Motivation -A mathematical formalism in upphases analyses.

A theory for understanding the system behavior and for leading numerical applications.

We use Einstein and tensor algebra notations

a q = n h qn j n = h qn j n [T ab ] -1 = L ba
We observe systems at given scales. Two scales are defined: one by the observation fractal dimension d and one d i by the wavelength: d = log (system characteristic length) log (associate 1 -polyhedra element)

,

d i = 2 c ω 0 3 / 55
Our Space -Configuration space.

We live in a space with five dimensions: the classical space-time and the Laplace's one. Laplace's transform is exponential order function.

5-space

s, u k ← u 0 ↔ t, u n s = j 2πc λ + cα 4 / 55
Our Space -Topological Space

What means a Topological Space? It's a space where we can measure distances.

d = ´t dt g ab v a v b d = 1 2 ωm 0 ζ ab k a e * b 5 / 55
Our Space -Distance and Metric

Proposals of metrics for fluids and electronics: the metric is arbitrary: the system properties are intrinsic.

g αβ ← ρ x A s, k A 2 , 1 sχV , . . . ζ αβ ← sL, R, 1 sC , . . .
Power flux density is the invariant which serves us as a repere, whatever the metric chosen.

fluids → f A • v = p • v ⇔ e k A = eJ ← electromagnetism 6 / 55
Our Space -Tensor algebra 

Golden law

The metric is the bridge between both natural and dual space.

U α = ζ ασ A σ , A σ = y σα U α
Currents and emf are equivalents, simply seen in two different spaces. Impedance tensor is the metric for electronics. Lagrange's fundamentals -Lagrange's equations J being a generalized matter movement. The mesh space is the fundamental space in cellular topology.

W: external source, T: inertia, U: storage, R: dissipation

             s ∂T ∂J k + ∂U ∂x k + s ∂R ∂J k = ∂W ∂x k ⇔ sL αβ J β + 1 sC βα J β + R αβ J β = e α
Lagrange's fundamentals -Changing metrics in space-time

dZ dt = dt -1 p D i2(t2) Z 2 - p D i1(t1) Z 1
Lagrange's fundamentals -Changing metrics in space-time: generalization

dZ dt ⊃ dL µν dt = ∂L µν ∂J k dJ k dt = Γ µν, k dJ k dt
Christoffel's symbols of first kind.

Lagrange's fundamentals -Changing of space-time

ζ µν = d dt Λ σ µ z σα Λ α ν ⊃ d dt Λ σ µ = d du k Λ σ µ Ω k = Γ σ kµ Ω k
Christoffel's symbols of second kind.

x α = g αβ u β ↔ e α = ζ αβ k β e µ = sL µν k ν → s (L µν + Γ µν,σ k σ ) k ν ← Γ works like losses.
Lagrange's fundamentals -Various spaces and transformation matrices

Transformation matrices can express quantities coming from one space in a linear combination of quantities belonging to another space.

Major cellular topology spaces: node space N and nodes pair space P;

edge space B; mesh space M; network space R.

Euler -Poincaré's relation:

M = B -N + R
Lagrange's fundamentals -From Kirchhoff to Kron

Λ : J α ∈ B → k σ ∈ M / J α = Λ α σ k σ E a = z ab J b + ψ a E a = z ab Λ b σ k σ + ψ a Λ a µ E a = Λ a µ z ab Λ b σ k σ + Λ a µ ψ a e µ = ζ µσ k σ + 0 Λ a µ ψ a = 0: mesh law e µ = ζ µσ k σ : emf,

metric and current in the mesh space

Manifolds -What's a manifold?

We define a manifold as a graph G associated with a set of equations e µ = ζ µν k ν in a given configuration space CS. The fundamental tensor ζ is sufficient for defining the set of equations. So, the manifold M can be written:

M (G, ζ) CS
Note that the configuration space is often implicit (which is often source of errors!).

Homotopy group

Homology group

M (G, ζ) ∈ {M i (G i , ζ i )} if G i ≡ G M (G, ζ) ∈ {M i (G i , ζ i )} if ζ i = ζ 20 / 55 Manifolds -Surgery J 1 , J 2 , J 3 , Λ 1 = 1 1 Λ 2 = 1 1 , Λ = Λ 1 0 0 Λ 2 , Λ 2 = -1 1 ⇒ ζ = A + B -B -B B + C
Manifolds -Surgery -II

We start from a collection of basic manifolds (metric diagonal

components): ζ =        z 1 0 0 0 z 2 0 0 0 z 3        ;
We make a circuit by sharing (by a way sometimes not desired) edges:

ζ =        z 1 -a -β -a z 2 0 -β 0 z 3       
.

Manifolds -Strings

Each time a force f b is induced in a mesh b by a current of a mesh a, the coupling impedance

ζ ba = f b k a
is symbolized by a string linking both meshes.

The coupling impedance appears as an extra-diagonal component in the metric ζ.

→ ζ =    ζ a 0 ζ ba ζ b   
This can be generalized to a relation defined by: ϕ :

ν 2 ∈ M 2 (M) ← ν 1 ∈ M 1 (M) , /ν 2 = ϕ (ν 1 ).
Electronics -Basic components in edge space and intrinsic inertia

B : {R, C , local L, diodes, . . .}
Each time we connect two edges for making a mesh, we create an inductance that translates the electromagnetic inertia, associated with the mesh loop.

Inertia (a, b) ∈ B, z =    a 0 0 b    Λ =    1 1    /ζ = Λ T zΛ + L = a + b + sL
Electronics -Example of a binary operator

                           u(s) = t ν(t) s e -sτt , ν(t) ∈ [-1, 0, 1] , λ > λ c , t = nT T : clock O(s) = u D >u h α s + u D <u l (0) ⇔ O(s) = k 1 D >k h β s + k 1 D <k l (0) k 1 D >k h = 1 + exp -σ(k 1 -k h ) -1 , ζ =    R i 0 h R s   
Electronics -Near fields: equivalent circuits Electrical coupling: Magnetic coupling:

ζ =   z 1 + z 2 0 -z 1 0 z 3 + z 4 -z 3 -z 1 -z 3 z 2 + 1 sC + z 3   e 2 = -sΦ = -s k 1 R ⇐ k 1 = RΦ M ≡ (R) -1
Only stored energy: the active power is zero.

1 4

1 sC k 3 k * 3 + -1 sC k * 3 k 3 = 0, 1 4 {RΦ(-jω)Φ * + RΦ * (jω)Φ} = 0
Electronics -Far field interaction -I Transverse (Coulomb's) gauge under the vector potential field. It's the field which wears energy (photon).

Emission:

dA α = µ ασ du γ (J σ + sC σν V ν ) 4πr γ exp (-sτ ) , A = A α u α ⊥ 1 2 R ad J σ J * σ = 1 2 ¨S dS A α η A * α
Reception:

e = -s ˛u du R • A R→R , de = -sdu α Λ σ α A σ
Emission of a mesh of diameter Φ, Φ << λ

A φ = - 120π 2 J 0 Φsinθ sr λ 2 e -s r c R ad = 31, 171 Φ λ 2
Emission of a mesh of diameter Φ, Φ ≥ λ and radius a

/ C λ = 2πa λ C λ ≤ 1, 5 → R = 197C 4 λ , C λ ≥ 1, 5 → R = 592C λ
Electronics -Maxwell's string

Example with two dipole antennas

ζ 21 = -d dt Φ 2 Λ α 1 √ 30G 1 R 1 cr 12 e -s r 12 c α ζ =    R 1 + R 0 + 1 sC + sL -ζ 21 -ζ 21 R 1 + R 0 + 1 sC + sL   
Electronics -Guided waves

Guided waves are near field waves travelling along a conductive media.

As their are perfectly located, we can define a wave space and its connection to the mesh one.

Electronics -The magic propagator

p 1 r 1 p 2 r 2 p 1 0 Γ 1 0 0 r 1 0 0 0 exp -s x c p 2 exp -s x c 0 0 0 r 2 0 0 Γ 2 0 ⇒ γ =      0 Γ 1 0 0 0 0 0 exp -s x c exp -s x c 0 0 0 0 0 Γ 2 0      wavevector: Oα = u i 0 0 0 , γOα = 0 0 u i e -sx /c 0 , γγOα = 0 0 0 Γ 2 u i e -sx /c
, . . .

(1 + γ + γγ + γγγ + . . .) = γ, e g = 2Λ α 1 γO α , e d = 2Λ α 2 γO α
Λ here is the wave to mesh connectivity. e g and e d are the reported sources in the source covector of the mesh space.

Electronics -Crosstalk between lines (p 1 , r 1 , p 2 , r 2 ) are the ports associated with the victim line, L, C the victim line inductance and capacitance per meter, M, γ the differential line mutual inductance and capacitance per meter:

               α = γ (C + γ) -1 , K = M (Lα) -1 u(r 1 ) = α K +1 2 U 0 (s) 1 -exp -2s x c u(p 2 ) = -α (K -1) x c sU 0 (s)exp -s x c
The wave vector at start is

O = 0 u(r 1 ) u(p 2 ) 0 T Example -Whole problem construction -I First we enter basic manifolds ⊕ i M i (G i , ζ i ): ζ =              R 0 + Ra 0 0 0 0 0 0 0 0 Rt + sL f + β 0 0 0 0 0 0 0 0 β + zc 1 0 0 0 0 0 0 0 0 zc 1 + z L 0 0 0 0 0 0 0 0 zL 2 + zc 2 0 0 0 0 0 0 0 0 zc 2 + zL 2 0 0 0 0 0 0 0 0 zL 3 + zc 3 0 0 0 0 0 0 0 0 zc 3 + zL 3              β = (sC f ) -1
Example -Whole problem construction -II

Then we add the couplings through strings.

Coupling between the antenna and the opening:

E (x , r ) = √ 30GP r (t) Λ x X = √ 30GRa r (t) J 1 e -s r (t) c e 2 = h f -X f Y f d cdt E ⇒ ζ 21 = e 2 J 1 = h f + X f Y f ct + sX f Y f vm c 2 √ 30GRa vmt e -s vmt c = ζ 12
Between the opening and the cavity (for given modes):

e 3 = 1 sC f J 2 ⇒ ζ 32 = ζ 23 = 1 sC f
Example -Whole problem construction -IV

The strings are added to the metric: 

ζ =              R 0 +

  W=T+U+RFundamentaly, all comes from energies in a closed cycle: force -how energy is transmitted; Inertia -a fundamental behavior of Nature; stiffness -how energy is stored; dissipation -the intrinsic entropic property of Nature.

  

  

Electronics -Example of a circuit with NPN transistor

The metric is set by the DC polarization (s reduced to α). Under a linear (class A) polarization, the graph becomes:

Electronics -Electromagnetism: near fields

We consider for near fields, longitudinal and reactive fields.

Electric near field E : coulombian fields and capacitive interactions C . Magnetic near field: magnetic circuits and reluctances R.

-

Electronics -Far field interaction -II

In EMC we study undesired antennas with small radiation resistances.

Their efficiency is low because their geometrical dimensions are not matched with the resonances and their impedances conditions are rarely very high or very low.

Nevertheless they are the source of uncompliances with the EMC requirements.

Electronics -Mobile wave technique

Electronics -Cavities

A cavity is a closed waveguide where a 2D wave propagates following a given mode (u η , u ⊥ ) → Γ 1 = Γ 2 = -1

The modes interact with objects through near fields between the waveguide and the object.

Example -Let's detail an illustration

Example -Example: basic models Three basic models: the source antenna and the box window.

Example -A 3 times propagator

Example -Whole problem construction -III

Coupling between the cavity and the shield line:

Coupling through the cable shield:

Example -Whole problem construction -V

The couplings between the waveguides are supported by the source covector.

We define a wave vector by:

V σ = zc 1 J 3 0 0 0 0 0 0 0 0 0 0 0 T Then:

The constraint is given by:

Example -You speak of margin? Effective margin: i,j µ ij × P ij .

Basic Risk Law: R = WH S . Protection approach when playing on the transfer function H (using filters) or on the component threshold S. Prevention function when playing on the source W or on the distance (segregation using shields) through H.

C & S -Uncertainties management

Having the problem equations, we can make theoretical studies:

We can manage uncertainties:

In all physics, polarization (or static state) is obtained taking the inertia contribution in the lagragian L αβ , m αβ equal to zero.

The stiffness behaves as if the energy was already stored (C = 0, k = 0).

If Θ[0] is the static observable and Θ[s], ω = 0 the dynamic one, at each time step the rms value is defined by:

C & S -Maxwell's 3D solver 3D solvers are based on weak order models. Once the problem equations are obtained through the tensorial analysis of network, we can confirm that our numerical tool can solve the problem with an adequat accuracy. If 3D tools have a higher geometrical accuracy, they have poor description of the physical models coming from their low order schematics. The numerical applications directly extracted from the system equations can also give pertinent results. In practice, what leads to robust analyses is:

1 make theoretical analysis using TAN;

2 make numerical application of the system of equations;

3 make 3D tool simulation;

4 if a new physical and unknown component used: make an experiment;

5 all these exercizes should converge.

Summary -Summary

The tensor analysis of networks (TAN) give engineers a tool for writing the equations of any EMC (physical) problem.

The TAN analysis is the first action to do before any 3D simulation or physical experiment.

Outlook

Thermo-electronic analysis should be more and more usefull for optimized systems.