cartesian coordinates associated with the spherical ones, i.e., r, θ, φ

x i , we obtain for the generalized Einstein tensor the expected result given by Eq.(1.17)

G b a x 8 m 0 a b 0 3 x , 1. 24
see Remark 1.9.

1.2.3.The smooth regularization via Horizon.

The smooth regularization via Horizon is considered by J.M.Heinzle and R.Steinbauer in paper [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]. Note that 1 r r s L loc 1 3 . An canonical regularization is the principal value vp 1 r r s D 3 which can be embedded into G R 3 [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]:

1 r r s vp vp 1 r r s vp 1 r r s 1 r r s G R 3 .
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Inserting now (1.25) into (1.12) we obtain a generalized Colombeau object modeling the singular Schwarzschild spacetime [START_REF] Heinzle | Remarks on the distributional Schwarzschild geometry[END_REF]:

ds 2 h r dt 2 h 1 r dr 2 r 2 d 2 sin 2 d 2 , h r 1 r s r , h 1 r 1 r s 1 r r s , 0, 1 . 1. 26
Remark 1.10.Note that obviously Colombeau object, (1.26) is degenerate at r r s , because h r is zero at the horizon.

However, this does not come as a surprise. Both h r and h 1 r are positive outside of the black hole and negative in the interior. As a consequence any smooth regularization of h r (or h 1 ) must pass through zero somewhere and, additionally, this zero must converge to r r s as the regularization parameter goes to zero.

Remark 1.11.Note that due to the degeneracy of Colombeau object (1.26), even the distributional Levi-Civitá connection obviously is not available.

1.2.4.The nonsmooth regularization via Gorizon

In this paper we leave the neighborhood of the singularity at the origin and turn to the singularity at the horizon. The question we are aiming at is the following: using distributional geometry (thus without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of the Schwarzschild metric is not merely a coordinate singularity. In order to investigate this issue we calculate the distributional curvature at the horizon in Schwarzschild coordinates.

The main focus of this work is a (nonlinear) superdistributional description of the Schwarzschild spacetime. Although the nature of the Schwarzschild singularity is much "worse" than the quasi-regular conical singularity, there are several distributional treatments in the literature [START_REF] Geroch | Strings and other distributional sources in general relativity[END_REF]- [START_REF] Kawai | Distributional Energy-Momentum Densities of Schwarzschild Space-Time[END_REF], mainly motivated by the following considerations: the physical interpretation of the Schwarzschild metric is clear as long as we consider it merely as an exterior (vacuum) solution of an extended (sufficiently large) massive spherically symmetric body. Together with the interior solution it describes the entire spacetime. The concept of point particles-well understood in the context of linear field theories-suggests a mathematical idealization of the underlying physics: one would like to view the Schwarzschild solution as defined on the entire spacetime and regard it as generated by a point mass located at the origin and acting as the gravitational source.

This of course amounts to the question of whether one can reasonably ascribe distributional curvature quantities to the Schwarzschild singularity at the horizon.

The emphasis of the present work lies on mathematical rigor. We derive the "physically expected" result for the distributional energy momentum tensor of the Schwarzschild geometry, i.e., T 0 0 8 m 3 x , in a conceptually satisfactory way. Additionally, we set up a unified language to comment on the respective merits of some of the approaches taken so far. In particular, we discuss questions of differentiable structure as well as smoothness and degeneracy problems of the regularized metrics, and present possible refinements and workarounds.These aims are accomplished using the framework of nonlinear supergeneralized functions (supergeneralized Colombeau algebras G R 3 , ).Examining the Schwarzschild metric (1.12) in a neighborhood of the horizon, we see that, whereas h r is smooth, h 1 r is not even L loc 1 (note that the origin is now always excluded from our considerations; the space we are working on is R 3 \ 0 ). Thus, regularizing the Schwarzschild metric amounts to embedding h 1 into G R 3 , (as done in (3.2)).Obviously, (3.1) is degenerate at r 2m, because h r is zero at the horizon. However, this does not come as a surprise. Both h r and h 1 r are positive outside of the black hole and negative in the interior. As a consequence any (smooth) regularization h r (h r ) [above (below) horizon] of h r must pass through small enough vicinity O 2m

x , kj l respect the regularized metric g , i.e., g ij;k 0. Proceeding in this manner, we obtain the nonstandard result

R 3 | x 2m, x 2m (O 2m x R 3 | x 2m, x 2m ) of zeros set O 0 2m y R 3 |
R 1 1 R 0 0 m 2m , R 1 1 R 0 0 m 2m .
1. 28

Investigating the weak limit of the angular components of the generalized Ricci tensor using the abbreviation

r 0 sin d 0 2 d x
and let x be the function x S 2m 3 , k , where by S 2m 3 , k we denote the class of all functions x such that (i) r ~ r 2m k , r~2m, k 2 and (ii) x C 3 . Then for any function x S 2m 3 , 2 with compact support we get:

w - 0 lim R 1 1 w - 0 lim R 0 0 m | m 2m , w - 0 lim R 1 1 w - 0 lim R 0 0 m | m 2m , 1. 29
i.e., the Schwarzschild spacetime is weakly Ricci-nonflat (the origin was excluded from our considerations). Furthermore,the Tolman formula [START_REF] Tolman | Relativity, Thermodynamics and Cosmology[END_REF], [START_REF] Landau | The Classical Theory of Fields[END_REF] for the total energy of a static and asymptotically flat spacetime with g the determinant of the four dimensional metric and d 3 x the coordinate volume element, gives

E T T r r T T T t t g d 3 x m, 1. 30
as it should be.

The paper is organized in the following way: in section II we discuss the conceptual as well as the mathematical prerequisites. In particular we comment on geometrical matters (differentiable structure, coordinate invariance) and recall the basic facts of nonlinear superdistributional geometry in the context of algebras G M, of supergeneralized functions. Moreover, we derive sensible nonsmooth regularizations of the singular functions to be used throughout the paper. Section III is devoted to these approach to the problem. We present a new conceptually satisfactory method to derive the main result. In these final section III we investigate the horizon and describe its distributional curvature. Using nonlinear superdistributional geometry and supergeneralized functions it seems possible to show that the horizon singularity is not only a coordinate singularity without leaving Schwarzschild coordinates.

II. Generalized Colombeau Calculus II.1.Notation and basic notions from standard Colombeau theory

We use [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF], [START_REF] Colombeau | Elementary Introduction to New Generalized Functions[END_REF], [START_REF] Vickers | Nonlinear generalised functions in general relativity[END_REF] as standard references for the foundations and various applications of standard Colombeau theory. We briefly recall the basic Colombeau construction. Throughout the paper will denote an open subset of n . Stanfard Colombeau generalized functions on are defined as equivalence classes u u of nets of smooth functions u C (regularizations) subjected to asymptotic norm conditions with respect to 0, 1 for their derivatives on compact sets. The basic idea of classical Colombeau's theory of nonlinear generalized functions [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF], [START_REF] Colombeau | Elementary Introduction to New Generalized Functions[END_REF] is regularization by sequences (nets) of smooth functions and the use of asymptotic estimates in terms of a regularization parameter . Let u 0,1 with u C M for all , where M a separable, smooth orientable Hausdorff manifold of dimension n. Definition 2.1.The classical Colombeau's algebra of generalized functions on M is defined as the quotient:

G M E M M /N M 2. 1
of the space E M M of sequences of moderate growth modulo the space N M of negligible sequences. More precisely the notions of moderateness resp. negligibility are defined by the following asymptotic estimates (where X M denoting the space of smooth vector fields on M): 

E M M u | K K M k k N N 1 , , k 1 , , k X M p K sup |L 1 L k u p | O N as 0 , 2. 2 N M u | K K M , k k 0 q q N 1 , , k 1 , , k X M p K sup |L 1 L k u p | O q as 0 . 2.
f , hence C M is a faithful subalgebra of G M .
Point Values of a Generalized Functions on M. Generalized Numbers.

Within the classical distribution theory, distributions cannot be characterized by their point values in any way similar to classical functions. On the other hand, there is a very natural and direct way of obtaining the point values of the elements of Colombeau's algebra: points are simply inserted into representatives. The objects so obtained are sequences of numbers, and as such are not the elements in the field or . Instead, they are the representatives of Colombeau's generalized numbers. We give the exact definition of these "numbers".

Definition 2.5.Inserting p M into u G M yields a well defined element of the ring of constants (also called generalized numbers) K (corresponding to K R resp. C), defined as the set of moderate nets of numbers ( r K 0,1 with |r | O N for some N) modulo negligible nets (|r | O m for each m); componentwise insertion of points of M into elements of G M yields well-defined generalized numbers, i.e.,elements of the ring of constants:

K E c M /N c M 2. 5 (with K or K for K or K ),
where

E c M r K I | n n |r | O n as 0 N c M r K I | m m |r | O m as 0 I 0, 1 .

6

Generalized functions on M are characterized by their generalized point values, i.e., by their values on points in M c , the space of equivalence classes of compactly supported nets p M 0,1 with respect to the relation p p : d h p , p O m for all m, where d h denotes the distance on M induced by any Riemannian metric. Definition 2.6. For u G M and x 0 M, the point value of u at the point x 0 , u x 0 , is defined as the class of u x 0 in K. Definition 2.7.We say that an element r K is strictly nonzero if there exists a representative r and a q such that |r | q for sufficiently small. If r is strictly nonzero, then it is also invertible with the inverse 1/r . The converse is true as well. Treating the elements of Colombeau algebras as a generalization of classical functions, the question arises whether the definition of point values can be extended in such a way that each element is characterized by its values. Such an extension is indeed possible.

Definition 2.8. Let be an open subset of n . On a set :

x I | p p 0 |x | O p x I | p p 0 0 0 0 |x | p , for 0 0 2. 7
we introduce an equivalence relation:

x y q q 0 0 |x y | q , for 0 0 2. 8
and denote by / the set of generalized points. The set of points with compact support is

c x cl x | K K 0 0 0 x K for 0 0 2. 9
Definition 2.9. A generalized function u G M is called associated to zero, u 0 on M in L.Schwartz sense if one (hence any) representative u converges to zero weakly,i.e.

wlim 0 u 0 2.

We shall often write:

u Sch 0. 2.
The G M -module of generalized sections in vector bundles-especially the space of generalized tensor fields Ts r M -is defined along the same lines using analogous asymptotic estimates with respect to the norm induced by any Riemannian metric on the respective fibers. However, it is more convenient to use the following algebraic description of generalized tensor fields

G s r M G M Ts r M , 2.
where Ts r M denotes the space of smooth tensor fields and the tensor product is taken over the module C M . Hence generalized tensor fields are just given by classical ones with generalized coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting [1]- [START_REF] Colombeau | Elementary Introduction to New Generalized Functions[END_REF], in particular Lie derivatives with respect to both classical and generalized vector fields, Lie brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G M -multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as G M -modules we have

G s r M L M G 1 0 M r , G 0 1 M s ; G M . 2. 13
In particular a generalized metric is defined to be a symmetric, generalized 0, 2 -tensor field g ab g ab (with its index independent of and) whose determinant det g ab is invertible in G M . The latter condition is equivalent to the following notion called strictly nonzero on compact sets: for any representative det g ab of det g ab we have K M m inf p K |det g ab | m for all small enough. This notion captures the intuitive idea of a generalized metric to be a sequence of classical metrics approaching a singular limit in the following sense: g ab is a generalized metric iff (on every relatively compact open subset V of M) there exists a representative g ab of g ab such that for fixed (small enough) g ab g ab (resp. g ab | V ) is a classical pseudo-Riemannian metric and det g ab is invertible in the algebra of generalized functions. A generalized metric induces a G M -linear isomorphism from G 0 1 M to G 1 0 M and the inverse metric g ab g ab 1 is a well defined element of G 0 2 M (i.e., independent of the representative g ab ). Also the generalized Levi-Civita connection as well as the generalized Riemann-, Ricci-and Einstein tensor of a generalized metric are defined simply by the usual coordinate formulae on the level of representatives.

II.2. Generalized Colombeau Calculus.

We briefly recall the basic generalized Colombeau construction. Colombeau supergeneralized functions on n , where dim n are defined as equivalence classes u u of nets of smooth functions u C \ , where dim n (regularizations) subjected to asymptotic norm conditions with respect to 0, 1 for their derivatives on compact sets.

The basic idea of generalized Colombeau's theory of nonlinear supergeneralized functions [START_REF] Colombeau | New Generalized Functions and Multiplication of Distributions[END_REF], [START_REF] Colombeau | Elementary Introduction to New Generalized Functions[END_REF] is regularization by sequences (nets) of smooth functions and the use of asymptotic estimates in terms of a regularization parameter . Let u 0,1 with u such that: (i) u C M\ and (ii) u D M , for all 0, 1 , where M a separable, smooth orientable Hausdorff manifold of dimension n.

Definition 2.10.The supergeneralized Colombeau's algebra G G M, of supergeneralized functions on M, where M, dim M n, dim n , is defined as the quotient:

G M, E M M, /N M, 2.
of the space E M M, of sequences of moderate growth modulo the space N M, of negligible sequences. More precisely the notions of moderateness resp. negligibility are defined by the following asymptotic estimates (where X M\ denoting the space of smooth vector fields on M\ ):

E M M, u | K K M\ k k N N 1 , , k 1 , , k X M\ p K sup |L 1 L k u p | O N , 0 & K K M k k N N f C M 1 , , k 1 , , k X M |L 1 w L k w u f | p K sup L 1 L k f p O N , 0 , 2. N M, u | K K M\ , k k 0 q q N 1 , , k 1 , , k X M\ p K sup |L 1 L k u p | O q , 0 & K K M k k N N f C M 1 , , k 1 , , k X M |L 1 w L k w u f | p K sup L 1 L k f p O q , 0 , 2.
where L k w denoting the weak Lie derivative in L.Schwartz sense.In the definition the Point Values of a Supergeneralized Functions on M. Supergeneralized Numbers Within the classical distribution theory, distributions cannot be characterized by their point values in any way similar to classical functions. On the other hand, there is a very natural and direct way of obtaining the point values of the elements of Colombeau's algebra: points are simply inserted into representatives. The objects so obtained are sequences of numbers, and as such are not the elements in the field or . Instead, they are the representatives of Colombeau's generalized numbers. We give the exact definition of these "numbers". Definition 2.12.Inserting p M into u G M, yields a well defined element of the ring of constants (also called generalized numbers) K (corresponding to K R resp. C), defined as the set of moderate nets of numbers ( r K 0,1 with |r | O N for some N) modulo negligible nets (|r | O m for each m); componentwise insertion of points of M into elements of G M, yields well-defined generalized numbers, i.e.,elements of the ring of constants:

K E c M, /N c M, 2. 18 (with K or K for K or K ),
where

E c M, r K I | n n |r | O n as 0 , N c M, r K I | m m |r | O m as 0 I 0, 1 .
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Supergeneralized functions on M are characterized by their generalized point values, i.e., by their values on points in M c , the space of equivalence classes of compactly supported nets p M\ 0,1 with respect to the relation p p : d h p , p O m for all m, where d h denotes the distance on M\ induced by any Riemannian metric. Definition 2.13. For u G M, and x 0 M, the point value of u at the point x 0 , u x 0 , is defined as the class of u x 0 in K. Definition 2.14.We say that an element r K is strictly nonzero if there exists a representative r and a q such that |r | q for sufficiently small. If r is strictly nonzero, then it is also invertible with the inverse 1/r . The converse is true as well. Treating the elements of Colombeau algebras as a generalization of classical functions, the question arises whether the definition of point values can be extended in such a way that each element is characterized by its values. Such an extension is indeed possible.

Definition 2.15.

Let be an open subset of n \ . On a set :

x \ I | p p 0 |x | O p x \ I | p p 0 0 0 0 |x | p , for 0 0 2. 20
we introduce an equivalence relation:

x y q q 0 0 |x y | q , for 0 0 2. 21
and denote by / the set of supergeneralized points. The set of points with compact support is We shall often write:

,c x cl x | K K \ 0 0 0 x K for 0 0 2.
u Sch 0. 2.
Definition 2.17.The G M, -module of supergeneralized sections in vector bundlesespecially the space of generalized tensor fields Ts r M\ -is defined along the same lines using analogous asymptotic estimates with respect to the norm induced by any Riemannian metric on the respective fibers. However, it is more convenient to use the following algebraic description of generalized tensor fields

G s r M, G M, Ts r M\ , 2.
where Ts r M\ denotes the space of smooth tensor fields and the tensor product is taken over the module C M\ . Hence generalized tensor fields are just given by classical ones with generalized coefficient functions. Many concepts of classical tensor analysis carry over to the generalized setting [], in particular Lie derivatives with respect to both classical and generalized vector fields, Lie brackets, exterior algebra, etc. Moreover, generalized tensor fields may also be viewed as G M, -multilinear maps taking generalized vector and covector fields to generalized functions, i.e., as G M, -modules we have

G s r M, L M G 1 0 M, r , G 0 1 M, s ; G M, . 2 

. 26

In particular a supergeneralized metric is defined to be a symmetric, supergeneralized 0, 2 -tensor field g ab g ab (with its index independent of and) whose determinant det g ab is invertible in G M\ . The latter condition is equivalent to the following notion called strictly nonzero on compact sets: for any representative det g ab of det g ab we have K M\ m inf p K |det g ab | q for all small enough. This notion captures the intuitive idea of a generalized metric to be a sequence of classical metrics approaching a singular limit in the following sense: g ab is a generalized metric iff (on every relatively compact open subset V of M) there exists a representative g ab of g ab such that for fixed (small enough) g ab g ab (resp. g ab | V ) is a classical pseudo-Riemannian metric and det g ab is invertible in the algebra of generalized functions. A generalized metric induces a G M, -linear isomorphism from G 0 1 M, to G 1 0 M, and the inverse metric g ab g ab

1 is a well defined element of G 0 2
M, (i.e., independent of the representative g ab ). Also the supergeneralized Levi-Civita connection as well as the supergeneralized Riemann, Ricci and Einstein tensor of a supergeneralized metric are defined simply by the usual coordinate formulae on the level of representatives.

II.3.Superdistributional general relativity

We briefly summarize the basics of superdistributional general relativity, as a preliminary to latter discussion.In the classical theory of gravitation one is led to consider the Einstein field equations which are,in general,quasilinear partial differential equations involving second order derivatives for the metric tensor. Hence, continuity of the first fundamental form is expected and at most, discontinuities in the second fundamental form, the coordinate independent statements appropriate to consider 3-surfaces of discontinuity in the spacetime manifolfd of General Relativity.

In standard general relativity, the space-time is assumed to be a four-dimensional differentiable manifold M endowed with the Lorentzian metric ds 2 

I 1 c L G L M d 4 x, 2. 31
where L M is the Lagrangian density of a gravitational source and L G is the gravitational Lagrangian density given by

L G 1 2 G . 2. 32
Here is the Einstein gravitational constant 8 G/c 4 and G is defined by

G g g 2. 33
with g det g . There exists the relation

g R G D , 2. 34 with D g g g . 2. 35
Thus the supergeneralized fundamental action integral I is

I 1 c L G L M d 4 x , 2. 36
where L M is the supergeneralized Lagrangian density of a gravitational source and L G is the supergeneralized gravitational Lagrangian density given by

L G 1 2 G . 2. 37
Here is the Einstein gravitational constant 8 G/c 4 and G is defined by

G g g 2.
with g det g . There exists the relation

g R G D , 2. 39 with D g g g . 2.
Also, we have defined the classical scalar curvature by

R R 2.
with the smooth Ricci tensor R R .

42

From the action I, the classical Einstein equation 

III.Distributional Schwarzschild Geometry from nonsmooth regularization via Horizon

In this last section we leave the neighborhood of the singularity at the origin and turn to the singularity at the horizon. The question we are aiming at is the following: using distributional geometry (thus without leaving Schwarzschild coordinates), is it possible to show that the horizon singularity of the Schwarzschild metric is not merely only a coordinate singularity. In order to investigate this issue we calculate the distributional curvature at horizon (in Schwarzschild coordinates). In the usual Schwarzschild coordinates t, r 0, , the metric takes the form

ds 2 h r dt 2 h r 1 dr 2 r 2 d 2 ,
h r 1 2m r .

1

Following the above discussion we consider the singular metric coefficient h r as an element of D 3 and embed it into G 3 by replacement

r 2m r 2m 2 2 .
Note that, accordingly, we have fixed the differentiable structure of the manifold: the Cartesian coordinates associated with the spherical Schwarzschild coordinates in (3.1) are extended through the origin. We have above r 2m (below (r 2m)) horizon

h r r 2m r if r 2m 0 if r 2m h r r 2m 2 2 r , where h r G 3 , B 2m, R , B 2m, R x 3 |2m x R . h 1 r r r 2m , r 2m , r 2m h 1 r h r r 2m r if r 2m 0 if r 2m h r 2m r 2 2 r G 3 , B 0, 2m ,
where B 0, 2m

x 3 |0 x 2m r r 2m , r 2m , r 2m h 1 r r r 2m 2 2 G 3 , B 0, 2m 3. 2
Inserting (3.2) into (3.1) we obtain a generalized object modeling the singular Schwarzschild metric above (below) gorizon, i.e.,

ds 2 h r dt 2 h r 1 dr 2 r 2 d 2 , ds 2 h r dt 2 h r 1 dr 2 r 2 d 2 3. 3
The generalized Ricci tensor above horizon R may now be calculated componentwise using the classical formulae

R 0 0 R 1 1 1 2 h 2 r h R 2 2 R 3 3 h r 1 h r 2 .

4

From (3.2) we obtain 3 .

h r r 2m r r 2m 2 2 1/2 r 2m 2 2 1/2 r 2 , r h 1 h r r 2m r r 2m 2 2 1/2 r 2m 2 2 1/2 r 2 1 r 2m 2 2 r r 2m r 2m 2 2 1/2 r 2m 2 2 1/2 r 1 r 2m 2 2 r r 2m r 2m 2 2 1/2 1. h r r 2m r r 2m 2 2 1/2 r 2m 2 2 1/2 r 2 1 r r 2m 2 2 1/2 r 2m 2 r r 2m 2 2 3/2 r 2m r 2 r 2m 2 2 1/2 r 2m r 2 r 2m 2 2 1/2 2 r 2m 2 2 1/2 r
r 2 h 2r h r 2 1 r r 2m 2 2 1/2 r 2m 2 r r 2m 2 2 3/2 r 2m r 2 r 2m 2 2 1/2 r 2m r 2 r 2m 2 2 1/2 2 r 2m 2 2 1/2 r 3 2r r 2m r r 2m 2 2 1/2 r 2m 2 2 1/2 r 2 r r 2m 2 2 1/2 r r 2m 2 r 2m 2 2 3/2 r 2m r 2m 2 2 1/2 r 2m r 2m 2 2 1/2 2 r 2m 2 2 1/2 r 2 r 2m r 2m 2 2 1/2 2 r 2m 2 2 1/2 r r r 2m 2 2 1/2 r r 2m 2 r 2m 2 2 3/2 .

5

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation 

6

By replacement r 2m u, from (3.6) we obtain

K R 2 2 x d 3 x K R 3 3 x d 3 x 0 R 2m u u 2m du u 2 2 1/2 0 R 2m u 2m du. 3. 7
By replacement u , from (3.7) we obtain the expression

I 3 K R 3 3 x d 3 x I 2 K R 2 2 x d 3 x 0 R 2m 2m d 2 1 1/2 0 R 2m 2m d .

8

From Eq.(3.8) we obtain

I 3 I 2 2m 0! 0 R 2m 2 1 1/2 1 d 2 1! 0 R 2m 2 1 1/2 1 1 d 2m R 2m 2 1 1 R 2m 2 1 0 R 2m 2 1 1/2 1 1 d , 3. 9
where we have expressed the function 2m as 

2m l 0 n 1 l 2m l! l 1 n! n n , 2m , 

12

For R 1 1

, R 0 0 we get:

2 K R 1 1 x d 3 x 2 K R 0 0 x d 3 x 2m R r 2 h 2r h r dr 2m R r r 2m 2 2 1/2 r r 2m 2 r 2m 2 2 3/2
r dr.

13

By replacement r 2m u, from (3.13) we obtain

I 1 2 K R 1 1 x d 3 x I 2 2 K R 0 0 x d 3 x 2m R r 2 h 2r h r dr 0 R 2m u 2m u 2 2 1/2 u 2 u 2m u 2 2 3/2 u 2m du.

14

By replacement u

, from (3.14) we obtain

R 1 1 x d 3 x 2 K R 0 0 x d 3 x 2m R r 2 h 2r h r dr 0 R 2m 2m 2 2 2 1/2 2 2 2m 2 2 2 3/2 2m d 0 R 2m 2 2m d 2 2 2 1/2 2m 0 R 2m 2m d 2 2 2 1/2 0 R 2m 4 3 2m d 2 2 2 3/2 2m 0 R 2m 3 2 2m d 2 2 2 3/2 0 R 2m 2m d 2 1 1/2 0 R 2m 3 2m d 2 1 3/2 2m 0 R 2m 2m d 2 1 1/2 0 R 2m 2 2m d 2 1 3/2 .

15

From Eq.(3.15) we obtain

I 0 I 1 2m 2m 0! 0 R 2m 1 2 1 1/2 2 2 1 3/2 d 1! 0 R 2m 1 1 2 1 1/2 2 2 1 3/2 d 2m 0! 2m R 2m 1 2 1 1/2 2 2 1 3/2 d 2 1! 0 R 2m 1 1 2 1 1/2 2 2 1 3/2 d ,

16

where we have expressed the function 2m as 

2m l 0 n 1 l 2m l! l 1 n! n n , 2m , 1 0 , n 1 3. 17

18

where use is made of the relation

s lim 0 s 2 d 2 1 3/2 0 s d u 2 1 1/2 1 3. 19 Thus in S 2m B 2m, R , k S 2m 3 , k we obtain w - 0 lim R 1 1 w - 0 lim R 0 0 m 2m .

20

The supergeneralized Ricci tensor below horizon R R may now be calculated componentwise using the classical formulae

R 0 0 R 1 1 1 2 h 2 r h , R 2 2 R 3 3 h r 1 h r 2 .

21

From (3.2) we obtain

h r r 2m r h r 2m r 2 2 r h r , r 2m. h r h r r 2m r r 2m 2 2 1/2 r 2m 2 2 1/2 r 2 , r h 1 h r h 1 h r 2m r 2m 2 2 1/2 1. h r h r r 2m r 2 r 2m 2 2 1/2 2 r 2m 2 2 1/2 r 3 . r 2 h 2r h r 2 h 2r h r r 2m 2 2 1/2 r r 2m 2 r 2m 2 2 3/2 .

22

Investigating the weak limit of the angular components of the Ricci tensor (using the abbreviation r 

24

By replacement u , from (3.23) we obtain

I 3 K R 3 3 x d 3 x I 2 K R 2 2 x d 3 x 2m 0 2m d 2 1 1/2 2m 0 2m d , 3. 25
which is calculated to give 

I 3 I 2 2m 0! 2m 0 2 1 1/2 1 d 2 1! 2m 0 2 1 1/2 1 1 d 2m 1 2m 2 1 2m

29

For R 1 1

, R 0 0 we get:

2 K R 1 1 x d 3 x 2 K R 0 0 x d 3 x 0 2m r 2 h 2r h r dr 0 2m r r 2m 2 2 1/2 r r 2m 2 r 2m 2 2 3/2
r dr.

30

By replacement r 2m u, from (3.30) we obtain

I 1 2 R 1 1 x d 3 x I 2 2 R 0 0 x d 3 x 0 2m r 2 h 2r h r dr 2m 0 u 2m u 2 2 1/2 u 2 u 2m u 2 2 3/2 u 2m du.

31

By replacement u

, from (3.31) we obtain 

32

which is calculated to give

I 0 I 1 2m 2m 0! l 2m 0 1 2 1 1/2 2 2 1 3/2 d 1! 0 2m 1 1 2 1 1/2 2 2 1 3/2 d O 2 .

33

where we have expressed the function 2m as Thus the Tolman formula [START_REF] Tolman | Relativity, Thermodynamics and Cosmology[END_REF], [START_REF] Landau | The Classical Theory of Fields[END_REF] for the total energy of a static and asymptotically flat spacetime with g the determinant of the four dimensional metric and d 3 x the coordinate volume element, gives

2m l 0 n 1 l 2m l! l 1 n! n n , 2m , 
E T T r r T T T t t g d 3 x m, 3. 39
4. Quantum scalar field in curved distributional spacetime.

Canonical quantization in curved distributional spacetime

Much of formalism can be explained with Colombeau generalized scalar field.The basic concepts and methods extend straightforwardly to distributional tensor and distributional spinor fields. To being with let's take a spacetime of arbitrary dimension D, with a metric g µν of signature . . . . The action for the Colombeau generalized scalar field G M is

S M d D x 1 2 |g | g m 2 R 2 .

4.

The corresponding equation of motion is

m 2 R , 0 , 1 . 4. 
Here

|g | 1/2 |g | 1/2 g . 4.
With explicit, the mass m should be replaced by m/ . Separating out a time coordinate x 0 , x µ x 0 , x i , i 1, 2, 3 we can write the action as

S dx 0 L , L d D 1 x . 4.
The canonical momentum at a time x 0 is given by

x L / 0 x |h | 1/2 n x , 4. 5
where x labels a point on a surface of constant x 0 , the x 0 argument of is suppressed, n µ is the unit normal to the surface, and |h | is the determinant of the induced spatial metric h ij . To quantize, the Colombeau generalized field and its conjugate momentum

x are now promoted to hermitian operators and required to satisfy the canonical commutation relation, x , y i D 1 x, y , 0, 1 .

6

Here d D 1 y D 1 x, y f y f x for any scalar function f D 3 , without the use of a metric volume element. We form now a conserved bracket from two complex Colombeau solutions to the scalar wave equation ( 4 The span of all these states defines a Fock space of the distributional -wavepacket "n-particle excitations" above the state |Ψ . If we want to construct the full Hilbert space of the field theory in curved distributional spacetime,how can we proceed? We should find a decomposition of the space of complex Colombeau solutions to the wave equation (4.2) S into a direct sum of a positive norm subspace S p and its complex conjugate S p , such that all brackets between solutions from the two subspaces vanish. That is, we must find a direct sum decomposition: The condition (4.15) implies that each in S p can be scaled to define its own harmonic oscillator sub-albegra. The second condition implies, according to (4.13), that the annihilators and creators for and in the subspace S p commute amongst themselves:

S

a

, a a , a 0.

17

Given such a decompostion a total Hilbert space H for the field theory can be defined as the space of finite norm sums of possibly infinitely many states of the form

a 1, . . . a n, |0 , 4. 18
where |0 is a state such that a n, |0 0 for all in S p . The state |0 , as in classical case, is called a Fock vacuum and Hilbert space H is called a Fock space. The representation of the field operator on this Fock space is hermitian and satisfies the canonical commutation relations in sense of Colombeau generalized function.

Defining distributional outgoing modes

For illustration we consider the non-rotating,uncharged d-dimensional SAdS BH with a distributional line element

ds 2 f dt 2 f 1 dr 2 r 2 d d 2 2 , 0 , 1 , 4. 19 
where f 0, 0, 1 , 

f 0 1 r 2 L 2
d 2 4 d 1 R , G , g , 8 G T , , T , ~ x .

21

The time-independence and the spherical symmetry of the metric imply the canonical decomposition 

t,

Distributional SAdS BH spacetime-induced vacuum dominance

Adiabatic expansion of Green functions

Using equation of motion Eq.(5.2) one can obtain corresponding distributional generalization of the canonical Green functions equations. In particular for the distributional propagator

iG x, x 0|T x x |0 , 0, 1 6. 1 one obtains directly ,x m 2 R x, G x, x g x, 1/2 n x x . 6. 2
Special interest attaches to the short distance behaviour of the Green functions, such as G x, x in the limit x x 0 with a fixed 0, 1 . We obtan now an adiabatic expansion of G x, x

. Introducing Riemann normal coordinates y for the point x, with origin at the point x׳ we have expanding

g x, 1 3 R y y 1 6 R ; y y y 1 20 R ; 2 45 R R v y y y y . . . 6. 3
where is the Minkowski metric tensor, and the coefficients are all evaluated at y 0. Defining now x, x g x,

1/4 G x, x 6. 4
and its Colombeau-Fourier transform by

x, x 2 n d n ke iky k 6. 5

where ky k y , one can work in a sort of localized momentum space. Expanding (6.2) in normal coordinates and converting to k-space, k can readily be solved by iteration to any adiabatic order. The result to adiabatic order four (i.e., four derivatives of the metric) is

k k 2 m 2 1 1 6 k 2 m 2 2 R i 2 1 6 k 2 m 2 2 R ; 1 3 a k 2 m 2 2 1 6 2 R 2 2 3 a k 2 m 2 3 6. 6 where / k , a 1 2 R ; 1 120 R ; 1 140 R ; 1 30 R R 1 60 R R 1 60 R R , 6. 7
and we are using the symbol to indicate that this is an asymptotic expansion. One ensures that Eq.(6.5) represents a time-ordered product by performing the k 0 integral along the appropriate contour in Pic.3. This is equivalent to replacing m 2 by m 2 i . Similarly, the adiabatic expansions of other Green functions can be obtained by using the other contours in Pic.3.Substituting Eq.(6.6) into Eq.(6.5) gives

x, x 2 n d n ke iky a 0 x, x ; a 1 x, x ; m 2 a 2 x, x ; m 2 2 k 2 m 2 1 6. 8
where a 0 x, x ; 1 6. 9

and, to adiabatic order 4,

a 1 x, x ; 1 6 R i 2 1 6 R ; y 1 3 a y y a 2 x, x ; 1 2 1 6 R 2 1 3 a 6. 10
with all geometric quantities on the right-hand side of Eq.(6.10) evaluated at x .

Pic.3.The contour in the complex k 0 plane to be used in the evaluation of the integral giving . The cross indicates the pole at

k 0 |k| 2 m 2 1/2 .
If one uses the canonical integral representation

k 2 m 2 i 1 i 0 dse is k 2 m 2 i 6. 11
in Eq.(6.8), then the d n k integration may be interchanged with the ds integration, and performed explicitly to yield (dropping the i )

x, x i 4 n/2 0 ids is n/2 exp im 2 s x, x 2is x, x ; is x, x 1 2 y y .

12

The function x, x which is one-half of the square of the proper distance between x and x , while the function x, x ; is has the following asymptotic adiabatic expansion

x, x ; is a 0 x, x ; is a 1 x, x ; is 2 a 2 x, x ; . . .

13

Using Eq.(6.4), equation (6.12) gives a representation of G x, x : 

G x, x i 4 n/2 1/2 x, x ; 0 ids is n/2 exp

15

In the normal coordinates about x that we are currently using, x, x ; reduces to g x,

. The full asymptotic expansion of x, x ; is to all adiabatic orders are x, x ; is j 0 is j a 2 x, x ; 6. 16 with a 0 x, x ; 1, the other a j x, x ; being given by canonical recursion relations which enable their adiabatic expansions to be obtained. The expansions (6.13) and (6.16) are, however, only asymptotic approximations in the limit of large adiabatic parameter T.

If (6.16) is substituted into (6.14) the integral can be performed to give the adiabatic expansion of the Feynman propagator in coordinate space:

G x, x 4 i n/2 1/2 x, x ; j 0 a j x, x ; m 2 j 2m 2 n 2 4 H n 2 /2 2 2m 2 1 2 6. 17
in which, strictly, a small imaginary part i should be subtracted from .Since we have not imposed global boundary conditions on the distributional Green function Colombeau solution of (6.2), the expansion (6.17) does not determine the particular vacuum state in (6.1). In particular, the "i " in the expansion of G x, x only ensures that (6.17) represents the expectation value, in some set of states, of a time-ordered product of fields. Under some circumstances the use of "i " in the exact representation (6.14) may give additional information concerning the global nature of the states

Effective action for the quantum matter fields in curved distributional spcetime

As in classical case one can obtain Colombeau generalized quantity W , called the effective action for the quantum matter fields in curved distributional spcetime, which, when functionally differentiated, yields

2 g 1 2 W g T 6. 18
To discover the structure of W , let us return to first principles, recalling the Colombeau path-integral quantization procedure such as developed in []. Our notation will imply a treatment for the scalar field, but the formal manipulations are identical for fields of higher spins. Note that the generating functional

Z J D exp iS m i J x x d n x 6. 19
was interpreted physically as the vacuum persistence amplitude out , 0|0, in . The presence of the external distributional current density J can cause the initial vacuum state |0, in to be unstable, i.e., it can bring about the production of particles. In flat space, in the limit J 0, no particles are produced, and one have the normalization condition

Z 0 D exp iS m i J x x d n x J 0 0 |0 1. 6. 20
However, when distributional spacetime is curved, we have seen that, in general,

|0, out |0, in , 6. 21 
even in the absence of source currents J. Hence (6.19) will no longer apply. Path-integral quantization still works in curved distributional spacetime; one simply treats S m in (6.19) as the curved distributional spacetime matter action, and J x as a current density (a scalar density in the case of scalar fields). One can thus set J 0 in (6. [START_REF] Gelfand | Generalized functions. Vol. I: Properties and operations[END_REF]) and examine the variation of Z 0 : where the integral with respect to m 2 brings down the extra power of is 1 that appears in Eq. (6.36). Returning now to the expression (6.28) for W using Eq.(6.37) and Eq.(6.31) we get

Z 0 i D S m exp
W i 2 d n x g x, 1 2 x x lim m 2 G x, x ; m 2 dm 2 6. 38
Interchanging the order of integration and taking the limit x x one obtains

W i 2 m 2 dm 2 d n x g x, 1 2 G x, x; m 2 . 6. 39
Colombeau quantity W is colled as the one-loop effective action. In the case of fermion effective actions, there would be a remaining trace over spinorial indices. From Eq.( 6.39) we may define an effective Lagrangian density L ;eff x by 

W d n x g x,

Stress-tensor renormalization

Note that L x diverges at the lower end of the s integral because the /2s damping factor in the exponent vanishes in the limit x x . (Convergence at the upper end is guaranteed by the i that is implicitly added to m 2 in the De Witt-Schwinger representation of L x . In four dimensions, the potentially divergent terms in the DeWitt-Schwinger expansion of L x are

L ;div x 32 2 1 x x lim 1/2 x, x ; 0 ds s 3 exp im 2 s x, x 2is a 0 x, x ; isa 1 x, x ; is 2 a 2 x, x ; 6. 42
where the coefficients a 0 , a 1 and a 2 are given by Eq.(6.9)-Eq.(6.10). The remaining terms in this asymptotic expansion, involving a 3 and higher, are finite in the limit x x .

Let us determine now the precise form of the geometrical L ;div x terms, to compare them with the conventional gravitational Lagrangian that appears in (2.38). This is a delicate matter because (6.48) is, of course, infinite. What we require is to display the divergent terms in the form geometrical object . This can be done in a variety of ways. For example, in n dimensions, the asymptotic (adiabatic) expansion of L ;eff x is

L ;eff x 2 1 4 n/2
x x lim 1/2 x, x ; j 0 a j x, x ; 0 ids is j 1 n/2 exp im 2 s x, x 2is 6. 43

of which the first n/2 1 terms are divergent as 0. If n is treated as a variable which can be analytically continued throughout the complex plane, then we may take the x x limit

L ;eff x 2 1 4 n/2 j 0 a j x; 0 ids is j 1 n/2 exp im 2 s 2 1 4 n/2 j 0 a j x; m 2 n/2 j j n 2 ,
a j x; a j x, x; .

44

From Eq.( 6.44) follows we shall wish to retain the units of L ;eff x as (length) 4 , even when n 4. It is therefore necessary to introduce an arbitrary mass scale and to rewrite Eq.(6.44) as L ;eff x 2 1 4 n/2 m n 4 j 0 a j x; m 2 4 2j j n 2 .

45

If n 4, the first three terms of Eq.(6.45) diverge because of poles in the -functions:

n 4 4 n n 2 2 4 n O n 4 , 1 n 2 4 2 n 2 4 n O n 4 , 2 n 2 2 4 n
O n 4 .

46

Denoting these first three terms by L ;div x , we have

L ;div x 4 n/2 1 n 4 1 2 ln m 2 2 4m 4 a 0 x; n n 2 2m 2 a 1 x; n 2 a 2 x; . 6. 47
The functions a 0 x; , a 1 x; and a 2 x; are given by taking the coincidence limits of (6.9)-(6.10) and it is clear that if the classical action is invariant under the conformal transformations (6.50), then the classical stress-tensor is traceless.Because conformal transformations are essentially a rescaling of lengths at each spacetime point x, the presence of a mass and hence a fixed length scale in the theory will always break the conformal invariance. Therefore we are led to the massless limit of the regularization and renormalization procedures used in the previous section. Although all the higher order j 2 terms in the DeWitt-Schwinger expansion of the effective Lagrangian (6.45) are infrared divergent at n 4 as m 0, we can still use this expansion to yield the ultraviolet divergent terms arising from j 0, 1, and 2 in the four-dimensional case. We may put m 0 immediately in the j 0 and 1 terms in the expansion, because they are of positive power for n 4. These terms therefore vanish. The only nonvanishing potentially ultraviolet divergent term is therefore j 2 :

a 0 x; 1, a 1 x; 1 6 R , a 2 x; 1 180 R x, R x, 1 180 R x, R x, 1 6 
1 5 R x, 1 2 
2 1 4 n/2 m n 4 a 2 x, 2 n 2 , 6. 53
which must be handled carefully. Substituting for a 2 x with n from (6.48), and rearranging terms, we may write the divergent term in the effective action arising from (6.53) as follows

W ,div 2 1 4 n/2 m n 4 2 n 2 d n x g x, 1 2 a 2 x, 2 1 4 n/2 m n 4 2 n 2 d n x g x, 1 2 x G x O n 4 6. 54 where x R x, R x, 2 R x, R x, 1 3 R 2 x, , G x R x, R x,
6. 55 and 1 120 , 1 360 .

56

Finally we obtain

T x, ren 1/2880 2 x 2 3 R x, G x 1/2880 2 R x, R x, R x, R x, R x, .
6. 57

6.4.Distributional SAdS BH spacetime-induced vacuum dominance

Note that from for the case of the distributional Schwarzchild spesetime given by the distributional metric (3.2) we obtain for r 2m the nonstandard result [START_REF] Schwartz | Sur l'impossibilité de la multiplication des distributions[END_REF]- [START_REF] Gelfand | Generalized functions. Vol. I: Properties and operations[END_REF]:

R R 1 16m 2 r 2m 2 2 . . . , R R 1 16m 2 r 2m 2 2 . . .

58

Therefore for the case of the distributional Schwarzchild spesetime using Eq.(6.58) and Eq.(6.57) for r 2m we obtain T r, ren 2880 2 1 16 1 m 2 r 2m 2 2 1

. . . 2880 16 2 1 m 2 r 2m 2 .

59

Thus QFT in ditributional curved spacetime predict that the infalling observer burns up at the BH horizon. In order avoid singularity at horizon r 2m in Eq.(6.59) one have applaid the Loop Quantum Gravity approach [START_REF] Olmedo | Brief review on black hole loop quantization[END_REF]- [START_REF] Gambini | Quantum black holes in Loop Quantum Gravity[END_REF].The first one concerns the requirement of selfadjointness to the metric components. For instance, the classical quantity

g tx E x K 2 E x 1 K 2 2Gm E x , 6. 60
defined as an evolving constant (i.e. a Dirac observable), must correspond to a selfadjoint operator at the quantum level. Classically, K and E x are pure gauge, and g tx is just a function of the observable m. In the interior of the horizon, if g tx is a selfadjoint operator, a necessary condition will be [START_REF] Gambini | Quantum black holes in Loop Quantum Gravity[END_REF] 1 K 2 2Gm l P k j 0.

61

At the singularity, i.e. j 1, and owing to the bounded nature of K 2 , k 1 2Gm l P 1 K 2 0.

62

Therefore, this argument strongly suggests that the classical singularity will be resolved at the quantum level since k 1 must be a non-vanishing integer. O . . .

64

The t, piece of this metric (3.4.2) is distributional Rindler spacetime Thus from (6.63) using (6.59) we obtain directly for 0 T , ren 4 .

65

Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski's account doesn't violation of the Einstein equivalence principle. [START_REF] Vickers | Nonlinear generalised functions in general relativity[END_REF]. Vacuum fluctuations 2 calculation by using Colombeau distributional modes.

We shall assume now any distributional spacetime which is conformally static in both the asymptotic past and future. We will be considered distributional spacetime which is conformally flat in the asymptotic past,i.e.

ds 2 f ,in 2 dt 2 dx 2 asymp. past ds 2 f ,out 2 
dt 2 h ,ij dx i dx j , asymp. future 7. 1 where 0, 1 f ,J f ,J t, x 0, J in, out , are smooth functions and h ,ij h ,ij x , i, j 1, 2, 3, are the components of an arbitrary distributional spatial metric. Note that we use the same labels t and x x 1 , x 2 , x 3 for coordinates in the asymptotic past and future only for simplicity; they are obviously defined on non-intersecting regions of the spacetime.) In each of these asymptotic regions the distributional field can be written as /f ,J , where satisfies is the Laplace operator associated with the spatial metric h ij , and the effective potential V J is given by

V ,J J f ,J f ,J f ,J 2 m 2 R 1 6 J f ,J f ,J m 2 f ,J 2 K ,J , 7. 3
with K ,in 0, K ,out K ,out x the scalar curvature associated with the spatial distributional metric h ,ij ,

We assume now this condition: (i) the massless (m 0) field with arbitrary coupling in spacetimes which are asymptotically flat in the past and asymptotically static in the future,i.e. f in 1 and f ,out f ,out x , as those describing the formation of a static BH from matter initially scattered throughout space, and (ii) the massless, conformally coupled field (m 0 and 1/6 where F x is the eigenfunction of Eq. (7.6) associated with the lowest negative eigenvalue allowed, 2 2 , is some positive constant, and is a dimensionless constant (typically of order unity) whose exact value depends globally on the spacetime structure (since it crucially depends on the projection of each u ,k on the mode w , whose 2 2 ; also depends on the initial state, here assumed to be the vacuum |0 in ). As one would expect, these wild quantum fluctuations give an important contribution to the vacuum energy stored in the field. In fact, the expectation value of its distributional energy-momentum tensor, T , x , 0, 1 , in the asymptotic future is found to be dominated by this exponential growth:

T ,00 x future 2 x 1 4 2 2 DF 2 F 2 m 2 f 2 K 1 6 2 D 2 f f Df 2 2f 2 D i f D i F f F O e t ,
7. 10

T ,0i x future 2 x 1 4 D i F F 1 6 D i f f O e t , 7 . 
11

T ,ij x future 2 x 1 2 D i F D j F F 2 2 D i D j F F R ,ij 1 4 h ij 2 2 DF 2 F 2 m 2 f 2 K 1 6 D i f D j f f 2 D i fD j F f F D j f D i F f F h ,ij 2 D 2 f f Df 2 2f 2 D k f D k F f F O e t ,

12

where D i is the derivative operator compatible with the distributional metric h ,ij (so that out D 2 ), R ,ij is the associated distributional Ricci tensor so that K ,out h ij R ,ij , and we have omitted the subscript out in f ,out and K ,out for simplicity. The Eqs. (7.10-7.12), together with Eq.(7.9), imply that on time scales determined by 1 , the vacuum fluctuations of the field should overcome any other classical source of energy, therefore taking control over the evolution of the background geometry through the semiclassical Einstein equations (in which T , is included as a source term for the distributional Einstein tensor). We are then confronted with a startling situation where the quantum fluctuations of a field, whose energy is usually negligible in comparison with classical energy components, are forced by the distributional background spacetime to play a dominant role. We are still left with the task of showing that there exist indeed well-behaved distributional background spacetimes in which the operator ,out V ,out x possesses negative eigenvalues 2 0, condition on which depends Eq(7.9). Experience from quantum mechanics tells us that this typically occurs when V ,out gets sufficiently negative over a sufficiently large region. It is easy to see from Eq. (7.3) that, except for very special geometries (as the flat one), one can generally find appropriate values of R which make V ,out as negative as would be necessary in order to guarantee the existence of negative eigenvalues. For distributional BH spacetime using Eq.(7.9)-Eq.(7.12) one obtains 
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Remark 7.1.Note that in spite of the unbounded growth at r r in Eq.(5.13)-Eq.(5.16), T , is covariantly conserved: T , 0. In the static case f ,out f ,out x , for instance for distributional BH geometry, this implies that the total vacuum energy is kept constant, although it continuously flows from spatial regions where its density is negative to spatial regions where it is positive. Remark 7.2. Note that the singular behavior at r r appearing in Eq.(7.13)-Eq.(7.16) leads only to asymptotic divergences, i.e. all the quantities remain finite everywhere except horizon.

VI.Conclusions and remarks.

We have shown that a succesfull approach for dealing with curvature tensor valued distribution is to first impose admisible the nondegeneracy conditions on the metric tensor, and then take its derivatives in the sense of classical distributions in space S 2m 3 , k , k 2. The distributional meaning is then equivalent to the junction condition formalism. Afterwards, through appropiate limiting procedures, it is then possible to obtain well behaved distributional tensors with support on submanifolds of d 3, as we have shown for the energy-momentum tensors associated with the Schwarzschild spacetimes. The above procedure provides us with what is expected on physical grounds. However, it should be mentioned that the use of new supergeneralized functions (supergeneralized Colombeau algebras G R 3 , ). in order to obtain superdistributional curvatures, may renders a more rigorous setting for discussing situations like the ones considered in this paper.

The vacuum energy density of free scalar quantum field with a distributional background spacetime also is considered. It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background distributional spacetime such BHs, to become dominant over any classical energydensity component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on curved spacetimes. In particular we obtain that the vacuum fluctuations2 has a singular behavior on BHs horizon r :

2 r ~|r r | 2 . We argue that this vacuum dominance may bear importent astrophysical implications.The vacuum energy density of free scalar quantum field Φ in a Rindler distributional spacetime with distributional Levi-Cività connection also is considered.It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background spacetime with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional spacetime such a Rindler distributional background spacetime, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional spacetimes with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations 2 has a singular behavior on a Rindler horizon 0 :
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 1 Infinitesimal closed contour and corresponding singular surfacex 0

and therefore again we obtain G b a 0 0 a b 0 .

 0 Thus canonical definition of the Einstein tensor is breakdown in rigorous mathematical sense for the Schwarzschild solution at origin r 0.

3 .

 3 let x be the function x S 2m 3 , k , where by S 2m 3 , k we denote the class of all functions x such that (i) r ~ r 2m k , r~2m, k 2 and (ii) x C Then for any function x S 2m 3 , 2 with compact support we get:

  l /d l . Equations (3. 9)-(3. 10) gives

  x S 2m 3 , k , i.e. r ~ r 2m k , k 2 and x is a function with compact support K of the class C 3 , such that
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 323 By replacement r 2m u, from Eq.(3.23) we obtain K

r 0 d 3 r d 3 , 4 . 20 where d d 2 2

 334202 is the metric of the (d 2)-sphere, and the AdS curvature radius squared L 2 is related to the cosmological constant by L 2 d 2 d 1 /2Λ. The parameter r 0 is proportional to the mass M of the spacetime: M d 2 A d 2 r 0 d 3 /16π, where A d 2 2π d 1 /2 /Γ d 1 /2 . The distributional Schwarzschild geometry corresponds to L . The corresponding equation of motion (4.2) for massless case are
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For most spacetimes of interest the potential V r r 0 as r r , i.e. |r r | , and in this limit solutions to the wave equation (4.26) behave as

  6.5.Disributional Rindler spacetime with disributional Levi-Cività connection induced vacuum dominance.
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~[START_REF] Landau | The Classical Theory of Fields[END_REF] , c 2 /a, a . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski's account doesn't violation of the Einstein equivalence principle.

Appendix A.

Let us introduce now Colombeau generalized metric which has the form ds 2 A r dx 0 

The distributional Mo ller's metric is

In spherical coordinates we get

A r a gr 2 2 , 0, 1 ,

A r 2g a gr , A r 2g 2 .

A. 4

We choose now B r C r 1, B r 2, C r 1, and rewrite Eq.(A.3) in the following equivalent form

.

A. 5

Note that A B C A .

A. 6

From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get

4g a gr r a gr 

A. 9