Unveiling the role of beta activity in motor motivation: an EEG study of effort using neurofeedback and pupillometry

Emeline Pierrieau,¹ Léa Pillette,² Claire Dussard,³ Nathalie George ³ & Camille Jeunet ²

¹ Département de Physiologie, FMSS, Univ. de Sherbrooke, Canada ² Univ. de Bordeaux, CNRS, INCIA (UMR5287), Bordeaux ³ Institut du cerveau et de la moelle épinière (ICM), CNRS/Inserm, Sorbonne Univ., Paris

Introduction - Understanding the role and origin of motor beta-band activity.

- Movement initiation is associated with a decrease in the amplitude of beta-band oscillations (β; 15-25 Hz) over sensorimotor regions, commonly referred to as β desynchronization (β -desync). [1,2]
- The magnitude of β -desync has been positively correlated with movement speed ^[3,4] and force. ^[5]
- β-desync is attenuated in Parkinson's disease, and this abnormal activity pattern has been associated with dopamine depletion and related motor symptoms such as bradykinesia. [6]

However, the functional role of β -desync and its neurophysiological foundation are still unclear. $^{[7]}$

Research question - Is β -desync a reflect of motor motivation?

Action value shapes dopaminergic activity...

...and potentially with subjective effort perception.

...and its activity can be quantified with **pupil** dilation, which is also correlated with effort.

Methods - Using neurofeedback to modulate pre-movement β -power and assessing the effects on subsequent movements.

A. 3 experimental conditions with 3 types of neurofeedback (NF) C. Session timeline (motor imagery and relaxation blocks will be counterbalanced)

B. Assessment of motor motivation with different variables

D. Trial timeline

1b. Mean exerted force

1c. Peak force

Expected results amplitude

Perspectives

- Clinical applications in motivational disorders (Parkinson's disease, major depression syndrome).
- \square β -desync as a proxy for motor motivation.
- Pharmacological studies (dopamine, noradrenaline).
- Association with inter-individual variability in motor motivation.

En savoir +

Contact: emeline.pierrieau@usherbrooke.ca

References

- 1. Kilavik et al, Exp Neurol. 245:15-26, 2013.
- 2. Barone & Rossiter, Front Sys Neurosci. 15:655886, 2021.
- 3. Little et al, PLoS Biol. 17(10):e3000479, 2019.

4. He et al, J Neurosci. 40(20):4021-32, 2020.

5. Haddix et al, J Neural Eng. 18(5), 2021.

6. Jenkinson & Brown, Trends Neurosci. 34(12):611-8, 2011.

7. Spitzer & Haegens, eNeuro 4(4):ENEURO.0170-17.2017, 2017.

