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Abstract—This article presents a methodology using machine
learning techniques for defining printed circuit board (PCB)
design rules in order to reduce signal integrity (SI) or electro-
magnetic interference (EMI) issues. The scenario illustrating the
situation for which these rules must be defined is modelled with
a 3D EM solver available on the market and simulations are
run with varying parameters in order to obtain a representative
sample of the design space. This data set is then used to train
a surrogate model (i.e. a metamodel) of the scenario based on
kriging algorithm. Using this surrogate model, more than ten
thousands of simulations are computed in a decent time. The
surrogate model estimations allow to estimate the sensitivity
of the varying parameters with respect to some specifications
(crosstalk level and insertion loss). Finally, an analysis of output
values for which some requirements (crosstalk level, insertion)
loss are not fulfilled provide some insights about possible ad-
justment of guidelines in terms of parameter ranges. Finally, a
practical design example is given to illustrate the methodology.

Index Terms—PCB Design, Design Rules, Machine learning,
Kriging, EMC, Signal Integrity

I. INTRODUCTION

Today’s market for electronic devices is extremely compet-
itive. To keep or earn market shares, electronic companies
have to release new products, in an always shorter time-to-
market, and including either innovations in their products;
new technologies or new services, or with the same functional
perimeter but in a smaller form factor. This trend to offer
always more capabilities in smaller devices lead engineers
to design new products within a SWAP-C (Size, Weight and
Power - Cost) optimized design methodology.

The SWAP-C constraints lead to smaller, denser, and more
complex PCBs. Moreover, it is pushed by the higher integra-
tion of functionalities associated to the development of system
on chip (SoC) or system in package (SiP) components. Power
density inside PCB increases. Rising data rates and working
frequencies lead to an increase of SI, PI and EMI issues. To
cope with these challenges, design rules for board routing must
be strictly respected. These rules are automatically checked
by CAD tools called design rule check (DRC) applications.
However, these rules may be inherited from past experiences,
rule of thumb, or generalized for the whole board when they

can be tuned for different interfaces given, for instance, their
data rates. This stringent design methodology can thus lead
to overdesign. As a result unnecessary vias or decoupling
capacitors are added and routing complexity is increased due
to over-stressing.

In recent literature, the use of machine learning techniques
in engineering has widely emerged, including surrogate model-
ing (SM) [1]. Surrogate models are a set of mathematical tools
which can interpolate the output of the initial (but complex)
model using known experiments in a very quick time. These
models make possible the realization of parametric analyses,
consisting in the evaluation of a large number of configurations
of the design, which is normally very time-consuming in
terms of computation when using classical physical based
simulations. However, a large variety of algorithms exists
when it comes to metamodeling. In EMC/SI/PI domain some
methods have shown great performances like Kriging [2] [3]
[4], support vector machines [5] or polynomial chaos [6] [7] to
name a part of them. For this study, we choose to use Kriging
due to its overall good performance.

This article presents a methodology using surrogate model
to precisely and quickly define routing rules for a given
routing scenario in PCB Design. The methodology used for
defining these rules is presented in the second section of this
article. The third section of this article consists in applying
the methodology to a case study in order to deduce adequate
routing rules according to some specifications. Finally, con-
clusions are presented in the fourth section.

II. DESCRIPTION OF THE METHODOLOGY

This section describes the methodology developed for defin-
ing the routing rules. In PCB design, CAD tools make possible
to check design rules of objects such as pads, pins, via, traces.
These rules deal with sizes of these objects or spacing between
them. In order to define a rule, an electromagnetic simulation
can be run to study the impact of these parameters and define
their appropriate range of values for which a given requirement
is fulfilled, like a maximum coupling level or a maximum
return loss. However, if the number of parameters is high and



over large ranges, running an important number of simulations
becomes time consuming. That is why the use of a surrogate
model is proposed to make it possible.

A. Case study definition

The first step of the methodology is the definition of
a relevant scenario. This is often performed by analyzing
potentially critical situations of PCB design impacting the
functionalities of the system. Then, the parameters of interest
and their acceptable value ranges are defined. The scenario is
modeled using an appropriate software tool (CST microwave
studio for the test case considered in this article) . One or
more outputs of interest are selected such as radiated power,
voltages, currents or S-parameters for example, according to
the considered risk analysis of the design.

B. Simulation and training of the surrogate model

The construction of a metamodel requires obtaining a
dataset first. A design of experiment (DOE) is defined using
the latin hypercube sampling (LHS) method. Each variable
is then sampled following a uniform distribution, thereby
uniformly covering the parameter space. This experimental
design is then computed by physical based simulations, which
require a certain amount of time depending on the complexity
of the simulated design, the available computing resources,
and the size of the DOE. Moreover, the size of the training
sample is an open question in the literature since it is not
known in advance and has a large impact on the accuracy of
the metamodel. It is chosen as a function of the number of
parameters and is generally a compromise between simulation
time and its desired accuracy. Some authors [8] [9] [4] tried to
tackle this problem by proposing an iterative learning of the
metamodel and gradually increasing the sample size.

For this study, the strategy adopted is to choose a training
sample size by rule of thumb and with past experiences.
More realizations can still be added to the initial design of
experiment if the metamodel precision is insufficient.

As explained in the introduction, Kriging method is selected
for the training. The Kriging method consists in approaching
the response of a model with a Gaussian process of random
variables which is determined by optimizing hyperparameters
of a kernel function from a limited set of observations accord-
ing to the DOE. Exponential kernel is selected among other
possibilities in this paper.

The accuracy of the surrogate model needs to be quantified
to estimate the degree of confidence of predictions. The
validation method used is based on the so-called k-fold cross
validation. It consists in splitting the dataset into k groups of
samples of equal size. Training is done using k − 1 folds,
the remaining fold being used for test. The prediction error is
calculated as:

ϵki =
|max(Ŷi, Yi)−min(Ŷi, Yi)|

min(Ŷi, Yi)
(1)

where Yi is the physical model output to be predicted and
Ŷi is the predicted output of the surrogate model. ϵki is a

relative error. The median relative error of ϵki is computed
for all the samples of each fold and for all the folds. For a
reliable metamodel, we consider that a median error less than
20% is sufficient to perform parametric and risk analyses.

C. Parametric analysis and definition of the routing rule

The surrogate model allows to run ten or hundred thousands
of predictions in a very short computing time. Running a
very important number of predictions gives then a statistical
distribution of the outputs of interest allowing to analyse the
sensitivity of geometrical parameters over the observed output.
The contribution of each parameter to the output variance is
calculated thanks to a Sobol sensitivity analysis [10].

To define the routing rules, the following process is used:
A Monte Carlo sample of size 100,000 is built and evaluated
with the two metamodels. Then, a selection is made among
all the configurations of the sample that meet the requirements
defined through appropriate tolerance limits for S21 and S41.
Thus, a smaller sample size is obtained. The probability
densities of each parameter of this restricted sample are then
examined and routing rules are defined given certain criteria
discussed later in the article.

III. CASE STUDY ANALYSIS

A. Description

The studied scenario, illustrated in Fig. 1, is composed of
two microstrip lines parameterized by their length and two
centered openings in the ground plane described by their width
and length.

Fig. 1. Overview of the case study

The dataset consists of an input vector X containing all de-
sign configurations, and two output parameters YS21

and YS41

corresponding to insertion loss and crosstalk, respectively.



In total 7 parameters are studied and their ranges
are given in the following table. I. Therefore X =
(L1, L2, Lf1, Lf2,Wf1,Wf2, d).

TABLE I
PARAMETERS DEFINITION

Parameter Description Range (mm)
L1, L2 Length of traces 20 - 100
Lf1, Lf2 Length of openings 0.1 - 5
Wf1, Wf2 Width of openings 0.1 - 5
d Distance between traces 0.5 - 5

B. Training and validation of the surrogate model

A DOE of 650 realizations is constructed using LHS over
the parametric space. For each of this 650 configurations,
simulation is performed using the time domain solver of CST
microwave studio and two outputs are monitored: S21 which
is the transmission parameter of the first line and S41 which is
the crosstalk (FEXT) factor between line 1 and 2. This study
focuses on a frequency band ranging from 2 GHz to 20 GHz
uniformly sampled with 1000 points. It is therefore necessary
to train a metamodel for each frequency point considered.
Thus, 1000 Kriging surrogate models are trained. In the rest
of the article, we group all these metamodels under the label
SM .

Two surrogate models are trained independently and are
named SMS21 and SMS41. Their prediction errors are com-
puted using k-fold strategy with k = 5. Median relative errors
of the two SM are shown in Fig. 2

Fig. 2. Median relative error over the 5 test folds of SMS21 and SMS41

For SMS21 the error criteria is respected. For SMS41, the
error is more significant, particularly in the 2-5 GHz and 17-20
GHz intervals which can also be observed in Fig. 5. This is
due to weak crosstalk levels, which make the relative error
significant as soon as there is a small difference between
prediction and simulation. The criteria of an error less than
20% is however respected for a frequency bandwidth ranging
from 2.5 to 17 GHz.

Despite the fact that the SMS41 metamodel does not meet
the error criterion across the entire frequency band, it will be

Fig. 3. Examples of predictions for both SMS21 on the left, and SMS41

on the right

retained for the rest of the study. To decrease the error, it is
possible to add realizations to the initial DOE.

An example of a response for a random set of parameters
is provided in Fig. 5.

C. Exploitation of the SM: Sensitivity analysis and routing
rules extraction

Once the two surrogate models were validated, they can be
exploited to extract information like parametric sensitivity or
design rules.

Sobol sensitivity analysis is performed using 7168 evalua-
tions of the surrogate model and the results are given in Fig. 4

Fig. 4. Sobol sensitivity analysis for both SMS21 (left) and SMS41 (right).

The box-plot representation is adopted in order to observe
the dispersion of Sobol indices over frequencies. For S21,
only Wf1, Lf1 and L1 are relevant parameters. For S41, the
distance d between the lines is the most sensitive parameter
influencing the crosstalk. This sensitivity analysis tells us
which parameters of the scenario are important in order to
apply design rules to meet the requirements.

The rest of the article is dedicated to routing rules extraction.
Thus, a large DOE (100,000) is constructed and estimated by
the two metamodels. Two criteria are set on the outputs, based
on the following hypothetical requirements for this case study:

• S21 > −5dB
• S41 < −30dB

The PCB configurations that meet these 2 criteria are
extracted from the 100,000 samples and the distribution of
4 of the parameters identified in the Sobol analysis are plotted
in Fig. 5.

Fig. 5 only represents the distribution of the four most
influential parameters. The blue distribution represents the
distribution of the complete sample which is uniform. The
orange distribution corresponds to the only set of realizations
among the initial sample which satisfies both S41 and S21

criteria.



Fig. 5. Distribution of L1 (top left), Lf1 (top right), Wf1 (bottom left) and
d (bottom right)

Here, the upper bound for L1 corresponds to the intersection
of the orange and blue densities. From these plots, routing
rules can easily be defined and are summed up in the table II.

TABLE II
ROUTING RULES

Parameters Routing rules
L1 <55 mm
Lf1 <1.4 mm
Wf1 <1.9 mm
d >1.8 mm

The distributions of S41 and S21, computed from Monte
Carlo sample are plotted in Fig. 6 in both cases of unrestricted
and constrained parameter space. According to these results,
the rules of the table II are validated.

Fig. 6. Compared distribution when restricting parameters. On the left, S21

distribution, on the right S41 distribution

The results show that for S21, all the configurations for
which routing rules are applied meet the -5 dB threshold. For
S41, more than 95% of the configurations achieve the -30 dB
goal, which is sufficient.

IV. CONCLUSION

Routing rules for PCB design must be followed in order to
avoid SI, PI and EMC issues and meet the requirements of the
system. However, these rules are not always available or can
be too convervative, leading to overdesign in the system or
over constraining the routing and generate additional design
and recurrent costs. Based on a surrogate model, the proposed
method allows to find routing rules with estimated design
margin and with limited computing resources with respect to
parametric physical-based simulations.

As a benefit, this methodology pave the way for building
a library of surrogate models for each critical situation en-
countered recurrently in the design process. Such surrogate
models could be tuned according the specific requirements of
the project.

Finally, this methodology could be easily extended to other
physics like thermal or mechanical problem.
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