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In this paper we study the null controllability cost of a transportdiffusion system under Robin boundary conditions with distributed control and in which the transport coefficient is a gradient field. First, we provide some conditions on transport coefficient and boundary potential to show that the control cost decays exponentially when the viscosity vanishes and the control time is sufficiently large. On the other hand, if the range of the control region by the transport flow does not cover that of Ω, we prove that the control cost explodes exponentially for the Neumann boundary conditions case with vanishing viscosity and all control time.

Introduction and main results.

Let Ω be a domain (bounded connected open subset) of R N , N ≥ 1 with Lipschitz boundary Γ (which is required to be C 2 for certain results) and ν the outer unit normal field on Γ and ω ⊂ Ω be a nonempty open subset. We set Ω T = Ω × (0, T ), ω T = ω × (0, T ) and Γ T = Γ × (0, T ), where T > 0 is the control time.

We consider the following controlled linear transport-diffusion system with viscosity ε > 0 and autonomous Robin (or Fourier) boundary conditions:

    
∂ t y -ε∆y + X • ∇y + q y = v(x, t)1 ω in Ω T , ε∂ ν y + β y = 0 on Γ T , y(x, 0) = y 0 (x) in Ω.

(1.1)

In this paper, we will assume that, the potential terms q ∈ L ∞ (Ω) and β ∈ L ∞ (Γ) are bounded. The functions y = y(x, t), 1 ω are the state and the characteristic function of ω and the function v ∈ L 2 (ω T ) acts as a distributed control and it is used to drive the state to 0 at time T from the initial state y 0 ∈ L 2 (Ω). The vector X is a gradient vector field i.e., there is f ∈ W 2,∞ (Ω) a scalar field, such that X := ∇f . The field of gradient vectors is very important in theoretical physics and mathematics, especially in differential topology, and it appears in Witten-Helffer-Sjöstrand theory [START_REF] Helffer | Puits multiples en mecanique semi-classique iv etude du complexe de witten[END_REF][START_REF] Witten | Supersymmetry and morse theory[END_REF]. As an application, the spectral properties of the Witten Laplacian provide a means of deducing the topological properties of the couple (Ω; f ).

By rescaling in time, we get an upper bound of the cost on which the system is null controllable. That means, we show that there exists C = C(Ω, ω, T, ε) > 0, such that for all initial state y 0 ∈ L 2 (Ω), there exists a control v ∈ L 2 (ω T ) such that the solution of (1.1) verifies y(•, T ) = 0 and

∥v∥ L 2 (ω T ) ⩽ C∥y 0 ∥ L 2 (Ω) . (1.2) 
This is proved in Proposition 3.1 in Section 3. The novelty is the cost, as the null controllability is a classical result (see [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Chae | Exact controllability for semilinear parabolic equations with neumann boundary conditions[END_REF]). Note that Proposition 3.1 does not have any hypothesis related with f , so it provides a universal upper bound.

Various researchers have studied null controllability results of the heat equation under different scenarios, including Dirichlet, Neumann, or Robin boundary conditions [START_REF] Fernández-Cara | Global carleman inequalities for parabolic systems and applications to controllability[END_REF][START_REF] Fernández-Cara | Null controllability of the heat equation with boundary fourier conditions: the linear case[END_REF]. For dynamic boundary conditions, [START_REF] Khoutaibi | Null controllability for a heat equation with dynamic boundary conditions and drift terms[END_REF][START_REF] Maniar | Null controllability for parabolic equations with dynamic boundary conditions[END_REF] offer relevant information.

The best constant which satisfies (1.2), called the null controllability cost, is defined by

K(Ω, ω, T, ε) := sup y0∈L 2 (Ω)\{0} inf v∈C(y0) ||v|| L 2 (ω T ) ||y 0 || L 2 (Ω) , (1.3) 
where C(y 0 ) := {v ∈ L 2 (ω T ) : the solution of (1.1) satifies y(•, T ) = 0}.

In this paper we study its asymptotic behavior when the viscosity vanishes. In general, the cost of control is obtained by studying the observability of the following adjoint system of (1.1)

     -∂ t φ -ε∆φ -∇f • ∇φ + (q -∆f )φ = 0 in Ω T , ε∂ ν φ + (∂ ν f + β) φ = 0 on Γ T , φ(x, T ) = φ T (x) in Ω, (1.4) 
when X = ∇f and f ∈ W 2,∞ (Ω). In fact, by the Hilbert Uniqueness Method (we refer to [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF][START_REF] Lions | Contrôlabilité exacte, stabilisation et perturbations de systemes distribués. tome 1. contrôlabilité exacte[END_REF]), we have

K(Ω, ω, T, ε) = sup φ T ∈L 2 (Ω)\{0} ||φ(•, 0)|| L 2 (Ω) ||φ|| L 2 (ω T ) , (1.5) 
for φ the solution of (1.4).

The important geometric quantities involved in the present work are the potential associated with the function f , defined by

V(x) := |∇f (x)| 2 4
, for all x ∈ Ω and its minimum, noted E 0 := min Ω V. We also define the quantity

β f (x) := ∂ ν f (x) 2 + β(x), for all x ∈ Γ.
The first main outcome of this paper is to prove that if β f ≥ 0 and E 0 > 0, then the cost of the null controllability of (1.1) decays exponentially when the viscosity vanishes and the control time is sufficiently large. Precisely, we will prove the following result: Theorem 1.1. We suppose that:

(1) Ω is a C 2 domain and ω ⊂⊂ Ω is a nonempty open subset,

(2) for all x ∈ Γ, β f (x) := ∂ν f (x) 2 + β(x) ≥ 0 and E 0 := min

x∈Ω |∇f (x)| 2 4 > 0.
Then, there are T 1 , C 1 , C 2 > 0 depending only on Ω, ω, f and q such that, for all T ≥ T 1 and ε ∈ (0, 1), the null controllability cost of (1.1) satisfies

K(Ω, ω, T, ε) ⩽ C 1 exp -C 2 ε . (1.6) 
Two approaches are examined in the literature: the spectral approach, illustrated in [START_REF] Bárcena-Petisco | Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term[END_REF], and the approach based on Agmon inequalities, shown in [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF]. In both cases, Carleman and dissipation estimates are used. Remark 1. A dissipation estimate can be proved by Agmon inequality for a general transport X = X(x, t) as in [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF][START_REF] Et-Tahri | On uniform nullcontrollability of tangential transport-diffusion equations with vanishing viscosity limit[END_REF]. But the difficulty arises in the proof of the Carleman estimate as explained in Remark 4. This is the reason why we have imposed to X to be a gradient field independent of the time variable, which allows us to prove Carleman's estimate while going through a self-adjoint system (system without transport term). In this paper, we adopt the spectral approach, which is based on very explicit hypotheses about the transport term and the boundary potential, as specified in Item (2) of Theorem 1.1, unlike the approach based on Agmon's inequalities, see for example property 2 in [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF].

The second main outcome of this paper is to show that if there exists h > 0 such that f (ω) ⊂ (m f + h, M f ), where

m f := min Ω f and M f := max Ω f,
then the control cost explodes exponentially when the viscosity vanishes and all control time for the Neumann boundary conditions. Precisely:

Theorem 1.2. Let h > 0 such that f (ω) ⊂ (m f + h, M f ).
Then, there exist a constant C > 0 depending only on Ω, ω, f and h such that, for all ε > 0 and T > 0, we have the following estimate:

K(Ω, ω, T, ε) ≥ C T 1 2 exp C ε , (1.7) 
where K is the null controllability cost of (1.1) with q = 0 and β = 0.

Remark 2. The proof is done to study the behaviour of the system with respect to ε, to see clear contrast with respect to Theorem 1.1. We are not seeking to obtain the optimal bound when T → 0. In fact, the proof consists on estimating how much it takes to control the first frequency to 0, so the optimal bound for the time variable cannot be obtained by using this method.

These results are the answers to the open questions presented in [12, Remark 3] and [START_REF] Bárcena-Petisco | Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term[END_REF]. In [12, Theorem 1 and Theorem 2] Sergio Guerrero and Gilles Lebeau established these results for a general speed belonging to W 1,∞ (R N × (0, +∞)) and Dirichlet conditions, while in [11, Theorem 2.7 and Theorem 2.8], Jon Asier Bárcena-Petisco proved the same results with X = (1, 0, . . . , 0), q = 0, and Robin boundary conditions.

Regarding the state of the art, Coron and Guerrero initiated the study of the null controllability cost when the viscosity vanishes on the 1-D problem with constant speed in [START_REF] Coron | Singular optimal control: a linear 1-d parabolic-hyperbolic example[END_REF]. Over the past years, researchers have focused on the controllability problem in one-dimensional and explored uniform controllability and associated minimal time in [START_REF] Coron | Singular optimal control: a linear 1-d parabolic-hyperbolic example[END_REF][START_REF] Glass | A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit[END_REF][START_REF] Lissy | A link between the cost of fast controls for the 1-d heat equation and the uniform controllability of a 1-d transport-diffusion equation[END_REF][START_REF] Lissy | An application of a conjecture due to ervedoza and zuazua concerning the observability of the heat equation in small time to a conjecture due to coron and guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit[END_REF][START_REF] Lissy | Explicit lower bounds for the cost of fast controls for some 1-d parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-d transportdiffusion equation[END_REF]. The work [START_REF] Laurent | On uniform controllability of 1d transport equations in the vanishing viscosity limit[END_REF] examined uniform controllability when the speed is expressed as a gradient and viscosity vanishes, and obtained upper and lower bounds on the minimal time needed to control to zero, uniformly in the vanishing viscosity limit. As in this paper, they also considered a spectral decomposition. However, unlike in this paper, they focus on one-dimensional domains with Dirichlet boundary conditions. Similarly, [START_REF] Amirat | On the controllability of an advection-diffusion equation with respect to the diffusion parameter: asymptotic analysis and numerical simulations[END_REF] presented a numerical method to estimate the cost of controllability as a solution of a generalized eigenvalue problem involving the control operator, and [START_REF] Amirat | Internal layer intersecting the boundary of a domain in a singular advection-diffusion equation[END_REF] dealt with estimating the perturbed solution. In higher dimensions, there are few results regarding the cost of null controllability when viscosity vanishes for non-constant speed, except for [START_REF] Guerrero | Singular optimal control for a transport-diffusion equation[END_REF], which explored the problem with Dirichlet conditions and general transport belonging to W 1,∞ (Ω) and [START_REF] Laurent | On uniform observability of gradient flows in the vanishing viscosity limit[END_REF], which studied the uniform observability of gradient flows with vanishing viscosity. For the case of Neumann or Robin boundary conditions, [START_REF] Bárcena-Petisco | Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term[END_REF] analysed the problem with constant speed X = (1, 0, . . . , 0). Moreover, we would like to remark that in our work [START_REF] Et-Tahri | On uniform nullcontrollability of tangential transport-diffusion equations with vanishing viscosity limit[END_REF] we have considered a flow depending on the time variable, but on the expense of restricting ourself to very specific boundary conditions. In that paper the proof of the dissipation estimate is considerably different, as in this paper we use spectral techniques, whereas in [START_REF] Et-Tahri | On uniform nullcontrollability of tangential transport-diffusion equations with vanishing viscosity limit[END_REF] we use Agmon inequality.

The null controllability cost is treated in several types of evolution equations, namely the Stokes system [START_REF] Bárcena-Petisco | Uniform controllability of a stokes problem with a transport term in the zero-diffusion limit[END_REF], an artificial advection-diffusion problem [START_REF] Cornilleau | Controllability and observability of an artificial advectiondiffusion problem[END_REF][START_REF] Cornilleau | On the cost of null-control of an artificial advection-diffusion problem[END_REF], the Burgers equation [START_REF] Glass | On the uniform controllability of the burgers equation[END_REF], the KdV equation [START_REF] Glass | Some exact controllability results for the linear kdv equation and uniform controllability in the zero-dispersion limit[END_REF], the heat equation in the networks [START_REF] Bárcena-Petisco | Control of hyperbolic and parabolic equations on networks and singular limits[END_REF] and a parabolic system of fourth order [START_REF] Carreño | On the cost of null controllability of a fourth-order parabolic equation[END_REF][START_REF] Kassab | Uniform controllability of a transport equation in zero fourth order equationdispersion limit[END_REF][START_REF] López-García | Uniform null controllability of a fourth-order parabolic equation with a transport term[END_REF]. For the approximatecontrollability cost with a dynamic boundary, we refer to [START_REF] Boutaayamou | The cost of approximate controllability of heat equation with general dynamical boundary conditions[END_REF].

The motivation for studying this concept comes from various fields of mathematics and physics. A first motivation for studying singular limits in control problems is the search of controllability properties for the perturbed system itself and to establish the controllability of limit system, as illustrated in the paper [START_REF] López | Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations[END_REF] which shows the null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations and [START_REF] Bendahmane | Null controllability of a degenerated reactiondiffusion system in cardiac electro-physiology[END_REF] which studies the null controllability of a degenerated reaction-diffusion system in cardiac electro-physiology. Another important motivation appears in the theory of conservation law when the velocity is a gradient (conservative force), the determination of a physical solution (called entropy) is based on the vanishing viscosity, see [START_REF] Kružkov | First order quasilinear equations in several independent variables[END_REF][START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF] for more details.

Our paper is structured as follows. In Section 2, we introduce the functional framework and some results. We symmetrize the system (1.4) to find a self adjoint operator and study the spectral properties of this operator. In Section 3 we prove an upper bound of the null controllability cost. Sections 4 and 5 are devoted to the proof of our main results, Theorem 1.1 and Theorem 1.2.

2.

Conjugation of gradient flows and spectral analysis. In this section, we will symmetrize the system (1.4) and examine some spectral properties of the found operator.

Notations and function spaces.

Let Ω be a domain of R N , N ≥ 1 with Lipschitz boundary Γ and ν is the outer unit normal field on Γ. For x, y ∈ R N , x • y denotes the canonical scalar product of x and y and |x| is the Euclidean norm of x. If A is a Lebesgue-measurable part of R N , we will note |A| its measure. We take L 2 (Ω) and L 2 (Γ) the classical Hilbert spaces over R with respect to the Lebesgue measure dx on Ω and the (N -1)-dimensional Hausdorff measure dσ on Γ. We will note D(Ω) the space of the test functions on Ω, H 1 (Ω) and W 2,∞ (Ω) are the usual Sobolev spaces over Ω. We recall that there exists a unique linear bounded operator γ 0 : [START_REF] Arendt | The dirichlet-to-neumann operator on rough domains[END_REF]. The function γ 0 (u) is called the trace of u and one can also use the notation

H 1 (Ω) -→ H 1/2 (Γ) such that γ 0 (u) = u |Γ if u ∈ H 1 (Ω) ∩ C(Ω), see
u |Γ for u ∈ H 1 (Ω) (to simplify, we denote u instead of u |Γ ). The dual of H 1/2 (Γ) is noted by H -1/2 (Γ) and ⟨•, •⟩ H -1/2 (Γ),H 1/2 (Γ)
is the duality product. We will employ the following H 1 (Ω)-trace estimate

Γ |u| 2 dσ ⩽ C∥u∥ H 1 (Ω) ∥u∥ L 2 (Ω) , (2.1) 
where C > 0 depending only on Ω. For the proof of the inequality (2.1), we refer to [START_REF] Grisvard | Elliptic problems in nonsmooth domains[END_REF]Theorem. 1.5.1.10]. Here, we use the definition of the Laplacian as a weak derivative. Let u ∈ H 1 (Ω), we say that ∆u ∈ L 2 (Ω) if there exists a function g ∈ L 2 (Ω) such that, for all v ∈ D(Ω)

Ω ∇u • ∇v dx = - Ω g v dx. (2.2)
In this case, the function g ∈ L 2 (Ω) verifying (2.2) is unique, we denote g by ∆u.

Let H ∆ (Ω) := {u ∈ H 1 (Ω), ∆u ∈ L 2 (Ω)}, there exists a unique linear bounded operator γ 1 :

H ∆ (Ω) -→ H -1/2 (Γ) such that γ 1 (u) = ∂ ν u is the normal derivative of u if u ∈ C 1 (Ω)
. This operator satisfies the generalized Green's formula

Ω ∆u v dx + Ω ∇u • ∇v dx = ⟨γ 1 (u), γ 0 (v)⟩ H -1/2 (Γ),H 1/2 (Γ) , (2.3) 
for all u ∈ H ∆ (Ω) and v ∈ H 1 (Ω) (to simplify, we denote ∂ ν u instead of γ 1 (u)).

2.2. Some preliminary spectral results. It is classical that systems with a transport term in the form of gradient and small diffusion can be symmetrized (symmetrized problems have self-adjoint operators). To symmetrize system (1.4), we consider the change

φ(•, t) -→ Φ(•, t) := exp f (•) 2ε φ(•, t). (2.4)
Then φ is the solution of (1.4) if and only if Φ is the solution of the following system:

     -∂ t Φ -ε∆Φ + q f,ε Φ = 0 in Ω T , ε∂ ν Φ + β f Φ = 0 on Γ T , Φ(x, T ) = Φ T (x) in Ω, (2.5) 
where q f,ε

:= q + V ε -∆f 2 , V := |∇f | 2 4 , β f := ∂ν f 2 + β and Φ T := exp f (•) 2ε φ T .
The next result shows some properties of the linear operator A ε on L 2 (Ω) defined by D(A ε ) := {y ∈ H 1 (Ω), ∆y ∈ L 2 (Ω) and ε∂ ν y + β f y = 0}, A ε y := -ε∆y + q f,ε y.

Proposition 2.1. Let ε > 0.

(1) The operator -A ε generates a quasi-contractive C 0 -semigroup (T ε (t)) t≥0 on L 2 (Ω); that is, there is a constant w such that ∥T ε (t)∥ L(L 2 (Ω);L 2 (Ω)) ≤ exp(wt) for all t ≥ 0. (2) The operator A ε is self-adjoint on L 2 (Ω) and has compact resolvents.

Proof. We consider the bilinear form a ε :

H 1 (Ω) × H 1 (Ω) -→ R defined by a ε (y, z) := ε Ω ∇y • ∇z dx + Ω q f,ε yz dx + Γ β f yz dσ. ( 2.6) 
Clearly, the form a ε is symmetric and continuous. We claim that a ε is L 2 (Ω)-elliptic, i.e., that, there are constants w ≥ 0, α > 0 depend on ε such that, for all y ∈ H 1 (Ω), we have

a ε (y, y) + w∥y∥ 2 L 2 (Ω) ≥ α∥y∥ 2 H 1 (Ω) . (2.7) 
By the trace estimate (2.1) and Young's inequality, we obtain

Γ β f |y| 2 dσ ⩽ ε 2 ∥y∥ 2 H 1 (Ω) + C 2 ∥β f ∥ 2 ∞ 2ε ∥y∥ 2 L 2 (Ω) .
Then

a ε (y, y) ≥ ε 2 ∥y∥ 2 H 1 (Ω) -∥q f,ε ∥ ∞ + C 2 ∥β f ∥ 2 ∞ 2ε + ε ∥y∥ 2 L 2 (Ω) . (2.8) 
Hence a ε is L 2 (Ω)-elliptic. Using [START_REF] Arendt | Spectral theory, mathematical system theory[END_REF], we obtain a ε induces a self-adjoint and quasiaccretive operator B ε on L 2 (Ω), i.e., that, there is w ∈ R such that B ε + w is accretive (or monotone). The operator B ε is given as follows, a function y ∈ H 1 (Ω) belongs to D(B ε ) if and only if there is g ∈ L 2 (Ω) such that a ε (y, z) = ⟨g, z⟩ L 2 (Ω) for all z ∈ H 1 (Ω) and in this case B ε y = g. The proof of A ε = B ε is standard and based on the generalized Green's formula (2.3). We then conclude that A ε = B ε is self-adjoint and quasi-accretive operator on L 2 (Ω). In particular -A ε generates a quasi-contractive C 0 -semigroup (T ε (t)) t≥0 on L 2 (Ω). The compactness of the injection of H 1 (Ω) into L 2 (Ω) leads to that of the resolvents.

The eigenvalue problem of the operator A ε is given by A ε y = λy, this leading to the following spectral problem for the Laplacian with Robin boundary conditions.

-ε∆y + q f,ε y = λy in Ω,

ε∂ ν y + β f y = 0 on Γ.
The eigenvalues of self-adjoint operators with compact resolvents such that the eigenvalues are bounded from below can be characterized by the following min-max principle, called the Courant-Fischer Theorem.

Theorem 2.2. Let ε > 0. There exist an orthonormal basis ϕ

(ε) n n≥1 of L 2 (Ω)
and a sequence of numbers

λ (ε) 1 ⩽ λ (ε) 2 ⩽ ... ⩽ λ (ε) n ⩽ λ (ε) n+1 ⩽ .... whose limit is +∞ such that A ε ϕ (ε) n = λ (ε) n ϕ (ε)
n , for all n ≥ 1. In addition, we have

λ (ε) n = min V subspace of D(Aε) dim(V )=n max y∈V ∥y∥ L 2 (Ω)=1 a ε (y, y) ∀n ≥ 1.
(2.9)

The following proposition concerns the existence and uniqueness of weak solutions of (1.4), (2.5) and the spectral decomposition of the solutions of (1.4).

Proposition 2.3. Let ε > 0.

(1) Let Φ T ∈ L 2 (Ω), then the system (2.5) has a unique weak solution

Φ ∈ L 2 (0, T ; H 1 (Ω)) ∩ C([0, T ]; L 2 (Ω)) that satisfies the estimate ∥Φ∥ L ∞ (0,T ;L 2 (Ω)) + √ ε∥Φ∥ L 2 (0,T ;H 1 (Ω)) (2.10) 
⩽ C exp CT ε + ∥β f ∥ 2 ∞ ε + ∥q f,ε ∥ ∞ ∥Φ T ∥ L 2 (Ω) ,
where C > 0 depending only on Ω. (2) Let φ T ∈ L 2 (Ω), there exists a unique solution φ ∈ C([0, T ]; L 2 (Ω)) to (1.4) given by

φ(•, t) = ∞ n=1 e -λ (ε) n (T -t) Ω exp f (ξ) 2ε φT (ξ)ϕ (ε) n (ξ)dξ ϕ (ε) n (•) exp -f (•) 2ε . (2.11)
Proof.

(1) The system (2.5) is known to be well posed. Additionally, a standard method can be used to derive the following equality for every t ∈ (0, T ):

- 1 2 d dt Ω |Φ| 2 dx = -ε Ω |∇Φ| 2 dx - Γ β f |Φ| 2 dσ - Ω q f,ε |Φ| 2 dx = -a ε (Φ(•, t), Φ(•, t)).
From (2.8), we obtain

- 1 2 
d dt Ω |Φ| 2 dx ⩽ - ε 2 ∥Φ∥ 2 H 1 (Ω) + ∥q f,ε ∥ ∞ + C 2 ∥β f ∥ 2 ∞ 2ε + ε ∥Φ∥ 2 L 2 (Ω) .
An integration of this inequality on (t, T ), gives

Ω |Φ(x, t)| 2 dx + ε∥Φ∥ 2 L 2 (t,T ;H 1 (Ω)) ⩽ Ω |Φ T | 2 dx +2 ∥q f,ε ∥ ∞ + C 2 ∥β f ∥ 2 ∞ 2ε + ε T t Ω |Φ(x, s)| 2 dx ds.
By the Grönwall's lemma, we have

Ω |Φ(x, t)| 2 dx + ε∥Φ∥ 2 L 2 (t,T ;H 1 (Ω)) ⩽ exp 2 ε + C 2 ∥β f ∥ 2 ∞ 2ε + ∥q f,ε ∥ ∞ (T -t) Ω |Φ T | 2 dx ⩽ exp 2 ε + C 2 ∥β f ∥ 2 ∞ 2ε + ∥q f,ε ∥ ∞ T Ω |Φ T | 2 dx.
In particular,

sup 0⩽t⩽T Ω |Φ(x, t)| 2 dx ⩽ exp 2 ε + C 2 ∥β f ∥ 2 ∞ 2ε + ∥q f,ε ∥ ∞ T Ω |Φ T | 2 dx (2.12)
and

ε∥Φ∥ 2 L 2 (0,T ;H 1 (Ω)) ⩽ exp 2 ε + C 2 ∥β f ∥ 2 ∞ 2ε + ∥q f,ε ∥ ∞ T Ω |Φ T | 2 dx. (2.13)
From (2.12) and (2.13), we easily obtain (2.10). ( 2) We have seen that φ is a solution of (1.4), if and only if

Φ(•, t) = exp f (•) 2ε φ(•, t) is a solution of (2.5). Hence (1.4) has a unique solution φ ∈ C([0, T ]; L 2 (Ω)). Since -A ε generates a C 0 -semigroup (T ε (t)) t≥0 on L 2 (Ω)
, then the weak solution of (2.5) is given by

Φ(•, t) = T ε (T -t)Φ T .
From Theorem 2.2, as ϕ

(ε) n n≥1 is an orthonormal basis of L 2 (Ω), then Φ T = ∞ n=1 ⟨Φ T , ϕ (ε) n ⟩ L 2 (Ω) ϕ (ε) n = ∞ n=1 Ω Φ T (ξ)ϕ (ε) n (ξ) dξ ϕ (ε) n Since A ε ϕ (ε) n = λ (ε) n ϕ (ε) n , then T ε (T -t)ϕ (ε) n = exp -λ (ε) n (T -t) ϕ (ε) n . Thus Φ(•, t) = ∞ n=1 Ω Φ T (ξ)ϕ (ε) n (ξ) dξ exp -λ (ε) n (T -t) ϕ (ε) n . Hence φ(•, t) = exp -f (•) 2ε Φ(•, t) = exp -f (•) 2ε ∞ n=1 Ω Φ T (ξ)ϕ (ε) n (ξ) dξ exp -λ (ε) n (T -t) ϕ (ε) n = exp -f (•) 2ε ∞ n=1 Ω exp f (ξ) 2ε φ T (ξ)ϕ (ε) n (ξ) dξ exp -λ (ε) n (T -t) ϕ (ε) n .
Notation. We denote by

0 = λ 1 ⩽ λ 2 ⩽ ... ⩽ λ n ⩽ λ n+1 ⩽ ....
the sequence of eigenvalues of the Laplacian operator with Neumann boundary conditions. By the min-max principle, we have

λ n = min V subspace of H 1 (Ω) dim(V )=n max y∈V ∥y∥ L 2 (Ω)=1 ∥∇y∥ 2 L 2 (Ω) ∀n ≥ 1. (2.14)
Similarly, if A is a set #A denotes the number of elements of A.

The following result enables us to compare the eigenvalues of the operator A ε and the ones of the Laplacian operator with Neumann boundary conditions.

Proposition 2.4. We assume that β f ≥ 0. Then, for all ε > 0

λ (ε) n ≥ ελ n -∥q∥ ∞ - ∥∆f ∥ ∞ 2 + E 0 ε ∀n ≥ 1.
Proof. Let n ≥ 1, from (2.14) and (2.6), we have

ελ n ⩽ ε max y∈V ∥y∥ L 2 (Ω)=1 ∥∇y∥ 2 L 2 (Ω) = max y∈V ∥y∥ L 2 (Ω)=1 a ε (y, y) - Ω q f,ε |y| 2 dx - Γ β f |y| 2 dσ , for all V subspace of H 1 (Ω) such that dim(V ) = n. Since β f ≥ 0 and q f,ε ≥ -∥q∥ ∞ -∥∆f ∥∞ 2 + E0 ε , then ελ n ⩽ max y∈V ∥y∥ L 2 (Ω)=1 a ε (y, y) + ∥q∥ ∞ + ∥∆f ∥ ∞ 2 - E 0 ε .
In particular, for all V subspace of D(A ε ) such that dim(V ) = n, we have

ελ n -∥q∥ ∞ - ∥∆f ∥ ∞ 2 + E 0 ε ⩽ max y∈V ∥y∥ L 2 (Ω)=1 a ε (y, y).
Hence, by (2.9), we obtain

ελ n -∥q∥ ∞ - ∥∆f ∥ ∞ 2 + E 0 ε ⩽ min V subspace of D(Aε) dim(V )=n max y∈V ∥y∥ L 2 (Ω)=1 a ε (y, y) = λ (ε)
n .

We end this section with a reminder about the Weyl's law satisfied by the sequence of eigenvalues associated to the Laplacian operator with Neumann boundary conditions.

Lemma 2.5. (Weyl's law [START_REF] Ivrii | 100 years of Weyl's law[END_REF]). For any real x, we denote N (x) the number of eigenvalues (counting repetitions) of the Neumann Laplacian which are smaller than x:

N (x) := #{n ≥ 1 : λ n ⩽ x}.
Then, we have

lim x→∞ N (x) x N 2 = |B(0, 1)| |Ω| (2π) N .
As a consequence of this lemma, using the definition of the limit, there is C > 0 depending on Ω such that for all x > 0,

N (x) ⩽ C 1 + x N 2 .
(2.15)

3. An upper bound of the null controllability cost. In this section, we prove an upper bound for the cost of the null controllability of (1.1) for a general transport X ∈ L ∞ (Ω). In this case, the adjoint system of (1.1) is given by

     -∂ t φ -ε∆φ -∇ • (φX) + q φ = 0 in Ω T , (ε∇φ + φX) • ν(x) + β φ = 0 on Γ T , φ(x, T ) = φ T (x) in Ω. (3.1)
By Lions' Theorem [START_REF] Robert | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF][START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], the system (3.1) has a unique weak solution

φ ∈ L 2 (0, T ; H 1 (Ω)) ∩ C([0, T ]; L 2 (Ω)).
The following proposition gives an upper bound on the controllability cost of the system (1.1). Note that the Hypothesis of Proposition 3.1 are more general than those of Theorem 1.1:

Proposition 3.1. Let Ω be a C 2 domain, ω ⊂⊂ Ω is a nonempty open subset and X ∈ L ∞ (Ω).
Then, for all T > 0 and ε > 0, the system (1.1) is null controllable at time T . Moreover there exists C > 0 depending only on Ω and ω such that, we have the estiamte:

K(Ω, ω, T, ε) ⩽ ε exp C 1 + 1 ε T + ∥q∥ 2/3 ∞ ε 2/3 + ∥X∥ 2 ∞ ε 2 + ∥β∥ 2 ∞ ε 2 + T ∥q∥ ∞ + ∥X∥ 2 ∞ ε + ∥β∥ 2 ∞ ε , (3.2) 
for K the cost of the null controllability of (1.1).

It is indeed known that the system (1.1) is null controllable, and thus the novelty is on the bound.

Proof. For any time T > 0 and for all general vector fields X ∈ L ∞ (Ω) N , q ∈ L ∞ (Ω), β ∈ L ∞ (Γ) and ε = 1, we refer to [6, Theorem 2]. In order to return to this case, we make the change of state

z(x, t) := y x, t ε ,
where y is the weak solution of (1.1). Then z satisfies the following system:

     ∂ t z -∆z + X ε • ∇z + q ε z = u ε (x, t)1 ω in Ω ε T , ∂ ν z + β ε z = 0 on Γ ε T , z(x, 0) = y 0 (x) in Ω, (3.3) 
for Theorem 2], we obtain, for all T > 0 and ε > 0, the system (3.3) is null controllable at time T with controls u ε ∈ L 2 (ω × (0, ε T )). Moreover, one can find u such that

εX ε = X, εq ε = q, εβ ε = β and ε u ε (•, t) = v •, t ε , for all t ∈ [0, ε T ]. Applying [6,
∥u ε ∥ L 2 (ω×(0,ε T )) ⩽ H∥y 0 ∥ L 2 (Ω)
with a constant H of the form

H = exp C 1 + 1 ε T + ∥qε∥ 2/3 ∞ + ∥Xε∥ 2 ∞ + ∥βε∥ 2 ∞ + ε T ∥qε∥∞ + ∥Xε∥ 2 ∞ + ∥βε∥ 2 ∞ = exp C 1 + 1 ε T + ∥q∥ 2/3 ∞ ε 2/3 + ∥X∥ 2 ∞ ε 2 + ∥β∥ 2 ∞ ε 2 + T ∥q∥∞ + ∥X∥ 2 ∞ ε + ∥β∥ 2 ∞ ε .
We turn to the system (1.1) by the change of variable t = ε τ , we obtain, for all T > 0 and ε > 0, the system (1.1) is null controllable at time T with the control

v ∈ L 2 (ω × (0, T )) (v(•, t) = εu ε (•, εt), 0 ⩽ t ⩽ T ) such that ∥v∥ L 2 (ω×(0,T )) ⩽ ε H∥y 0 ∥ L 2 (Ω) . (3.4) 
Finally, we obtain (3.2) form (1.3) and (3.4).

Remark 3. The proposition 3.1 remains valid if the coefficients of the system (1.1) also depend on the time variable and are bounded.

4. Exponential decay of null controllability cost. In this section, we prove Theorem 1.1. Firstly, we show the validity of the following observability inequality

Ω×( T 4 , 3T 4 ) |φ(x, t)| 2 dx dt ⩽ C exp C ε 1 + T -1 ω×(0,T ) |φ(x, t)| 2 dx dt, (4.1 
) for φ the solution of the system adjoint (1.4) and the constant C > 0 independent of ε and T . Secondly, using the spectral analysis, we prove an important dissipation estimate (see (4.49) below) which is crucial to prove our first main result Theorem 1.1.

4.1.

Carleman estimates for the system (2.5). The objective of this section is to prove a Carleman estimate for the system (2.5).

Let ε > 0 and T > 0, we consider the following positive weight functions α ± and ξ ± which depend only on Ω and ω:

ξ ± (x, t) := exp(4λ ± λη(x)) t(T -t) and α ± (x, t) := exp(6λ) -exp(4λ ± λη(x)) t(T -t) .
Here, λ ≥ 1 and

η = η(x) is a function in C 2 (Ω) satisfying η > 0 in Ω, η = 0 on Γ, inf Ω\ω ′ |∇η(x)| = δ > 0 and ∥η∥ ∞ = 1, (4.2) 
where ω ′ is a nonempty open subset of ω. The existence of such a function η satisfying (4.2) is proved in [START_REF] Fursikov | Controllability of evolution equations[END_REF] if Ω is a C 2 domain, as well as the whole approach on how to prove the controllability of parabolic equations. Also, the approach of using two weights for dealing with Neumann boundary conditions dates back to [START_REF] Chae | Exact controllability for semilinear parabolic equations with neumann boundary conditions[END_REF], where they prove the null controllability for Neumann boundary conditions. The reason why the two weights are necessary is to cancel some boundary terms with Neumann boundary conditions that appears while doing the Carleman inequality, as we do in Step 5.

The functions ξ ± and α ± verify the following elementary properties:

ξ ± ≥ 4 T 2 , ξ -⩽ ξ + , α + ⩽ α -, |∂ t ξ ± | ⩽ T ξ 2 ± , |∂ t α ± | ⩽ T ξ 2 ± , |∇(∂ t α ± )| ⩽ ∥∇η∥ ∞ λT ξ 2 ± and |∂ 2 t α ± | ⩽ 2T 2 ξ 3 ± .
Since η = 0 on Γ, we have the following equations on Γ T :

α + = α -and ξ + = ξ -.
To simplify, on Γ T we will note these common values by α and ξ. Remark 4. Realizing the observability inequality (4.1) requires finding a Carleman estimate for the solutions of the adjoint system (1.4) while respecting the constraint s ≥ C ε and λ ≥ C, for C > 0 independent of ε. However, the presence of a transport term and the boundary conditions makes this task particularly difficult. Indeed, if X is a general function instead of a gradient of a space dependent function, in the computation of the Carleman estimate, we obtain the following term

ε Γ T (∇ψ ± • X(x, t))∂ ν ψ ± dσdt - ε 2 Γ T (X(x, t) • ν(x))|∇ψ ± | 2 dσdt,
which is not easily treatable, where ψ ± := exp(-sα ± )φ and φ the solution of the adjoint system (1.4). To remedy this, we will establish a Carleman estimate for the solutions of the system (2.5) (system without transport). Then, thanks to the change (2.4) and a well-known optimization arguments, we will obtain the observability inequality (4.1). The techniques used are inspired by [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary fourier conditions: the linear case[END_REF][START_REF] Bárcena-Petisco | Cost of null controllability for parabolic equations with vanishing diffusivity and a transport term[END_REF]. Another difficulty comes from the Robin boundary conditions, the smoothness of solutions is worse than the Dirichlet conditions, and as the solutions of the adjoint system may not belong to L 2 (0, T ; H 2 (Ω)). To overcome this difficulty, we will approximate the solution using smooth functions preserving the Robin boundary conditions.

Notation. Note the following energy spaces

Z : = {y ∈ C([0, T ]; D(A ε ) ∩ C 2 (Ω)) : ∂ t y ∈ L ∞ (0, T ; C 2 (Ω))}, W : = {y ∈ L 2 (0, T ; H 1 (Ω)) : ∂ t y ∈ L 2 (0, T ; L 2 (Ω))}. Lemma 4.1. Let T > 0, ε > 0 and Ω is a C 2 domain.
Then, for all Φ T ∈ D(A 2 ε ), there exists (Φ n ) a sequence of Z which converges to Φ in W where Φ is the solution of (2.5) with data Φ T . In particular:

-∂ t Φ n -ε∆Φ n + q f,ε Φ n -→ 0 in L 2 (0, T ; L 2 (Ω)). Proof. Let Φ T ∈ D(A 2 ε ).
Using rescaling in time and Theorem VII.5 in [START_REF] Brezis | Analyse fonctionnelle[END_REF], we obtain Φ ∈ C 1 ([0, T ], D(A ε )). In particular, for all µ > 0, there exists d > 0 such that, for all t, s ∈ [0, T ], we have

|t -s| < d =⇒ ∥∂ t Φ(•, t) -∂ t Φ(•, s)∥ D(Aε) < µ. (4.3) We consider 0 = t 0 < t 1 < • • • < t k = T a partition of [0, T ] with norm (or mesh) max 0≤i≤k-1 (t i+1 -t i ) < d. Let i = 1, • • • , k and t ∈ (t i-1 , t i ]. From (4.
3), we have

∥∂ t Φ(•, t) -∂ t Φ(•, t i )∥ D(Aε) < µ.
Let us choose ϕ ∈ C 2 (Ω) and

ψ i ∈ D(A ε ) ∩ C 2 (Ω) such that ∥ϕ -Φ T ∥ D(Aε) < µ and ∥ψ i -∂ t Φ(•, t i )∥ D(Aε) < µ. (4.4) Then ∥∂ t Φ(•, t) -ψ i ∥ D(Aε) < 2µ. ( 4.5) 
Consider ψ = ψ(x, t) and Φµ = Φµ (x, t) the functions defined by 

ψ(•, t) := ψ i t ∈ (t i-1 , t i ], (4.6 
∥ Φµ -Φ∥ C([0,T ],D(Aε)) < (1 + 2T )µ, ∥∂ t Φµ -∂ t Φ∥ L ∞ (0,T,D(Aε)) ≤ 2µ. (4.8)
On the other hand, from the quasi ellipticity of the form a ε in (2.7), we obtain

⟨A ε Φ, Φ⟩ L 2 (Ω) + w∥Φ∥ 2 L 2 (Ω) ≥ α∥Φ∥ 2 H 1 (Ω) ∀Φ ∈ D(A ε ). (4.9)
Hence by picking µ = 1/n, based on the estimates (4.8) and (4.9) and the definition of D(A ε ) the result follows.

Now, we are in position to establish the desired Carleman estimate.

Proposition 4.2. Let T > 0, ε ∈ (0, 1), Ω is a C 2 domain, ω ⊂⊂ Ω is a nonempty open subset and assume that q ∈ L ∞ (Ω), β ∈ L ∞ (Γ), f ∈ W 2,∞ (Ω) such that β f ≥ 0.
Then there are constants C > 0 and λ 1 , s 1 ≥ 1 depend only on ω and Ω such that

s 3 λ 4 Ω T exp(-2sα + )ξ 3 + |Φ| 2 dx dt + sλ 2 Ω T exp(-2sα + )ξ + |∇Φ| 2 dx dt + sλ 2 Γ T β f |∂ ν η| 2 ξ + sξ 2 exp(-2sα)|Φ| 2 dσ dt ⩽ Cs 3 λ 4 ω×(0,T ) exp(-2sα + )ξ 3 + |Φ| 2 dx dt, (4.10) 
for any Φ solution of (2.5) with data

Φ T ∈ L 2 (Ω), λ ≥ λ 1 , s ≥ s 1 C(T, ε, f, q) and C(T, ε, f, q) := T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 ∞ ) + T 2 .
We will begin by proving an estimate for functions in Z, the Lemma 4.1, has enabled us to obtain the estimate (4.10) for solutions of (2.5) with data Φ T ∈ D(A 2 ε ). This is necessary because the second order derivatives appear in some intermediary computations, but they are removed with proper integration by parts and using the positivity of some terms. Thus, by the density of D(A 2 ε ) in L 2 (Ω) (for the density of [START_REF] Brezis | Analyse fonctionnelle[END_REF]) and the estimate (2.10) for the solutions of (2.5), we obtain (4.10) with general data Φ T ∈ L 2 (Ω). Indeed, the terms in (4.10) are continuous with respect to the L 2 (0, T ; H 1 (Ω)) norm.

D(A 2 ε ) in D(A ε ) see Lemma VII.2 in
Proof. In this proof s 1 , λ 1 , C and c are generic positive constants depending only on Ω and ω. For simplicity, we will divide the proof in five steps. In the first step, we make a change of variables to functions that decay when t = 0 and t = T . In the second step, we estimate the scalar product that we naturally obtain in the change of variables. In the third step, we obtain some first conclusions with the boundary terms in the left hand-side of the inequality. In the fourth step, we estimate the local term of the gradient. In the fifth step, we revert the change of variables and simplify the boundary terms, to obtain an estimate for functions in Z.

Step 1: Change of variables. Let Φ ∈ Z, λ ≥ 1, s ≥ 1 parameters to be specified. Define

ψ ± := exp(-sα ± )Φ and F ± := exp(-sα ± )(∂ t Φ + ε∆Φ -q f,ε Φ). (4.11)
We recall the definition of the tangential derivative ∇ Γ of a regular function h ∈ C 1 (Ω) is given by ∇ Γ h := ∇h -(∂ ν h)ν and that this definition depends only on the image of h on Γ. Since α + = α -on Γ T , then

ψ + = ψ -and ∇ Γ ψ + = ∇ Γ ψ -on Γ T , (4.12) 
on Γ T we will note respectively ψ and ∇ Γ ψ instead of ψ ± and ∇ Γ ψ ± .

We determine the problem solved by ψ ± . We first expand the spatial derivatives of α ± by the chain rule to bring η into play, but we do not expand ∂ t α ± . We calculate

∇α ± = -∇ξ ± = ∓λξ ± ∇η ∆α ± = -λ 2 ξ ± |∇η| 2 ∓ λξ ± ∆η ∂ t ψ ± = exp(-sα ± )∂ t Φ -s∂ t α ± ψ ± (4.13) ∇ψ ± = exp(-sα ± )∇Φ -sψ ± ∇α ± = exp(-sα ± )∇Φ ± sλξ ± ψ ± ∇η (4.14) ∂ ν ψ ± = exp(-sα ± )∂ ν Φ ± sλξ ± ψ ± ∂ ν η = exp(-sα)∂ ν Φ ± sλξψ∂ ν η (4.15) ∆ψ ± = exp(-sα ± )∆Φ + ∇(exp(-sα ± )) • ∇Φ -sψ ± ∆α ± -s(∇ψ ± • ∇α ± ) = exp(-sα ± )∆Φ -s 2 ψ ± |∇α ± | 2 -2s(∇ψ ± • ∇α ± ) -sψ ± ∆α ± = exp(-sα ± )∆Φ -s 2 λ 2 ξ 2 ± ψ ± |∇η| 2 ± 2sλξ ± (∇η • ∇ψ ± ) +sλ 2 ξ ± ψ ± |∇η| 2 ± sλξ ± ψ ± ∆η.
On Ω T this yields transformed evolution equations

∂ t ψ ± + ε∆ψ ± -q f,ε ψ ± = F ± -s∂ t α ± ψ ± -εs 2 λ 2 ξ 2 ± |∇η| 2 ψ ± ± 2εsλξ ± (∇η • ∇ψ ± ) +εsλ 2 ξ ± |∇η| 2 ψ ± ± εsλξ ± ∆ηψ ± .
We rewrite this equality as

L 1 ψ ± + L 2 ψ ± = L 3 ψ ± , (4.16) 
where

L 1 ψ ± := -2εsλ 2 ξ ± |∇η| 2 ψ ± ∓ 2εsλξ ± (∇η • ∇ψ ± ) + ∂ t ψ ± , L 2 ψ ± := εs 2 λ 2 ξ 2 ± |∇η| 2 ψ ± + ε∆ψ ± + s∂ t α ± ψ ± - |∇f (x)| 2 4ε ψ ± , (4.17) 
L 3 ψ ± := F ± ± εsλξ ± ∆ηψ ± -εsλ 2 ξ ± |∇η| 2 ψ ± + q - ∆f 2 ψ ± . (4.18)
Remark 5. In this decomposition, we have split the potential term q f,ε into two

parts q -∆f 2 and |∇f (x)| 2 4ε
in order to absorb the terms associated with constraint

s ≥ C ε . Applying ∥ • ∥ 2 L 2 (Ω T ) to the equation (4.16), we obtain ∥L 1 ψ ± ∥ 2 L 2 (Ω T ) + 2(L 1 ψ ± , L 2 ψ ± ) L 2 (Ω T ) + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) = ∥L 3 ψ ± ∥ 2 L 2 (Ω T ) . (4.19)
Step 2. Estimating the mixed terms in (4. [START_REF] Laurent | On uniform controllability of 1d transport equations in the vanishing viscosity limit[END_REF]) from below with the control domain and some boundary terms. The principle of this step is to expand the second term of (4.19) and make some terms of this scalar product largely positive. For this, we use some properties of α ± and let s be large enough. Denoting by (L i ψ ± ) j the j-th term of the expression L i ψ ± , we obtain

(L 1 ψ ± , L 2 ψ ± ) L 2 (Ω T ) = 1⩽i⩽3 1⩽j⩽4 ((L 1 ψ ± ) i , (L 2 ψ ± ) j ) L 2 (Ω T ) .
Let us compute each of these terms.

Step 2a. Estimate from below of ((L 1 ψ ± ), (L 2 ψ ± ) 1 ) L 2 (Ω T ) . First, we have

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 1 ) L 2 (Ω T ) = -2ε 2 s 3 λ 4 Ω T ξ 3 ± |∇η| 4 |ψ ± | 2 dx dt := A ± and ((L 1 ψ ± ) 2 , (L 2 ψ ± ) 1 ) L 2 (Ω T ) = ∓2ε 2 s 3 λ 3 Ω T (∇η • ∇ψ ± )|∇η| 2 ξ 3 ± ψ ± dx dt = 3ε 2 s 3 λ 4 Ω T ξ 3 ± |∇η| 4 |ψ ± | 2 dx dt ±ε 2 s 3 λ 3 Ω T ξ 3 ± ∇ • (|∇η| 2 ∇η)|ψ ± | 2 dx dt ∓ε 2 s 3 λ 3 Γ T ξ 3 |∇η| 2 ∂ ν η|ψ| 2 dσ dt := B 1 ± + B 2 ± + B 3 ± .
We can notice that A±

+ B 1 ± = ε 2 s 3 λ 4 Ω T ξ 3 ± |∇η| 4 |ψ ± | 2 dx dt ≥ 0, from the properties (4.2) of η, we obtain A± + B 1 ± ≥ c ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt -Cε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt := ñ -B± ,
for all c ∈ (0, δ 4 ). The term B 2 ± can be absorbed by ñ if λ ≥ λ 1 for large λ 1 . Then

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 1 ) L 2 (Ω T ) + ((L 1 ψ) 2 , (L 2 ψ) 1 ) L 2 (Ω T ) ≥ ñ -B± + B 3 ± .

By integration by parts in time and ψ

± (•, 0) = ψ ± (•, T ) = 0, we obtain ((L 1 ψ ± ) 3 , (L 2 ψ ± ) 1 ) L 2 (Ω T ) = -εs 2 λ 2 Ω T |∇η| 2 ξ ± ∂ t ξ ± |ψ ± | 2 dx dt. Since |∂ t ξ ± | ⩽ T ξ 2 ± , then |((L 1 ψ ± ) 3 , (L 2 ψ ± ) 1 ) L 2 (Ω T ) | ⩽ Cεs 2 λ 2 T Ω T ξ 3 ± |ψ ± | 2 dx dt,
this integral is absorbed by ñ if we take s ≥ s 1 T ε . Consequently, we obtain

(L 1 ψ ± , (L 2 ψ ± ) 1 ) L 2 (Ω T ) = 1⩽j⩽3 ((L 1 ψ ± ) j , (L 2 ψ ± ) 1 ) L 2 (Ω T ) ≥ c ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt -Cε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt ∓ε 2 s 3 λ 3 Γ T ξ 3 |∇η| 2 ∂ ν η|ψ| 2 dσ dt, (4.20) 
for any λ ≥ λ 1 and s ≥ s 1 T ε .

Step 2b. Estimate from below of ((L

1 ψ ± ), (L 2 ψ ± ) 2 ) L 2 (Ω T ) .
By integration by parts, we have

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) = -2ε 2 sλ 2 Ω T ξ ± |∇η| 2 ψ ± ∆ψ ± dx dt = -2ε 2 sλ 2 Γ T ξ|∇η| 2 ψ∂ ν ψ ± dσ dt + 2ε 2 sλ 2 Ω T ξ ± (∇(|∇η| 2 ) • ∇ψ ± )ψ ± dx dt ±2ε 2 sλ 3 Ω T ξ ± |∇η| 2 (∇η • ∇ψ ± )ψ ± dx dt + 2ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt := C 1 ± + C 2 ± + C 3 ± + C 4 ± . We will keep C 1
± and C 4 ± in the left hand side. For C 2 ± and C 3 ± , applying Hölder's inequality, we obtain

|C 2 ± | ⩽ Cε 2 sλ 2 Ω T ξ ± |∇ψ ± ||ψ ± | dx dt ⩽ Cε 2 sλ 4 Ω T ξ ± |ψ ± | 2 dx dt + Cε 2 s Ω T ξ ± |∇ψ ± | 2 dx dt. Since ξ ± ≥ 4 T 2 , then for all s ≥ s 1 T 2 |C 2 ± | ⩽ Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt + Cε 2 s Ω T ξ ± |∇ψ ± | 2 dx dt.
We also obtain

|C 3 ± | ⩽ Cε 2 sλ 3 Ω T ξ ± |∇ψ ± ||ψ ± | dx dt ⩽ Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt + Cε 2 λ 2 Ω T |∇ψ ± | 2 dx dt.
For all s ≥ s 1 T 2 , we conclude that

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) ≥ -2ε 2 sλ 2 Γ T ξ|∇η| 2 ψ∂ ν ψ ± dσ dt -Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt -Cε 2 Ω T (sξ ± + λ 2 )|∇ψ ± | 2 dx dt +2ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt. (4.21)
Integration by parts give

((L 1 ψ ± ) 2 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) = ∓2ε 2 sλ Ω T ξ ± (∇η • ∇ψ ± )∆ψ ± dx dt = ∓2ε 2 sλ Γ T ξ(∇η • ∇ψ ± )∂ ν ψ ± dσ dt ±2ε 2 sλ Ω T ξ ± (∇(∇η • ∇ψ ± ) • ∇ψ ± ) dx dt ±2ε 2 sλ Ω T (∇η • ∇ψ ± )(∇ξ ± • ∇ψ ± ) dx dt. Using ∇(∇η • ∇ψ ± ) • ∇ψ ± = ∇ 2 η(∇ψ ± , ∇ψ ± ) + 1 2 ∇η • ∇(|∇ψ ± | 2 )
, where ∇ 2 η denotes the Hessian matrix of η (it is considered as a symmetrical bilinear form) and another integration by parts, we obtain

((L 1 ψ ± ) 2 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) = ∓2ε 2 sλ Γ T ξ(∇η • ∇ψ ± )∂ ν ψ ± dσ dt ±2ε 2 sλ Ω T ξ ± ∇ 2 η(∇ψ ± , ∇ψ ± ) dx dt ± ε 2 sλ Ω T ξ ± ∇η • ∇(|∇ψ ± | 2 ) dx dt +2ε 2 sλ 2 Ω T ξ ± |∇η • ∇ψ ± | 2 dx dt = ∓2ε 2 sλ Γ T ξ(∇η • ∇ψ ± )∂ ν ψ ± dσ dt ± 2ε 2 sλ Ω T ξ ± ∇ 2 η(∇ψ ± , ∇ψ ± ) dx dt ±ε 2 sλ Γ T ξ∂ ν η|∇ψ ± | 2 dσ dt -ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt ∓ε 2 sλ Ω T ξ ± ∆η|∇ψ ± | 2 dx dt + 2ε 2 sλ 2 Ω T ξ ± |∇η • ∇ψ ± | 2 dx dt := D 1 ± + D 2 ± + D 3 ± + D 4 ± + D 5 ± + D 6 ± .
Since η = 0 on Γ, we obtain

D 1 ± = ∓2ε 2 sλ Γ T ∂ ν ηξ|∂ ν ψ ± | 2 dσ dt. Moreover, D 6 ± ≥ 0 and |D 2 ± + D 5 ± | ⩽ Cε 2 sλ Ω T ξ ± |∇ψ ± | 2 dx dt. Therefore ((L 1 ψ ± ) 2 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) ≥ ∓2ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt ±ε 2 sλ Γ T ξ∂ ν η|∇ψ ± | 2 dσ dt -ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt -Cε 2 sλ Ω T ξ ± |∇ψ ± | 2 dx dt. (4.22)
Next, integration by parts in space and time, ∇ψ ± (•, 0) = ∇ψ ± (•, T ) = 0 and 

ψ ± = ψ on Γ T yield ((L 1 ψ ± ) 3 , (L 2 ψ ± ) 2 ) L 2 (Ω T ) = ε Γ T ∂ t ψ∂ ν ψ ± dσ dt := E ± . ( 4 
(L 1 ψ ± , (L 2 ψ ± ) 2 ) L 2 (Ω T ) ≥ -2ε 2 sλ 2 Γ T ξ|∇η| 2 ψ∂ ν ψ ± dσ dt -Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt -Cε 2 Ω T (sλξ ± + λ 2 )|∇ψ ± | 2 dx dt +ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt ∓ 2ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt ±ε 2 sλ Γ T ξ∂ ν η|∇ψ ± | 2 dσ dt + ε Γ T ∂ t ψ∂ ν ψ ± dσ dt. (4.24)
for all s ≥ s 1 T 2 . Thanks to the properties (4.2) of η, the fourth term in the right hand side of (4.24) can be reduced as follows

ε 2 sλ 2 Ω T ξ ± |∇η| 2 |∇ψ ± | 2 dx dt ≥ c ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt -Cε 2 sλ 2 ω ′ ×(0,T ) ξ ± |∇ψ ± | 2 dx dt,
for all c ∈ (0, δ 2 ). Let us use ξ ± ≥ 4 T 2 , the third term in the right hand side of (4.24) is absorbed by

cε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt if λ ≥ λ 1 and s ≥ s 1 T 2 for λ 1 and s 1 are large enough.
Hence, for λ ≥ λ 1 and s ≥ s 1 T 2 , we have

(L 1 ψ ± , (L 2 ψ ± ) 2 ) L 2 (Ω T ) ≥ -2ε 2 sλ 2 Γ T ξ|∇η| 2 ψ∂ ν ψ ± dσ dt -Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt + c ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt -Cε 2 sλ 2 ω ′ ×(0,T ) ξ ± |∇ψ ± | 2 dx dt ∓ 2ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt ±ε 2 sλ Γ T ξ∂ ν η|∇ψ ± | 2 dσ dt + ε Γ T ∂ t ψ∂ ν ψ ± dσ dt. (4.25)
Step 2c. Estimate from below of ((L

1 ψ ± ), (L 2 ψ ± ) 3 ) L 2 (Ω T ) .
Next, we have

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) = -2εs 2 λ 2 Ω T ξ ± |∇η| 2 ∂ t α ± |ψ ± | 2 dx dt, we obtain from |∂ t α ± | ⩽ T ξ 2 ± that ((L 1 ψ ± ) 1 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) ⩽ 2εs 2 λ 2 Ω T ξ ± |∇η| 2 |∂ t α ± ||ψ ± | 2 dx dt ⩽ Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt, (4.26) 
for all s ≥ s 1 T ε . We also have

((L 1 ψ ± ) 2 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) = ∓2εs 2 λ Ω T ξ ± (∇η • ∇ψ ± )∂ t α ± ψ ± dx dt = ∓εs 2 λ Γ T ξ∂ t α∂ ν η|ψ| 2 dσ dt ± εs 2 λ Ω T ∇ • (∂ t α ± ξ ± ∇η)|ψ ± | 2 dx dt = ∓εs 2 λ Γ T ξ∂ t α∂ ν η|ψ| 2 dσ dt ± εs 2 λ Ω T ξ ± (∇(∂ t α ± ) • ∇η)|ψ ± | 2 dx dt +εs 2 λ 2 Ω T ξ ± ∂ t α ± |∇η| 2 |ψ ± | 2 dx dt ± εs 2 λ Ω T ξ ± ∂ t α ± ∆η|ψ ± | 2 dx dt := F 1 ± + F 2 ± + F 3 ± + F 4 ± . From |∂ t α ± | ⩽ T ξ 2 ± and |∇(∂ t α ± )| ⩽ ∥∇η∥ ∞ λT ξ 2 ± , we obtain |F 2 ± + F 3 ± + F 4 ± | ⩽ Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt, for all λ ≥ 1 and s ≥ s 1 T ε , it comes that ((L 1 ψ ± ) 2 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) ≥ ∓εs 2 λ Γ T ξ∂ t α∂ ν η|ψ| 2 dx dt -Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt. (4.27)
By time integration and ψ ± (•, 0) = ψ ± (•, T ) = 0 in an exponential way, we obtain

((L 1 ψ ± ) 3 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) = s Ω T ∂ t α ± ∂ t ψ ± ψ ± dx dt = s 2 Ω T ∂ t α ± ∂ t |ψ ± | 2 dx dt = - s 2 Ω T ∂ 2 t α ± |ψ ± | 2 dx dt. Since |∂ 2 t α ± | ⩽ 2T 2 ξ 3 ± , for all λ ≥ 1 and s 1 T ε , we get ((L 1 ψ ± ) 3 , (L 2 ψ ± ) 3 ) L 2 (Ω T ) ⩽ Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt. (4.28)
From (4.26), (4.27) and (4.28), we deduce for λ ≥ 1 and s ≥ s 1

T ε that (L 1 ψ ± , (L 2 ψ ± ) 3 ) L 2 (Ω T ) = 1⩽j⩽3 ((L 1 ψ ± ) j , (L 2 ψ ± ) 3 ) L 2 (Ω T ) ≥ -Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt ∓ εs 2 λ Γ T ξ∂ t α∂ ν η|ψ| 2 dσ dt. (4.29)
Step 2d. Estimate from below of ((L

1 ψ ± ), (L 2 ψ ± ) 4 ) L 2 (Ω T ) .
Let us now consider the scalar product

((L 1 ψ ± ) 1 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) = sλ 2 2 Ω T ξ ± |∇f | 2 |∇η| 2 |ψ ± | 2 dx dt. Since ξ ± ≥ 4 T 2 , then |((L 1 ψ ± ) 1 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) | ⩽ C∥∇f ∥ 2 ∞ sλ 2 T 4 Ω T ξ 3 ± |ψ ± | 2 dx dt. (4.30)
We also have

((L 1 ψ ± ) 2 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) = ± sλ 2 Ω T ξ ± |∇f | 2 |∇η| 2 (∇η • ∇ψ ± )ψ ± dx dt = ± sλ 4 Γ T ξ|∇f | 2 ∂ ν η|ψ| 2 dσ dt ∓ sλ 4 Ω T ξ ± (∇(|∇f | 2 ) • ∇η)|ψ ± | 2 dx dt - sλ 2 4 Ω T ξ ± |∇f | 2 |∇η| 2 |ψ ± | 2 dx dt ∓ sλ 4 Ω T ξ ± |∇f | 2 ∆η|ψ ± | 2 dx dt. Using ∇|∇f | 2 • ∇η = 2∇ 2 f (∇f, ∇η), we obtain ((L 1 ψ ± ) 2 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) = ± sλ 4 Γ T ξ|∇f | 2 ∂ ν η|ψ| 2 dσ dt ∓ sλ 2 Ω T ξ ± ∇ 2 f (∇f, ∇η)|ψ ± | 2 dx dt - sλ 2 4 Ω T ξ ± |∇f | 2 |∇η| 2 |ψ ± | 2 dx dt ∓ sλ 4 Ω T ξ ± |∇f | 2 ∆η|ψ ± | 2 dx dt := G 1 ± + G 2 ± + G 3 ± + G 4 ± .
By Young inequality, λ ≥ 1 and ξ ± ≥ 4 T 2 , we obtain

|G 2 ± + G 3 ± + G 4 ± | ⩽ Csλ 2 T 4 ∥∇ 2 f ∥ 2 ∞ + ∥∇f ∥ 2 ∞ Ω T ξ 3 ± |ψ ± | 2 dx dt.
Thus,

((L 1 ψ ± ) 2 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) ≥ ± sλ 4 Γ T ξ|∇f | 2 ∂ ν η|ψ| 2 dσ dt -Csλ 2 T 4 ∥∇ 2 f ∥ 2 ∞ + ∥∇f ∥ 2 ∞ Ω T ξ 3 ± |ψ ± | 2 dx dt. (4.31) 
By integration in time and ψ ± (•, 0) = ψ ± (•, T ) = 0, we have

((L 1 ψ ± ) 3 , (L 2 ψ ± ) 4 ) L 2 (Ω T ) = - 1 4ε Ω T |∇f | 2 ∂ t ψ ± ψ ± dx dt = 0. (4.32)
From (4.30),(4.31) and (4.32), we conclude that

(L 1 ψ ± , (L 2 ψ ± ) 4 ) L 2 (Ω T ) = 1⩽j⩽3 ((L 1 ψ ± ) j , (L 2 ψ ± ) 4 ) L 2 (Ω T ) ≥ ± sλ 4 Γ T ξ|∇f | 2 ∂ ν η|ψ| 2 dσ dt -Csλ 2 T 4 ∥∇ 2 f ∥ 2 ∞ + ∥∇f ∥ 2 ∞ Ω T ξ 3 ± |ψ ± | 2 dx dt. (4.33) 
Step 3. First conclusion.

Taking in account (

, for any λ ≥ λ 1 and s ≥ s 1

T ε + T 2 , we obtain (L 1 ψ ± , L 2 ψ ± ) L 2 (Ω T ) ≥ c ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt -Cε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt ∓ε 2 s 3 λ 3 Γ T ξ 3 |∇η| 2 ∂ ν ηψ 2 dσ dt -2ε 2 sλ 2 Γ T ξ|∇η| 2 ψ∂ ν ψ ± dσ dt -Cε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt + c ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt -Cε 2 sλ 2 ω ′ ×(0,T ) |∇ψ ± | 2 ξ ± dx dt ∓ 2ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt ±ε 2 sλ Γ T ξ∂ ν η|∇ψ ± | 2 dσ dt + ε Γ T ∂ t ψ∂ ν ψ ± dσ dt -Cε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt ± εs 2 λ Γ T ξ∂ t α∂ ν η|ψ| 2 dσ dt ± sλ 4 Γ T ξ|∇f | 2 ∂ ν η|ψ| 2 dσ dt -Csλ 2 T 4 ∥∇ 2 f ∥ 2 ∞ + ∥∇f ∥ 2 ∞ Ω T ξ 3 ± |ψ ± | 2 dx dt.
From (4.19), we obtain

∥L 1 ψ ± ∥ 2 L 2 (Ω T ) + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) + c ε 2 s 3 Ω T ξ 3 ± |ψ ± | 2 dx dt + c ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt + 2 B 3 ± + C 1 ± + D 1 ± + D 3 ± + E ± + F 1 ± + G 1 ± ⩽ C ∥L 3 ψ ± ∥ 2 L 3 (Ω T ) + ε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt + ε 2 sλ 2 ω ′ ×(0,T ) ξ ± |∇ψ ± | 2 dx dt + ε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt + ε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx dt +sλ 2 T 4 ∥∇ 2 f ∥ 2 ∞ + ∥∇f ∥ 2 ∞ Ω T ξ 3 ± |ψ ± | 2 dx dt . (4.34) 
The last integral in the right hand side of (4.34) can be absorbed by ñ if λ ≥ 1 and

s ≥ s 1 T 2 ε (∥∇ 2 f ∥ ∞ + ∥∇f ∥ ∞ ). Also, one can see that ε 2 s 2 λ 4 Ω T ξ 2 ± |ψ ± | 2 dx dt and ε 2 s 3 λ 2 Ω T ξ 3 ± |ψ ± | 2 dx
dt are absorbed by the same term if we take respectively s ≥ s 1 T 2 and λ ≥ λ 1 . Thus, for any λ ≥ λ 1 and s ≥ s 1

T ε + T 2 ε (∥∇ 2 f ∥ ∞ + ∥∇f ∥ ∞ ) + T 2 , we have ∥L 1 ψ ± ∥ 2 L 2 (Ω T ) + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) + c ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt +c ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt + 2 B 3 ± + C 1 ± + D 1 ± + D 3 ± + E ± + F 1 ± + G 1 ± ⩽ C ∥L 3 ψ ± ∥ 2 L 3 (Ω T ) + ε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt +ε 2 sλ 2 ω ′ ×(0,T ) ξ ± |∇ψ ± | 2 dx dt .
From (4.18), we obtain

∥L 3 ψ ± ∥ 2 L 3 (Ω T ) ⩽ C Ω T |F ± | 2 dx dt + ε 2 s 2 λ 2 Ω T ξ 2 ± |ψ ± | 2 dx dt +(∥q∥ 2 ∞ + ∥∆f ∥ 2 ∞ ) Ω T |ψ ± | 2 dx dt . (4.35) 
The second term in the right hand side of (4.35) is absorbed by ñ for s ≥ s 1 T 2 , the same goes for the last term, if we take s ≥ s 1

T 2 ε 2 3 ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3
∞ and λ ≥ 1. Finally, we obtain

∥L 1 ψ ± ∥ 2 L 2 (Ω T ) + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) + c ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt + c ε 2 sλ 2 Ω T |∇ψ ± | 2 ξ ± dx dt + 2 I ± ⩽ C Ω T |F ± | 2 dx dt + ε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt +ε 2 sλ 2 ω ′ ×(0,T ) ξ ± |∇ψ ± | 2 dx dt , (4.36) 
for any ε ∈ (0, 1),

λ ≥ λ 1 , s ≥ s 1 T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3
∞ ) + T 2 and

I ± := B 3 ± + C 1 ± + D 1 ± + D 3 ± + E ± + F 1 ± + G 1 ± . (4.37) 
Step 4. Elimination of the integral of |∇ψ ± | 2 on the right-hand side of (4.36). We start by adding integral of |∆ψ ± | 2 to the left-hand side of (4.36), so that we can eliminate the last term in the right-hand side of (4.36). Using (4.17

), ξ ± ≥ 4 T 2 , s ≥ s 1 T 2 and |∂ t α ± | ⩽ T ξ 2 ± , we obtain ε 2 s -1 Ω T ξ -1 ± |∆ψ ± | 2 dx dt ⩽ C ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt + sT 2 Ω T ξ 3 ± |ψ ± | 2 dx dt + ∥∇f ∥ 4 ∞ s -1 ε 2 Ω T ξ -1 ± |ψ ± | 2 dx dt + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) .
Hence

ε 2 s -1 Ω T ξ -1 ± |∆ψ ± | 2 dx dt ⩽ C ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt + ∥L 2 ψ ± ∥ 2 L 2 (Ω T ) ,
for all λ ≥ 1 and s ≥ s 1

T ε + ∥∇f ∥ ∞ T 2
ε + T 2 . Consequently, we deduce from (4.36) that

ε 2 s -1 Ω T ξ -1 ± |∆ψ ± | 2 dx dt + ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt + ε 2 sλ 2 Ω T |∇ψ ± | 2 ξ ± dx dt + c I ± ⩽ C Ω T |F ± | 2 dx dt + ε 2 s 3 λ 4 ω ′ ×(0,T ) ξ 3 ± |ψ ± | 2 dx dt +ε 2 sλ 2 ω ′ ×(0,T ) |∇ψ ± | 2 ξ ± dx dt , for any λ ≥ λ 1 , s ≥ s 1 T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 ∞ ) + T 2 .
We are now ready to eliminate the last term in the right-hand side of (4.36), let us introduce a cut-off function, between ω ′ and ω. More precisely, let θ ∈ C 2 (ω) be a positive function such that θ = 1 in ω ′ . Integrating by parts and with Cauchy-Schwarz inequality we can obtain that:

for any λ ≥ λ 1 , s ≥ s 1 T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3
∞ ) + T 2 . we have:

ε 2 s -1 Ω T ξ -1 ± |∆ψ ± | 2 dx dt + ε 2 s 3 λ 4 Ω T ξ 3 ± |ψ ± | 2 dx dt +ε 2 sλ 2 Ω T ξ ± |∇ψ ± | 2 dx dt + c I ± ⩽ C Ω T |F ± | 2 dx dt + ε 2 s 3 λ 4 ω×(0,T ) ξ 3 ± |ψ ± | 2 dx dt , (4.38) for any λ ≥ λ 1 , s ≥ s 1 T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 ∞ ) + T 2 .
Step 5. Simplification of the boundary terms. By summing (4.38) for i = +, -, we obtain

ε 2 s 3 λ 4 Ω T ξ 3 + |ψ + | 2 dx dt + ε 2 sλ 2 Ω T ξ + |∇ψ + | 2 dx dt + c (I + + I -) ⩽ C Ω T |F + | 2 + |F -| 2 dx dt + ε 2 s 3 λ 4 ω×(0,T ) ξ 3 + |ψ + | 2 + ξ 3 -|ψ -| 2 dx dt . (4.39)
From the definitions of ξ ± and α ± , we have ξ -⩽ ξ + and α + ⩽ α -in Ω T .

Then, the estimate (4.39) gives

ε 2 s 3 λ 4 Ω T ξ 3 + |ψ + | 2 dx dt + ε 2 sλ 2 Ω T ξ + |∇ψ + | 2 dx dt + c (I + + I -) ⩽ C Ω T |F + | 2 dx dt + ε 2 s 3 λ 4 ω×(0,T ) ξ 3 + |ψ + | 2 dx dt .
Before simplifying I + + I -, we turn back to our original function Φ. From (4.11), we deduce that Applying the triangular inequality to this identity, we find

ε 2 s 3 λ 4 Ω T exp(-2sα + )ξ 3 + |Φ| 2 dx dt +ε 2 sλ 2 Ω T |∇ψ + | 2 ξ + dx dt + c (I + + I -) ⩽ C Ω T exp(-2sα + )|∂ t Φ + ε∆Φ -q f,ε Φ| 2 dx dt
ε 2 sλ 2 Ω T exp(-2sα + )ξ + |∇Φ| 2 dx dt ⩽ C ε 2 sλ 2 Ω T ξ + |∇ψ + | 2 dx dt + ε 2 s 3 λ 4 Ω T exp(-2sα + )ξ 3 + |Φ| 2 dx dt .
Consequently, we can add the previous integral of |∇Φ| 2 to the left-hand side of (4.40):

ε 2 s 3 λ 4 Ω T exp(-2sα + )ξ 3 + |Φ| 2 dx dt +ε 2 sλ 2 Ω T exp(-2sα + )ξ + |∇Φ| 2 dx dt + c (I + + I -) ⩽ C Ω T exp(-2sα + )|∂ t Φ + ε∆Φ -q f,ε Φ| 2 dx dt +ε 2 s 3 λ 4 ω×(0,T ) exp(-2sα + )ξ 3 + |Φ| 2 dx dt . (4.41)
Next, we will simplify I + + I -. it is clear that

B 3 + + B 3 -= 0, F 1 + + F 1 -= 0 and G 1 + + G 1 -= 0. (4.42) From |∇ψ ± | 2 = |∇ Γ ψ ± | 2 + |∂ ν ψ ± | 2
and (4.12), we obtain

D 3 ± = ±ε 2 sλ Γ T ξ∂ ν η|∇ Γ ψ| 2 dσ dt ± ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt, then D 1 ± + D 3 ± = ±ε 2 sλ Γ T ξ∂ ν η|∇ Γ ψ| 2 dσ dt ∓ ε 2 sλ Γ T ξ∂ ν η|∂ ν ψ ± | 2 dσ dt,
therefore, from (4.15) we obtain

j∈{+,-} D 1 j + D 3 j = ε 2 sλ Γ T ξ∂ ν η |∂ ν ψ -| 2 -|∂ ν ψ + | 2 dσ dt = -4ε 2 s 2 λ 2 Γ T |∂ ν η| 2 ξ 2 exp(-sα)ψ∂ ν Φ dσ dt = 4εs 2 λ 2 Γ T β f |∂ ν η| 2 ξ 2 exp(-2sα)|Φ| 2 dσ dt. (4.43)
From (4.15), we also obtain On the other hand, from (4.15) and (4.13), we get 

C 1 + + C 1 - = -2ε 2 sλ 2 Γ T |∇η| 2 ξψ (∂ ν ψ + + ∂ ν ψ -) dσ dt = -4ε 2 sλ 2 Γ T
E + + E -= ε Γ T ∂ t ψ (∂ ν ψ + + ∂ ν ψ -) dσ dt = 2ε Γ T ∂ t ψ exp(-sα)∂ ν Φ dσ dt = -2 Γ T β f ∂ t ψψ dσ dt = 0, ( 4 
I + + I -= 4εsλ 2 Γ T β f |∂ ν η| 2 ξ + sξ 2 exp(-2sα)|Φ| 2 dσ dt.
The estimate (4.41) and β f ≥ 0 implies the following

ε 2 s 3 λ 4 Ω T exp(-2sα + )ξ 3 + |Φ| 2 dx dt + ε 2 sλ 2 Ω T exp(-2sα + )ξ + |∇Φ| 2 dx dt +4εsλ 2 Γ T β f |∂ ν η| 2 ξ + sξ 2 exp(-2sα)|Φ| 2 dσ dt ⩽ C Ω T exp(-2sα + )|∂ t Φ + ε∆Φ -q f,ε Φ| 2 dx dt +ε 2 s 3 λ 4 ω×(0,T ) exp(-2sα + )ξ 3 + |Φ| 2 dx dt , (4.47) 
for any Φ ∈ Z, λ ≥ λ 1 and

s ≥ s 1 T ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 ∞ ) + T 2 .
Finally, we obtain the estimate (4.10) by density as explained before its proof.

Under the same conditions of the previous proposition, we have the following Corollary 1. There exists a constant C > 0 depending only on Ω, ω, such that

Ω×( T 4 , 3T 4 ) |φ(x, t)| 2 dx dt ⩽ κ ω×(0,T ) |φ(x, t)| 2 dx dt, (4.48) 
for a constant κ of the form 

κ = C exp C 1 εT + 1 ε ∥f ∥ ∞ + ∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥
ε + T 2 ε (∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 
∞ ) + T 2 are fixed and C > 0 depending only on Ω and ω. Taking lower and upper estimates with respect to x of the weight functions, we have

Ω×(0,T ) F (t)|Φ| 2 dx dt ≤ C ω×(0,T ) G(t)|Φ| 2 dx dt,
where

F (t) = exp -2s max x∈Ω α + (x, t) min x∈Ω ξ + (x, t) 3 = exp -2s exp(6λ) -exp(4λ) t(T -t) exp(12λ) (t(T -t)) 3 , G(t) = exp -2s min x∈Ω α + (x, t) max x∈Ω ξ + (x, t) 3 = exp -2s exp(6λ) -exp(5λ) t(T -t) exp(15λ) (t(T -t)) 3 .
It is easy to check that the function G admits a maximum on [0, T ] at t = T 2 and F admits a minimum on T 4 , 3T 4 at t = T 4 or 3T 4 . Thus

Ω×( T 4 , 3T 4 
)

|Φ| 2 dx dt ≤ C G T 2 F ( T 4 ) ω×(0,T ) |Φ| 2 dx dt.
From the expressions of F and G, we obtain

Ω×( T 4 , 3T 4 
) In this subsection we will prove a very important dissipation result which will lead the proof of Theorem 1.1.

|Φ| 2 dx dt ≤ C exp C 1 ε T + 1 ε ∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥
Proposition 4.3. Let ε > 0, T > 0 and assume that β f ≥ 0. Then, there exists C > 0 depends only on Ω such that for all T 0 ∈ (0, T ] and φ T ∈ L 2 (Ω), the solution of the adjoint system (1.4) verify the following dissipation estimates:

∥φ(•, 0)∥ L 2 (Ω) ⩽ C exp ∥q∥ ∞ + ∥∆f ∥ ∞ 2 T + ∥f ∥ ∞ -E 0 T 0 + 1/T 0 ε ∥φ(•, t)∥ L 2 (Ω) , (4.49 
)

for all t ∈ [T 0 , T ].
Proof. According to the spectral decomposition (2.11) of φ, we obtain

φ(•, 0) = ∞ n=1 exp -λ (ε) n t Ω exp f (ξ) 2ε φ(ξ, t)ϕ (ε) n (ξ)dξ ϕ (ε) n (•) exp -f (•) 2ε .
Using the triangle inequality, the Cauchy-Schwarz inequality and ∥ϕ

(ε) n ∥ L 2 (Ω) = 1, we obtain the following estimate ∥φ(•, 0)∥ L 2 (Ω) ⩽ ∞ n=1 exp -λ (ε) n t exp ∥f ∥ ∞ ε ∥φ(•, t)∥ L 2 (Ω) .
From Proposition 2.4, E 0 ≥ 0 and λ n ≥ 0, for all n ≥ 1, we find

∥φ(•, 0)∥ L 2 (Ω) ⩽ ∞ n=1 exp -ελ n t + ∥q∥ ∞ + ∥∆f ∥ ∞ 2 t - E 0 ε t exp ∥f ∥ ∞ ε ∥φ(•, t)∥ L 2 (Ω) , ⩽ exp ∥q∥ ∞ + ∥∆f ∥ ∞ 2 t + ∥f ∥ ∞ -E 0 t ε ∞ n=1 exp (-ελ n t) ∥φ(•, t)∥ L 2 (Ω) . ⩽ exp ∥q∥ ∞ + ∥∆f ∥ ∞ 2 T + ∥f ∥ ∞ -E 0 T 0 ε ∞ n=1 exp (-ελ n T 0 ) ∥φ(•, t)∥ L 2 (Ω) , (4.50) 
for all t ∈ [T 0 , T ]. In order to increase the series in the right hand side of (4.50), we consider the partition (I k ) k≥1 of N * defined by

I k := {n ≥ 1 : λ n ∈ [k -1, k)} and (2.15), we obtain ∞ n=1 exp (-ελ n T 0 ) = ∞ k=1 n∈I k exp (-ελ n T 0 ) ⩽ ∞ k=1 n∈I k exp (-ε(k -1)T 0 ) = ∞ k=1 #I k exp (-ε(k -1)T 0 ) ⩽ C ∞ k=1 k N exp (-ε(k -1)T 0 ) . ( 4 

.51)

Considering that z → z N e -cN is increasing in [0, N/c] and decreasing in [N/c, +∞), we have that:

∞ k=1 k N exp (-εkT 0 ) ≤ 2 +∞ 0 x N e -εxT0 dx = 2 (εT 0 ) N -1 +∞ 0 y N e -y dy = 2(N !) (εT 0 ) N -1 . (4.52)
From (4.50), (4.51) and (4.52), we obtain

∥φ(•, 0)∥ L 2 (Ω) ⩽ C exp ∥q∥ ∞ + ∥∆f ∥ ∞ 2 T + ∥f ∥ ∞ -E 0 T 0 + 1/T 0 ε ∥φ(•, t)∥ L 2 (Ω) ,
for some C > 0 depending only on Ω. Hence the requested estimate.

Proof of Theorem 1.1. From the estimates (4.48) and (4.49), there exists a constant C > 0 depending only on Ω, ω, such that

Ω×( T 4 , 3T 4 ) |φ(x, t)| 2 dx dt ⩽ C exp C (1/T + C(f, q)) ε ω×(0,T ) |φ(x, t)| 2 dx dt and ∥φ(•, 0)∥ L 2 (Ω) ⩽ C exp µ T + ∥f ∥ ∞ -E 0 T /4 + 4/T ε ∥φ(•, t)∥ L 2 (Ω) ∀t ∈ T 4 , T , (4.53) where µ := ∥q∥ ∞ + ∥∆f ∥∞ 2 and C(f, q) := ∥f ∥ ∞ + ∥∇f ∥ ∞ + ∥∇ 2 f ∥ ∞ + ∥∆f ∥ 2 3 ∞ + ∥q∥ 2 3 ∞ . Integrating ∥φ(•, 0)∥ 2 L 2 (Ω) in (4.53) on T 4 , 3T 4 , we obtain ∥φ(•, 0)∥ 2 L 2 (Ω) ⩽ 2C 3 exp(2µ T ) T exp -C(f, q, T ) ε ω×(0,T ) |φ(x, t)| 2 dx dt, (4.54) where C(f, q, T ) := -2∥f ∥ ∞ -C.C(f, q) + E 0 T /2 -(8 + C)/T .
Since E 0 > 0, then there exists T 1 > 0, such that, for all T ≥ T 1 , C(f, q, T ) > 0. Finally, we obtain (1.6) from (1.5) and (4.54). Remark 6. We can notice that the results of Sections 2 and 3 are still true, if we replace β by β ε , assuming that (β ε ) 0<ε⩽ε0 ⊂ L ∞ (Γ) for some ε 0 > 0. In particular the control cost decreases exponentially when the viscosity vanishes and the control time is sufficiently large of the following system

     ∂ t y -ε∆y + X • ∇y + q y = v(x, t)1 ω in Ω T , ∂ ν y + a ε (x)y = 0 on Γ T , y(x, 0) = y 0 (x) in Ω, where X = ∇f , f ∈ W 2,∞ (Ω), q ∈ L ∞ (Ω), a ε ∈ L ∞ (Γ) such that ∂ν f 2ε + a ε ≥ 0 on Γ for all 0 < ε ⩽ ε 0 and E 0 = min Ω |∇f | > 0.
Remark 7. In [START_REF] Et-Tahri | On uniform nullcontrollability of tangential transport-diffusion equations with vanishing viscosity limit[END_REF], we proved uniform controllability in ε by Agmon's approach under a transport orthogonal to the normal vector and Neumann boundary conditions, whereas in this work, the boundary conditions are more general (Robin boundary conditions), the transport is not necessarily orthogonal, the assumed conditions are clear and the results found are more robust than uniform controllability.

5. Exponential explosion of the null controllability cost. The objective of this section is to prove our second main result Theorem 1.2. Our proof is based on the construction of a specific solution φ of the adjoint system (1.4), for which we

obtain exp C ε = O ε→0 ∥φ(•, 0)∥ L 2 (Ω)
∥φ∥ L 2 (ω T ) .

5.1.

A stationary solution of (2.5). Using the change (2.4), we are looking for a stationary solution Φ (independent of t) of (2.5). This solution will be an eigenfunction of the operator A ε associated with the eigenvalue 0. The following proposition answers this question in the case q ≥ 0 and β ≥ 0. (2) λ (ε) 1 = 0 ⇐⇒ q = 0 and β = 0. In this case, Φ := exp -f 2ε is an eigenvector of A ε associated to the eigenvalue 0.

Proof. From (2.9), we have λ Recall that q f,ε = q

+ V ε -∆f 2 , V = |∇f | 2 4
and β f = ∂ν f 2 + β. (1) Let y ∈ D(A ε ), by positivity of q and β, an integration by parts, inequalities of Cauchy-Schwarz and the Young, we obtain: Remark 9. (Open problem). We have used that the vector field X is a gradient vector field to symmetrize the system adjoint in order to use the spectral decomposition of the adjoint system solution, which implies a very strong dissipation result, and also to find stationary solutions. An interesting question arises, whether results similar to Theorems 1.1 and 1.2 remains true for a general vector fields X belonging to L ∞ (Ω).

a ε (y, y) ≥ ε Ω |∇y| 2 dx + Ω V ε - ∆f 2 |y| 2 dx + Γ ∂ ν f 2 

  ) Φµ (•, t) := ϕ -T t ψ(•, s) ds t ∈ [0, T ]. (4.7) Using (4.4)-(4.7) and Φ(•, t) = Φ T -T t ∂ t Φ(•, s) ds, we obtain Φµ ∈ Z and

. 23 )From ( 4 .

 234 21), (4.22), (4.23) and λ ≥ 1, we obtain

+ε 2 s 3 λ 4

 4 ω×(0,T ) exp(-2sα + )ξ 3 + |Φ| 2 dx dt . (4.40)For ∇Φ, we use the identity given in (4.14), we have exp(-sα + )∇Φ = ∇ψ + -sλξ + ∇ηψ + ,

|∇η| 2 2 Γ T β f |∇η| 2 ξ 1 j + D 1 j + D 3 j = 4εsλ 2 Γ

 2221132 ξψ exp(-sα)∂ ν Φ dσ dt = 4εsλ exp(-2sα)|Φ| 2 dσ dt. (4.44) Since, η = 0 on Γ, from (4.43) and (4.44), we have j∈{+,-} C T β f |∂ ν η| 2 ξ + sξ 2 exp(-2sα)|Φ| 2 dσ dt. (4.45)

  .46) since β f does not depend on the time variable and ψ(•, 0) = ψ(•, T ) = 0. By consideration of (4.37), (4.42), (4.45) and (4.46), we obtain

  From the Carleman estimate (4.10), we obtain Ω×(0,T ) exp (-2sα + ) ξ 3 + |Φ| 2 dx dt ≤ C ω×(0,T ) exp (-2sα + ) ξ 3 + |Φ| 2 dx dt, where λ = λ 1 and s = s 1 T

|Φ| 2 4 . 2 .

 242 dx dt, where C > 0 depending only on Ω and ω. Using Φ(•, t) = exp f (•) 2ε φ(•, t), we deduce the estimate (4.48). Dissipation result and proof of Theorem 1.1.

Proposition 5 . 1 .

 51 Let q ≥ 0 and β ≥ 0, then (1) σ(A ε ) ⊂ [0, +∞). i.e. λ

  ∥y∥ L 2 (Ω) =1 a ε (y, y), where a ε (y, y) = ε Ω |∇y| 2 dx + Ω q f,ε |y| 2 dx + Γ β f |y| 2 dσ.

5 . 2 .∂

 52 ⇐⇒ ∃y ∈ D(A ε ) \ {0} , a ε (y, y) = 0. Let y ∈ D(A ε ) \ {0}, from the first point, when a ε (y, y) = 0, the inequalities (5.1), (5.2) and (5.3) become equalities, thena ε (y, y) = 0 ⇐⇒ 2ε = ε|∇y| 2 + |y∇f | 2 4ε. Using the equality case in Cauchy-Schwarz and Young inequality, we finda ε (y, y) = 0 ⇐⇒    Ω q|y| 2 dx + Γ β|y| 2 dσ = 0, ∇y = -y2ε ∇f. Since q ≥ 0, β ≥ 0, y ̸ = 0 in the domain Ω (note that y ∈ D(A ε ) \ {0} implies that y ̸ = 0 on Γ), then a ε (y, y) = 0 ⇐⇒ q = 0 and β = 0,∃c ∈ R \ {0} , y = c exp -f 2ε .Proof on Theorem 1.2. We consider (1.1) with pure Neumann boundary conditions and without potential, that is β = 0 and q = 0. In this case (1t y -ε∆y + ∇f (x)• ∇y = v(t, x)1 ω in Ω T , ∂ ν y = 0 on Γ T , y(x, 0) = y 0 φ -ε∆φ -∇f (x) • ∇φ + -∆f φ = 0 in Ω T , ε ∂ ν φ + ∂ ν f φ = 0 on Γ T , φ(x, T ) = φ T (x) in Ω.

(5. 5 ) 8 .+ 1 √ ε + 1 √ 2 (≥ 2 L 2 (From ( 1 . 5 )f

 581122215 Remark The condition f (ω) ⊂ (m f +h, M f ) implies that there is a heat transfer by transport in the uncontrolled part Ω \ ω, the control acts on the region ω, then we cannot control this transfer, this explains the exponential explosion of the null controllability cost. It is necessary to have the exponential decrease of the controllability cost, for example when Ω = ω, we can show that the null controllability cost of (5.4) is increased by a quantity of the form C 1 + √ ε T whatever T > 0 and ε > 0 for C > 0 independent of ε and T .Proof of Theorem 1.2. Let q = 0 and β = 0, from Proposition 5.1, Φ = exp -f 2ε , then φ = exp -f ε is a solution of (5.5). On the one hand∥φ(•, 0)∥ 2 L 2 (Ω) = ∥φ∥ 2 L Ω∩{f ∈(m f ,m f +h/2)} exp -2f ε dx ≥ |Ω ∩ {f ∈ (m f , m f + h/2)}| exp -2m f + h ε .(5.6)On the other hand, using f (ω) ⊂ (m f + h, M f ), we obtain ∥φ∥ , (5.6) and (5.7), we obtainK(Ω, ω, T, ε) ≥ ∥φ(•, 0)∥ L 2 (Ω) ∥φ∥ L 2 (ω×(0,T )) ≥ |Ω ∩ {f ∈ (m f , m f + h/2= m f and f is continuous on Ω, then Ω ∩ f -1 (m f , m f + h/2) is anonempty open subset of Ω, thus |Ω ∩ f -1 (m f , m f + h/2)| > 0.
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