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Introduction

A quandle is a set Q with a binary operation : Q × Q -→ Q satisfying the three axioms • (i) for every a ∈ Q, we have a a = a, • (ii) for every pair a, b ∈ Q there is a unique c ∈ Q such that a = c b, and • (iii) for every a, b, c ∈ Q, we have (a b) c = (a c) (b c).

As an example for (G, •) a group and : G ×G -→ G the operation defined by x y = x • y • x -1 , for all x, y ∈ G, then Q is a quandle.

More on quandles can be found in [4,8,12].

A quasi-poset is a pairs (X, ≤), where X is a set and ≤ a quasi-order on X, that is to say a transitive and reflexive relation on X. Recall (see e.g. [START_REF] Fauvet | The Hopf algebra of finite topologies and mould composition[END_REF]11]) that a topology on a finite set X is given by the family T of open subsets of X, subject to the three following axioms:

• ø ∈ T, X ∈ T,

• The union of (a finite number of) open subsets is an open subset,

• The intersection of a finite number of open subsets is an open subset. By Alexandroff's theorem [1,9], for any finite set X, there is a bijection between topologies on X and quasi-orders on X. Any topology T on X defines a quasi-order denoted by ≤ T on X:

x ≤ T y ⇐⇒ any open subset containing x also contains y.

Conversely, any quasi-order ≤ on X defines a topology T ≤ given by its upper ideals, i.e., subsets Y ⊂ X such that (y ∈ Y and y ≤ z) =⇒ z ∈ Y. Both operations are inverse to each other:

≤ T ≤ =≤ and T ≤ T = T.
Hence there is a natural bijection between topologies and quasi-orders on a finite set X. Any quasi-order (hence any topology T ) on X gives rise to an equivalence relation:

(1.1)

x ∼ T y ⇐⇒ (x ≤ T y and y ≤ T x) .

A finite topological space (X, ≤) will be represented by the Hasse diagram of the quotient X/ ∼, where ∼ is the equivalence relation defined above. Each vertex is drawn as a bubble in which all elements of the same equivalence class are represented by points. More on finite topological spaces can be found in [2, 3, 10].

Let (Q, ≤) be a topological space equipped with a continuous map µ :

Q × Q -→ Q , denoted by µ(a, b) = a b, such that for every b ∈ Q the mapping a → a b is a homeomorphism of (Q, ≤). The space Q (together with the map µ ) is called a topological quandle [7] if it satisfies for all a, b, c ∈ Q • (i) (a b) c = (a c) (b c), • (ii) a a = a. Let (Q, ) and (Q ′ , ′ ) be two topological quandles. A continuous map φ : Q -→ Q ′ is called a topological quandle homomorphism if φ(a b) = φ(a) ′ φ(b), for all a, b ∈ Q.
The paper is organized as follows. We recall in Section 2 the method of B. Ho and S. Nelson [4] to describe finite quandles with up to 5 elements, and we also recall in section 3 how S. Nelson and C-Y. Wong in [6] prove that the decomposition of a finite quandle into orbits coincides with our notion of decomposition into Q-complemented subquandles.

In section 4 we prove that, if

Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n is a finite quandle, written in its orbit decomposition, and if T = (Q, ≤) is a topological space such as T |Q i is the coarse topology on Q i for all i ∈ [n], then T is Q-compatible.
Then we apply this result to find the finite topological quandles with up to 4 elements.

The matrix of a finite quandle

Let Q = {x 1 , x 2 , ..., x n } be a finite quandle with n elements. We define the matrix of Q, denoted M Q , to be the matrix whose entry in row i column j is x i x j :

M Q =                         x 1 x 1 x 1 x 2 ... x 1 x n x 2 x 1 x 2 x 2 ... x 2 x n . . ... . . . ... . . . ... . x n x 1 x n x 2 ... x n x n                         Examples 2.1. [4] Let Q = {a,
b, c}, the Quandle matrices for quandles of order 3 are, up to permutations of Q:

         a a a b b b c c c          ,          a c b c b a b a c          ,          a a a c b b b c c          Let Q = {a, b, c
, d}, the Quandle matrices for quandles of order 4 are, up to permutations of Q:

              a a a a b b b b c c c c d d d d               ,               a a a a b b b c c c c b d d d d               ,               a a a b b b b c c c c a d d d d               ,               a a b b b b a a c c c c d d d d               ,               a a a a b b d c c d c b d c b d               ,               a a b b b b a a d d c c c c d d               ,               a d b c c b d a d a c b b c a d               Definition 2.1. Let Q be a quandle. A subquandle X ⊂ Q is a subset of Q which is itself a quandle under . Let Q be a quandle and X ⊂ Q a subquandle. We say that X is complemented in Q or Q-complemented if Q\X is a subquandle of Q.
Theorem 2.1.

[6] Let Q be a finite quandle. Then Q may be written as

Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n ,
where every Q i is Q-complemented and no proper subquandle of any Q i is Q-complemented. This decomposition is well-defined up to isomorphism

; if Q ≈ Q ′ , then in the decompositions Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n , and Q ′ = Q ′ 1 ∐ Q ′ 2 ∐ • • • ∐ Q ′ m , we have n = m and (after reordering if necessary), Q i = Q ′ j .

Reminder on the orbit decomposition

Notation. Let (Q, ) be a finite quandle, for x ′ ∈ Q, we note

R x ′ : Q -→ Q x -→ x x ′ , and L x ′ : Q -→ Q x -→ x ′ x. Remark 3.1. (Q, T) is a finite topological quandle if and only if, (R x ′ is an homeomorphism and L x ′ is a continuous map, for all x ′ ∈ Q) if and only if, for all x, y, x ′ , y ′ ∈ X, if x ≤ x ′ and y ≤ y ′ , we obtain x y ≤ x ′ y ′ . Lemma 3.1. Let (Q, ) be a finite quandle, the intersection of two Q-complemented subquandles is also Q-complemented.
Proof. Let (Q, ) be a finite quandle and let

Q 1 , Q 2 be two Q-complemented sub-quandles. It is clear that the binary operation : (Q 1 ∩ Q 2 ) × (Q 1 ∩ Q 2 ) -→ Q 1 ∩ Q 2 satisfies the two axioms (i) and (iii) of the definition of quandle. For x, y ∈ Q 1 ∩ Q 2 , it exists z ∈ Q such as x = R y (z), where R y : Q -→ Q defined by R y (z) = z y. i.e., z = R -1 y (x). Since x, y ∈ Q 1 ∩ Q 2 and the map R y is a bijection on Q 1 (resp. on Q 2 ), so we get z ∈ Q 1 ∩ Q 2 . Hence : (Q 1 ∩ Q 2 ) × (Q 1 ∩ Q 2 ) -→ Q 1 ∩ Q 2 satisfies the axiom (ii). So Q 1 ∩ Q 2 is a sub-quandle.
On the other hand:

Q = (Q 1 ∩ Q 2 ) ∐ (Q 1 ∩ Q 2 ) ∐ (Q 1 ∩ Q 2 ) ∐ (Q 1 ∩ Q 2 ), where Q 1 = Q\Q 1 and Q 2 = Q\Q 2 . Let a ∈ Q 1 ∩ Q 2 , so we have three possible cases; a ∈ Q 1 ∩ Q 2 or a ∈ Q 1 ∩ Q 2 or a ∈ Q 1 ∩ Q 2 . • If a ∈ Q 1 ∩ Q 2 , we obtain -R a : Q 1 ∩ Q 2 -→ Q 1 ∩ Q 2 is a bijection. -R a : Q 1 -→ Q 1 is a bijection. -R a : Q 2 -→ Q 2 is a bijection. -R a : Q -→ Q is a bijection. Then R a respects all four blocks. • If a ∈ Q 1 ∩ Q 2 or a ∈ Q 1 ∩ Q 2 ; similarly. Hence R a respects Q 1 ∩ Q 2 , so we then deduce that Q 1 ∩ Q 2 is a Q-complemented subquandles. Then the finite intersection of Q-complemented subquandles is also Q-complemented. Notation: Let (Q, ) be a finite quandle. For a ∈ Q, we not Q a = Q ′ is Q-complemented a∈Q ′ Q ′ and Ω a = {b ∈ Q, a ∼ b},
where ∼ is the transitive closure of the relation R defined by:

x Ry ⇐⇒ it exists z ∈ Q such as (x = y z or y = x z). Theorem 3.1.

[6] Let (Q, ) be a finite quandle then Ω a and Q a defined above are equal for any a ∈ Q.

Proof. Let (Q, ) be a finite quandle and a ∈ Q, according to the Lemma 3.1, Q a is a Qcomplemented subquandle.

-It is clear that the binary operation : Ω a × Ω a -→ Ω a satisfies the two axioms (i) and (iii) of the definition of quandle. Let x, y ∈ Ω a , then there exists a unique z ∈ Q such that x = z y, and hence x Rz, hence

z ∈ Ω x = Ω a . Hence, the map R x : Ω a -→ Ω a defined by R x (y) = y x is a bijection. So Ω a is a sub-quandle of Q.
Moreover the binary operation : Q\Ω a × Q\Ω a -→ Q\Ω a satisfies the two axioms (i) and (iii) of the definition of quandle. And for all x, y ∈ Q\Ω a there exists z ∈ Q such that x = z y, hence x Rz, then z ∈ Q\Ω a necessarily, because otherwise then x ∈ Ω a , which is absurd. Hence, the map

R x : Q\Ω a -→ Q\Ω a defined by R x (y) = y x is a bijection. So Q\Ω a is a sub quandle of Q. then Ω a is Q-complemented.
-Since Q a is the smallest complemented sub-quandle containing a, we obtain that

Q a ⊆ Ω a . -It remains to show that Ω a ⊆ Q a , let B be a sub-quandle Q-complemented containing a. For x ∈ B, then R x respects B. Moreover for x ∈ B, R x respects B. So for all x ∈ Q, R x and R -1 x respect B. And since Ω = {P 1 ...P k a, with P j equal to R x j or R -1 x j , x j ∈ Q}, then Ω a ⊂ B. Hence Ω a ⊂ Q a . Consequently Ω a = Q a .

Results

In this section we prove that, if

Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n is a finite quandle and let T = (Q, ≤) is a topological space such as for all i ∈ [n], T |Q i is the coarse topology on Q i , then T is Q-compatible.
From this result I find the topological quandles of 3 and 4 elements. Proof. Let Q = (X, ) be a finite quandle. If T is the discrete topology, then for all x, x ′ , y, y ′ ∈ X, if x ≤ T x ′ and y ≤ T y ′ , then x = x ′ and y = y ′ , so x y

≤ T x ′ y ′ , hence T is Q-compatible.
If T is the coarse topology, then for all x, y ∈ X, x ∼ T y, so for all x, x ′ , y, y ′ ∈ X, x ≤ T x ′ and y ≤ T y ′ and x y ≤ T x ′ y ′ . Hence T is a Q-compatible.

Notation. Let Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n be
a finite quandle written in its orbit decomposition (see Theorem 3.1). We denote by

T Q = T Q 1 • • • T Q n the usual product topology of T Q i , i ∈ [n],
where

T Q i is the coarse topology on Q i . Example 4.1. Let : X × X -→ X the operation of the quandle Q defined by M Q =          a a a c b b b c c          . Its orbit decomposition is Q = Q 1 ∐ Q 2 , where Q 1 = a and Q 2 = b b c c . In this case T Q = b c a Theorem 4.1. Let Q = Q 1 ∐ Q 2 ∐ • • • ∐ Q n be
a finite quandle written in its orbit decomposition, and let T be a topology on Q. If for all i ∈ [n],

T |Q i is the coarse topology on Q i , then T is Q-compatible.
Proof. Let T be a topology on Q, such that

T |Q i is the coarse topology, for all i ∈ [n]. For x ∈ Q i , we note Q x = Q i . Let z, z ′ ∈ Q such that z ≤ z ′ , then for all x ∈ Q, L x (z) = x z ∈ Q x and L x (z ′ ) = x z ′ ∈ Q x . But T Q i is the coarse topology, then for all a, b ∈ Q i , a ∼ b, hence x z ∼ x z ′ . Hence the continuity of L x for all x ∈ Q is proven. Moreover z ≤ z ′ implies that, for all a ∈ Q z , b ∈ Q z ′ , a ≤ b. In particular, R x (z) = z x ∈ Q z and R x (z ′ ) = z ′ x ∈ Q z ′ , hence we get R x (z) ≤ R x (z ′ ). Hence R x is continuous for all x ∈ Q. As T is finite, we therefore conclude that T is Q-compatible.
I use this theorem to find the topological quandles of 3 and 4 elements below. 4.2. List of the topological quandles with three elements. In the three examples above X = {a, b, c}.

-Let : X × X -→ X the operation of the trivial quandle Q defined by

M Q =          a a a b b b c c c          .
All topologies on X are compatible with this quandle structure. Indeed: let T be a topology on X, for all x, y ∈ X, x y = y, then for all x ′ , y ′ ∈ X such that x ≤ x ′ and y ≤ y ′ , we obtain x y ≤ x ′ y ′ .

-Let : X × X -→ X the quandle structure defined by From Proposition 4.1,we conclude in this case that the topologies on X compatible with the structure are: the discrete topology and the coarse topology.

M Q =          a c b c b a b a c          , let T = (X, ≤) be a Q-compatible
-Let : X × X -→ X the quandle structure defined by We conclude that the discrete topology a b c and the above four topologies are the only Q-compatible topologies. 4.3. List of the topological quandles with four elements. In the seven examples below X = {a, b, c, d}.

M Q =          a a a c b b b c c          ,
-Let : X ×X -→ X the quandle structure defined by

M Q =               a d b c c b d a d a c b b c a d              
, the only topologies on X compatible with the quandle structure are the discrete topology and the coarse topology. Indeed: let (Q, T) be a topological quandle different from the discrete topology, then there exists -Let : X × X -→ X the quandle structure defined by The disjoint union of the discrete topology on {a, b} and the coarse topology on {c, d} is Qcompatible and vice versa. Let T = (X, ≤) be a topological space differs from the coarse topology, and suppose there exists x ∈ {a, b} (resp. x ∈ {c, d}) and y ∈ {c, d} (resp. y ∈ {a, b}) such that x ≤ y.

x y ∈ {a, b, c, d}, such that x ≤ y. If a ≤ b, then R a (a) = a ≤ c = R a (b), R b (a) = d ≤ b = R b (b), R c (a) = b ≤ d = R c (b), R d (a) = c ≤ a = R d (b), L a (a) = a ≤ d = L a (b), L b (a) = c ≤ b = L b (b), L c (a) = d ≤ a = L c (b) and L d (a) = b ≤ c = L d (b). Then, a ∼ b ∼ c ∼ d, i.
M Q =               a a b b b b a a d d c c c c d d               , If (Q, T) is a topological quandle,
Then, T is not Q-compatible. Indeed, if T is a Q-compatible wich a ≤ c then L a (a) = a ≤ b = L a (c)
, which is absurd. Conclusion: there are seven topologies Q-compatible (the three topologies above and the 4 below).

abc d , abc d , ab cd , ab cd -Let : X × X -→ X the quandle structure defined by M Q =               a a a a b b d c c d c b d c b d               , then Q = Q 1 ∐ Q 2 ,
where Let (Q, T) be a topological quandle such that, there exists x ∈ {b, c, d} such that a ≤ x or x ≤ a then T is the coarse topology. Indeed:

Q 1 = a and Q 2 =          b d c d c b c b d          If (Q, T) is a topological quandle, then (b ∼ c ∼ d or b, c, d are incomparable). If b ≤ c, then R a (b) = b ≤ c = R a (c), R b (b) = b ≤ d = R b (c), R c (b) = d ≤ c = R c (c), R d (b) = c ≤ b = R d (c), L a (b) = a ≤ a = L a (c), L b (b) = b ≤ d = L b (c), L c (b) = d ≤ c = L c (c) and L d (b) = c ≤ b = L d (c). So b ∼ c
if a ≤ b, then R a (a) = a ≤ a = R a (b), R b (a) = a ≤ b = R b (b), R c (a) = c ≤ d = R c (b), R d (a) = a ≤ c = R d (b), L a (a) = a ≤ a = L a (b), L b (a) = b ≤ b = L b (b), L c (a) = c ≤ d = L c (b) and L d (a) = d ≤ c = L d (b). So a ≤ d ≤ a and c ≤ a ≤ c, then c ∼ d, then a ∼ c and b ∼ c ∼ d, so a ∼ b ∼ c ∼ d.
Conclusion: there are five Q-compatible topologies: the coarse topology, the discrete topology and the three topologies described above.

-Let : X × X -→ X the quandle structure defined by

M Q =               a a b b b b a a c c c c d d d d               , then Q = Q 1 ∐ Q 2 ∐ Q 3 , where Q 1 = a a b b , Q 2 = c and Q 3 = d If (Q, T) is a topological quandle, then (a ∼ b or a, b are incomparable). Indeed, if a ≤ b, then R d (a) = b ≤ a = R d (b), so a ∼ b. Same thing if b ≤ a then a ∼ b.
By Theorem 4.1, any topology that is coarse on the bags {a, b}, {c}, {d} is Q-compatible.

If a, b are incomparable: for all x ∈ {a, b}, -Let : X × X -→ X the quandle structure defined by

• if x ≤ d, then L a (x) = a ≤ b = L a (d), which is absurd, • if d ≤ x, then L a (d) = b ≤ a = L a (x), which is absurd, • if x ≤ c, then L a (x) = a ≤ b = L a (c), which is absurd, • if c ≤ x, then L a (c) = b ≤ a = L a (x
M Q =               a a a b b b b c c c c a d d d d               , then Q = Q 1 ∐ Q 2 ,
where 

Q 1 =          a a a b b b c c c          and Q 2 = d . If (Q, T) is a topological quandle, then (a ∼ b ∼ c or a, b, c are incomparable). Indeed: if a ≤ b, then R d (a) = b ≤ c = R d (b), then R d (b) = c ≤ a = R d (c). So a ≤ b ≤ c ≤ a,
Q =               a a a a b b b c c c c b d d d d               , then Q = Q 1 ∐ Q 2 ∐ Q 3 , where Q 1 = a , Q 2 = b b c c and Q 3 = d . If(Q, T) is a topological quandle, then (b ∼ c or b, c are incomparable). Indeed: if b ≤ c, then R d (b) = c ≤ b = R d (c),
(x ≤ d or d ≤ x) then L b (x) = b ≤ c = L b (d) or L b (d) = c ≤ d = L b (x) , which is absurd. Moreover if (a ≤ b or a ≤ c) then R d (a) = a ≤ c = R d (b) or R d (a) = a ≤ b = R d (c) .
We deduce therefore that: (Q, T) be a topological quandle which b, c are incomparable, implies that

T = a d b c or T = a c b d Conclusion:
The set of Q-compatible topologies are the topologies such that {b} and {c} are equivalent and the first two topologies above, and the discrete topology.

-Let : X × X -→ X the trivial quandle structure defined by

M Q =               a a a a b b b b c c c c d d d d              
, all topologies on X are compatible with this quandle structure.

Remark 4.1. Let Q = Q 1 ∐ Q 2 ∐•••∐ Q n be
a finite quandle which contains at most four elements, where the Q i are the orbits and let T = (Q, ≤) be a topological space. We noticed that, if T is Q-compatible then for all i ∈ [n], T |Q i is coarse or discrete topology. Does this remark remain true for any finite quandles ? This is not the case. Indeed, let : X × X -→ X be the quandle structure defined by 

M Q =                        

  i.e., for all a, b ∈ Q, a ∼ b if and only if, it exists c 1 , ..., c n ∈ Q such as a Rc 1 ... Rc n Rb.

4. 1 .

 1 The topologies of orbits of finite quandle. Proposition 4.1. Let Q be a finite quandle, then the discrete topology and the coarse topology are Q-compatible.

  topology, if there exists x y ∈ {a, b, c} such that x ≤ y, then T is the coarse topology. In fact, suppose a ≤ b we get, R a (a) = a ≤ R a (b) = c and R b (a) = c ≤ R b (b) = b and R c (a) = b ≤ R c (b) = a, we therefore obtain, a ≤ b implies that a ≤ c ≤ b ≤ a, hence T is the coarse topology. Similarly if we change a, b by x, y ∈ {a, b, c}, we find that T is the coarse topology.

  then according to Theorem 4.1, the four topologies below endowed with are compatible with the structure of quandle.Let T = (X, ≤) be a Q-compatible topology, then (b ∼ c or b and c are incomparable). Indeed: if b ≤ c, then R a (b) = c ≤ R a (c) = b, similarly if c ≤ b, then R a (c) = b ≤ R a (b) = c.So the result. Let T = (X, ≤) be a Q-compatible topology such that c and b are incomparable then T is the discrete topology. In fact ; if a ≤ b then L b (a) = c ≤ b = L b (b), which is absurd, moreover, if a ≤ c then L c (a) = b ≤ c = L c (c) which is absurd (same if b ≤ a or c ≤ a). Hence T is the discrete topology.

  e., T is a coarse topology. Same if a ≤ c, or a ≤ d, or b ≤ a, or b ≤ c, or b ≤ d, or c ≤ a, or c ≤ b, or c ≤ d, or d ≤ a, or d ≤ b, or d ≤ c, we prove that T is a coarse topology.

  then (a ∼ b and c ∼ d) or (a ∼ b and c, d are incomparable) or (a, b are incomparable and c ∼ d) or (a, b are incomparable and c, d are incomparable). Indeed, if a ≤ b, then R c (a) = b ≤ a = R c (b). So a ∼ b. Similarly, if b ≤ a, then a ∼ b. If c ≤ d, then c ∼ d. If d ≤ c, then c ∼ d. By Theorem 4.1, the three topologies below are Q-compatible.

  , b ≤ d and d ≤ c, implies that b ∼ c and b ∼ d, then b ∼ c ∼ d. By Theorem 4.1, the three topologies below are Q-compatible.

  ), which is absurd. Therefore, if (Q, T) is a topological quandle with a, b are incomparable, it implies that T = c d ab , or T = d c a b , or T = a b c d , or T = c d ab It is clear that the above topologies are Q-compatible. Conclusion: The Q-compatible topologies are the four topologies above and all topologies on X such that a and b are equivalent.

  then a ∼ b ∼ c. Similarly for x, y ∈ {a, b, c}, if x ≤ y then a ∼ b ∼ c. Then the result.(Q, T) be a topological quandle with a, b, c are incomparable, implies that T is the discrete topology. Indeed, if there exists x ∈ {a, b, c} such that, (x≤ d or d ≤ x), then L a (x) = a ≤ b = L a (d) or L a (d) = b ≤ a = L a (x), which is absurd. Conclusion: The Q-compatible topologies are the four topologies below.

  X -→ X the quandle structure defined by M

-

  In the first step, we prove that Q is well defined. It is clear that the operation satisfies the conditions (i) and (ii) of the definition of a quandle, moreover we haveR c = R d = R e = R f = Id and: R a (c a) = c = d a = R a (c) R a (a) R a (d a) = d = c a = R a (d) R a (a) R a (e a) = e = f a = R a (e) R a (a) R a ( f a) = f = e a = R a ( f ) R a (a) R a (c b) = f = d b = R a (c) R a (b) R a (d b) = e = c b = R a (d) R a (b) R a (e b) = d = f b = R a (e) R a (b) R a ( f b) = c = e b = R a ( f ) R a ( f ) and R b (c a) = f = e a = R b (c) R b (a) R b (d a) = e = f a = R b (d) R b (a) R b (e a) = d = c a = R b (e) R b (a) R b ( f a) = c = d a = R b ( f ) R b (a) R b (c b) = c = e b = R b (c) R b (b) R b (d b) = d = f b = R b (d) R b (b) R b (e b) = e = c b = R b (e) R b (b) R b ( f b) = f = d b = R b ( f ) R b ( f )then satisfies the condition (iii) of the definition of a quandle. So (Q, ) is a quandle.-Secondly, ifT = ab cd e f we prove that T is a Q-compatible. We have R c = R d = R e = R f = Id and L a (x) = a and L b (x) = b for all x ∈ {a, b, c, d, e, f }, then it suffices to show that R a , R b is an isomorphism and L c , L d , L e , L f is a continuous maps.We have c ∼ d and e ∼ f , we obtain:R a (c) = d ∼ c = R a (d), R b (c) = e ∼ d = R b (d), R a (e) = f ∼ e = R a ( f ), R b (e) = c ∼ d = R b ( f ), then R a and R b is an isomorphism. Moreover L c (a) = d, L c (b) = e, L d (a) = c, L d (b) = f, L e (a) = f, L e (b) = c, L e (b) = c, L f (a) = e, L f (b) = d,and L c (x) = c, L d (x) = d, L e (x) = e and L f (x) = f , for all x ∈ {c, d, e, f }. Then L x is a continuous maps for all x ∈ {a, b, c, d, e, f }. So T is Q-compatible.

  then b ∼ c. By Theorem 4.1, the topology of the bags {a} {b, c}, {d} is a Q-compatible.

Let (Q, T) be a topological quandle, then: b, c are incomparable, implies that for all x ∈ {a, b, c}, x and d are incomparable. By absurd: if
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