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Abstract.  

Using supplementary cementitious materials (SCM) can help increase the sul-

fate resistance of cement blends. However, formulating sulfate-resistant materi-

als with increasing amounts of SCM is challenging, and the required standard 

tests last several months. Therefore, creating new tools that can be easily applied 

and understandable could help develop novel materials in the future. Machine 

learning techniques have been widely used recently to predict cementitious ma-

terials' properties such as strength, creep, or shrinkage. However, their usage is 

relatively limited regarding durability properties, maybe because of the large 

number of parameters involved in durability processes, some of them intrinsic to 

the material and others related to the environment. In this study, an extensive 

database has been built using more than 300 cementitious sample characteristics 

from different studies. A large collection of inputs related to cement composition, 

mix composition, sample geometry, and environmental conditions such as sulfate 

concentration has been gathered. Then several machine learning algorithms were 

applied to assess the resistance of blended cements to the external sulfate attack. 

Two groups of algorithms, e.g., classification and Regression algorithms, incor-

porating several models from linear to ensemble models, have then been com-

pared. The results show that most classification models can very quickly assess 

the sulfate resistance of cementitious materials using the extensive database, and 

the best Regression models can efficiently predict the temporal evolution of the 

degradation. The most influential parameters can be identified, and recommen-

dations can be drawn regarding future blended cement compositions. 
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1 Introduction 

Cement is the most widely used materiel in the word. The chemical interactions be-

tween cement’s components and the environment usually lead to degradation of the 

building materials. Among all chemical attacks affecting cementitious materials, sulfate 

attack is the most documented [1-3]. Several factors are influencing the resistance of 

concrete faced with external sulfate attack (ESA) [4-7]. The reactions between sulfate 

ions and concrete lead to the precipitation of expansive agents like gypsum and ettring-

ite, which damages concrete structure [8]. However, the complexity of chemico-physi-

cal aspects behind these reactions requires a good understanding of ESA process [9-

10]. Nevertheless, the development of an observable expansion takes several months, 

and the sensitivity of phenomenon affects the precision of laboratory tests [11].  

Some experiments are made to accelerate the deterioration process. It is hard to val-

idate their compatibility with the real process of ESA, even though they might be ef-

fective [8]. Furthermore, there is ongoing discussion regarding the relative significance 

of the various influential factors of ESA. For instance, the geometrical characteristics 

of the samples and the composition of the mortar and concrete mix significantly impact 

the volumetric expansion that is recorded during laboratory tests, affecting the final 

categorization of cements regarding their sulfate resistance. 

Machine Learning (ML) is a branch of artificial intelligence techniques increasingly 

employed in civil engineering studies, and several recent applications opened new re-

search paths. For example, convolutional neural networks and decision trees ap-

proaches have been successfully employed in the assessment of concrete qualities at 

many scales, from structural integrity to the microscale identification of cracks [12–

14]. Similarly, sophisticated ensemble ML models have recently shown promising re-

sults in interpreting the physical aspects in different cases, such as creep [15], shrinkage 

[16], and compressive strength [17]. 

In this study a new approach based on artificial intelligence is adopted to determine 

concrete durability faced with ESA and determine the most influential factors and their 

contribution to the global behaviour of concrete structure exposed to sulfate solutions. 

2 Database description 

2.1 Data collection 

This study aims to assess the effectiveness of ML models in studying the process of 

ESA. To this end, a detailed database has been constructed from different laboratory 

tests. This database, introduced in another study [18], comprises several experimental 

characteristics, including detailed cement composition, different additions, mix prop-

erties, aggressive solution characteristics, and mold properties. More than 20 parame-

ters and 483 formulations grouping cement paste, mortar, and concrete were used to 

create an extensive and solid database. The choice of the inputs of the ML models had 

gone through several stages, ended up with a group of parameters summarized table 1. 

These parameters are then normalized and standardized to have comparable variances. 
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Table 1. Database description. 

  Mean Std Min Max 

C3S % 56.66 7.95 17.7 74.0 

C2S % 14.57 6.39 2.29 39.0 

C3A % 7.51 2.86 0.0 11.9 

C4AF % 9.01 2.7 0.0 19.7 

Cement (kg/m3) 459.13 251.14 55.0 1238.27 

Gravel (kg/m3) 87.26 282.49 0.0 1258.92 

Sand (kg/m3) 1166.78 518.2 0.0 1665.42 

Fly Ash (kg/m3) 34.03 84.66 0.0 469.79 

Slag (kg/m3) 44.75 106.09 0.0 788.15 

Water (kg/m3) 287.01 125.0 105.0 630.31 

Limestone (kg/m3) 23.91 58.98 0.0 388.0 

Metakaolin (kg/m3) 14.02 36.59 0.0 174.43 

Silica Fume (kg/m3) 3.6 16.19 0.0 132.44 

Water/Binder 0.52 0.16 0.29 1.83 

Aggregates/Cement  3.78 2.72 0.0 17.75 

Concentration % 5.94 5.03 0.3 20.0 

pH 9.05 1.66 3.0 12.3 

Mold properties 0.05 0.21 0.0 1.0 

Surface/perimeter (cm) 0.89 0.58 0.25 2.5 

fc28 (MPa) 49.53 12.97 20.6 100.0 

2.2 Data pre-processing 

The experimental dataset contains some missing inputs as well as categorical parame-

ters that cannot be directly fed into the algorithms. An initial pre-processing has been 

performed to circumvent this problem, starting by inferring missing values. For clinker 

composition, missing values were calculated using Bogue equations based on the oxide 

composition, and missing values of uncontrolled pH were set to 10.  

For categorical parameters, e.g., type of cation, type of cement and mold form, en-

coding has been used. For example, two types of cation were considered in this study: 

sodium (Na) and magnesium (Mg), which were represented by using a simple encoder 

with the value 1, resp. 0. The same operation has been performed concerning the mold 

form. 
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3 Methodology 

3.1 Machine Learning models 

In this work, four ML models were used. These models are some of the best models 

employed to solve and predict civil engineering phenomena. These models were vali-

dated using 5-fold cross-validation. 

Decision Tree (DT) 

Decision Trees are a type of non-parametric model used in Machine Learning. Decision 

trees can be used for both classification and regression, meaning that decision trees are 

flexible models that do not increase their number of parameters if more features are 

added. DT are composed of two types of components: nodes and branches. Each data 

feature is treated at each node to partition the observations during the training phase or 

to make a single data point follow a certain path while producing a prediction. 

Random Forest (RF) 

Breiman [19] was the first to introduce the random forest model. It is a Supervised 

Machine Learning Algorithm that is widely used in classification and regression prob-

lems, combining the concepts of bootstrap aggregation and random subspace. The 

model is made of many independent decision trees and each of the trees is produced 

using a random process. First, bootstrap sampling was used to do many rounds of sam-

pling. A subset of inputs is randomly chosen in each sampling cycle, and several deci-

sion trees may be trained. Finally, the RF model's forecast may be determined by voting 

or averaging the decision tree outcomes as illustrated in Fig.1, where R(x) is the average 

output of a total number of n, ri(x) is the result of ith base learner trained with a subset 

of the dataset and randomly selected features. 
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Fig. 1. Schematic view of Random Forest 

Extreme Gradient Boosting (XGB) 

By sequentially training a series of weak learners, the gradient boosting machine 

XGBoost uses a training approach to produce a strong learner. A gradient descent op-

timization algorithm is used in each step to train a weak learner to minimize the loss 

function. Recognized as a more sophisticated gradient boosting machine implementa-

tion, XGBoost makes use of a more regularized model generation to control over-fitting 

more successfully. XGB is a gradient boosting (GRAB) method that has been im-

proved. The GRAB uses the first-order derivative for optimization, but the XGB ex-

pands the loss function in a second-order Taylor manner and uses both the first-order 

and second-order derivatives. Through the learning model, XGB can handle missing 

data and automatically choose the optimum default splitting direction. 

Light Gradients Boosting Machine (LGBM) 

LGBM is a recent ML technique built on Gradient Boosting Decision Trees. Microsoft 

introduced LGBM approach, which is similar to XGB. However, LGBM does not de-

velop a tree level-wise (row by row/horizontally), unlike most Tree-based ML models. 

Instead, it uses the leaf-wise tree development strategy, which leads to vertical devel-

opment. This indicates that it chooses and develops on the leaf with the greatest poten-

tial for loss reduction. The cost of making a poor prediction had been reduced by this 

construction strategy. By restricting its tree depth, LGBM also avoids overfitting. The 
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large number of hyperparameters covered by LGBM, makes it harder to adjust, which 

is the only main disadvantage. 

3.2 Statistical indicators 

To assess the precision of classification ML models, three metrics Precision, Recall and 

F1-score have been employed. All classification statistical indicators are based on the 

concept of True Positive (TP) when the predicted and measured value are 0, False Pos-

itive (FP) when predict value is class 0 and measured value is class 1, True Negative 

(TN) when predicted and measured values are 1 and False Negative (FN) when meas-

ured value is 0 and predicted value is 1. The metrics are expressed are expressed in Eqs. 

(1), (2) and (3): 

 Precision=
TP

TP+FP
 (1) 

 Recall=
TP

TP+FN
 (2) 

 F1-score=2×
recall×precision

recall+precision
 (3) 

3.3 Classification methodology using regression models 

Before comparing regression and classification models, it is necessary to build a clas-

sification methodology using the regression models. The methodology needs to respect 

the goals of the regression study, which are, in our case, the prediction of temporal 

expansion, and also comply with the classification objective. To this end, if the meas-

ured or predicted expansion exceeds 0.2%, the studied cementitious material is consid-

ered non-sulfate-resistant (NSR). Figure Fig.2 illustrates the methodology adopted to 

classify cements, starting by predicting the evolution of expansion over time before 

applying the classification rule and, finally, classifying cements.  
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Fig. 2.  Methodology flowchart for classification 

4 Results 

4.1 Classification scores 

The results of ML models were described using classification reports containing the 

evaluated aforementioned metrics and adding statistical treatment as micro average and 

accuracy.  
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Macro-average compute an average after calculating the metric regardless of the 

classes. The accuracy of a ML model indicates the proportion of times it will accurately 

predict a result out of all the predictions it has made. In our study, we presented only 

precision, recall and F1-score. These three metrics constitute the references to compare 

the robustness of the models. Table 2 shows the scores of each model. The difference 

between the scores is not very significant, for class 0 (SR) in which RF is the most 

precise model with F1-score equal to 86%, for class 1 which is more important since 

NSR is more problematic than SR. In this case LGBM had good results with F1-score 

around 78%. In both cases, all the models show close results, which confirm the high 

precision of chosen models. The comparability of results helps to determine the origin 

of prediction difficulties. 

Table 2. Classification results 

4.2 Confusion matrix 

The confusion matrix is a technique for evaluating the effectiveness of classification 

models with two or more classes representing the various combinations of actual and 

predicted values in the binary situation (i.e., with two classes, the simplest example). It 

will not only show which forecasts were right and wrong, but more importantly, it will 

show what kinds of mistakes were made. The predicted values of each class are reported 

in columns, and the actual values in rows. 

Fig.3 shows the confusion matrix of four used ML models using the test set predic-

tions. As expected, all used models had good results. The difference between the mod-

els is not significant. The best results were obtained using LGBM and DT, LGBM had 

correctly predicted 31/ 42 NSR cements and 49/55 SR cements. DT model had the same 

results as LGBM. 

Models   Precision Recall F1-score Support 

DT 0 0.81 0.84 0.82 55 

  1 0.78 0.74 0.76 42 

 RF 0 0.80 0.93 0.86 55 

  1 0.88 0.69 0.77 42 

 XGB 0 0.80 0.87 0.83 55 

  1 0.81 0.71 0.76 42 

LGBM  0 0.82 0.89 0.85 55 

  1 0.84 0.74 0.78 42 
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Fig. 3.  Confusion matrix of classification models for test set 

4.3 Comparison between regression and classification models 

As illustrated in Fig. 4, the best regression model found here was DT, with a score of 

88.42%, and the best classification model was LGBM, with a score of 82%. The results 

of both techniques are satisfying. The comparison between these two types of tech-

niques (Fig. 4) shows the effectiveness of regression models to classify cements regard-

ing their resistance to ESA. The results of the regression models are thus more promis-

ing. However, the major drawback of this kind of model is the need for an extensive 

database with a precise description of the temporal evolutions of the expansions.  In 

addition, it is worth noting that the reported performances could be further improved 

with hyperparameter optimization. 
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Fig. 4.   Comparison between classification and regression ML models precision for ESA re-

sistance classification problem. 

4.4 Model interpretability (LIME) 

The interpretability of the ML models did not attract much attention, even if it is the 

origin of model predictions. To fully understand the forecast of concrete resistance, 

Local Interpretable Model-Agnostic Explanations (LIME) has been employed to high-

light the underlying patterns governing predictions. LIME principle is based on ran-

domly producing more features that are close to the pointed value. LIME will then cal-

culate the prediction of these values after weighting each random value proportionally 

to its proximity to the target value. Finally, because LIME works at a microscopic level, 

it will provide a linear model that will help to understand feature impacts. Fig. 5 shows 

an example of Lime table for randomly chosen cements from test data, ‘good’ corre-

spond to SR and ‘bad’ correspond to class NSR. 

 

Fig. 5.   Model interpretability and features impact 

As expected, the quantity of cement had been interpreted as the first indicator for 

ESA resistance. For the selected specimen, the small quantity of cement of 105 kg/m3 
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due to the high slag replacement ratio justifies the resistance of this mortar. The pro-

portion of C3S is the second most important indicator. The percentage of C3S in this 

specimen is relatively high 62.80%, which negatively affects sulfate resistance. On the 

other hand, the large quantity of slag improves the resistance since the durability of 

concrete is increased with large proportions of slag. Last but not least, geometrical 

properties and sulfate solution characteristics have been found to have a relatively im-

portant negative effect on this sample. Overall, LIME is an interesting tool to under-

stand the mechanism of ESA and, more globally, interpret ML models in civil engi-

neering.  

5 Conclusion 

This study compared classification and regression ensemble learning techniques for 

predicting cement sulfate resistance. Four ML algorithms DT, RF, XGB, and LGBM, 

were employed to analyze a database containing 483 specimens gathered from the lit-

erature. Cement composition, mixture proportions, mold properties, and sulfates solu-

tion characteristics were chosen as model inputs. Based on the obtained results, the 

following conclusions can be drawn: 

(1) All ML models show good results, and the prediction of concrete resistance 

has been assessed with high precision. 

(2) Comparable results can be obtained with the tested ML models, which con-

firms the consistency and the accuracy of these techniques. 

(3) LGBM and DT had the best results and predicted 80/97 specimens from the 

test set with high precision. 

(4) The introduced classification criterion helped obtain better results with the re-

gression models than with the classification models. 

(5) LIME technique was employed to analyse feature importance for each predic-

tion, and, according to this analysis, cement proportion, aggregates and SCM 

are the most influential factors. 

Even though concrete durability problems are intrinsically complicated because of 

the variety of phenomena at stake, this study opens up a novel research path for using 

Machine Learning techniques for cementitious materials classification regarding some 

of the most impactful environmental degradations. 
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