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Motivation - A mathematical formalism in upphases
analyses.

A theory for understanding the system behavior and for leading
numerical applications.

We use Einstein and tensor algebra notations

aq =
∑

n
hqnjn = hqnjn [Tab]−1 = Lba

We observe systems at given scales. Two scales are defined: one by
the observation fractal dimension d and one di by the wavelength:

d = log (system characteristic length)
log (associate 1− polyhedra element) , di = 2 c

ω0
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Our Space - Configuration space.

We live in a space with five dimensions: the classical space-time
and the Laplace’s one. Laplace’s transform is exponential order
function.
5-space (

s, uk
)
← u0 ↔ t, un s = j 2πc

λ
+ cα
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Our Space - Topological Space

What means a Topological Space? It’s a space where we can
measure distances.

d =
´

t dt
√
gabvavb d =

√
1
2
∑ωm

0 ζabkae∗b
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Our Space - Distance and Metric

Proposals of metrics for fluids and electronics: the metric is
arbitrary: the system properties are intrinsic.

gαβ ← ρ
x
As, k ′

A2 ,
1

sχV , . . . ζαβ ← sL, R, 1
sC , . . .

Power flux density is the invariant which serves us as a repere,
whatever the metric chosen.

fluids → f
A · v = p · v⇔ e kA = eJ ← electromagnetism
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Our Space - Dual space, vector and covector

Invariant: ∝ V aCa
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Our Space - Tensor algebra

Golden rule
Index up Ak ⇒natural space & vectors ⇔ currents,

index down Un ⇒ dual space & scalar ⇔ emf and potential
differences.

index up and down: change of referential matrix Λa
b

Golden law
The metric is the bridge between both natural and dual space.

Uα = ζασAσ, Aσ = yσαUα
Currents and emf are equivalents, simply seen in two different
spaces. Impedance tensor is the metric for electronics.
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Lagrange’s fundamentals - Lagrange’s mesh

W=T+U+R

Fundamentaly, all comes from
energies in a closed cycle:

force - how energy is transmitted;
Inertia - a fundamental behavior of Nature;
stiffness - how energy is stored;
dissipation - the intrinsic entropic property of Nature.
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Lagrange’s fundamentals - Lagrange’s equations

J being a generalized matter movement. The mesh space is the
fundamental space in cellular topology.

W: external source, T: inertia, U: storage, R: dissipation

s ∂T
∂Jk + ∂U

∂xk + s ∂R
∂Jk = ∂W

∂xk

⇔

sLαβJβ + 1
sCβα J

β + RαβJβ = eα
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Lagrange’s fundamentals - Lagrange’s equations for non
linear cases

The behavior in impedance is leaded by shared factors. Let’s
consider a simple electrical resistor.

The resistor value depends on temperature θ

ζ (R [θ, J ]) =
θ
Di0R +

θ
Di1R (1 + αθ) + . . .+

θ
Diq [sC ]−1

i0, i1, . . . → in = [θn, . . . , θm]

θ
Din ≡ [1 + exp (−α(θ − θn)]−1

{
1− [1 + exp (−α(θ − θm)]−1

}

multifactorial behavior :
θ
Din →

θ
Din

p2
Djn
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Lagrange’s fundamentals - Changing metrics in space-time

dZ
dt = dt−1

[ p
Di2(t2)Z2 −

p
Di1(t1)Z1

]
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Lagrange’s fundamentals - Changing metrics in
space-time: generalization

dZ
dt ⊃

dLµν
dt = ∂Lµν

∂Jk
dJk

dt = Γµν, k
dJk

dt
Christoffel’s symbols of first kind.
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Lagrange’s fundamentals - Changing of space-time

ζµν = d
dt ΛσµzσαΛαν ⊃

d
dt Λσµ = d

duk ΛσµΩk = ΓσkµΩk

Christoffel’s symbols of second kind.
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Lagrange’s fundamentals - Curvature

xα = gαβuβ ↔ eα = ζαβkβ

eµ = sLµνkν → s (Lµν + Γµν,σkσ) kν ← Γ works like losses.
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Lagrange’s fundamentals - All is polyhedral

All system and geometry can be represented by a graph which is a
polyhedra. It’s a cellular topology made of nodes, edges, meshes,

faces and volumes.
The polyhedral representation gives all the material for defining the

scales, the metrics, etc.
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Lagrange’s fundamentals - Various spaces and
transformation matrices

Transformation matrices can express quantities coming from one
space in a linear combination of quantities belonging to another

space.

Major cellular topology spaces:
node space N and nodes pair space P;
edge space B;
mesh space M;
network space R.

Euler - Poincaré’s relation: M = B− N + R
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Lagrange’s fundamentals - From Kirchhoff to Kron

Λ : Jα ∈ B→ kσ ∈M / Jα = Λασkσ

Ea = zabJb + ψa
Ea = zabΛb

σkσ + ψa

Λa
µEa =

(
Λa
µzabΛb

σ

)
kσ + Λa

µψa

eµ = ζµσkσ + 0

Λa
µψa = 0: mesh law

eµ = ζµσkσ:
emf, metric and current in the mesh space
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Manifolds - What’s a manifold?

We define a manifold as a graph G associated with a set of
equations eµ = ζµνkν in a given configuration space CS. The
fundamental tensor ζ is sufficient for defining the set of equations.
So, the manifoldM can be written:

M (G , ζ)CS

Note that the configuration space is often implicit (which is often
source of errors!).
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Manifolds - Homotopy, homology

Homotopy group Homology group
M (G , ζ) ∈ {Mi (Gi , ζi )}

if Gi ≡ G

M (G , ζ) ∈ {Mi (Gi , ζi )}

if ζi = ζ
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Manifolds - Surgery

{
J1, J2, J3} , Λ1 =

[
1
1

]
Λ2 =

[
1
1

]
, Λ =

[
Λ1 0
0 Λ′2

]
,

Λ′2 =
[
−1
1

]
⇒ ζ =

[
A + B −B
−B B + C

]
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Manifolds - Surgery - II

We start from a collection of basic manifolds (metric diagonal

components): ζ =


z1 0 0

0 z2 0

0 0 z3

;
We make a circuit by sharing (by a way sometimes not

desired) edges: ζ =


z1 −a −β

−a z2 0

−β 0 z3

.
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Manifolds - Strings

Each time a force fb is induced in a mesh b by a current of a mesh
a, the coupling impedance

ζba = fb
ka

is symbolized by a string linking both meshes.
The coupling impedance appears as an extra-diagonal component
in the metric ζ.

→ ζ =

 ζa 0

ζba ζb


This can be generalized to a relation defined by:
ϕ : ν2 ∈ M2 (M)← ν1 ∈ M1 (M) , /ν2 = ϕ (ν1).
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Electronics - Basic components in edge space and intrinsic
inertia

B : {R, C , local L, diodes, . . .}

Each time we connect two edges for making a mesh, we create an
inductance that translates the electromagnetic inertia, associated

with the mesh loop.

Inertia

(a, b) ∈ B, z =

 a 0

0 b

 Λ =

 1

1

 /ζ = ΛT zΛ+L = a+b+sL
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Electronics - Example of a circuit with NPN transistor

The metric is set by the DC polarization (s reduced to α). Under a
linear (class A) polarization, the graph becomes:


Vα =

DC
D>0,6 [ζασ] kσ, ∀t ∈ [t1, t2]

Vd = [(RE + RpbL) + sL1] k1

Vp − Vc = [(Rc + RL) + sL2] k2 = hfe [(Rc + RL) + sL2] k1
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Electronics - Example of a binary operator



u(s) =
∑

t
ν(t)

s e−sτt , ν(t) ∈ [−1, 0, 1] , λ > λc , t = nT T : clock

O(s) =
u
D>uh

(
α
s
)

+
u
D<ul (0)⇔ O(s) =

k1

D>kh

(
β
s

)
+

k1

D<kl (0)

k1

D>kh =
[
1 + exp

(
−σ(k1 − kh)

)]−1
, ζ =

 Ri 0

h Rs


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Electronics - Electromagnetism: near fields

We consider for near fields, longitudinal and reactive fields.

Electric near field E : coulombian fields and capacitive
interactions C .
Magnetic near field: magnetic circuits and reluctances R.

−
´

z dzE = q
C I · N =

(
R
‚

S dSz · B
)
, R = 1

µ
z

Sz , Sz ⊥ z
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Electronics - Near fields: equivalent circuits

Electrical coupling: Magnetic coupling:

ζ =

 z1 + z2 0 −z1

0 z3 + z4 −z3

−z1 −z3 z2 + 1
sC + z3

 {
e2 = −sΦ = −s k1

R ⇐ k1 = RΦ

M ≡ (R)−1

Only stored energy: the active power is zero.

1
4

{
1
sC k3k∗3 +

(
−1
sC k∗3

)
k3
}

= 0, 1
4 {RΦ(−jω)Φ∗ +RΦ∗(jω)Φ} = 0
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Electronics - Far field interaction - I

Transverse (Coulomb’s) gauge under the vector potential field. It’s
the field which wears energy (photon).
Emission:

dAα = µασ

[duγ (Jσ + sCσνVν)
4πrγ

]
exp (−sτ) , A = Aαuα⊥

1
2RadJσJ∗σ = 1

2

¨
S
dS
(Aα
η
A∗α

)
Reception:

e = −s
˛

u
duR′ · AR→R′ , de = −sduαΛσαAσ
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Electronics - Far field interaction - II

In EMC we study undesired antennas with small radiation
resistances.

Their efficiency is low because their geometrical dimensions are not
matched with the resonances and their impedances conditions are

rarely very high or very low.

Nevertheless they are the source of uncompliances with the EMC
requirements.
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Electronics - Far field interaction: the loop antenna

Emission of a mesh of diameter Φ, Φ << λ

Aφ = −120π2J0Φsinθ
srλ2 e−s r

c

Rad = 31, 171
( Φ
λ2

)2
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Electronics - Far field interaction: the loop antenna

Emission of a mesh of diameter Φ, Φ ≥ λ and radius a/Cλ = 2πa
λ

Cλ ≤ 1, 5 → R = 197C4
λ , Cλ ≥ 1, 5 → R = 592Cλ
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Electronics - Maxwell’s string

Example with two dipole antennas

ζ21 = − d
dt Φ2Λα1

[√
30G1R1
cr12

e−s r12
c
]
α

ζ =

 R1 + R0 + 1
sC + sL −ζ21

−ζ21 R1 + R0 + 1
sC + sL


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Electronics - Guided waves

Guided waves are
near field waves
travelling along a
conductive media.
As their are
perfectly located,
we can define a
wave space and its
connection to the
mesh one.
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Electronics - Mobile wave technique

Γ1 = R0−zc
R0+zc

, Γ2 = RL−zc
RL+zc
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Electronics - The magic propagator

p1 r1 p2 r2
p1 0 Γ1 0 0
r1 0 0 0 exp

(
−s x

c

)
p2 exp

(
−s x

c

)
0 0 0

r2 0 0 Γ2 0

⇒ γ =


0 Γ1 0 0

0 0 0 exp
(
−s x

c

)
exp
(
−s x

c

)
0 0 0

0 0 Γ2 0



wavevector: Oα =

[
ui
0
0
0

]
, γOα =

[
0
0

ui e−sx/c

0

]
, γγOα =

[
0
0
0

Γ2ui e−sx/c

]
, . . .

(1 + γ + γγ + γγγ + . . .) = γ̄, eg = 2Λα1 γ̄Oα, ed = 2Λα2 γ̄Oα

Λ here is the wave to mesh connectivity. eg and ed are the
reported sources in the source covector of the mesh space.
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Electronics - Cavities
A cavity is a closed waveguide where a 2D wave propagates

following a given mode (uη, u⊥)→ Γ1 = Γ2 = −1

ui → ψη⊥ (uη, u⊥) , vη⊥ = c√
1−
(
λη⊥
λc

)2
, zc = α

ψη
J⊥

The modes interact with objects through near fields between the
waveguide and the object.
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Electronics - Crosstalk between lines

(p′1, r ′1, p′2, r ′2) are the ports associated with the victim line, L, C
the victim line inductance and capacitance per meter, M, γ the
differential line mutual inductance and capacitance per meter:



α = γ (C + γ)−1 , K = M (Lα)−1

u(r ′1) = α
(

K+1
2

)
U0(s)

[
1− exp

(
−2s x

c
)]

u(p′2) = −α (K − 1) x
c sU0(s)exp

(
−s x

c
)

The wave vector at start is O =
[
0 u(r ′1) u(p′2) 0

]T
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Example - Let’s detail an illustration
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Example - Example: basic models

Three basic models: the source antenna and the box window.
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Example - Cavity + external line + internal line: wave
space
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Example - A 3 times propagator
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Example - Whole problem construction - I

First we enter basic manifolds ⊕iMi (Gi , ζi ):

ζ =

R0 + Ra 0 0 0 0 0 0 0

0 Rt + sLf + β 0 0 0 0 0 0

0 0 β + zc1 0 0 0 0 0

0 0 0 zc1 + zL 0 0 0 0

0 0 0 0 zL2 + zc2 0 0 0

0 0 0 0 0 zc2 + zL2 0 0

0 0 0 0 0 0 zL3 + zc3 0

0 0 0 0 0 0 0 zc3 + zL3


β = (sCf )−1
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Example - Whole problem construction - II

Then we add the couplings through strings.

Coupling between the antenna and the opening:

E (x , r) =
√

30GP
r(t) Λx

X =
√

30GRa
r(t) J1e−s r(t)

c

e2 =
(
hf − Xf Yf

d
cdt

)
E ⇒ ζ21 = e2

J1 =(
hf + Xf Yf

ct + sXf Yf
vm
c2

) √
30GRa
vmt e−s vmt

c = ζ12

Between the opening and the cavity (for given modes):

e3 = 1
sCf

J2 ⇒ ζ32 = ζ23 = 1
sCf
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Example - Whole problem construction - III

Coupling between the cavity and the shield line:

α = hc
χ

´
x dxe

−s x
c , β = hc

χ

´
x dxe

−s( X−x
c )

Coupling through the cable shield:

σ =
´

x dx
zT
zc2

e−s x
c , η =

´
x dx

zT
zc2

e−s( X−x
c )

45 / 55



Example - Whole problem construction - IV

The strings are added to the metric:

ζ =

R0 + Ra ζ12 0 0 0 0 0 0

ζ21 Rt + sLf + β ζ23 0 0 0 0 0

0 ζ32 β + zc1 0 0 0 0 0

0 0 0 zc1 + zL 0 0 0 0

0 0 0 0 zL2 + zc2 0 0 0

0 0 0 0 0 zc2 + zL2 0 0

0 0 0 0 0 0 zL3 + zc3 0

0 0 0 0 0 0 0 zc3 + zL3


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Example - Whole problem construction - V

The couplings between the waveguides are supported by the source
covector.

We define a wave vector by:

Vσ =
[
zc1J3 0 0 0 0 0 0 0 0 0 0 0

]T
Then:

Tα = 2Λσαγ̄Vσ

In final we solve Tα(t) = ζαβ(t)Jβ(t). The constraint is given by:
Co(t) = zL3J8(t) = zL3y8α(t)Tα(t).
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Example - You speak of margin?
For various conditions, missions, etc., we find three possible
constraints Co(1), Co(2), Co(3): Coi . The target component
present three major thresholds Sj (depending on its source, etc.).

S1 S2 S3
Co1 µ11, P11 µ12, P12 . . .

Co2 µ21, P21 . . .

Co3 . . .

µij = Sj/Coi : disturbance margin.
Pij = P (Coi | mission, . . .)× P (Sj | source, . . .) the combination
probability.

Effective margin:
∑

i ,j µij × Pij .

Basic Risk Law: R = WH
S . Protection approach when playing on

the transfer function H (using filters) or on the component
threshold S. Prevention function when playing on the source W or
on the distance (segregation using shields) through H.
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C & S - Uncertainties management

Having the problem equations, we can make theoretical studies:

d
dtCo(t) = d

dt
(
zL3y8α(t)Tα(t)

)
= zL3

[
dy8α

dt Tα + y8α dTα
dt

]
We can manage uncertainties:

Co = [zL3 ± δzL3]
[
y8α ± δy8α] [Tα ± δTα]

⇒ δCo ≈ ±
(
δzL3y8αTα + zL3δy8αTα + zL3y8αδTα

)
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C & S - Multiphysics



U1 = ρ11

(
x1+δx1

φ1
1

) (
1 + α11δθ

1) J1

δθ1 = R11
(

1
4
[
RJ1J∗1 + RJ∗1J1])

1

f1 = m11
d
dt v

1 + k11
´

t dtv
1, δx1 =

´
t dtv

1

50 / 55



C & S - Multiphysics - II

⇔ Tα = χαβJβ ↔



T =
[

u1 P1 f1
]

χ =


R11

ρ11
φ1

1
R11α11

ρ11
φ1

1
α11 0 0

0 0 0 0 Y11 0

0 0 0 0 0 m11
d
dt + k11

´
t dt


J =
[

J1 δx1J1 δθ1J1 δx1δθ1J1 δθ1 v1
]T
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C & S - Multiphysics - III

Example for scale mechanism:
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C & S - Multiphysics - IV

In all physics, polarization (or static state) is obtained taking the
inertia contribution in the lagragian Lαβ, mαβ equal to zero.

The stiffness behaves as if the energy was already stored
(C = 0, k = 0).

If Θ[0] is the static observable and Θ[s], ω 6= 0 the dynamic one,
at each time step the rms value is defined by:

rms =

√√√√1
2

(
Θ[0]Θ∗[0] +

N∑
1

Θ[s]Θ∗[s]
)
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C & S - Maxwell’s 3D solver

3D solvers are based on weak order models. Once the problem
equations are obtained through the tensorial analysis of network,
we can confirm that our numerical tool can solve the problem with
an adequat accuracy. If 3D tools have a higher geometrical
accuracy, they have poor description of the physical models coming
from their low order schematics. The numerical applications
directly extracted from the system equations can also give
pertinent results. In practice, what leads to robust analyses is:

1 make theoretical analysis using TAN;
2 make numerical application of the system of equations;
3 make 3D tool simulation;
4 if a new physical and unknown component used: make an

experiment;
5 all these exercizes should converge.
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Summary - Summary

The tensor analysis of networks (TAN) give engineers a tool
for writing the equations of any EMC (physical) problem.
The TAN analysis is the first action to do before any 3D
simulation or physical experiment.

Outlook
Thermo-electronic analysis should be more and more usefull for
optimized systems.
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