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INFINITESIMAL BEHAVIOUR OF GROUPS AND BEYOND

MARION JEANNIN

Abstract. Linearisation often allows one to get a satisfactory local approximation of a complicated
equation of motion. In the same spirit, algebraic tools have been developed to locally approximate
affine group schemes: their Lie algebras. In this document, we will introduce these algebraic objects
and describe how good the local approximation they provide can be.

1. Motivation from physics

1.1. A mechanical starting point: linearise the pendulum oscillations : a mechanical start-

ing point: linearise the pendulum oscillations. Before going any further, let us motivate the
formalism that is to come with a simple situation: the simple gravity pendulum1. A small bob viewed
as a point mass is located at the end of a massless inextensible thread of length L. The latter is itself
attached to a pivot. Here frictions are neglected. The bob is pushed out of its equilibrium position so
that it oscillates back and forth.

Let θ be the angle between the (imaginary) vertical line and the thread. As θ varies through time
it is a function of t. The motion of the bob is described by the variations of θ (where g is the local
acceleration of gravity 2):

d2θ

dt2
+

g

L
sin(θ) = 0. (1)
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Figure 1. Simple grav-
ity pendulum model
with the corresponding
variables.

The main obstacle to solve this differential equation is posed
by the sine term. One way to tackle this issue is to linearise
the sine function. This follows from the observation that
near 0 (when θ is small) the value of sin(θ) is almost that of
θ itself. Equation 1 is then approximated by that of simple
harmonic motion:

d2θ

dt2
+

g

L
θ = 0. (2)

What precedes is based on the fact that any “reasonably
painful” function f3 can be approximated near a point by
a polynomial function whose coefficients are determined by
the successive derivatives of f4.

1.2. Symmetries as motions to study. A physical sys-
tem is the data of an object together with its environment.
To better understand some of its properties, one might want
to have a look at its invariance under some transformations.
Those that leave the system invariant are called symmetries. Their study deeply simplifies one’s task:
according to P. Curie’s principle, if a system is invariant under some symmetries so are its properties.
Consider for instance a charged particle assimilated to a single point charge located at a point O in
the 3-dimensional space. The frame of reference is located at O. In order to determine the induced
electric field, first remark that the whole system is invariant under any rotation around O. By Curie’s

1This mathematical model provides a simplified version of the real pendulum.
2A constant that encodes the earth gravity g ∼ 9.80665m.s−2.
3Namely those that can be differentiated several times.
4This is known as Taylor’s theorem.
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2 MARION JEANNIN

principle the electric field only depends on the distance to the particle, and is directed along the radial
component in a spherical expression of the coordinates.

Symmetries of a physical system form a set S. They can be seen as functions whose variables
parametrise the system and satisfy some very specific properties:

(1) the composition of two symmetries, denoted ◦, is a symmetry (S is stable under composition);
(2) let σ1, σ2 and σ3 belong to S, then (σ1◦σ2)◦σ3 = σ1◦(σ2◦σ3) (the composition is associative);
(3) the identity Id, that is the transformation that fixes each parameter of the system, is a (trivial)

symmetry ((S, ◦) has a neutral element);
(4) for any σ ∈ S, the inverse function σ−1 ∈ S. Note that σ−1 is the symmetry such that

σ ◦ σ−1 = σ−1 ◦ σ = Id5 (any σ ∈ S has an inverse in S for ◦).

This makes the set of symmetries into a group. A group is the data of a pair (G, ∗) where G is a set
stable under a group law ∗ that satisfies the properties in parentheses in the above list (replace S by
G and ◦ by ∗). In general ∗ need not be commutative: given g1, g2 ∈ G the expressions g1 ∗ g2 and
g2 ∗ g1 might differ. If they are equal for any g1, g2 ∈ G, the group is abelian.
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Figure 2. An example
of a non smooth curve.

The most natural example of group is (Z,+); here the
neutral element is 0, and it is an abelian group. On the
other hand (Z, ·), where · denotes the usual multiplication,
is not a group: in this case 1 is the neutral element and
the issue is that for any n ∈ Z \ {±1} there is no m ∈ Z

such that nm = 1. The real numbers R endowed with
the multiplication are not a group either, as 0 ∈ R has no
inverse; although the set R∗ of non-zero real numbers is a
group for the multiplication.

When symmetries of the physical system are defined
by parameters that are continuous transformations6, one
speaks about continuous symmetries. Rotations for in-
stance are continuous functions of their defining angles.
This enriches the group of continuous symmetries with an
additional structure: that of a Lie group. These are groups
G that locally look like (Rn,+) as a group for a given n ∈ N∗

and where both the group law and the inverse map are continuous and smooth7. Intuitively, continuous
symmetries can themselves be seen as motions. In the next section we will introduce algebraic tools
that mimic the techniques used to study mechanical problems.

Another example of a Lie group is given by the set of square matrices of size n with real or complex
entries and with non-zero determinant8, denoted GLn.

1.3. Lie algebras. A field K is a set endowed with an addition + and a multiplication ·, that admit
respectively 0 and 1 as neutral elements; such that both (K,+) and (K \ {0}, ·) are abelian groups.
Moreover, the multiplication distributes over the addition: namely, for any a, b, c ∈ K one has
a · (b + c) = a · b + a · c. Classical examples of fields are the set of rational numbers Q, that of real
numbers R and that of complex numbers C with the usual addition + and multiplication ·. However
(Z,+, ·) is not a field as (Z∗, ·) is not a group. All the fields mentioned so far have infinitely many
elements. Later on we will see examples of finite fields.

A ring R is an algebraic object obtained by relaxing assumptions on fields: non-commutative
multiplication and non-zero elements with no inverse in R are now allowed. Obviously, any field is
a ring but there are rings that are not fields, for instance (Z,+, ·). The set of square matrices with
entries in a ring is another example – indeed it is not commutative for matrix multiplication, and has
non-invertible matrices: for instance those whose determinant is equal to 0.

5If σ1, σ2 are two symmetries it is not always true that σ1 ◦ σ2 = σ2 ◦ σ1.
6Roughly speaking: functions whose values vary continuously (without jumps or breaks) under continuous variation

of their arguments.
7Smooth functions are those who have “enough continuous derivatives” (this makes sense because of the local resem-

blance of G with Rn).
8The determinant of a square matrix M is a polynomial whose variables are the entries of M . Such a matrix is

invertible if and only if its determinant is invertible.
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Lie algebras are abstract mathematical structures that help to study a Lie group near a point. They
are defined with respect to a ring R. A Lie algebra L is a set which is:

L1) an abelian group for an additive law +,
L2) endowed with an external multiplication coming from R, called the scalar multiplication: for

any α, β ∈ R and any x, y ∈ L one has:
(a) αx ∈ L, in particular if α = 1 one has 1x = x,
(b) α(x+ y) = αx+ αy and (α + β)x = αx + βx;

L3) endowed with a so-called Lie bracket [·, ·] : L × L → L (that takes two elements of L to give
back an element of L) and such that for any α ∈ K and any x, y, z ∈ L, the following identities
are satisfied:
(a) [αx+ z, y] = α[x, y] + [z, y] and [x, αy + z] = α[x, y] + [x, z] (bilinearity),
(b) [x, x] = 0,
(c) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (this is the Jacobi identity).

Note that conditions L3)a) and b) imply that [x, y] = −[y, x] for any x, y ∈ L. To check this, start
from [x+ y, x+ y] = 0 and use the bilinearity of the Lie bracket.

If R is a field and L satisfies assumptions L1) and L2), then L is an R-vector space. As for examples,
a field K is itself a Lie algebra over K with the trivial Lie bracket, that is given by [x, y] = 0 for any
x, y ∈ K. Similarly, the trivial Lie bracket endows any vector space with a Lie algebra structure. The
set of square matrices of size n ∈ N∗ with entries in R, denoted by Mn(R), is a Lie algebra over R:
it is an abelian group for the matrix addition, and for all M, N ∈ Mn(R), the Lie bracket [M,N ] is
given by the commutator MN −NM .

1.4. Infinitesimal behaviour: from Lie groups to Lie algebras. For the rest of this section we
set R = R or C. Let G be a Lie group so G locally looks like Rn for some n ∈ N. Intuitively if g ∈ G
is close to h ∈ G (if it belongs to a neighbourhood of h) one can imagine that g is attained by moving
away from h by a small amount in a given direction (this is a small variation around h). The study of
small variations is that of the derivatives. The derivative of a real function f at x ∈ R is nothing but
the slope of the tangent line to the graph of f at x. This gives the intuition behind the definition of
the Lie algebra of G, denoted Lie(G), as the tangent space to G at the neutral element e.

We are interested in studying elements of G located in the neighbourhood of another point of G,
and that, for any point of G. This sounds quite tedious, as G is likely to be infinite. Things actually
nicely arrange thanks to the presence of a group law on the whole G: this allows us to go continuously
from one point to another, and neighbourhoods will be moved according to the same transformation.
In other words, understanding G locally around a given h ∈ G is enough to understand G locally
around any g ∈ G. As we have the choice of the point near which we want to study G, we choose the
only element that can be found, in substance, in any (Lie) group: the neutral element e. The idea
is therefore to look at elements of G that are close to e, its so-called “infinitesimal elements”. These
elements form the Lie algebra of G.

To make things clearer, G can locally be seen as Rn and any g ∈ G that is close to e is obtained by
moving away from e in the direction ug, namely g = e+ ug with ug ∈ Lie(G). Any element of Lie(G)
occurs in this way. As we are interested only in infinitesimal behaviour, only the low order expression
of u is kept (this sounds a bit mysterious now but should be clarified by what follows next). Let us
check that Lie(G) indeed satisfies L1), L2) and L3) and hence is a Lie algebra over R. To keep in mind
the example of GLn that rules a lot of things here, we write Id for e:

L1) Let u, v ∈ Lie(G), so there are g, h ∈ G such that g = Id+u and h = Id+v. As G is a group
gh = (Id+u)(Id+v) = Id+u+v+uv ∈ G. We only keep the terms with the simplest expression
in u and v: the idea is that if u and v are small uv is so small it is negligible. The multiplication
of g by h therefore gives u+ v ∈ Lie(G), whence the additive law. Moreover Id belongs to its
own neighbourhood and Id = Id+0 ∈ G so that 0 ∈ Lie(G) is the point that corresponds to
Id ∈ G. As for the additive inverse of any u ∈ Lie(G) defined by g = Id+u ∈ G, it comes from
g−1 ∈ G. Locally g−1 = Id+v, and gg−1 = Id = Id+0 ∈ G gives u+ v = 0 ∈ Lie(G).

L2) Recall that G locally looks like Rn for a given n ∈ N∗. Moving away from Id in the direction
u or αu, with α ∈ K = R or C, one follows the same line. Therefore Id+αu is an element of
G in the neighbourhood of Id.



4 MARION JEANNIN

L3) The Lie bracket is also induced by the group structure: let g, h ∈ G and consider the com-
mutator ghg−1h−19. Let g and h belong to the neighbourhood of Id so that g = Id+u and
h = Id+v, then

(Id+u)(Id+v)(Id−u)(Id−v) = (Id+u)(Id+v)(Id−v − u+ uv)

= (Id+u)(Id−v − u+ uv + v − v2 − vu+ vuv)

= (Id−u+ uv − vu+ u+ u2 + u2v − uvu)

= (Id+uv − vu).

To understand the successive equalities, remember that only the first-order expression in each
variable are kept, so that v2, vuv, u2, u2v, uvu are neglected. The commutator in G induces
the Lie bracket on Lie(G): namely [u, v] = uv− vu. Let us check that it satisfies L3a), b) and
c): let α ∈ R, and u, v, w ∈ Lie(G), then

[αu+ w, v] = (αu + w)v − v(αu + w) = (αu+ w)v − v(αu + w)

= αuv + wv − αvu + vw = α(uv − vu) + wv − vw

= α[u, v] + [w, v],

hence the left linearity of the bracket. Proceed on the same way to show the linearity from the
right side. Finally one indeed has [u, u] = 0 for any u ∈ Lie(G) and the Jacobi identity holds
true, namely for any u, v, w ∈ Lie(G):

[u, [v, w]]+ [v, [w, u]] + [w, [u, v]] = [u, vw − wv] + [v, wu − uw] + [w, uv − vu]

= [u, vw]− [u,wv] + [v, wu]− [w, uz] + [w, uv]− [w, vu]

= uvw − vwu− (uwv − wvu) + vwu − wuv − (vuw − uwv)

+ wuv − uvw − (wvu − vuw)

= 0.

1.5. Exponential map: from Lie algebras to Lie groups. Lie algebras were introduced to fa-
cilitate the study of Lie groups by providing a good understanding of their local behaviour. Locally
the datum of an element of the Lie algebra of the Lie group G should be “the same” as that of an
element of G. This is formalised thanks to the exponential map. The idea is the following: on the
one hand elements of Lie(G) can be seen as derivatives of elements of G at the identity (locally they
are derivatives at 0 of transformations of Rn). On the other hand elements of G (that locally can be
seen as transformations of Rn) should locally look like those of Lie(G). Therefore, roughly speaking,
elements of G locally appear as fixed points of the operation consisting in taking the derivative. Hence
they might look like the exponential of elements of the Lie algebra: we mimic what happens in Rn.
When n = 1 one has d

dx
(exp(x)) = exp(x), hence the use of the exponential.

When G appears as a matrix group10, for instance when G = GLn(K) with K = R or C, the
exponential of an element of Lie(G) is well defined. Namely, if A ∈ Lie(G) is a square matrix of size
n we have:

exp(A) = 1 +A+
A2

2!
+ · · · =

∞∑

i=0

Ai

i!
.

and then Lie(G) is characterised as {M ∈ Mn(K) | exp(tM) ∈ G for all t ∈ K}. As taking the
derivatives locally makes sense, one can check that the derivative at 0 of the exponential is indeed the
same as the element we started with :

d

dt

∣
∣
∣
t=0

exp(tX) = (X exp(tX))
∣
∣
∣
t=0

= X.

9This expresses the lack of commutativity of the group law: if g and h were to commute this product would be trivial
as then ghg−1h−1 = hgg−1h−1 = h Id h−1 = hh−1 = Id.

10that is when elements of G are in particular invertible matrices.
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2. From differential to algebraic geometry: a field of possibilities

2.1. Algebraic groups. Let us focus on GLn, the group of invertible square matrices of size n (char-
acterised by a condition of invertible determinant). For any ring R, elements of GLn(R) can be thought
of as zeros of polynomials in the matrix entries (those defined by the determinant minus an invertible
element of R). Sets of solutions of polynomial equations define algebro-geometric objects called affine

schemes.

x

y f(x) = x2 + 1

g(x) = 0

Figure 3. A graphic resolution of
x2 + 1 = 0 in R.

That polynomial equations define geometric
objects which are instructive to study the equa-
tion they derive from, is a frequent observation
in mathematics. Consider for instance the affine
scheme X defined by the polynomial equation
x2+1 = 0. Real solutions of this equation can be
found by looking at the intersection of the graphs
of two functions: on the one hand f(x) = x2 + 1
(which defines a parabola), and on the other hand
g(x) = 0. As these graphs don’t intersect in
R2, the set of solutions, denoted by X(R) is the
empty set. Nevertheless, the set of complex solu-
tions of x2 +1 = 0 is given by X(C) = {i, −i}11.

Let R be a ring and X be an affine scheme defined by polynomials with coefficients in R. Let A be
a ring such that there exists a ring homomorphism R → A (that is a map from R to A that respects
the ring structures). Henceforth such rings A are denoted R → A. Polynomials that define X are sent
to another set of polynomials, this time with coefficients in A, via the map R → A. We denote by
X(A) the zeros of this new set of polynomials. If for any R → A these sets X(A) can be endowed
with a group structure, the affine scheme is a group scheme. For instance GLn, is an affine scheme,
defined by the polynomial equations given by the non-vanishing condition of the determinant. As for
any ring A the set GLn(A) of square matrices of size n with entries and R with invertible determinant
is a group, GLn is a group scheme.

When K = R or C we have seen that GLn is a Lie group. Because of their local resemblance with
Rm, for a given m ∈ N∗, Lie groups are of more analytic nature. On the other hand GLn seen as
an affine group scheme is of a more algebraic nature. Note that the affine group scheme structure of
GLn makes sense even if one looks at solutions in other rings than R or C. One can then wonder
whether the analytic description can “extend” to other rings. The following paragraphs introduce the
Lie algebra of an affine group scheme but also detail why the resulting approximation is no longer that
precise in general.

2.2. The Lie algebra associated to an algebraic group. For the rest of this section G is an affine
group scheme defined by a set of polynomial equations with coefficients in a ring R. Let A be a ring
such that there is a ring homomorphism R → A. We denote by A[ǫ] the ring of all polynomial with ǫ as
a variable such that ǫ2 = 0 (the reader can check this is indeed a ring). For instance 1+ǫ = 1+ǫ+15ǫ2

in A[ǫ].
We proceed in the same way as before: for any R → A we are looking at first order variations around

an element of G(A) (as any greater power of ǫ equals zero). Thanks to the group structure the neutral
element IdA is again the canonical choice for the element near which one considers the variations.
Elements of Lie(G)(A) are those that can be written as IdA+ǫx in G(A[ǫ]). Note that ǫ precisely
encodes this idea of first order approximation. The Lie algebra structure is defined in the same way as
before: the addition in Lie(G)(A) is induced by the (multiplicative) group law on G(A[ǫ]) and the Lie
bracket is obtained by writing the commutator in G(A[ǫ]) of two elements of the Lie algebra Lie(G)(A)
(with Id+ǫg in G(A[ǫ]) for some g ∈ G(A)). This defines a Lie algebra scheme Lie(G): namely an
affine scheme for which Lie(G)(A) is a Lie algebra for any R → A. If G is defined by some polynomial
equations with coefficients in R, the Lie algebra of G is given by Lie(G)(R).

As the formalism is quite heavy, let’s illustrate what precedes with an example. As we want to
get rid of any technical considerations, let’s consider the special linear group SLn whose elements are

11Remember that i ∈ C is such that i2 = −1.
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matrices with determinant equal to 1. It is an affine subgroup scheme of GLn (for any R → A, the
subset SLn(A) ⊂ GLn(A) inherits of the group law of GLn(A) by restriction). It is defined by the
polynomial equation det(xi,j) − 1 = 0, where the xi,j ’s enumerate the matrix’ entries. This equation
has coefficients in Z. Solutions in R are given by the set of n × n matrices with entries in R and
determinant 1, whereas those in C are square n matrices with determinant 1 and entries in C. The
affine group scheme SLn defined by det(xi,j)− 1 = 0 is actually completely determined by the data of
SLn(A) for any ring Z → A. As any ring A actually comes with a ring homomorphism Z → A, the
condition “Z → A” in the preceding sentence can be replaced by “for any ring A”. Let us determine
the associated Lie algebras Lie(SLn)(A). Their elements are n× n matrices M with entries in A such
that IdA +ǫM ∈ SLn(A[ǫ]), namely, matrices M such that IdA +ǫM is a square matrix with entries in
A[ǫ] and determinant 1. This is equivalent to M having trace zero12 (so this scheme is defined by the
equation

∑
xi,i = 0 where the xi,i’s are the diagonal entries of a square matrix of size n).

2.3. The limits of the exponential. So far we have introduced a bunch of notions, the newest
adapting the previously introduced ones to a slightly different context. Nevertheless this doesn’t
go without difficulties. This is particularly well illustrated by the question of the existence of the
exponential map. Remember that this map is the tool that allows us to compare locally the Lie
algebra of a matrix group with the matrix group itself. It is defined by the power series:

exp(x) =

∞∑

i=0

xi

i!

where x is an indeterminate, and is evaluated at elements of the given Lie algebra to provide an element
of the corresponding Lie group. As Lie algebras of affine group schemes are well defined objects, one
can wonder whether the exponential can be used to better understand the local structure of affine
group schemes. Note that the above power series has coefficients in Q and thus can also be considered
as a power series with coefficients in R or C. But there are fields for which the situation gets more
complicated.

Let G be a group scheme defined by polynomial equations with coefficients in a ring R. Remember
that there is always a morphism of rings Z → R. If one seeks a generalisation of the exponential, the
image of any integer in R should at least be invertible (otherwise the denominators in the power series
won’t be well defined). This is ensured for instance when R is a field and no non zero integer is sent
to 0 (as any non-zero element of a field is invertible).

The characteristic of a ring R is the smallest positive integer m such that for any a ∈ R one has
ma = a+ . . .+ a

︸ ︷︷ ︸

m times

= 0; if no such m exists, it is 0. For instance Z, or R or C are of characteristic

0 as m · 1 6= 0 if m 6= 0. Let m ∈ N∗, the set of integers modulo m, denoted Z/mZ is a ring of
positive characteristic. Two integers are congruent modulo m if they have the same remainder in their
euclidean division by m. To build Z/mZ, start with Z and cut it into several parts, the classes, each
of them being filled by all integers that are pairwise congruent modulo m. To enumerate these classes
it is enough to enumerate the set of all possible remainders for the euclidean division by m :

Z/mZ = {[0]m, [1]m, . . . , [m− 1]m}

where for any x ∈ Z, we denote by [x]m the class of xmodulom. It can be checked that Z/mZ is a ring13

of characteristic m: for any [x]m ∈ Z/mZ one indeed has m[x]m = [x]m + . . .+ [x]m
︸ ︷︷ ︸

m times

= [mx]m = [0]m

as the remainder of the euclidean division of mx by m is zero.
There exist fields of positive characteristic. For instance, when m = p > 0 is a prime number14,

the ring Z/pZ is a field. Other examples can be built for example by enriching Z/pZ with solutions of
polynomial equations with coefficients in Z/pZ.

Let K be a field of positive characteristic p > 0 and consider an affine group scheme G which is a
matrix group defined by a set of polynomial equations with coefficients in K (for instance G = SLn or

12The trace of a matrix is the sum of its diagonal entries.
13In particular [0]m and [1]m are the neutral elements respectively for addition and multiplication.
14an integer which is strictly greater than 1 and that is only divisible by 1 and itself.
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GLn). Note that any matrix M ∈ Lie(G)(K) such that Mp = 0 has a well defined exponential:

exp(M) =

p−1
∑

i=0

M i

i!
∈ G(K).

Matrices that give the null matrix when being raised at a certain power are nilpotent and this power is
the order of nilpotency. From the previous discussion the reader can expect that, if the characteristic
p > 0 is not too small (if it is greater than the maximal order of nilpotency), the exponential will
integrate nilpotent matrices. Note the presence of M0 = Id in the developed expression exp(M).
As there exists n ∈ N such that Mn = 0 there actually exists an integer u such that the matrix
(exp(M)− Id)u = 0 in G. This means that the matrix exp(M) is unipotent. The exponential, when it
is defined, sends nilpotent elements of the Lie algebra on unipotent elements of the group.

This reasoning applies to other affine group schemes, when there is a well defined “power” map on
the Lie algebra (when raising x ∈ Lie(G)(R) actually means something). For instance, it generalises to
reductive groups G that are “nice enough groups” and can be thought as matrix groups for reasonably
high bounds on the characteristic. In this case, G. McNinch provided an upper bound that depends on
an intrinsic numerical value of G for the order of nilpotency of nilpotent elements of Lie(G) ([McN02]).
This has been refined for some specific subsets of nilpotent elements of the Lie algebra of such groups
by G. Seitz ([Sei00]).

Let us focus on what happens for a reductive group G. To summarise the last paragraph: for some
reasonably high bounds on the characteristic, the exponential is well defined for nilpotent elements of
Lie(G) and builds a dictionary between them and unipotent elements of G. This bound is determined
by conditions of existence of the exponential. One can therefore wonder whether there exist other
maps, that are well defined for smaller characteristics, that share some properties with the exponential
and that integrate nilpotent elements of Lie(G) into unipotent elements of G. The answer is known:
such maps exist for not too small characteristics and are called Springer isomorphisms. They are
named after T. A. Springer who introduced them in [Spr69]. Springer’s results have been widely
studied and refined by many mathematicians, e.g. P. Bardsley and R. W. Richardson ([BR85]); J.-
P. Serre with in particular an enlightening appendix in G. McNinch’s paper [McN05], G. McNinch
for instance in a common paper with D. Testerman ([MT09]); S. Herpel ([Her13]) and P. Sobaje
([Sob15], [Sob18])15. These works have contributed to eventually determining optimal conditions for
the existence of Springer isomorphisms. They also raise many questions, in particular that of the
properties of the set of nilpotent elements of Lie(G).

3. Can we approximate the structures?

Let us conclude with another question which is naturally raised here. So far this article has focused
on analysing whether elements of affine group schemesG can be recovered from the local approximation
that Lie(G) provides. But elements of both Lie(G) and G are not only isolated points: they interact
with one another, respectively by means of the Lie algebra and the group laws. One can therefore ask
whether the integration is compatible with these structures, namely, is the image of a Lie subalgebra16

of Lie(G) via a map that goes from (a Lie subalgebra of) Lie(G)17 to G, a subgroup of G?
In characteristic 0 this is well known for Lie subalgebras of Gmade of nilpotent elements. This comes

from the fact that the exponential map allows to endow these Lie subalgebras with a multiplicative
group law. Unfortunately, the situation is no longer that simple (neither well understood) if for
instance one considers subalgebras made of diagonal matrices (as explained in a very recent preprint
of H. Kraft and M. Zaidenberg [KZ22, §3]). In positive characteristic on the other hand, the situation
gets even trickier and Lie subalgebras made of nilpotent elements don’t always correspond to unipotent
subgroups of G. This was expected for really small characteristics when Springer isomorphisms are
not defined, but even when the situation is more favourable integrating the structure is not always
possible. This in particular comes from the fact that not any Springer isomorphism endows the Lie
subalgebra one wants to integrate with a multiplicative group law. Moreover, characteristic p > 0 also

15The list of contributors and contributions is not exhaustive but this should give the reader a better idea of the
richness of the literature on the subject.

16A subset of Lie(G) that inherits a Lie algebra structure from restricting that of Lie(G)
17It might be defined only for nilpotent elements.
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raises a geometric issue: smoothness questions that have been ignored in this article actually play a
crucial role here. However, when the exponential map is well defined the situation “almost” looks like
characteristic 018, as explained by J.-P. Serre ([Ser96])19. As for the remaining cases, the question has
been studied for some very specific Lie algebras, but a lot is still to be done.
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Géométrie Algébrique, Volume 1, 2017.

[BR85] P. Bardsley and R. W. Richardson. Étale slices for algebraic transformation groups in characteristic p. Proc.
London Math. Soc. (3), 51(2):295–317, 1985.

[Her13] S. Herpel. On the smoothness of centralizers in reductive groups. Trans. Amer. Math. Soc., 365(7):3753–3774,
2013.

[Jea21] M. Jeannin. Integration questions in separably good characteristics, 2021.
[KZ22] H. Kraft and M. Zaidenberg. Algebraically generated groups and their lie algebras, 2022.
[McN02] G. J. McNinch. Abelian unipotent subgroups of reductive groups. J. Pure Appl. Algebra, 167(2-3):269–300,

2002.
[McN05] G. J. McNinch. Optimal SL(2)-homomorphisms. Comment. Math. Helv., 80(2):391–426, 2005.
[MT09] G. J. McNinch and D. M. Testerman. Nilpotent centralizers and Springer isomorphisms. J. Pure Appl. Algebra,

213(7):1346–1363, 2009.
[Sei00] G. M. Seitz. Unipotent elements, tilting modules, and saturation. Inv. Math., 141(3):467–502, Sep 2000.
[Ser96] J.-P. Serre. Exemples de plongements des groupes PSL2(Fp) dans des groupes de Lie simples. Invent. Math.,

124(1-3):525–562, 1996.

[Sob15] P. Sobaje. Springer isomorphisms in characteristic p. Transform. Groups, 20(4):1141–1153, 2015.
[Sob18] P. Sobaje. Unipotent elements and generalized exponential maps. Adv. Math., 333:463–496, 2018.
[Spr69] T. A. Springer. The unipotent variety of a semi-simple group. In Algebraic Geometry (Internat. Colloq., Tata

Inst. Fund. Res., Bombay, 1968), pages 373–391. Oxford Univ. Press, London, 1969.

18In characteristic p > 0 only some subgroups made of unipotent elements can be obtained by integration of the Lie
algebras consisting of nilpotent elements ([Jea21, Remarks 3.8]).

19One should also quote G. Seitz’s work [Sei00] as well as V. Balaji, P. Deligne and A. J. Parameswaran’s paper
[BDP17].


	1. Motivation from physics
	1.1. A mechanical starting point: linearise the pendulum oscillations : a mechanical starting point: linearise the pendulum oscillations
	1.2. Symmetries as motions to study
	1.3. Lie algebras
	1.4. Infinitesimal behaviour: from Lie groups to Lie algebras
	1.5. Exponential map: from Lie algebras to Lie groups

	2. From differential to algebraic geometry: a field of possibilities
	2.1. Algebraic groups
	2.2. The Lie algebra associated to an algebraic group
	2.3. The limits of the exponential

	3. Can we approximate the structures?
	References

