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Par une méthode de sériation appliquée à une matrice binaire, on essaye de retrouver l'ordre chronologique des Prêtres d'Hélios de l'île de Rhodes à la période hellénistique. La table binaire est celle de la correspondance entre ces magistrats changés chaque année et des fabricants de vin qui exportaient leur production dans des amphores marquées de leurs deux sceaux. L'optimisation d'un critère sur l'ensemble des ordres de 205 prêtres permet d'établir une chronologie compatible avec les données archéologiques connues.

Introduction to the special issue on Graph and Network Analysis

Vincent LABATUT *1,2 I INTRODUCTION This fifth issue of the Journal of Interdisciplinary Methodologies and Issues in Science (JIMIS) is dedicated to methods designed for the analysis of graphs and networks, as well as to applied works relying on the analysis of graphs and networks in specific domains. Its guest editor is Vincent Labatut (cf. Section III for affiliations and other details). This issue can be considered as a follow-up of the second issue of JIMIS, which focused on the modeling of social systems through graphs [START_REF] Labatut | Introduction to the special issue on Graphs & Social Systems[END_REF]. Like before, it includes strongly interdisciplinary works. In addition, this issue widens the scope of the considered problems and systems, as the focus is not only on social systems anymore.

Graphs constitute a very generic modeling tool, which can be used to represent any system constituted of interacting or inter-related objects. This covers most of the scientific domains, which explains the popularity of graphs as a modeling framework. Thanks to this generic nature, it is possible to take a method designed to handle a specific system, and use it in a completely different context (with various levels of adjustment). For instance, [START_REF] Dugué | A community role approach to assess social capitalists visibility in the twitter network[END_REF] worked with a method initially designed by [START_REF] Guimerà | Functional cartography of complex metabolic networks[END_REF] to detect functionally important proteins in biological networks, and adapted it to identify key-players in Twitter. However, due to lexical, methodological and cultural differences, being aware of the methods developed in other fields can be truly challenging for a researcher.

As with the previously mentioned issue, the goal of this special issue is to try to bridge this gap, by exposing researchers from Computer Sciences and from Humanities and Social Sciences to different tools and usages of the concept of graph, coming from out of their field. The selected articles describe graph analysis methods and models, as well as their application to specific historical, social and geographical systems.

II IN THIS ISSUE

This issue is the continuation of MARAMI 20181 (Modèles & Analyse des Réseaux : Approches Mathématiques & Informatiques), the French conference on graph and network analysis, that took place in Avignon, France from the 17 th to the 19 th of October, 2018. However, in order to widen the audience, the call for paper was open to people that did not participate in the event. Therefore, some of the papers presented in this issue are extended versions of oral communications that took place during the conference, whereas others are new submissions.

We initially received a total of 10 submissions, 5 of which went all the way through the editorial process. This includes two rounds of reviews by two to three reviewers representing at least two disciplines, in order to give the authors both methodological and application-related feedback. The 5 articles constituting this special issue cover a large scientific range, from theoretical to applied aspects, and a variety of topics, including historical, geographic, and social networks.

In his article Sur la chronologie des Éponymes rhodiens (in French), Alain [START_REF] Guénoche | Sur la chronologie des Éponymes Rhodiens[END_REF] tackles a historical problem, consisting in chronologically ordering so-called Rhodian Eponyms. Those are priests of the god Helios, located on the island of Rhodes during the Hellenistic period. A. Guénoche formulates this task as a seriation problem, by leveraging a recently elaborated epigraphic corpus (Cankardes ¸-S ¸enol, 2017). These data rely on stamps found on amphorae, and describing a correspondence between Eponyms and winemakers. A. Guénoche proposes a new heuristic to solve this very interesting and original problem, which is related to more classic scheduling problems.

Armel Jacques Nzekon Nzeko'o, Maurice Tchuente & Matthieu Latapy (2019) focus on a completely different problem in their article entitled A General Graph-based Framework for Top-N Recommendation Using Content, Temporal and Trust Information. They consider the recommendation of appropriate items to users of e-commerce platforms, based on their browsing, purchasing and streaming history. They propose a graph-based method called GraFC2T2, which allows combining heterogeneous types of information in a single model, including content-based features, the evolution of the users' preferences, and their trust relationships. They show how to take advantage of this model to perform recommendation, through a variant of the PageRank measure [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF].

The work presented by Thibaud Arnoux, Lionel Tabourier & Matthieu Latapy (2019) in Predicting Interactions Between Individuals with Structural and Dynamical Information is more methodological than the other articles of this issue. They deal with the problem of predicting the amount of activity between two elements of a dynamic system. They adopt a link stream model to represent the system, which can be viewed as a very extreme case of dynamic network, as it corresponds to a sequence of time-stamped edges, each one representing a time-limited relationship or interaction between two vertices. T. Arnoux et al. leverage a variety of measures to perform their prediction based on the history of the link stream, and show the accuracy of their method by applying it to a collection of real-world datasets.

Andrey Grunin (2019) uses graphs to assess the validity of several historical research assumptions in his article Réseau politique des agents du pouvoir central : lexemple des missi dominici (in French). His goal is to study the organization of the missi dominici, some agents of the central authority established by the Caroligian dynasty during the Early Middle Ages. For this purpose, he develops several models of their political network, and proposes a multimodal method to analyze them. It allows to consider simultaneously different types of information (spatial distances, family ties, connections to places and sovereigns, time) while taking into account a common characteristic of historical data: its incomplete nature.

The article Multi-Dimensional Urban Network Percolation by Juste [START_REF] Raimbault | An urban morphogenesis model capturing interactions between networks and territories[END_REF] focuses on network percolation as a means to characterize the hierarchical structure of urban systems. In order to take into account the various aspect of this structure, J. Raimbault adopts a multidimensional approach allowing to consider both the spatial distribution of the population and the topology of the transportation networks. He applies his method to the European urban system to identify endogenous mega-urban regions, and shows that varying the parameters of the percolation allows considering different definitions of the notion of urban region, and could be leveraged to study sustainability issues.

I INTRODUCTION

Le but de cette étude est d'établir la chronologie des Prêtres d'Hélios de l'île de Rhodes à la période hellénistique, entre -323 et -40. Ces magistrats étaient changés tous les ans, c'est pourquoi ils sont dits éponymes car ils ont donné leur nom à l'année de leur exercice [START_REF] Grace | The Eponyms Named on Rhodian Amphora Stamps[END_REF][START_REF] Finkielsztejn | Chronologie détaillée et révisée des éponymes amphoriques rhodiens de 270 à 108 av. J.-C. environ[END_REF]. Leur chronologie précise s'est perdue mais l'on dispose d'informations sur leur période d'activité, grâce à la morphologie des amphores, à la paléographie et aux données stratigraphiques ou épigraphiques. Six à sept périodes ont été définies par les archéologues elles mêmes découpées en sous-périodes. Pour rétablir une chronologie fine, qui permettrait de dater à l'année certaines couches stratigraphiques [START_REF] Grace | The Middle Stoa Dated by Amphora Stamps[END_REF], nous voulons utiliser de nouvelles données. Ce sont les correspondances entre éponymes et fabricants (de vin) qui proviennent des timbres imprimés sur les anses des amphores avant cuisson. Chaque col d'amphore retrouvé avec ses deux anses porte les noms du fabricant qui a produit ce vin et du magistrat en poste cette année là.

Ces paires de timbres définissent une correspondance entre ces deux ensembles, que l'on peut coder dans une table binaire : les lignes correspondent aux magistrats et les colonnes aux fabricants. Cette table est initialisée à 0 et chaque fois que l'on découvre un col d'amphore portant leurs deux noms la case correspondante prend la valeur 1, quel que soit le nombre d'amphores trouvées qui attestent de la même correspondance.

L'hypothèse fondamentale est de supposer qu'un fabricant a produit du vin pendant un certain nombre d'années et qu'il a donc travaillé sous la gouvernance de magistrats consécutifs qui se succèdent durant ces années là. Les éponymes avec qui il a co-signé des amphores constituent donc un intervalle de temps. Ce modèle parfait suppose que, si les lignes de la table sont ordonnées suivant l'ordre chronologique des magistrats, chaque colonne a tous ses 1 consécutifs, qui correspondent à la période de production de ce fabricant. Le modèle est en défaut dès qu'il y a un 0 dans cet intervalle, soit que l'on n'ait pas retrouvé d'amphore marquant leur correspondance, soit que ce fabricant ait perdu sa récolte cette année là, événement que l'on peut supposer rare.

C'est ce qu'on appelle un problème de sériation, terme qui vient de l'Archéologie, où l'on cherche à ranger des items dans l'ordre chronologique. Il est raisonnable de chercher l'ordre des éponymes en optimisant le nombre de 0 entre le premier et le dernier 1 de chaque colonne. On peut donc considérer l'ordre qui minimise ce critère comme une bonne hypothèse de chronologie. Il est clair que l'ordre calculé et l'ordre opposé ont la même valeur, mais les périodes connues serviront à trancher. Ce critère est identique à celui de J. E. [START_REF] Doran | Computer analysis of data from the La Tène cemetery at Müsingen-Rain[END_REF] qui, pour ordonner des tombes (lignes) d'après leur contenu (colonnes) en type d'objets aux styles évolutifs, cherchait à minimiser la somme des différences entre les rangs des premiers et derniers 1, puisque le nombre de 1 de chaque colonne est fixé par les données.

Cet objectif s'applique à d'autres problèmes plus classiques en Recherche Opérationnelle, en particulier celui des emplois du temps où l'on cherche à minimiser, pour des employés, la durée de présence sans activité au sein d'une entreprise (lycée, hôpital, etc.) [START_REF] Laporte | Solving a family of permutation problems on 0-1 matrices[END_REF]. De même, minimiser la "largeur de bande" d'une matrice, correspondant aux positions extrêmes des valeurs non nulles, permet d'accélérer les calculs en analyse numérique [START_REF] Lascaux | Analyse numérique appliquée à l'art de l'ingénieur[END_REF]. C'est pourquoi des solutions classiques existent. Le problème a été prouvé NP-difficile par réduction au problème du Voyageur de Commerce (TSP) [START_REF] Lin | Computer Solution of the Travelling Salesman Problem[END_REF]. Rien ne prouve que la valeur optimale trouvée corresponde à un ordre unique, ni même que des valeurs proches de l'optimum ne correspondent pas au véritable ordre des successions. On veut seulement que l'ordre calculé soit suffisamment proche de l'ordre chronologique pour affiner la datation des couches dans les fouilles archéologiques. Nous avons donc testé des méthodes approchées [START_REF] Goldmann | Zwei Methoden chronologischer Gruppierung[END_REF]; [START_REF] Him | Correspondence Analysis and Gaussian Ordination[END_REF], [START_REF] Gelfand | Seriation methods for archaeological materials[END_REF], [START_REF] Lin | Computer Solution of the Travelling Salesman Problem[END_REF]). C'est une heuristique toute différente que nous développons en Section IV.

II DES DONN ÉES SUFFISANTES ?

La correspondance, a été établie principalement par Jean-Yves Empereur, fondateur du Centre d' Études Alexandrines, (CEAlex, USR 3134, CNRS) et Gonca Cankardes ¸-S ¸enol (2017) (Université d'Izmir) après examen des amphores dans différents dépôts ; ils y travaillent toujours et le corpus est accessible sur le site du CEAlex 1 où l'on peut voir de nombreux timbres et cols d'amphores. Nous avons, fin 2017 après les dernières communications privées, 219 éponymes et 463 fabricants mais tous ne sont pas reliés dans cette correspondance. Beaucoup de fabricants n'apparaissent qu'avec un seul prêtre et ils n'apportent aucune information chronologique. De plus, le critère envisagé impose que tout fabricant soit en relation avec au moins deux éponymes pour compter les 0 intercalés entre le premier et le dernier 1. Donc les fabricants présents une seule fois sont éliminés. De même, si un magistrat n'est cité qu'avec un fabricant éliminé, il n'a plus de correspondance et il doit aussi être écarté. Nous avons retenu dans la table les fabricants qui ont au moins deux correspondances et les éponymes qui en ont au moins une.

Ainsi, les magistrats BAKCHIOS, THEULYTOS, TIMOKRATES, LYKON et TIMAGO-RAS2 sont éliminés. De même, un groupe de 9 éponymes de la période la plus ancienne qui possèdent des fabricants sans aucune correspondance avec les autres. C'est un groupe à part, qu'il faut aussi éliminer parce qu'il est incomparable aux autres. Il s'agit de AGELOCHOS, ALEX(, ARIS(, ARISTOKRATES1, DAMO(, KLEAGORAS/KLEIAGORAS, KLEU(, LYSI-MACHOS et TIMO(.

Les archéologues s'entendent pour un découpage du temps en sept périodes, mais ne sont pas tout à fait d'accord sur les limites. Nous nous sommes tenus aux dates dites "basses". Par rapport aux périodes "hautes", les périodes IV, V, VI et VII sont les mêmes. , Ib , 2. IIa , IIb , , IIIb , IIIc , IIId , IIIe , IVb , Vb , Vc [120-108],

6. VI [107-86], et 7. VII Pour aider à la lecture, les périodes figurent à coté du nom et, désormais, l'identifiant d'un éponyme est de type PHILOKRATES IIa ou encore SOSIDAMOS Ia/b et ZENODOTOS VI/VII quand il y a incertitude.

Les correspondances de certains fabricants, avec des éponymes de périodes trop éloignées pour qu'il s'agisse d'un même personnage, nous ont amené à éliminer les fabricants F122 (présent en Vb et IIa), F304 (qui saute de Vc à IIb/IIIa), F333 (Vb et Ia/b), F339 (Va, IIIb) et F437 (IIIb et IVb) qui n'avaient que deux correspondances très séparées dans le temps. De plus, lorsqu'un fabricant présente plusieurs correspondances avec des éponymes d'une époque et une seule avec un magistrat de période éloignée, nous avons supprimé cette dernière correspondance (mais laissé les autres). Il n'y en a que 5 : HARMOSILAS IIb/IIIa x F167, AGESTRATOS2 IVa x F96, EUDAMOS IVb x F318, SOKRATES VI x F245 et NIKASAGORAS IIa x F207. Ce dernier n'étant en correspondance qu'avec ce fabricant, il est retiré. Bien des doutes demeurent, comme pour F115 (Va, IIId), F212 (de IVa à IIb) ou F250 (de Vb à IIId).

Finalement, il reste 205 éponymes et 149 fabricants qui attestent de 991 correspondances. Ce qui fait en moyenne 4,8 fabricants par éponyme et/ou 6,6 éponymes par fabricant. Mais les valeurs sont très variables, puisqu'un des fabricants a exercé sous 43 magistrats, un autre sous 41, ce qui leur fait une longévité professionnelle remarquable. Par ailleurs, 36 fabricants ont un minimum de 2 correspondances ! De plus ces 2 correspondances peuvent porter sur des magistrats de périodes assez éloignées qui font douter d'une seule personne. Il y a certainement, chez les fabricants principalement, des homonymes ou des filiations qui font que la table des correspondances n'est pas parfaitement fiable.

III M ÉTHODES POUR LA S ÉRIATION

Étant donnée une table binaire T (à valeurs 0 ou 1) à N lignes et M colonnes, le critère à optimiser, noté N bZ, est le nombre de 0 compris entre le premier et les dernier 1 de chaque colonne. Pour la colonne k, notons H k et B k , les rangs des lignes les plus hautes et les plus basses qui contiennent ces 1 ; ce sont les bords de l'intervalle correspondant au fabricant k. Le nombre de zéros dans cette colonne est égal à la différence des rangs, moins la somme des valeurs de la colonne, puisqu'il n'y a que des 0 ailleurs. On peut donc écrire :

N bZ(T ) = M k=1 B k i=H k (1 -T (i, k)). (1) 
On cherche à déterminer un ordre sur les lignes de la correspondance tel que la table ainsi ordonnée minimise N bZ. Il y a donc N !/2 possibilités, étant admis qu'un ordre et l'ordre opposé ont même valeur. L'ordre sur les colonnes n'a aucune importance, si ce n'est pour une édition plus esthétique de la table.

Plusieurs heuristiques sont utilisables pour déterminer un ordre qui conduit à une table T pour laquelle N bZ(T ) est minimum. Nous les avons toutes testées avant d'arrêter notre choix.

Heuristique de parcours de graphe

On peut associer à la table binaire des correspondances un graphe G = (E, A), dont les sommets (E) sont les éponymes et une arête de A lie deux éponymes si et seulement si ils ont au moins un fabricant commun :

(e i , e j ) ∈ A ssi ∃k tel que T (i, k) = T (j, k) = 1.

(2)

En partant d'un sommet de ce graphe, si l'on place à la suite un sommet adjacent, entre leurs fabricants communs il n'y aura pas de 0. Ce principe est utilisé pour réduire la largeur de bande des matrices creuses (systèmes linéaires dans laquelle la plupart des coefficients sont nuls). On trouvera plusieurs méthodes dans l'ouvrage de Lascaux et Théodor (1993). Nous avons adapté l'une d'entre elles.

Étant donné un ensemble d'éponymes déjà placés, un début de chronologie, appelons front l'ensemble des sommets non placés qui sont adjacents à un sommet placé. Chaque élément du front a un degré, c'est le nombre des sommets placés auxquels il est adjacent. A chaque étape, on choisi le sommet du front de degré maximum et, s'il y en a plusieurs de même degré, celui qui va accroitre au minimum le nombre de sommets du front. Cette procédure, du nom de MAF, semble due aux auteurs de l'ouvrage.

L'ordre obtenu dépend du sommet initial, et aussi du choix parmi les ex-eaquo. Dans cette méthode d'ordonnancement, plutôt que de déterminer l'extrémité d'un bon ordre de parcours du graphe, comme font les auteurs, nous testons tous les premiers sommets de départ ; on construit donc N ordres, et l'on garde celui qui minimise le critère NbZ. Finalement, nous avons constaté que les ordres obtenus sont peu efficaces pour notre critère.

Heuristique de Lin

C'est une heuristique bien connue pour le problème du voyageur de commerce (TSP). En partant d'un ordre quelconque, elle consiste à choisir un intervalle au hasard et à inverser l'ordre des sommets dans cet intervalle [START_REF] Lin | Computer Solution of the Travelling Salesman Problem[END_REF]. Si le critère est optimisé, on repart de cet ordre, sinon on revient à l'ordre initial en inversant à nouveau les sommets de l'intervalle. Chaque essai ne demande que le calcul de la valeur du critère.

Dans notre implémentation de cette procédure, on part de l'ordre naturel, c'est à dire celui du fichier en cours, et l'on effectue jusqu'à N bP as = N (N -1)/2 essais consécutifs infructueux. A chaque amélioration du critère, ce compte repart à 0. On retiendra que l'efficacité de la méthode dépend grandement du nombre d'essais que l'on accepte d'effectuer sans obtenir une diminution du nombre de 0.

Heuristique de Goldmann & Kammerer

La méthode de Goldmann & Kammerer, décrite dans [START_REF] Him | Correspondence Analysis and Gaussian Ordination[END_REF], consiste à chaque étape à travailler alternativement sur les lignes et les colonnes. On calcule pour chaque ligne (resp. colonne) le rang moyen des 1. Puis on les range suivant l'ordre croissant des valeurs. C'est donc une méthode itérative, qui converge [START_REF] Goldmann | Zwei Methoden chronologischer Gruppierung[END_REF][START_REF] Him | Correspondence Analysis and Gaussian Ordination[END_REF]. Elle a été utilisée plusieurs fois en Archéologie, c'est pourquoi nous l'avons testée. Sans grand succès.

Heuristique de sauts

Comme pour la méthode de Lin, on va réaliser N (N -1)/2 essais de déplacement dans la table T de la ligne de rang i à la position de rang k. C'est donc une translation d'un intervalle de longueur |k -i| d'une position vers le haut ou vers le bas, suivant que i < k ou k < i qui est testée à chaque pas. En fait, connaissant la valeur de T (i, j) pour la colonne j et les positions extrêmes des 1 dans cette colonne, on peut tester s'il y a un gain à réaliser ce saut sans modifier la table. Si ce gain est positif, on effectue le saut et le décompte des essais repart à 0.

IV UNE M ÉTHODE DE DESCENTE PAR ÉCHANGE

La méthode que nous proposons et que nous avons testée sur des données simulées et sur les données de Rhodes est essentiellement une méthode de descente, par optimisation progressive du critère. On cherche à échanger un éponyme situé au bord de l'intervalle de chaque fabriquant avec un autre magistrat situé dans cet intervalle et qui n'est pas en correspondance avec ce fabricant. Il s'agit toujours de déterminer l'ordre des lignes de la table qui minimise N bZ.

Soit T auZ le pourcentage de 0 dans la partie de la table comprise pour chaque colonne k entre H k et B k . Initialement, la table est rangée dans l'ordre alphabétique des noms d'éponymes, ce qui mélange grandement les périodes. Pour cet ordre N bZ = 18037. Comme nous le verrons, il faut partir d'un ordre qui n'est pas trop éloigné de l'ordre chronologique pour espérer y aboutir. Nous avons développé une méthode en trois étapes :

-La première étape est l'application de la méthode de Lin, qui s'est avérée la plus efficace des heuristiques décrites ci-dessus sauf pour les valeurs faibles du pourcentage de 0 intercalés T auZ. Dès que T auZ ≥ 0,3, elle donne d'excellents résultats. Comme dans la table initiale N bZ est élevé (T auZ = 0,95), elle conduit à un premier ordonnancement qui reproduit assez clairement l'ordre des périodes ! Nous aurions pu également partir de cet ordre, mais la méthode eut été moins générale. -La seconde étape est l'application d'une procédure dite d'échange qui essaye, pour chaque colonne k, de permuter une ligne, comprise entre H k et B k qui présente un 0, avec la ligne d'indice H k qui contient le premier 1 ou la ligne B k qui contient le dernier 1. Sur cette colonne, le gain est d'une unité, mais il faut compter avec les autres. Si le nombre de 0 sur toute la table résultant de cette permutation est abaissé, cet échange est conservé. Sinon on remet la ligne et les bords à leur place initiale. Chaque 0 intercalé donne donc lieu à 2 échanges.

Il suffit de générer des tables éponymes × fabricants virtuelles c'est à dire des tables binaires, dans lesquelles on fixe l'ordre des lignes, et les colonnes ne prennent des valeurs 1 que dans des intervalles décalés suivant cet ordre, comme dans notre modèle. Pour coller au mieux à nos données, les longueurs de ces intervalles sont variables et bornées à 20, ce qui correspond aux durées moyennes de production d'un fabricant. A l'intérieur de ces intervalles, les 0 et les 1 sont tirés au hasard suivant une probabilité fixée. C'est le premier paramètre du programme de simulation qui correspond à notre T auZ. Pour cette table, on mesure la valeur initiale de N bZ notée V ini . Comme les 0 sont tirés au hasard, cette valeur est peut être améliorable. Nous testons aussi la valeur T auZ = 0 qui correspond à une table pour laquelle V ini = 0.

Pour tester la méthode, nous générons 100 tables portant sur 100 éponymes et 75 fabricants, la moitié de nos effectifs pour accélérer les calculs. On part non pas de ce fichier -ce serait trop simple -mais de ce fichier désordonné en permutant les lignes de fac ¸on aléatoire. Un fac ¸on de faire est de prendre deux lignes au hasard et de les échanger [START_REF] Nijenhuis | Combinatorial algorithms[END_REF] ; mais combien de paires faut-il tirer ? Si on échange chaque ligne avec une autre, on crée un très grand désordre. On échange les lignes suivant un second paramètre noté T auL. Si T auL = 0,5 une ligne sur deux est permutée avec une ligne d'indice supérieur. Pour cet ordre quasi aléatoire des lignes, N bZ prend une valeur très éloignée de l'optimum. Nous testons dans quelle mesure la méthode décrite en Section IV permet de revenir à la valeur (et l'ordre) initial(e), avant permutation.

En faisant varier les deux paramètres T auZ et T auL, on mesure le taux de réussite de la méthode d'optimisation, c'est à dire le pourcentage de problèmes (tables aléatoires) pour lesquels, on est revenu à une valeur inférieure ou égale à celle de l'ordre initial ; dans ce cas, la méthode a bien fonctionné. Si ce pourcentage est fort (≥90%), on peut dire que les taux de zéros dans les colonnes et le taux de désordre dans le fichier de départ sont admissibles et la chronologie construite est crédible. Les taux moyens de réussite pour 100 tables aléatoires tirées avec les mêmes valeurs des paramètres sont donnés dans la Table 1.

T auZ / T auL 0,1 0,3 0,5 0,7 0,0 0,89 0,89 0,81 0,80 0,1 0,93 0,87 0,84 0,85 0,3 0,93 0,93 0,84 0,88 0,5 0,96 0,93 0,84 0,82 0,7 0,98 0,91 0,91 0,88 Il suffit de repartir de ces tables mises bout à bout pour chercher un ordre meilleur qui abaisse encore notre critère. Après juxtaposition des sous-tables réordonnées, on obtient N bZ = 1270, soit un très léger mieux. Mais la procédure de scrambling améliore grandement ce critère, puisque nous avons obtenu, après plusieurs essais, un ordre tel que N bZ = 1169.

Deux procédures d'optimisation fine permettent encore d'abaisser le critère :

-La première teste tout paquet de 5 lignes consécutives et cherche un ordre optimal. C'est à dire que l'on teste les 120 ordres possibles sur 5 éponymes consécutifs et l'on conserve le meilleur des ordres obtenus, qui peut être celui de départ. L'efficacité de cette procédure est liée au fait que l'on sait engendrer tous ces ordres (le groupe symétrique d'ordre 5) par une suite optimale de transpositions de deux éléments [START_REF] Nijenhuis | Combinatorial algorithms[END_REF].

-La seconde, dite 3-opt dans la littérature, teste pour tout triplet d'éponymes non nécessairement consécutifs, les 6 ordres possibles, sans changer leurs rangs. Ceci revient à tester toutes les permutations sur tout groupe de 3 éponymes. Comme l'ordre de départ est déjà très optimisé, il y a peu de chance que des échanges entre éponymes très éloignés apportent une amélioration quelconque. Pour accélérer la procédure, nous ne considérons que les triplets pris dans des intervalles de 15 éponymes consécutifs. Ces dernières procédures et l'application de notre méthode de scrambling nous ont donné un ordre dont la valeur est N bZ = 1159. Le voici, présenté période par période, dans l'ordre chronologique inverse, du plus récent au plus ancien. Quand les archéologues ont précisé les dates d'exercice, celles-ci sont indiquées entre parenthèses. On commence bien par un éponyme de période VII pour terminer par des magistrats référencés en période VI, mais on peut s'étonner de la présence de HIPPIAS VI et de THEUGENES VI en début de classement, de HIEROKLES VII et MNASEAS VII au milieu, ainsi que de ATHA-NAGORAS VI/VII et DAMATRIOS VI/VII vers la fin de période. De plus, ANTIPATROS VI est classé au début de la période V. Presque tous les éponymes sont de période Ic, bien séparés des Ia/b. On notera qu'une dizaine d'éponymes n'ont qu'un seul fabricant, F245, si bien que de HAGEMON à ISODOTOS, on ne peut rien dire de leur succession.

VII CONCLUSIONS

Cet ordre respecte presque parfaitement les périodes, puisque nous n'avons trouvé que 5 éponymes classés dans une période voisine, mais autre que celle qui leur a été attribuée. Tous nos essais pour les rapprocher de leur groupe se sont soldés par des valeurs supérieures du critère. De même, on remonte presque régulièrement dans le temps, puisque les dates sont négatives. Les paquets de dates groupées comme (203-199), (219-211), (233-220), (244-236) ou (262-247) sont bien consécutifs.

Postérieurement, j'ai pu comparer ce classement à celui présenté par Thibaut [START_REF] Castelli | La chronologie de éponymes rhodiens de la fin du IIIème siecle et du premier tiers du IIème siècle. Nouvelles hypothèses[END_REF] qui ne porte que sur les périodes II et III durant 45 ans. Il s'attache à attribuer chaque année à un éponyme, ce que nous ne pouvons faire à cause des magistrats éliminés faute de correspondances. Mais tous les noms ou presque sont communs et les ordres très proches comme en témoigne la suite des années selon lui, rangées dans l'ordre calculé pour la période III : 182,175,187,186,188,169,177,173,174,178,189,185,181,183,180,184,192,195,190,191,194,196,193,197,204,202,200,199,207. Il y a quand même des écarts importants, comme ARCHIDAMOS IIIe qu'il place en -169. 2 Les différences entre chronologie ou antériorité par rapport aux dates souvent hypothétiques peuvent s'expliquer par le grand nombre d'éponymes consécutifs qui sont interchangeables, sans modifier la valeur de N bZ. Ce sont évidemment ceux qui ont mêmes listes de fabricants, mais aussi des éponymes qui échangent des 0 en nombre équivalent. Ces paires consécutives sont particulièrement nombreuses en période VI [START_REF] Huang | Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering[END_REF] et I (25) à cause du petit nombre de fabricants qui leur correspondent. Elles vont de 4 à 10 pour les périodes intermédiaires, confirmant le grand nombre d'ordres ex-aequo. Ainsi, elles écartent presque tout espoir d'établir un ordre chronologique parfait.

2. Deux références m'ont été signalées par un des rapporteurs que je remercie vivement. Mais je n'ai pu accéder qu'à la table des matières de la thèse de Gérald [START_REF] Finkielsztejn | Chronologie détaillée et révisée des éponymes amphoriques rhodiens de 270 à 108 av. J.-C. environ[END_REF]), et Christian Habicht (2003) classe les éponymes en fonction de la certitude des données épigraphiques et affine leurs dates d'exercice par rapport au précédent ; il n'utilise nullement les correspondances avec les timbres de fabricants.

I INTRODUCTION

Many e-commerce platforms have large and fast growing sets of items to present to users. For instance, Amazon had a total of 53.38 millions books as on January 10th, 2018 1 1 . Such huge quantities of products make it challenging for users to search and find interesting items for them. Then, they often rely on the help provided by recommender systems.

Various approaches co-exist, the most classical ones being rating prediction and top-N recommendation [START_REF] Steck | Evaluation of recommendations: rating-prediction and ranking[END_REF]. Rating prediction estimates the rating value that a user is likely to give to items. Top-N recommendation ranks items for a given user and selects the N most interesting ones, for a given N . Many research works are dedicated to rating prediction. This requires explicit rating data whereas, in many platforms dedicated for instance to e-commerce, ratings are not available, and recommender systems have to deal with implicit data such as users' purchase, browsing and streaming history. In such situations, top-N recommendation can still be carried out [START_REF] Cremonesi | Performance of recommender algorithms on top-n recommendation tasks[END_REF].

In addition to the previous remark, top-N recommender systems are everywhere from on-line shopping websites to video portals [START_REF] Christakopoulou | Local item-item models for top-n recommendation[END_REF]. For all these reasons, we focus here on top-N recommendation problem from positive implicit feedback, a problem already considered in many papers such as [START_REF] Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF]; [START_REF] Ning | Slim: Sparse linear methods for top-n recommender systems[END_REF]; [START_REF] Shi | CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[END_REF] and [START_REF] Guo | Factored similarity models with social trust for top-N item recommendation[END_REF].

One of the main families of techniques, called Collaborative Filtering (CF), takes benefit from correlations between user interests. Initially, CF recommender systems focused only on useritem interactions [START_REF] Konstan | GroupLens: applying collaborative filtering to Usenet news[END_REF][START_REF] Herlocker | An algorithmic framework for performing collaborative filtering[END_REF][START_REF] Sarwar | Item-based collaborative filtering recommendation algorithms[END_REF] and did not integrate side information among the following list: item features like the genre of a movie or the author of a song, context of interactions like location, timestamps or weather, and trust between users. Since such side information strongly influences user choices (for instance, users may listen to a new song because they like the singer), performances of such systems may be limited. In addition, side information helps solving problems like cold start and data sparsity [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF][START_REF] Adomavicius | Toward the next generation of recommender systems: A survey of the stateof-the-art and possible extensions[END_REF][START_REF] Massa | Trust-aware recommender systems[END_REF][START_REF] Campos | Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols[END_REF].

For these reasons, much effort was devoted to the inclusion of side information into CF techniques. For instance, hybrid systems incorporate item features in order to combine CF and content-based filtering (CBF) [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF][START_REF] Chen | Content-based top-N recommendation using heterogeneous relations[END_REF][START_REF] Shu | A content-based recommendation algorithm for learning resources[END_REF]. Likewise, a winning team of the Netflix competition [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF][START_REF] Koren | Collaborative filtering with temporal dynamics[END_REF] included temporal information into a CF system in order to track the dynamics of user interests and increase recommendation accuracy. Including trust information in order to take into account the fact that people tend to adopt items already chosen by trusted friends is also possible [START_REF] Papagelis | Alleviating the sparsity problem of collaborative filtering using trust inferences[END_REF][START_REF] Massa | Trust-aware recommender systems[END_REF][START_REF] Guo | Factored similarity models with social trust for top-N item recommendation[END_REF]. Some previous works consider only one type of side information, and therefore fail to capture the combined influence of several types of side information on user interests. Others works suggest that progress in this direction may significantly improve recommendation, and combine two kinds of side information into CF [START_REF] Ning | Sparse linear methods with side information for top-n recommendations[END_REF][START_REF] Yu | Topic-STG: Extending the session-based temporal graph approach for personalized tweet recommendation[END_REF][START_REF] Strub | Hybrid recommender system based on autoencoders[END_REF][START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF]. However, to the best of our knowledge, none of these approaches include content-based features, users' preferences temporal dynamics and trust relationships between users simultaneously.

Our goal in this paper is to propose a general graph-based recommender framework that makes it easy to combine variety of side information. However, recommender systems are used in very diverse situations, which makes the design of a fully general system out of reach. We therefore made several assumptions which, although very general, do not apply to some contexts. First, we focus on top-N recommendation task because it is prevalent in many on-line shopping recommender systems like video portals. In addition, we considered the situations where the recommender system aims at offering each user a product that he/she has not yet selected in the past. In some situations, clients may repeatedly buy the same product, but this is a quite different problem. We also we assumed that recent activities are more important than older ones, a situation known as concept drift. This is often but not always true in practice; interest in a given kind of product may for instance be periodic, like for birthday gifts or seasonal needs. Extending our work in this direction is promising, when data is available. Finally, we consider positive links only (that typically represent a purchase), as this is the most prevalent case in practice; considering more subtle feedback from users, and in particular negative feedback, is a very promising direction for future work.

Contribution

In this paper, we propose GraFC2T2, a general graph-based framework for top-N recommendation combining content-based features, temporal information, and trust into a personalized PageRank system. The design of this framework is very modular in order to make it easy to include other side information and/or replace personalized PageRank by another graph-based method. Thanks to GraFC2T2, it becomes easy to explore the benefit of using various kinds of side information, and then to find appropriate parameters for combining them for particular applications. We conduct experiments on Epinions and Ciao datasets to illustrate the use of GraFC2T2, and we show that it outperforms state-of-the-art thanks to the increased use of side information.

Figure 1 summarizes the global architecture of GraFC2T2, made of two big parts: the recommender graph construction, and the use of this graph to perform recommendation. The recommender graph encodes available information by combining a basic graph, which we detail in Section II, with methods to capture content-based features and edge weight capturing time information, which we detail in Section III. Then, we use the obtained recommender graph to perform recommendation, with a trust-aware personalized PageRank detailed in Section IV.

Notice that our framework makes it possible to explore wide sets of modeling choices, as well as to incorporate additional possibilities if needed. We illustrate this on two real-world datasets from Epinions and Ciao in Sections V and VI. Section VII discusses related work. This work builds upon our previous paper (Nzekon [START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF], which extends the Session-based Temporal Graph proposed by [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF] by adding time-weight and content-based information. On the other hand, the data representation that we use is the link stream formalism, presented by Latapy et al. (2018). This model allowed us to propose the Link Stream Graph (Nzekon [START_REF] Nzeko | Link Stream Graph for Temporal Recommendations[END_REF].

We provide an online implementation of our framework2 in order to help other researchers and practitioners to conduct experiments on their own datasets, and to test the relevance of new ideas and features.

II DATA MODELING

We consider a set U of users, a set I of items, and a time interval T , and we assume that we observed the past interest of users in U for items in I during T . We model this data by a bipartite link stream L = (T, U, I, E) where E ⊆ T × U × I is a set of links: each link (t, u, i) in E represents a purchase (u bought product i at time t), an interest in a cultural item (like movie watching or song listening), or another user-item relational event, depending on the application context. See [START_REF] Viard | Computing maximal cliques in link streams[END_REF]; Latapy et al. (2018) for a full description of the link stream formalism. In the following, we will illustrate definitions with the guiding example of Figure 2. 

U = {u 1 , u 2 }, the set of items is I = {i 1 , i 2 , i 3 , i 4 }, the observation period is T = [t 1 , t 6 ]
, and

E = {(t 1 , u 1 , i 1 ), (t 1 , u 2 , i 3 ), (t 2 , u 1 , i 2 ), (t 2 , u 2 , i 3 ), (t 3 , u 2 , i 4 ), (t 4 , u 1 , i 3 ), (t 5 , u 2 , i 4 ), (t 6 , u 1 , i 2 )}.
This means for instance that user u 1 was interested in item i 2 at time t 2 .

Classical bipartite graph

We first consider the most classical recommender graph introduced in the literature [START_REF] Huang | Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering[END_REF][START_REF] Baluja | Video suggestion and discovery for youtube: taking random walks through the view graph[END_REF], that we denote by BIP. It is a directed bipartite graph (U, I, E ) where U and I are the set of users and items defined above, and E ⊆ U × I is the set of links defined by E = {(u, i) : ∃t ∈ T, (t, u, i) ∈ E}. In other words, u is linked to i in BIP if user u was interested in item i during the observation period. Figure 3a displays the BIP graph for the guiding example.

Session-based temporal graph

In a first attempt to capture time information, we then consider Session-based Temporal Graphs proposed by [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF], that we denote by STG.

This graph encodes time information using a set S of session nodes defined as follows. First, for a given ∆, the observation interval

T is divided into |T | ∆ time slices T k = [(k -1) • ∆, k • ∆] of equal duration ∆.
Then, S contains the couples (u, T k ) such that there exists a link (t, u, i) in E with t ∈ T k . In other words, each user leads to a session node (u, T k ) in S for each time interval T k during which this user was active.

This finally leads to the definition of STG as a tripartite graph (U, I, S, E ) with U , I, and S defined above, and

E = E ∪ {((u, T k ), i) : ∃t ∈ T k , (t, u, i) ∈ E}.
In other words, we add to BIP the nodes in S, and a link between each session node (u, T k ) and the items selected by user u during time slice T k . Figure 3b shows the STG representation for the guiding example.

Notice that in the original model [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF], any link from u to i has a weight 1 and any link from i to u has a weight η, where η is a parameter. For simplicity, we do not consider this parameter here (or, equivalently, η = 1), but it may easily be added if needed.

Link stream graph

In order to capture time information while avoiding the drawbacks of choosing a time window size ∆ like for STG, we introduce the following link stream graph, that we denote by LSG (Nzekon [START_REF] Nzeko | Link Stream Graph for Temporal Recommendations[END_REF].

This graph is first defined by a set of nodes representing users and items over time: {(t, u) : ∃i, (t, u, i) ∈ E} ∪ {(t, i) : ∃u, (t, u, i) ∈ E}. In other words, each user u is represented by the nodes (t, u) such that a link involves u in L a time t, and each item is represented similarly.

We then define the set of links {((t, u), (t, i))

: (t, u, i) ∈ E} ∪ {((t, u), (t , u)) : ∃i, (t, u, i) ∈ E, t = min{x : x > t and ∃i , (x, u, i ) ∈ E} ∪ {((t, i), (t , i)) : ∃u, (t, u, i) ∈ E, t = min{x :
x > t and ∃u , (x, u , i) ∈ E}. In other words, each user node (t, u) is linked to both the item nodes (t, i) such that (t, u, i) ∈ E and to the next user node representing u. Item nodes are linked similarly. See Figure 3c for an illustration on our guiding example.

III ADDING CONTENT-BASED FEATURES AND TIME-WEIGHT FUNCTIONS

Once a basic recommender graph is built as explained in previous section, the GraFC2T2 framework adds elements to capture content-based and temporal features. Again, we propose several choices, and we present them below.
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Content-based features

Let C be the set of all possible content-based features and let g(i) ⊆ C be the subset of contentbased features associated with item i, for any i. One element of g(i) can be the category, the brand or the color of item i. Following the method proposed in [START_REF] Nguyen | A graph-based method for combining collaborative and contentbased filtering[END_REF][START_REF] Yu | Topic-STG: Extending the session-based temporal graph approach for personalized tweet recommendation[END_REF][START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF], we model these features by content nodes that we link to item nodes in basic recommender graphs.

In the cases of BIP and STG, we add a content node c for each content-based feature c in C, and we link each item node i to the content node c for each c in g(i). For LSG, we add a content node (t, c) for each (t, i) in the basic graph such that c is in g(i), and we link (t, c) to (t, i). We call this inclusion of content-based features CI because it adds links only between content and item nodes. See Figure 4.

We also propose a strategy linking content nodes to both item and user nodes, that we call CIU.

The idea is to link user nodes to the content nodes of the items they are interested in. Therefore, in addition to CI additions, CIU adds to BIP a link (u, c) between each user node u and content node c whenever there is an item node linked to both u and c; to STG a link between each session node (u, T k ) and content node c whenever there is an item node linked to both (u, T k ) and c; and to LSG a link between each user node (t, u) and content node (t, c) whenever there is an item node linked to both. See Figure 5. Compared to CI, the CIU method increases the influence of content-based features linked to items that the target user has already selected in the past. In other words, the CIU method do a better promotion of items that have the same features as the choices of the target user.
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Time-weight functions

Until now, we modeled time information directly within the structure of STG and LSG graphs, but their edge weights give a static view of previous user interests. Since such interests evolve over time, as pointed out for instance by [START_REF] Ding | Time weight collaborative filtering[END_REF], this is not sufficient. We therefore follow the methodology proposed in that paper, consisting in adding time-dependent weights to the links of recommender graphs.

The idea is to give a high weight to recent links, and to decrease this weight with their age: the weight at time t of any link (a, b) whose most recent appearance time is t e ≤ t, is of the form (a, b), where f () is a decay function. Many different decay functions may make sense, and we designed GraFC2T2 to make it easy to integrate those functions. We consider here the two following classical choices.

w t (a, b) = f (t -t e ) • w
• Our first example is the exponential decay function (EDF) illustrated in Figure 6a: f (x) = e -x•ln(2)/τ 0 , where τ 0 is the radioactivity half life; after a delay of τ 0 , the link weight is divided by 2.

• We also consider the logistic decay function (LDF) illustrated in Figure 6b: f (x) = 1-1/(e -K(x-τ 0 ) +1) where K is the steepness of the curve and τ 0 is the sigmoid midpoint; if x = τ 0 then f (x) = 0.5. IV RECOMMENDATION WITH PERSONALIZED PAGERANK AND TRUST Once a recommender graph is built with a combination of choices proposed in previous sections, we are ready to perform top-N recommendation from this graph. We present below the personalized PageRank approach and an extension to include the concept of trust between users.

Personalized PageRank

Personalized PageRank algorithm is defined by Page et al. (1999) for node ranking in graphs so that nodes can be ranked efficiently in order of importance. The first application was on web pages, especially in the Google search engine. Then this algorithm has been widely used in recommender systems because of the good prediction quality obtained [START_REF] Gori | ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines[END_REF][START_REF] Kim | Personalized PageRank vectors for tag recommendations: inside FolkRank[END_REF][START_REF]A PageRank based recommender system for identifying key classes in software systems[END_REF].

Following this last observation, [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF] proposed the Temporal Personalized Random Walk (TPRW) to compute recommendations on STG. It was defined to tackle temporal recommendation using the personalization idea of [START_REF] Haveliwala | Topic-sensitive PageRank[END_REF], corresponding to the following formula:

P R = α • M • P R + (1 -α) • d (1) 
Where P R is PageRank vector that contains the importance of each node at the end of the propagation process that we want to compute; M is the transition matrix of the considered graph; α is the damping factor; and d is the personalization vector indicating which nodes the random walker will jump to after a restart. In other words, d allows to initialize the weight of source nodes. This process favors the recommendation of products that are close to source nodes: items close to source nodes with large weights in vector d, are favored (see below).

For a given user u at time t, we define the personalized temporal vector d as follows, depending on the type of basic graph:

• for BIP, the walker always restarts from u: d(u) = 1 and d(v) = 0 if v = u;

• for STG, the walker either restarts from u or from its most recent session node (u, T k ):

d(u) = β, d(u, T k ) = 1 -β, d(v) = 0 if v = u and v = (u, T k );
• for LSG, the walker always restarts from the most recent temporal node representing u, (t , u): d(t , u) = 1 and d(t , v) = 0 if (t , v) = (t , u). Then, we run PageRank over the recommender graph to compute the interest of each user u for item i at time t, and output the N items with highest interest (in LSG, the interest for item i is the sum of interests for (t, i), for all t).

Trust integration

Trust relationships are interesting for improving recommendation, especially for cold users and cold items (users or items for which very limited information is available). Some systems incorporate trust information explicitly specified by users [START_REF] Jamali | Using a trust network to improve top-N recommendation[END_REF][START_REF] Guo | Factored similarity models with social trust for top-N item recommendation[END_REF][START_REF] Pan | Trust-aware Collaborative Denoising Auto-Encoder for Top-N Recommendation[END_REF], but since such explicit information is rarely available, several approaches infer implicit trust [START_REF] Pitsilis | A model of trust derivation from evidence for use in recommendation systems[END_REF][START_REF] Papagelis | Alleviating the sparsity problem of collaborative filtering using trust inferences[END_REF][START_REF] Hwang | Using trust in collaborative filtering recommendation[END_REF][START_REF] Lathia | Trust-based collaborative filtering[END_REF]. In this section, we describe how to include these both types of trust in our framework.

We assume trust relationships are modeled for each user u by a set T R u of users trusted by u, and that trust(u, v) gives the trust level of u for all v in T R u , with v∈T Ru trust(u, v) = 1. We denote the method where explicit trust relationships are given by ET (Explicit Trust). We also use an implicit trust metric based on similarity measures as proposed by [START_REF] Papagelis | Alleviating the sparsity problem of collaborative filtering using trust inferences[END_REF] and denote this method by IT (Implicit Trust). In this method, T R u = U is the set of all users, and trust(u, v)

= |I u ∩ I v |/|I u ∪ I v |
is the Jaccard similarity between users u and v. Note that other similarity measures may be used, such as cosine index.

We then update the personalized temporal vector d definition as follows (with the same notations as in the initial definition above):

• for BIP,

d(u) = 1-γ, d(v) = (γ •trust(u, v))/|T R u | if v ∈ T R u and d(v) = 0 otherwise;
• for STG, we share the jumping probability β between u and its trusted users:

d(u) = β • (1 -γ), d(v) = (β • γ • trust(u, v))/|T R u | for all v ∈ T R u ;
and we share the probability 1 -β between u most recent session node and the ones of trusted users:

d(u, T k ) = (1 -β) • (1 -γ), d(v, T v ) = (1 -β) • γ • trust(u, v)/|T R u | where v ∈ T R u and (v, T v )
is the most recent session node of v. We set all other entries of d to 0.

• for LSG, d(t k , u) = 1 -γ, d(t v , v) = γ • trust(u, v)/|T R u | if v ∈ T R u and (t v , v)
is the most recent node representing v, and all other entries of d are 0.

V EXPERIMENTAL SETUP

Previous sections defined our general graph-based framework GraFC2T2, that gives wide levels of freedom for selecting and combining its various components into a top-N recommender system. These component capture several kinds of side information, in particular content-based, temporal, and trust features. In this section, we describe an experimental setup that we use in the next section to evaluate our framework. This setup consists in two real-world datasets, an evaluation method relying on three metrics, and a parameter selection method to optimize results.

Datasets

We use publicly available datasets extracted from product reviews Epinions and Ciao3 [START_REF] Tang | mTrust: Discerning multi-faceted trust in a connected world[END_REF], where users can write reviews and give their opinions on a wide category of products like Home, Health, Computers and Media. We model each dataset as a set of review tuples (u, i, c, r, t) meaning that user u has assigned the rating r ∈ {0, 1, 2, 3, 4, 5} to item i at time t, with c being a content-based feature of item i. The explicit trust networks of these datasets are considered such that for each user u, the set T R u is given for the ET method. Table 1 provides key information on these datasets: start and end dates, as well as numbers of distinct users, items, content-based features, ratings, explicit trust relationships, ratings density and trust relationships density. Since our framework does not use ratings but only positive links between users and items, we discard all tuples such that the rating it contains is lower than 2.5 or the average rating of involved user.

Evaluation

Evaluating recommender systems is a difficult task. In this paper, we use three classical metrics for top-N recommendations: F1-score (F1), Hit Ratio (HR) and Mean Average Precision (MAP) (Baeza-Yates and Ribeiro-Neto, 2011). Higher values of these metrics indicate better recommendation performance.

F1-score is a trade-off between ranking precision and recall such that optimizing F1-score is more robust than optimizing precision or recall. Precision is the fraction of good recommendations over all recommended items and recall is the fraction of good recommendations over all relevant items to recommend. For one user u,

P recision = hit N (u) N , (2) 
Recall = hit N (u) I new (u) (3) 
and

F 1 = 2 • P recision × Recall P recision + Recall = 2 • hit N (u) I new (u) + N , ( 4 
)
where N is the length of recommendation list, hit N (u) denotes the number of good recommendations to u in the top-N items and I new (u) is the set of new items to recommend to u. For all users the equation of F1-score is:

F @N = u∈U 2 × hit N (u) u∈U (I new (u) + N ) . ( 5 
)
Hit Ratio is the fraction of users to whom the recommender system has made at least one good recommendation over all users:

H@N = u∈U (hit N (u) > 0) |U | . (6) 
Mean Average Precision considers the order of items in the top-N recommendation in order to give better evaluation scores to results that recommend better items first:

M @N = u∈U AP N (u) |U | , (7) 
where

AP N (u) = 1 hit N (u) N k=1 hit k (u) k × h(k) (8) 
is the average precision of top-N recommendations done to user u and h(k) = 1 if the k-th recommended item is a good recommendation and 0 otherwise.

These metrics evaluate a given top-N recommendation. Since we actually can't perform recommendations on live users, we perform evaluation on past data described above. Following the classical method established by previous works [START_REF] Li | Expertise search in a time-varying social network[END_REF][START_REF] Lathia | Temporal collaborative filtering with adaptive neighbourhoods[END_REF][START_REF] Campos | Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols[END_REF][START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF], we partition data according to k + 1 time windows of equal duration, and we use them as follow. For each of the k first slices:

• we build recommender graphs that correspond to data of this slice and all previous slices (training set), • we compute top-N recommendations for users who have selected at least one new item in the next time slice (test set), • we compute for each evaluation metric M the numerator M num k and the denominator M deno k of its definition, given above. Once we have the values of M num k and M deno k of each of the k first windows, we combine them into the Time Averaged (TA) value of the metric under concern:

T A(M ) = k M num k k M deno k . (9) 
This leads to a time-averaged value of F1-score, Hit ratio and MAP, that we all use for evaluation. Indeed, evaluation metrics can be in disagreement [START_REF] Gunawardana | A survey of accuracy evaluation metrics of recommendation tasks[END_REF], and so using several metrics is essential to obtain accurate insight on result quality.

In our experiments, we set k to 7 in order to have large enough data slices and meaningful averages. We consider exploring the role of this parameter, as well as the use of more advanced evaluation metrics, as future work.

Parameter estimation

For each basic graph type, GraFC2T2 defines and implements 27 possible combinations of side information modelings, see Figure 1. Our priority is to explore the behaviors and differences of all these variants, and so we did our best to keep the number of other parameters reasonable. Still, the different version of recommender systems encoded in GraFC2T2 call for several parameter selection.

Exhaustive search for the best values is out of reach, and many subtle techniques exist to explore the parameter space in search for good values. Since this search is not the focus of this paper, we use a simple approach called Randomized Search Cross-Validation (more advanced methods may easily be included in our framework, though) [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF]. This method randomly selects parameter values in a predefined set of possible values, usually designed to span well the whole set of values. Here, we use 50 such random settings, sampled in the set defined by Table 2.

Parameter meaning Predefined values ∆ STG session duration 7, 30, 90, 180, 365, 540, 730 days β STG long-term preference 0.1, 0.3, 0.5, 0.7, 0.9 τ 0 half life of EDF and LDF 7,30,90,180,365,540,730 days K decay slope of LDF 0.1, 0.5, 1, 5, 10, 50, 100 γ influence of trusted users 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9 α damping factor for PageRank 0.05, 0.1, 0.15, 0.3, 0.5, 0.7, 0.9 

VI EXPERIMENTAL RESULTS

This section presents extensive experimentations on our GraFC2T2 framework, in order to study its performances in practice, to explore the contribution of each side information in these cases, and to compare obtained results to state-of-the-art recommender systems.

Performances of GraFC2T2

Table 3 presents the results we obtained for Top-10 item recommendation for Epinions and Ciao datasets. We chose N = 10 as for instance [START_REF] Deshpande | Item-based top-n recommendation algorithms[END_REF], [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF] and [START_REF] Bernardes | A social formalism and survey for recommender systems[END_REF], and other values we tested gave similar results as one may see in the appendix (Section B). In these tables, each column corresponds to a metric and a basic recommender graph, and each row corresponds to a combination of side information added to this recommender graph. Each cell contains the value of the evaluation metric for the recommender graph made of basic graph in column and side information in row. White color of cell corresponds to the best result and dark color indicates lower performance.

We summarize the insight obtained from these results in Table 4. For each basic recommender graph (vertically) and each evaluation metric (horizontally), we selected the three recommender graphs that achieve the best performances and we display on the corresponding row the performances obtained on the basic graph (without side information), the best obtained performances (with side information), the improvement percentage, and the name of the corresponding version of recommender graph with side information.

All best improvements thanks to side information in GraFC2T2 are at least 46% for Epinions and at least 41% for Ciao. for Epinions is CIU-EDF-IT for BIP and STG basic graphs and CIU-LDF-IT for LSG basic graph. For Ciao, good results are obtained with CIU-LDF-IT for all basic graphs. These results clearly confirm the relevance of graphs extended simultaneously with content, time and trust information.

Impact of side information

We now give details on the impact of side information and their combination in GraFC2T2. This is context dependent, as observed behaviors vary with datasets; one may however easily test the GraFC2T2 framework with his/her own datasets and discover the best choices for the case under concern. The discussion provided here is mostly an illustration of this.

When we consider the basic graphs with no side information, in the case of Epinions, BIP gives the best results for all evaluation metrics. Instead, LSG gives the best Hit ratio and MAP, while STG gives the best F1-score in the case of Ciao.

If we include only one kind of side information, we observe that explicit trust (ET) does not improve the results, but implicit trust (IT) does for all basic graphs. The insertion of time-weight always produces improvements. Finally, content-based features increase performances for BIP and STG but not for LSG. For Epinions, the best graph with one kind of side information is BIP-EDF in F1-score and STG-CIU in Hit ratio and MAP. In Ciao, the best one is LSG-LDF in Hit ratio and MAP, and STG-CIU is the best in F1-score. This shows that the impact of a unique kind of side information highly depends on the basic graph and on the data.

Recommendations using two kinds of side information perform significantly better than with only one kind of side information. For instance, in the Epinions case, performances increase from 3.74% to 6.48% in F1-score, from 6.63% to 7.69% in Hit ratio and from 2.88% to 3.23% in MAP. Combining time-weight with implicit trust performs better than time-weight and trust taken separately. Similarly, combining content-based features with implicit trust is better than content-based features or trust taken separately, but generally less interesting than combining time-weight and implicit trust. Combining content-based features and time-weight usually produces better improvements for BIP and STG but no improvement for LSG. In Epinions, BIP-CI-EDF and BIP-CIU-EDF perform best. In Ciao, BIP-CIU-LDF is always better. This confirms the relevance of graphs that integrate content-based features and time, like time-weight contentbased STG proposed by Nzekon [START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF].

Using three kinds of side information does not greatly improve the best performances achieved with two kinds of side information. For instance, in Epinions, the performances increase from 6.48 to 7.66% in F1-score, from 7.69 to 7.96% in Hit ratio and 3.23 to 3.32% in MAP. Nevertheless, Table 4 shows that recommender graphs with three kinds of side information are by far the most frequent among the best ones. For this reason, we recommend the use of contentbased, time and trust information simultaneously in order to increase the chances to achieve good results.

Best values of parameters

In this section, we focus only on recommender graphs with CIU-EDF-IT and CIU-LDF-IT combination that are most common in the best performance in Table 4. We have made the following observations:

• In Epinions dataset, for the combination CIU-EDF-IT, ∆ = 7, β = 0.5, τ 0 = 90 for BIP and STG and 180 for LSG, γ ∈ {0.15, 0.3} for BIP and STG and 0.9 for LSG, and α = 0.9. For the combination CIU-LDF-IT, ∆ = 365, β = 0.7, τ 0 ∈ {30, 90} for BIP and STG and 7 for LSG, K = 0.5 for BIP, 100 for STG and 5 for LSG, γ ∈ {0.1, 0.15} for BIP and STG and 0.9 for LSG, and α ∈ {0.7, 0.9}; • In Ciao dataset, for the combination CIU-EDF-IT, ∆ = 180, β = 0.3, τ 0 = 180, γ = 0.9 and α = 0.9. For the combination CIU-LDF-IT, ∆ = 540, β = 0.1, τ 0 = 365 for BIP and STG and 180 for LSG, K = 10 for BIP and STG and 100 for LSG, γ ∈ {0.7, 0.9}, and α = 0.9; The values of these parameters indicate that in Epinions, the weights of the data used (edge weights) decrease faster than in Ciao; τ 0 is small in Epinions {7, 30, 90} and is larger in Ciao {180, 365}. Regarding trust, γ is still high in Ciao {0.7, 0.9} and is smaller in Epinions {0.1, 0.15, 0.3} which shows that the influence of implicit trust is more important in Ciao. However, this influence must always be great for the graph LSG {0.9} in all datasets.

Comparison with state-of-the-art systems without side information

We now compare the performances of GraFC2T2 with those of some state-of-the-art top-N recommender systems that don't take into account side information. The considered models are: Most-Popular-Item (MPI) that computes the ranking score of an item by its popularity; the ranking oriented collaborative filtering, user-based (UBCF) and item-based (IBCF) collaborative filtering [START_REF] Karypis | Evaluation of item-based top-n recommendation algorithms[END_REF][START_REF] Mclaughlin | A collaborative filtering algorithm and evaluation metric that accurately model the user experience[END_REF]; some recommender systems for positive implicit feedback scenarios, Bayesian Personalized Ranking (BPR) [START_REF] Rendle | BPR: Bayesian personalized ranking from implicit feedback[END_REF], Sparse linear methods for top-N recommender systems (SLIM) [START_REF] Ning | Slim: Sparse linear methods for top-n recommender systems[END_REF], collaborative less-is-more filtering (CLiMF) [START_REF] Shi | CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[END_REF] and Matrix factorization with Alternating Least Squares (ALS) [START_REF] Hu | Collaborative filtering for implicit feedback datasets[END_REF].

We use Randomized Search Cross-Validation to have good performances of the considered recommender systems. For UBCF and IBCF models, 10 settings are generated such that the neighborhood size k ∈ {10, 20, 30, 40, 50, 80, 100, 150, 200, 500}. For BPR, SLIM, CLIMF and ALS models, 50 settings are generated such that the number of latent factors l ∈ {10, 20, 30, 50, 100, 200, 500}, learning rate and all regularization bias are taken in {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}.

Table 5 presents the best results obtained for these recommender systems that don't take into account side information and those obtained with our framework. This shows that GraFC2T2 outperforms these systems and illustrates the relevance of a general framework in which various kinds of side information can be added to improve recommendations. A future step in our research is to compare the results obtained by GraFC2T2 to those produce by state-of-the-art systems that include side information. We have already observed that the results produced by GraFC2T2 are comparable to those presented by [START_REF] Xiao | Learning and transferring social and item visibilities for personalized recommendation[END_REF] where both item and social visibilities are modeled. Moreover, we have also made a comparison with Trust aware Denoising Auto Encoder (TDAE) technique based on deep learning [START_REF] Pan | Trust-aware Collaborative Denoising Auto-Encoder for Top-N Recommendation[END_REF]. The results for Epinions (M@10 = 1.32%) and Ciao (M@10 = 3.07%) confirm the relevance of GraFC2T2.

MPI UBCF IBCF BPR SLIM CLIMF ALS GraFC2T2

Notice that the most basic, non-personalized approach MPI is able to achieve better results compared to BPR, SLIM, UBCF and IBCF. This indicates that users tend to consume popular items. This is not the first work in which MPI is better than BPR or other matrix factorization models, [START_REF] Zhao | Leveraging social connections to improve personalized ranking for collaborative filtering[END_REF] and [START_REF] Guo | Factored similarity models with social trust for top-N item recommendation[END_REF] have made the same observation.

VII RELATED WORK

As we already said, many contributions improve collaborative filtering (CF) recommender systems with the inclusion of side information, and we used several ideas proposed in these previous works. In the rest of this section, we shortly review key related references. In some cases, trust can be explicitly provided by users, as do [START_REF] Massa | Trust-aware recommender systems[END_REF], but in other ones, this information is not given and it can be inferred from user behaviors. For example, [START_REF] Papagelis | Alleviating the sparsity problem of collaborative filtering using trust inferences[END_REF] use Pearson correlation to compute implicit trust using ratings dataset and in cases where there is only implicit data, measure like Jaccard and Cosine can be used. In other works, trust enhancement is done by trust propagation on trust network where the weight of an link (u, u ) is the trust of u to u [START_REF] Deng | Social network-based service recommendation with trust enhancement[END_REF].

Note that work on influencers can also be considered here, as there is a trust relationship between influencers and their followers [START_REF] Liu | Identifying effective influencers based on trust for electronic word-of-mouth marketing: A domain-aware approach[END_REF][START_REF] Grafström | The Impact of Influencer Marketing on Consumers' Attitudes[END_REF]. Our framework is able to integrate the impact of influencers in the same way as trust between users. The main difference is who influences who and how much. Once you have the answers to these questions, the customization of PageRank is done according to these answers. The impact of influencers or influencer-based recommendation is not studied in this work, but it is a good issue for future work.

The concept of influence is a good example of other side information that may be included in our system [START_REF] Liu | Identifying effective influencers based on trust for electronic word-of-mouth marketing: A domain-aware approach[END_REF][START_REF] Grafström | The Impact of Influencer Marketing on Consumers' Attitudes[END_REF]. Similarly to trust (although these two concepts are different) influence may be used to customize PageRank, once it is correctly quantified. For instance, influence may be seen as a trust relationship between influencers and their followers.

Time aware recommender systems

Most recommender systems that take temporal aspects into account are based on concept drift: older information is less important than recent information for predicting future user purchases. For this reason, [START_REF] Ding | Time weight collaborative filtering[END_REF] proposed the use of the time-weight decay functions we used in this paper, in order to assign greater weight to the most recent ratings in similarity computations. In addition, [START_REF] Gaillard | Time-sensitive collaborative filtering through adaptive matrix completion[END_REF] propose a incremental matrix completion method, that automatically allows the factors related to both users and items to adapt "on-line" to concept drift hypothesis. Going further, [START_REF] Liu | Online evolutionary collaborative filtering[END_REF] propose an online incremental CF in which a decay function is used for similarity computations and another one is used for rating prediction. Time-weight functions are also used in other studies as by [START_REF] Koren | Collaborative filtering with temporal dynamics[END_REF]; [START_REF] Karahodža | Temporal dynamics of changes in group user's preferences in recommender systems[END_REF] and Nzekon [START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF].

Other approaches to concept drift assume that the importance of information used for recommendations is ephemeral, e.g. [START_REF] Lathia | Temporal collaborative filtering with adaptive neighbourhoods[END_REF] divide time into slices and use data only within a single slice. Such recommender systems therefore focus on user short-term preferences. It however seems that some preferences are stable and persist over time, and so that old information should also be included. For this reason, some works [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF][START_REF] Li | Dynamic adaptation strategies for long-term and shortterm user profile to personalize search[END_REF] capture both short-term preferences and long-term preferences and combine them in the recommendation process. For example, [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF] propose STG to incorporate temporal aspects by separately modeling long-term preferences and short-term preferences within a graph model.

Content-based recommender systems

These systems aim at recommending items similar to the ones the user liked in the past. A way to achieve this, developed by [START_REF] Lops | Content-based recommender systems: State of the art and trends[END_REF], is to match features associated to user preferences with those of items. Then, recommendation is performed in three steps: extracting relevant features from items, build user preference profiles based on item features, and finally select new items that fit user preferences. This approach is used in several domains such as recommendation of books [START_REF] Mooney | Content-based book recommending using learning for text categorization[END_REF] and recommendation of web pages [START_REF] Pazzani | Syskill & Webert: Identifying interesting web sites[END_REF].

Using content-based features may improve CF techniques by allowing more details on user favorite item features and increase the possibility to reach items that have not been selected in the past by other users. Some works indeed show that these hybrid recommender systems solve weaknesses of both approaches [START_REF] Balabanović | Fab: content-based, collaborative recommendation[END_REF][START_REF] Basu | Recommendation as classification: Using social and content-based information in recommendation[END_REF][START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF].

Recent work on content-based approaches are dedicated to the Social Book Search (SBS). The SBS Lab investigates book search in scenarios where users search with more than just a query, and look for more than objective metadata. It has two tracks. The first one is a Suggestion Track aiming at developing test collections for evaluating ranking effectiveness of book retrieval and recommender systems. The second one is an Interactive Track aimed at developing user interfaces that support users through each stage during complex search tasks and to investigate how users exploit professional metadata and user-generated content [START_REF] Koolen | Overview of the CLEF 2015 social book search lab[END_REF].

Graph-based recommender systems

The simplest graph-based recommender system rely on the classical bipartite graph (BIP) in which only user-item links are used. Most used algorithms are based on random walk [START_REF] Baluja | Video suggestion and discovery for youtube: taking random walks through the view graph[END_REF], like Injected Preference Fusion [START_REF] Xiang | Temporal recommendation on graphs via long-and short-term preference fusion[END_REF] and PageRank which is used in this paper; they compute a probability to reach items from the user under concern, and recommend the ones with highest probability.

Graph-based systems may be seen as CF systems, and so one may use the same idea as in hybrid recommender systems to improve them [START_REF] Burke | Hybrid recommender systems: Survey and experiments[END_REF]. [START_REF] Nguyen | A graph-based method for combining collaborative and contentbased filtering[END_REF] achieve this by adding a third node type: content nodes. The resulting graph ignores temporal aspects, though.

To improve this, [START_REF] Yu | Topic-STG: Extending the session-based temporal graph approach for personalized tweet recommendation[END_REF] propose the Topic-STG which incorporate content-based features and the temporal dynamic of STG. However these graphs handle each link regardless of its age, which contradicts the concept drift assumption. This is why we propose the Time-weight and content-based STG (Nzekon [START_REF] Nzeko | Time Weight Content-Based Extensions of Temporal Graphs for Personalized Recommendation[END_REF], where old links have a lower weight than recent ones. Up to our konwledge, none of these graph-based works takes advantage of content-based, time and trust information simultaneously.

We note that, despite the fact that recommender graphs are not much studied compared to model-based techniques such as matrix factorization or neural networks, they remain relevant. For example Pixie recommender system proposed by [START_REF] Eksombatchai | Pixie: A system for recommending 3+ billion items to 200+ million users in real-time[END_REF] is the recent scalable graph-based real-time system developed and deployed at Pinterest. Given a set of userspecific pins as a query, Pixie selects in real-time from billions of possible pins that are most related to the query. To generate recommendations, Eksombatchai et al. develop Pixie Random Walk algorithm that uses the Pinterest object graph of 3 billion nodes and 17 billion edges. This has been made possible thanks to the technological evolution of Random Access Memories.

CONCLUSION

Our main goal with this paper was to show that including several side information improves the quality of recommender graphs built for top-N recommendation task. For this purpose, we designed and implemented GraFC2T2, a recommender graph framework which makes it easy to explore various approaches for modeling and combining many features of interests for recommendation. In particular, GraFC2T2 extends classical bipartite graphs, session-based temporal graphs and link stream graphs by integrating content-based features, time-weight functions, and user trust into a personalized PageRank system.

The experiments we conducted on Epinions and Ciao datasets with F1-score, Hit ratio and MAP evaluation metrics show that best performances are always reached by graphs that integrate at least two side information and that graphs with time-weight always outperform the others. The resulting improvements are of at least 41%. Moreover, comparison with stateof-the-art matrix factorization and classical user-based and item-based collaborative filtering methods confirms the relevance of GraFC2T2 framework for top-N recommendation. Good improvements obtained in recommender graphs by integration of side information do not guarantee such improvement for other types of recommender systems such as matrix factorization and neural network. We therefore consider inclusion of content-based, time and trust information simultaneously in such system as a key perspective.

B APPENDIX

In this section, we present the results obtained for top-20, -50 and -100. The section is divided in two parts: the first one presents performances obtained for all combinations of side information and basic graphs of the framework; the second highlights the 3 best combinations, according to basic graph and evaluation metric.

These two parts confirm observations made on top-10 results in the Section VI. For example, recommender graphs that integrate simultaneously content-based, users' preferences temporal dynamic and trust relationship between users, are usually the best. Thus, we recommend the simultaneous integration of these three side information in order to increase the chances to achieve good performances.

- 

I INTRODUCTION

The study of sequences of interactions over time is an important research field with numerous application areas, such as security, mobility or recommendation systems. They have been studied as graphs for a long time, but the importance of dynamics has become more and more obvious [START_REF] Holme | Temporal networks[END_REF]. Therefore, other representations have been developed to better model the temporal nature of these systems. We use here the link stream representation because it captures both the structure and the dynamics of interactions (Latapy et al., 2018).

A link stream (see Figure 1) represents a set E of triplets (t, uv) indicating that an interaction occurred between u and v at time t. Many real-world datasets may be studied using link streams, such as e-mail exchanges, contacts between individuals, phone calls or IP traffic (Latapy et al., 2018;[START_REF] Viard | Identifying roles in an ip network with temporal and structural density[END_REF][START_REF] Viard | Discovering patterns of interest in ip traffic using cliques in bipartite link streams[END_REF]. They are similar to temporal networks [START_REF] Holme | Temporal networks[END_REF] or time varying graphs [START_REF] Casteigts | Time-varying graphs and dynamic networks[END_REF], which encode the same information.

We study here the activity prediction problem: we predict the number of interactions that will occur between each pair of nodes during a given period of time. This problem is related to the classical problem of link prediction in graphs, but it aims at predicting not only who will interact with whom, but also when.

Our goal here is not to obtain the best prediction, with advanced methods and on specific datasets. Instead, we propose a first framework addressing the activity prediction problem and opening the way to further investigation. We design and implement our framework in a modular way: each step of the prediction (considered features, their combination method, the optimization scheme, etc) may easily be changed. We illustrate this by making several simple choices for each building block, by applying our framework to several real-world datasets, and by studying obtained performances, thus gaining insight on important features for activity prediction. With this framework, it is easy to study other datasets and other building block choices.

More precisely, we first capture independently some structural and dynamical features of link streams. We then use a basic supervised learning algorithm to combine these metrics in order to estimate future activity. We finally compare the obtained prediction to ground truth in order to assess the relevance of our approach. This shows that combining different types of metrics, structural and temporal, indeed improves prediction. Going futher, we observe that prediction is biased towards a specific kind of links. We therefore introduce classes of node pairs with different behaviors, which improves prediction further and, more interestingly, increases its diversity. We illustrate the use and performances of our framework on four real-world traces of interactions between individuals [START_REF] Mastrandrea | Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys[END_REF][START_REF] Scott | CRAWDAD dataset cambridge/haggle (v. 2009-05-29[END_REF][START_REF] Eagle | CRAWDAD dataset mit/reality[END_REF][START_REF] Bracciale | CRAWDAD dataset roma/taxi (v. 2014-07-17[END_REF]. We also investigate how different metrics can be used to selectively predict different classes of links and how the introduction of classes allows to preserve diversity while still improving prediction.

II RELATED WORK

Activity prediction is at the crossroad of two classical problems, namely link prediction in graphs and time-series prediction, illustrated in Figure 2. We briefly present both topics and give more details about works related to our approach. Then, we review works using categories in order to improve prediction, since we use this technique in our work.

Link prediction in graphs

In the classical link prediction problem, data is represented as a graph (Liben-Nowell and [START_REF] Liben-Nowell | The link-prediction problem for social networks[END_REF][START_REF] Huang | Link prediction approach to collaborative filtering[END_REF][START_REF] Wang | Link prediction in social networks: the state-of-the-art[END_REF], and the task consists in predicting links to ? Figure 2: Basic principle of prediction in dynamic graphs (left) and in time series (right) appear in this graph. One uses the graph structure for prediction; for instance, if two nodes have many neighbors in common then a link between them is likely to appear [START_REF] Kossinets | Effects of missing data in social networks[END_REF].

When temporal evolution is a key element of data, a usual approach is to slice time into several windows T i , and consider a graph sequence

G i = (V, E i ) with E i = {uv : ∃(t, uv) ∈ E, t ∈ T i }.
It allows to use traditional link prediction methods on these graphs. The information contained in data is then extracted using graph-based measurements. In this field, many metrics have been developed to obtain the most relevant information (Al [START_REF] Hasan | Link prediction using supervised learning[END_REF][START_REF] Lü | Link prediction in complex networks: A survey[END_REF]. They often consist in evaluating the similarity between two nodes according to various criteria, which produces a score or a ranking correlated to the apparition probability of a link between these nodes. Similarity measures based on the temporal patterns of activities of nodes and links have also been proposed, e.g. [START_REF] Tabourier | Predicting links in ego-networks using temporal information[END_REF].

Several methods exist to combine the metrics computed for improving prediction. It is possible to use classification algorithms to determine the predicted links (Al [START_REF] Hasan | Link prediction using supervised learning[END_REF][START_REF] Davis | Supervised methods for multi-relational link prediction[END_REF]. Another approach is to rank node pairs using the values of different metrics. The predicted links connect the n first node pairs, with n fixed as a parameter and determined using the system behavior [START_REF] Pujari | Supervised rank aggregation approach for link prediction in complex networks[END_REF][START_REF] Lichtenwalter | New perspectives and methods in link prediction[END_REF]. However, the use of time windows commands a time scale and leads to the loss of some temporal information. For example, the information associated to a link repetition between two nodes within a time window disappears. One of the stakes of our work is to conserve this information by using the link stream formalism, better suited to the data.

Another approach to link prediction using time varying graphs is to aggregate the temporal information in the system by attributing weights to links, based on previous interactions [START_REF] Murata | Link prediction of social networks based on weighted proximity measures[END_REF][START_REF] Tabourier | Rankmerging: a supervised learning-to-rank framework to predict links in large social networks[END_REF][START_REF] Dunlavy | Temporal link prediction using matrix and tensor factorizations[END_REF]. This process allows to gather structural information as well as indirectly using temporal information in the data.

Time series to predict repeated interactions

It is also possible to approach link prediction by focusing on the dynamics of interactions between two nodes rather than on the structural properties (da Silva Soares and Prudêncio, 2012). The sequence of links between each pair of nodes is then considered as a time series and numerous tools have been developed to predict the future behavior of such series. For example it is possible to focus on the link apparition frequency in the past to predict future interactions [START_REF] Tylenda | Towards time-aware link prediction in evolving social networks[END_REF]. This approach focuses on predicting future occurrences of links that have appeared in the past. It is also its main limitation in regards to activity prediction, as it is not suited to predict new links appearing in the system. As such, it is complementary to link prediction in graphs.

Mixed approaches

Some studies use both link prediction in graphs and a time series approaches [START_REF] Huang | The time-series link prediction problem with applications in communication surveillance[END_REF]. However they mostly rely on time windows, which leads to important information losses and issues regarding time window choices, as already explained.

Link categories

To improve prediction quality in a supervised learning problem, it is often efficient to divide items into categories [START_REF] Lichtenwalter | New perspectives and methods in link prediction[END_REF][START_REF] Brockwell | Time series: theory and methods[END_REF]. In the case of link prediction, node pairs with similar properties can be gathered in order to model their behavior more accurately.

For example it is possible to group node pairs by communities: pairs inside a community are more likely to have similar behaviors than pairs between communities [START_REF] Clauset | Hierarchical structure and the prediction of missing links in networks[END_REF]. Other works use node or link attributes to build categories of pairs, with the assumption that items with similar attributes have similar behaviors [START_REF] Scholz | On the predictability of human contacts: Influence factors and the strength of stronger ties[END_REF].

III PROBLEM DEFINITION AND PREDICTION FRAMEWORK

In this section, we first present the prediction problem that we address in this paper. We then propose a modular framework for solving it. We describe each of its building blocks as well as the assumptions on which they rely. Figure 5 gives a global view of this framework.

The activity prediction problem

We consider a set of nodes V representing entities in the system. We observe interactions between these entities for a period of time T = [A, Ω], that we model as a link stream (Latapy et al., 2018) L = (T, V, E), where E ⊆ T × V ⊗ V , and (t, uv) ∈ E means that an interaction occurred between u and v at time t. In this work, uv ∈ V ⊗ V denotes the unordered pair of nodes u ∈ V and v ∈ V : uv = vu and u = v. We call L and T the input stream and input period, respectively. We represent future interactions as a link stream L = (T , V, E ) with E ⊆ T × V ⊗ V and T = [A , Ω ] with Ω ≤ A < Ω . We call L and T the prediction stream and prediction period.

Our goal is to predict the number of interactions between each node pair uv in V ⊗ V , which we call the activity of uv. We denote by A(uv) = |{(t, uv) ∈ E}| the activity of uv during the input period, by A p (uv) the predicted activity of uv during the prediction period (computed by our algorithm below), and by A a (uv) = |{(t, uv) ∈ E }| the actual activity during the prediction period. Prediction quality is measured by comparing A p (uv) to A a (uv), as detailed in Section 3.5.

Prediction metrics

Our approach relies on metrics that capture various features, which may a priori be important for activity prediction and that we describe here. Indeed, information contained in a link stream is of different kinds, like for instance, the number of past interactions between two nodes or the density of a node neighborhood. In general, existing methods focus either on structural features (in the case of link prediction in graphs) or on temporal features (for time-series prediction), while we intend to use metrics adapted to link streams, which combine temporal and structural information. The metrics presented in this section and their associated acronyms are summarized in Table 2.

Structural metrics

As a first step, we adapt structural metrics from link prediction in graphs to the context of activity prediction in link streams. Considering that the neighborhood of a node u is defined as N (u) = {v : ∃(t, uv) ∈ E}, we can define traditional metrics widely employed in link prediction: the Common Neighbors index (CN) [START_REF] Zhou | Predicting missing links via local information[END_REF], the Jaccard index (JI) [START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des alpes et des jura[END_REF], the Sørensen index (SI) [START_REF] Sorensen | A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons[END_REF], the Adamic-Adar index (AA) [START_REF] Adamic | Friends and neighbors on the web[END_REF] and the Resource Allocation index (RA) [START_REF] Zhou | Predicting missing links via local information[END_REF]. We do not recall the definitions of these classical metrics here. Notice that all these metrics are independent of time.

Temporal metrics

To contrast with graphs, the link stream formalism also captures temporal information. As it is usually done in the field of time-series prediction, we first use as a benchmark the extrapolation of past activity, which captures the frequency of an interaction in the input stream. To keep it as simple as possible, we use the number of interactions between u and v occurring during T . In the following we refer to this metric as the Pair Activity Extrapolation defined as P AE(uv) = |{(t, uv) ∈ E}| (which is actually identical to A(uv)).

Then, we define two other metrics that describe more precisely the temporal behavior of the system. They are adapted versions of the pair activity extrapolation that focus on the most recent activity during the input period. This choice is made on the ground that recent interactions affect more the dynamics than the older do [START_REF] Dunlavy | Temporal link prediction using matrix and tensor factorizations[END_REF].

First, we only take into account the activity during a recent period of time of duration δ: for each pair of nodes, we compute the P AEδS(uv) = |{(t, uv) ∈ E : t ∈ [Ω -δ, Ω]}|. Second, we take into account the activity of each pair of nodes between Ω and the occurrence time of the k th link between them before Ω. The corresponding index is P AEkL(uv

) = k/(Ω -t k ) with t k such that |{(t, uv) ∈ L, Ω ≥ t ≥ t k }| = k.

Hybrid metrics

We also use hybrid metrics, which capture a mixture of structural and aggregated temporal information. We use weighted variation of link prediction metrics as proposed by [START_REF] Tabourier | Rankmerging: a supervised learning-to-rank framework to predict links in large social networks[END_REF].

• The Weighted Common Neighbors (WCN) metric emphasizes the common neighbors which have often interacted with both nodes:

W CN (uv) = w∈N (u)∩N (v) A(uw) • A(vw). (1) 
• The Weighted Sørensen index (WSI) is similar to the Sørensen index but takes into account the activity related to each node:

W SI(uv) = w∈N (u)∩N (v) A(uw) + A(vw) k∈N (u) A(uk) + k∈N (v) A(vk)
.

(2)

• The Weighted Adamic-Adar (WAA) decreases the weight of shared neighbors with high degree and high level of activity:

W AA(uv) = w∈N (u)∩N (v) 1 k∈N (w)
log(A(wk))

.

(3)

• The Weighted Resource Allocation (WRA) is similar to the Weighted Adamic-Adar but gives weights differently:

W RA(uv) = w∈N (u)∩N (v) 1 k∈N (w)
A(wk)

.

(4)

Normalization

Each metric is then normalized with the maximum value of the metric index. This allows for comparable metric index values and better understanding of each metric weight in the prediction. This normalization process is done for each pair of nodes and each metric in order to keep the absolute values comparable between different metrics. We obtain the normalized index m(uv):

m(uv) = m(uv) max uv∈V ⊗V {m(uv)} , (5) 
where m(uv) is the index associated to metric m over the pair of nodes uv.

Prediction index

In order to use the features captured by metrics presented above, we combine the information contained in the normalized metric indexes into a prediction index. Precisely, we build a prediction index F, such that for all uv ∈ V ⊗ V , F(uv) represents how likely a link between u and v during [A , Ω ] is. Here, we build it using a linear combination for simplicity reasons, but a user could define another combination method, based on his or her choice of metrics. Formally,

F(uv) = m∈M α m • m(uv), (6) 
where M is the set of metrics used and m is the normalized metric index associated to the metric m. The parameters α m control each metric weight in the prediction index. We make the strong assumption that the metrics m are chosen in such a way that F(uv) is proportional to the probability for an interaction between u and v to happen. Note that the important information does not lie in the absolute value of F(uv), but rather in the relative values of F(uv) in comparison to other F(u v ) as we will see in Section 3.4.

Given such a prediction index, a standard method consists in learning on the training period values of α m which optimize a given evaluation criterion. Then, these weights are used for actual prediction on the prediction period. Our method to optimize weights is presented in Section 3.6.

Global prediction and link allocation

Now, we describe the core of our approach to activity prediction in link streams. It relies on the following design choice: first, we predict the overall activity on the stream, then we allocate a fraction of all predicted links to each pair of nodes depending on its prediction index. The overall activity can be predicted using methods usually available to predict time series. How to allocate links to node pairs is a broad question in itself, which we cannot address in details here, therefore we will make a basic choice to give the reader an idea of how to deal with this issue in practice.

Precisely, to predict the number of interactions between each pair of nodes during T = [A , Ω ], we first estimate the global number of links N between all node pairs during this period. We make the simplistic assumption that the global activity in L is the same as in L, and therefore, extrapolate linearly the stream activity to determine the global number N of links to predict:

N = |E| • Ω -A Ω -A . (7) 
Then, for each pair of nodes, the metric indexes m and subsequent normalized metric indexes m are computed on the link stream L. As the prediction index reflects how likely the occurrence of a link between two nodes is, we use it to distribute the N links between all pairs in V ⊗ V . Precisely, supposing that the prediction index F is build in such a way that it is proportional to the number of links appearing for any pair uv, we allocate the N links estimated previously according to the following allocation rule:

A p (uv) = N • F(uv) xy∈V ⊗V F(xy) . (8) 
Of course, we have xy∈V ⊗V A p (xy) = N . As mentioned previously, it is thus the relative values of F(uv) which are important in the computation of A p (uv).

This framework allows to predict the future activity of node pairs, that is the number of links appearing between each pair of nodes during T . It is important to note that due to the specificities of our prediction task and in contrast to what is usually done for link prediction in graphs, this number is not necessarily an integer.

Evaluation score and protocol

To evaluate the efficiency of our protocol, we need to define a quality estimator specific to the activity prediction problem. Practically, we have to compare for all uv ∈ V ⊗ V the number of predicted links A p (uv) to the number of links that have actually occurred A a (uv). Note in particular that our method of computing A p (uv) does not guarantee that it is an integer, so that the estimators should be suited to this. Nevertheless, we would like to make the evaluation method as close as possible to the tools used in classification tasks, as it would make the framework closer to the familiar vocabulary of link prediction.

Thus, we adjust the usual definition of true positives, false positives and false negatives to the context of activity prediction in link streams, as these measurements underly many evaluation metrics in prediction tasks. Precisely, for each pair uv, we compare A p (uv) to A a (uv), see Figure 3. We then define the number of TP, FP and FN as follows:

   T P (uv) = min(A p (uv), A a (uv)) F P (uv) = max(A p (uv) -A a (uv), 0) F N (uv)= max(A a (uv) -A p (uv), 0) . ( 9 
)
The sum of each of these indicators over all node pairs yields the number of T P , F P and F N for all predictions. Note that these definitions allow to get the usual relationships between indicators. In particular, T P + F P is the number of predictions and T P + F N is the total number of interactions actually occurring during T . Moreover, they convey the same idea as the usual TP, FP and FN do, as TP and FP reflect respectively the number of good and false predictions among all, while FN corresponds to actual occurrences of interactions which have not been predicted.

Consequently, we can compute more sophisticated performance indicators, like the Precision T P T P +F P and the Recall T P T P +F N . We also use the F -score to quantify the quality of prediction, which is the harmonic mean of these two indicators: 2 • P recision•Recall P recision+Recall . Other indicators could be defined in this context, like the ROC curve, but we do not use them in this study. 

Learning of parameters

The choice of values for parameters α m is a crucial step to achieve accurate prediction, as they determine the balance between combined metrics. An automated way to choose these values is also needed when using multiple metrics simultaneously, as systematically explore the parameter space would be too costly. For this purpose we use a machine learning algorithm and define training and testing phases.

We use a hold-out technique, which means that we divide the data into sub-streams in order to define a training phase during which we optimize parameters and then extrapolate these parameters for the purpose of the prediction itself. Note that k-fold validation is much used in prediction tasks, however it is difficult to implement in a context where the time-ordering plays an essential role, as using randomly chosen periods of time would lead to an important loss of temporal structure.

Practically, we proceed in the following way, see Figure 4: we divide the input stream L into two sub-streams: a training sub-stream

L 1 = (T 1 , V, E 1 ) with T 1 = [A 1 , Ω 1 ]
, used to compute the metrics during the training phase, and a validation sub-stream

L 2 = (T 2 , V, E 2 ) with T 2 = [A 2 , Ω 2 ].
The values of parameters α m are then computed using a learning algorithm to optimize activity prediction on T 2 using the information contained in T 1 . Prediction metrics are then computed on the actual observation sub-stream

L 2 = (T 2 , V, E 2 ) with T 2 = [A 2 , Ω 2 ],
to predict the activity during the prediction stream L = (T , V, E ) with T = [A , Ω ] .

In our implementation, the validation and the effective observation sub-streams are identical. This choice is not mandatory, but we make it because it would probably be the operator choice in many real-time applications, as it means that the latest observations are used in order to predict coming events. The initial set of parameters given as input to the learning algorithm is drawn randomly in the parameter space for each prediction. Then, we use a gradient descent algorithm to explore the parameter space and find good values for each parameter α m . Note that using a linear combination of metric indexes allows to avoid repeating a number of heavy computational steps. This reduces greatly the computational cost of the method.

Method summary

We represent the different steps of our approach in Figure 5 and we summarize notations in Table 1. This framework is able to combine different kinds of information to optimize prediction. We did our best to make it very modular, in order to make it easy to adapt it to specificities of a given activity prediction problem, or to specific dataset features. For example one may adapt the metrics chosen, the combination method, the optimization technique, or the quality estimator used during the evaluation phase. Our implementation is available online1 .

Notation Meaning

A i Start time of link stream L i Ω i End time of link stream L i N
Overall number of predicted links N Overall number of occurring links A p (uv)

Activity predicted for pair uv A a (uv)

Actual activity for pair uv

F Prediction index F(uv) = m∈M α m • m(uv)
m is a normalized metric and α m the weight of metric m in F 

L i = (T i , V i , E i ) is a link stream with E i ⊆ T i × V i ⊗ V i , T i = [A i , Ω i
] is a time interval, and (t, uv) ∈ E i means that an interaction occurred between u and v at time t. .

IV DATASETS AND EXPERIMENTS

In this section, we study the results of our activity prediction method on four different datasets. First, we briefly describe these datasets. Then, we implement the standard prediction protocol aforementioned and investigate more closely how the learning method distributes weights among combined metrics. Finally, we identify the strengths and weaknesses of the procedure and important challenges to improve the activity prediction.

Data description

In order to assess the performances of our framework, we conducted experiments on four datasets which gather contacts detected with sensors. Each undirected link (t, uv) means that the sensor carried by nodes u or v detected the sensor carried by the other nodes at time t, which means in turn that these two nodes were close enough at time t for the detection to happen. We call this a contact between nodes u and v. We present the datasets briefly in this section.

The first trace was collected in a French high school in 2012 (Highschool dataset), see [START_REF] Mastrandrea | Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys[END_REF] for full details. It is a link stream of 181 nodes and 45047 links, connecting 2220 distinct pairs of nodes over a period of approximately 8 days.

The second dataset has been collected during IEEE INFOCOM 2006 in Barcelona (Infocom dataset) -see [START_REF] Scott | CRAWDAD dataset cambridge/haggle (v. 2009-05-29[END_REF]. The Bluetooth devices used in this experiment recorded connections with one another. This dataset contains 98 nodes and 283,100 links. During this 3 days long experiment, 4,338 pairs of nodes have interacted. Note that the Infocom dataset, which is also a contact sensor trace, involves less nodes but contains more links and more active node pairs than the Highschool dataset does.

Our third dataset is the Reality Mining dataset, which gather contacts among students of the Massachusetts Institute of Technology as recorded by their mobile phones -see [START_REF] Eagle | CRAWDAD dataset mit/reality[END_REF]. The trace contains 1,063,063 links between 96 nodes during 9 months with 2,539 distinct pairs of nodes involved in interactions.

Finally, we study the Taxi dataset. It is based on the GPS locations of 305 taxis in Rome, recorded during the month of February 2014 -see [START_REF] Bracciale | CRAWDAD dataset roma/taxi (v. 2014-07-17[END_REF]. We consider that two taxis have interacted if they are within a 30 meters range from each other. This yields a link stream of 22,364,061 links. During the experiment 16,799 pairs of nodes have interacted, which makes this dataset significantly larger than the other datasets under study.

Experimental implementation

As a reminder of the protocol described in Section 3.6, we divide our input period L in two substreams, the training stream

L 1 = (T 1 , V, E 1 ) with T 1 = [A 1 , Ω 1 ]
, and the validation/observation stream

L 2 = (T 2 , V, E 2 ) with T 2 = [A 2 , Ω 2 ].
Values of parameters α m are then computed using a gradient descent algorithm that optimizes activity prediction of the activity on L 2 using the information contained in L 1 . The prediction metrics are then computed on the observation sub-stream

L 2 = (T 2 , V, E 2 ) with T 2 = [A 2 , Ω 2 ], to predict the activity in prediction stream L = (T , V, E ) with T = [A , Ω ].
The acronyms corresponding to these metrics are indicated in Table 2.

In our experimental set-up the durations of training, validation, observation and prediction periods are chosen equal. In the cases of Highschool and Infocom datasets, we use 1, 2 and 3 hours long periods starting on a Monday at 8:30 and 9:00 respectively. In the cases of Reality Mining and Taxi datasets, the timescales are typically longer, so we use 1, 2 and 3 days long periods, starting on a Tuesday at 1:30 am for the Reality Mining dataset and a Wednesday at 8:00 am for the Taxi dataset. We report in 

Standard prediction

Results are summarized in Table 4. We report the F -score, the Recall and the Precision for each experiment, as well as the number of predicted links (N ) and the number of links which actually occurred during the prediction period (N ). The values presented are the averages obtained on 10 realizations for each set of parameters. The standard deviation for F -score, Precision and Recall is in all cases lower than 0.01.

Highschool

We first focus on the Highschool dataset experiments. We can see that during the 1h experiment, the algorithm predicts slightly more links than what actually appear. Still, Recall is 0.69, meaning that 69% of interactions observed have been correctly predicted, therefore the method seems to quite precisely account for a large part of the activity in the dataset during this period.

However, a significant drop in the prediction quality can be observed during the 2h experiment, which is visible on both Precision and Recall (and consequently on the F -score). This is prob- ably due to the fact that the observation period spreads over lunch break. The overall activity predicted over the prediction link stream underestimates the number of links that actually appear. It reflects that the activity from the observation stream is not as high as the actual activity from the prediction stream. But the main reason for this drop in the prediction quality certainly stems from the fact that lunch break is an opportunity for interactions which are different from the ones occurring during class hours, and this seems to have a significant impact. We explore this question in more details in Section 4.5.

Considering the 3h experiment, we observe a slight increase in Precision and Recall compared to the 2h experiment. We think that longer observation periods mitigate the effect of behavior changes, like the one that happens at lunch break. The overall activity predicted is greater that the activity that actually occurs. While this effect impacts the prediction quality, we see that it is not as significant as with the 2h experiment.

These experiments show that predictions on longer periods are negatively affected by the strong variation in the behavior of the system over time, mostly due to the high-school schedule, which alternates breaks and class hours.

Infocom

For the Infocom dataset, performances are more stable compared to the Highschool case, in particular when comparing the number of predicted links to the number of occurring links. Indeed, the divergence between these values remains consistently lower than 20%. This leads to better performances on each experimentation. We suggest that, as this dataset reports contacts at a conference, it may be explained by the fact that differences in behaviors are less marked between talks and breaks. At a much smaller scale than in the Highschool case, we also observe a loss in prediction quality when using 2h periods compared to 1h periods, but the effect disappears on longer periods: 3h training and prediction periods yield even better results than the 1h case.

Reality mining

The Reality Mining dataset performs relatively well on 1 day and 3 days periods, however we can see a dramatic loss in prediction quality using 2 days periods. In this case, the loss seems to come from the vast overestimate of predicted links compared to the links which appear. This poor performance prediction is investigated more thoroughly in Section 4.5.

In the case of the 3 days training and prediction periods experiment, the overall predicted activity is now lower than the occurring activity, which leads to a low Recall value (0.29) relatively to the 1 day experiment (0.56), where the underestimation of activity was not as significant. However, predicted interactions are quite accurate, as the Precision is 0.73. This tends to shows that in certain instances our protocol is able to achieve suitable prediction despite an underestimated activity during prediction period.

Taxi

Considering the Taxi dataset, we can see that prediction quality in terms of F -score is lower than for other datasets. This is due to a greater number of nodes and interactions in the dataset, leading to a more difficult prediction task, as there are more candidate node pairs which can be predicted. Notice also that the nature of the dataset is different and geographical proximity between two taxis may be less meaningful than proximity of students or conference attendees.

The 1 day experiment predicts an overall activity closer to the actual activity, leading to the best prediction. We can see that for 2 days and 3 days predictions, the extrapolation yields less accurate results regarding the F -score, and in each case the overall activity prediction has been largely ill-estimated (respectively over and underestimated).

These experiments show that the choice of the prediction period plays a key role for prediction quality. It is closely related to the overall activity extrapolation, leading to important variations in the prediction quality.

Metric combinations

In this section we observe how the algorithm mixes different metrics in order to optimize prediction. The combination realized for each dataset is shown in Figure 6. The height of each bar corresponds to the mean of coefficients obtained for the experiments presented above (average on 10 realizations for each set of parameters). We have represented metric combinations for the following training/prediction periods and datasets: 1 hour for Highschool; 2 hours for Infocom and 1 day for Reality Mining and Taxi. The meaning of metric acronyms used can be found in Table 2.

Considering the Highschool dataset, algorithm mainly uses the Pair Activity Extrapolation (PAE) metric with a small influence from the activity during the last 100 seconds (PAE100S). This tells us that the algorithm basically extrapolates the dynamics of each pair of nodes during the end of the observation period to predict future interactions.

Considering the Infocom dataset, the algorithm also focuses on temporal metrics. It allows the algorithm to gather information about dynamics related at different time scales. The algorithm also makes use of one of the weighted metric, namely the Weighted number of Common Neighbors (WCN).

The patterns of used metrics in the case of the Reality Mining is quite similar to the Infocom case. Indeed, the algorithm gives most weight to temporal metrics, with a marginal use of Weighted number of Common Neighbors, more precisely the activity during the last 1,000 seconds (PAE1000S) and the activity by unit of time during the 10 last links (PAE10L). The time granularity being 120 seconds, activity during the last 100 seconds does not appear.
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Finally, concerning the Taxi dataset, we can see that our algorithm mainly uses activity during the last 10,000 seconds (PAE10000S). However, all the other temporal metrics are also used with relatively lower weights, indicating that all timescales carry a certain amount of information in regards to this prediction. Besides that, we also see a notable contribution of structureoriented index such as the Weighted number of Common Neighbors as well as a slight use of the Weighted Resource Allocation index.

For each dataset the algorithm uses slightly different metric combinations. However, we can note that temporal metrics are often favored. Purely structural metrics are mostly ignored by our algorithm, yet hybrid metrics collect structural information, which is used by the algorithm to improve the prediction in most experimental settings. It is also interesting to note that temporal metrics corresponding to different time scales are represented, meaning that combining these metrics allows the algorithm to capture different information.

An important point is that by extrapolating the past activity of a pair of nodes, temporal metrics are simply not able to predict new interactions, while structural and hybrid ones may. This indicates that it is much harder to predict interactions that appear for the first time than previously observed interactions. Indeed, our framework combines metrics in order to focus on repeated links rather than on new links. We explore this intuition thereafter.

The case of poor predictions

In this section, we investigate in more details two cases seen in Section 4.3 which exhibit particularly low prediction quality in terms of F -score, compared to other experiments on the same datasets.

Considering the 2 days experiment on Reality Mining, we have observed an important drop of the overall activity during the prediction period. We show in Figure 7 the number of links through time during this experiment with a granularity of 1,000 seconds. The system displays a large decrease on the number of links appearing during the last two days. The experiment starting on a Tuesday, this mean that the training period is from Tuesday to Wednesday, the validation and observation from Thursday to Friday, while the prediction period is Saturday and Sunday, which leads to a huge decrease of activity.

Concerning the Highschool experiment with 2 hours periods, we have previously noted an underestimation of the activity during the prediction period. Again, we show in Figure 7 the activity during this experiment with a granularity of 40 seconds. We have also seen in Table 3 that the prediction period [A , Ω ] spans from 12:30 pm to 2:30 pm. This corresponds to lunch break, when students leave their classes and have the opportunity to mix with other students.

It is hard to draw any conclusion from Figure 7, as the activity decreases from the training period (8:30 am to 10:30 am) to the validation period (10:30 am to 12:30 pm) and again from the validation period to the prediction period. But the predicted overall activity reported in Table 4 seems not far enough from the actual activity to explain alone the drop in prediction quality.

To investigate further this problem, we achieve a prediction task, which is not realistic but allows us to have a better grasp of the reason for the former observation. We repeat the previous experiment, but setting predicted activity to actual activity measured in the prediction stream. This experiment yields a F -score of 0.17, Precision is 0.16 and Recall is 0.17. These values are close to the quality obtained during the original experiment. This shows that predicted overall activity alone does not explain the drop in quality. Thus, the prediction is mostly affected by the change of students contact behavior from classes to lunch time.

Notice that these results enlighten the importance of the choice of the training, validation and prediction periods in the protocol. 

V INVESTIGATING COMBINED METRICS

In this section, we use a simplified learning model, identical to the one presented above except for the fact that it mixes only two different metrics. This simplification allows to clearly represent the mixing achieved by the method, depending on the values of learning parameters. Our purpose is to measure what kind of links are predicted depending on the mixing. To do so, we focus on the Highschool and Infocom datasets. As discussed later, this will give us additional hints about the relatively low contribution of structural metrics in previous series of experiments.

Simplified experimental setting

The experimental protocol focuses on the performance gain that can be achieved by combining two link stream metrics. Here, we focus on the training and validation periods only. Then, to understand the information brought by each metric, we combine two metrics at a time, the weight of each metric being related to the parameter α, according to the following equation:

F(uv) = α • P AE1000S(uv) + (1 -α) • m(uv), (10) 
where P AE1000S is the index associated to the activity during the last 1,000 seconds (see Section 3.2.2). We use it as a reference because we have seen that it is the metric which gets most weight in the case of the Highschool dataset experiment and the second most weighted metric in the Infocom dataset experiment. For each experiment we combine the activity during the last 1,000 seconds with m(uv) the index corresponding to another metric, as indicated in the legend of each figure.

Structural and temporal metrics combinations

We study how the use of different metrics with different weights affects predictions on Highschool and Infocom datasets. For this purpose, we combine three of the metrics presented in Section 3.2.1 with the activity during the last 1,000 seconds. For each dataset we combine it to the most important metric index used by our learning algorithm, that is to say the activity during the last 100 seconds for the Highschool dataset and the Pair Activity Extrapolation for the Infocom dataset. We also combine it with the number of Common Neighbors and the Sørensen Index to study how the algorithm mixes activity during the last 1,000 seconds to structural metrics. Plots in Figure 8 In the case of Highschool, we use a 1 hour training period. We combine successively PAE1000S with PAE100S, the number of Common Neighbors (CN) and the Sørensen Index (SI). The plots for PAE100S show that F -score increases with α until reaching a maximum for α 0.74 and then decreases until α = 1. With both structural metrics we observe roughly similar behaviors: a slow increase until α 0.8 then a rapid increase until a maximum at α = 1. This shows that the algorithm simply does not benefit at all from the structural metrics in this experiment. Indeed, when α = 1, the prediction index comes down exactly to the activity during the last 1000 seconds.

We then apply the same protocol to Infocom, with a 1 hour training period. This time we combine PAE1000S with the Pair Activity Extrapolation, CN and SI, successively. The mixing between temporal metrics (PAE1000S and PAE) behaves qualitatively in the same way as the mixing of temporal metrics in the Highschool case, that is a convex curve with a maximum for α 0.35. The combination with structural metrics behave qualitatively in a different way than in the Highschool case. Both plots have similar shapes, showing an increase until a maximum is reached at α 0.94 then decreasing until α = 1. These observations indicate that in this experiment, combining a temporal metric with a structural metric may lead to an improvement of the F -score.

Observations of this section confirm that the algorithm is able to find a trade-off between metrics that improve the performance of the prediction. Moreover, we see more clearly that the mixing tends to heavily favor temporal metrics. We will now turn our attention to the kind of links which are consequently predicted.

Nature of predicted links

Using the same prediction protocol, we divide the set of node pairs into two categories, to see what kind of links are predicted in each case. On the one hand, some pairs have not interacted during T , so that predicting the occurrence of a link between nodes of this kind is predicting a new link in the stream. We call new link any (t, uv) in the prediction stream L such that

x ∈ T, (x, uv) ∈ E. On the other hand, other pairs have interacted during T and predicting such an interaction is predicting the repetition of a link. We call recurrent link any (t, uv) in the prediction stream L such that there exists a link (x, uv) ∈ E. We apply the evaluation method on the complete set of pairs and on each of these two subsets. We display in Figure 9 the obtained F -score as a function of α for the two categories of pairs aforementioned on both datasets as well as for the complete set of pairs. We can see on the Highschool results that the F -score corresponding to the recurrent link category increases to a maximum for α 0.98, while for the new link category it remains almost constant until α 0.98, at which point it decreases to zero. The F -score for the complete set of links is the same that previously, with a maximum at α = 1. Activity during the last 1,000 seconds alone is not able to predict new links by construction and thus yields a null F -score. The performance of the prediction of recurrent links improves as more weight is given to the Pair Activity Extrapolation. However, we do not see the same effect of stagnation for a wide range of α.

The plot corresponding to the Infocom dataset shows a quite different behavior. We can see that the F -score accounting for new link predictions starts from 0.22 for α = 0 and slowly decreases until α = 0.8 at which point it sharply decreases to 0. Regarding the recurrent links prediction the F -score starts from 0.41 and reaches a maximum of 0.62 for α 0.92 and then decreases to 0.56. We observe that new link prediction quality is noticeably lower than the recurrent link prediction quality in both experiments. The difficulty of this task is mainly due to the class imbalance problem, which is a well-known issue in the field of link prediction [START_REF] Lichtenwalter | New perspectives and methods in link prediction[END_REF]. It is related to the fact that the number of links actually occurring is small in regards to the potential number of links, which is simply the number of node pairs. We observe that the number of links predicted in each category plays an important role in the prediction quality. Obviously, different metrics tend to predict preferentially different types of activity. These experiments show that, by choosing specific metrics combination, the prediction focuses on different kinds of activity, involving different kinds of links. With that in mind, we can put forward an explanation for the lower weights of structural metrics in the combinations computed by the learning algorithm in Section 4.4. Indeed, by only selecting temporal metrics the algorithm avoids the difficult task of predicting new links to favor the easier task of predicting recurrent ones. While it improves the overall F -score, it is also detrimental to the variety of links predicted. To counterbalance this unwanted behavior, we explore in the next section how to integrate the notion of class of node pairs to the protocol.

VI CLASSES OF PAIRS

As seen in Section 5.3, specific metrics combinations favor different kinds of node pairs. However, our protocol does not make this distinction. In this section, we propose a way to improve activity prediction in link streams by differentiating node pairs. For this purpose, we introduce classes of node pairs based on previous activity. Other choices of class definitions are possible, but our previous observations indicate that new links and recurrent links behave very differently. Moreover, previous studies of related prediction problems also agree with this -see for example [START_REF] Scholz | On the predictability of human contacts: Influence factors and the strength of stronger ties[END_REF] on link prediction. We compute a specific set of values for parameters α m for each of these classes, allowing to adapt metric weights to each type of node pairs.

Class definition and metric to optimize

We choose to separate classes by their level of activity. The underlying idea is to create classes reflecting on the one hand link prediction in graphs and on the other hand time series prediction. Indeed, predicting node pairs with no or low past activity is a task related to the prediction of new links, while predicting the future activity of recurrent links resembles a time series prediction task.

We define three classes of node pairs. Class C1 is populated with node pairs which have not interacted during the training period. Class C2 gathers the pairs with less than a given number of links k during the training period. Lastly, the remaining high activity pairs are assigned to the class C3. Formally:

C1 = {uv ∈ V ⊗ V, |(t, uv) ∈ E 1 | = 0}, (11) C2 = {uv ∈ V ⊗ V, 0 < |(t, uv) ∈ E 1 | ≤ k}, (12) C3 = {uv ∈ V ⊗ V, |(t, uv) ∈ E 1 | = 0 > k}. (13) 
In the following experiments, in a proof of concept spirit we set the threshold between the class C2 and C3 to k = 5 links. However determining an adequate value of the threshold in general is a difficult task, which depends on the dataset under consideration.

We follow the same experimental protocol for each class, using different values of parameters, which are computed during the learning phase. However, if we aim at optimizing the overall Fscore, this protocol tends to favor high activity classes. Therefore, we have to update adequately the metrics to optimize with the gradient descent algorithm, in order to ensure we predict a wide variety of links. We then define the prediction score F as the harmonic mean of the F -scores for each class, that is

1 F = 1 3 1 F (C 1 ) + 1 F (C 2 ) + 1 F (C 3 ) , ( 14 
)
where F (C 1 ), F (C 2 ) and F (C 3 ) and the F -scores computed over each subset of node pairs defined by our classes.

Once the parameters are optimized, we reassign each node pairs in our different classes based on their activity during the observation stream L 2 . We then follow our usual protocol, combining the metrics for each classes using its specific set of parameters.

Reduction of the parameter space

In order to achieve computations in a reasonable amount of time, we reduce the set of metrics compared to the experiments in Section 4.4. In these series of experiments, we use the following metrics: number of Common Neighbors, the Sørensen Index, the Weighted number of Common Neighbors and our temporal metrics, Pair Activity Extrapolation (PAE) , PAE10L, the activity during the last 10 links, PAE1000S and PAE10000S, the activity during the last 1,000 and 10,000 seconds respectively, drawing benefit from the fact that several metrics are highly correlated.

Indeed, we reported in Figure 10 the correlation matrix of the score given by each metric over every nodes for the training set of the experiment on Infocom for periods of 2h. We can see that most structural metrics are highly correlated. Particularly, number of Common Neighbors, Adamic-Adar index and Resource Allocation index seem to bring similar information. We also see that Sørensen Index and Jaccard Index are very correlated to each other. Therefore, we choose one metric for each group, the number of Common Neighbors and the Sørensen Index. This will allow some variety in the structural metrics available. Similarly, except for the Weighed number of Common Neighbors, the weighed variation of structural metrics are close to the other structural metric. Thus, in the following experiments, we keep the Weighted number of Common Neighbors. Temporal metrics tend to focus on different time scales of the dataset and, while correlated, bring different information about the dynamic of the system. Therefore we keep them all for our following experiment. 

P A E J I C N W C N R A W R A A A W A A S I W S I P A E 1 0 L P A E 1 0 0 0 S P A E 1 0 0 0 0 S P A E J I C N W C N R A W R A A A W A

Experimental results

We apply the protocol on Infocom using the same training, validation, observation and prediction periods as in the 2h experiments detailed in Section 4.3. Results are summarized in Table 5. We present the results for each class C1, C2 and C3, as well as the overall results obtained when combining the prediction for each class, denoted All Class. For comparison purposes, we also present the results obtained in the same experiments but without using classes of node pairs. The corresponding results are prefixed C0. Thus, the F -scores associated with C0-1 C0-2 and C0-3 are the scores obtained when applying the evaluation protocol on the subset of node pairs relative to each pair classes. Precision, Recall and F -score are reported, as well as overall activity predicted and occurring. These results correspond to the average over 10 runs of the experiments, with standard deviation below 0.01 for the F -score, below 0.05 for the Precision and Recall, and below (up to) 22% for the number of predicted links. First, we observe that the number of predicted links in class C1 is more than 15 times higher than in class C0-1. The Precision slightly decreases, but the Recall is so much higher that the new protocol achieves a 0.25 F -score, to be compared to the 0.05 F -score obtained on this class in the standard series of experiments. We also note that the activity predicted over the whole class C2 nearly doubles, which also leads to a performance improvement, from 0.37 to 0.41 F -score. It is very interesting to note that the introduction of classes also improves the prediction in the classes C3, from a 0.63 to a 0.65 F -score. The number of links predicted in this class largely decreases to balance the fact that the activity predicted in the two other classes increases, making it closer to the actual activity observed. We investigate this effect in more details later.

Class

Quite counter-intuitively, while the prediction is improved in each class, the F -score predicted overall decreases from 0.55 to 0.53. This phenomenon is a sort of amalgamation paradox. Precisely, the F -score is the harmonic mean of the Precision and the Recall, hence its computation is related to the proportion of links that should be predicted and that is actually predicted in each class. This may lead to the fact that the F -score over the union of subsets and the F -scores of each subset considered separately evolve according to different trends.

We display in Figure 11, the values of parameters α m computed by the learning algorithm to achieve a prediction over each class (averaged over 10 experiments). As expected, the method tends to use different combinations to make a prediction over each class. Considering class C1, the algorithm favors structural and hybrid metrics. These metrics are commonly used for link prediction in graphs, which makes sense given that predicting new link activity is closely related to this problem.

Class C2 tends to mix structural metrics to temporal ones. Pairs in this class have intermediary behavior and the algorithm combines information of different nature to predict these behaviors. Interestingly, prediction on class C3 also mixes temporal metrics to structural ones, even if temporal metrics remain predominant. It contrasts with prediction in the experiments without class, where no or little weight was distributed to purely structural metrics, and little weight to hybrid ones. Our interpretation is that in the former protocol, the optimization favored temporal metrics in order to exclude node pairs which had never interacted and then are much more risky to predict, while in the later protocol, the introduction of classes allows to focus on recurrent links only, so that giving weight to structural metrics becomes an interesting option again.

Experiments on Highschool and Reality Mining present similar results and are not reported here. Concerning the Taxi dataset, we think that the different nature of interactions between nodes necessitate a specific analysis which is left for future works. In the light of these experiments, we can see that introducing classes of pairs in the problem of activity prediction may be a good option in order to improve the diversity of links to be predicted, which opens interesting leads for future works on the topic. In particular, finding a way to compute automatically relevant activity thresholds would be a significant improvement to the current version of the classes definition.

VII CONCLUSION

In this work, we proposed an activity prediction protocol adapted to the link stream formalism, making possible to advantageously use the rich information contained in this modeling. It relies on a flexible way to combine the information from metrics which capture characteristics of the stream. We also proposed evaluation metrics adapted to our problem. Our experiments show that our protocol is able to find efficient combinations of structural and temporal metrics that lead to performance improvements, compared to benchmarks such as the past activity extrapolation. We also investigated how this algorithm tends to exclude specific types of node pairs, leading to less variety in the predicted links. However, we showed that it is possible to mitigate this issue by introducing classes of node pairs in activity prediction, so that a better balance of activity can be obtained in each class. Most importantly, our protocol is designed in a modular way, such that each part is independent from the others and can be replaced or improved, depending on the application a user is interested in.

Different improvements are considered for future works. The metrics presented in this work are classical metrics used for link prediction in graphs or basic ways to capture the temporal information of the stream. As our protocol is ready to combine new metrics, we intend to design refined ones that are able to detect more subtle dynamical metrics of the stream, for example implementing pattern mining techniques to identify typical motifs of the short term dynamics. We also made the assumption that the activity remains constant from the observation period to the prediction period. However, this hypothesis is not always satisfied and greatly depends on the data under concern. Models developed in the context of time series prediction, like the ARIMA model which extrapolates precisely past activity [START_REF] Huang | The time-series link prediction problem with applications in communication surveillance[END_REF], would certainly allow to better evaluate the number of predicted links. Finally, we also want to investigate further how our algorithm behaves with different classes of pairs. Other definitions are possible, for example structural classes, where node pairs of a same community would belong to a same class. [START_REF] Ganshof | Charlemagne et les institutions de la monarchie franque[END_REF][START_REF] Werner | Missus -marchiocomes : entre l'administration centrale et l'administration locale de l'Empire carolingien[END_REF][START_REF] Bougard | La justice dans le royaume d'Italie de la fin du VIII e siècle au début du XI e siècle[END_REF] ou des missi en tant qu'ambassadeurs (Scior 2009 ;[START_REF] Kikuchi | Untersuchungen zu den Missi dominici. Herrschaft, Delegation und Kommunikation in der Karolingerzeit[END_REF]. Enfin, la fréquence des tournées pouvait varier au fil des années et en fonction des terres contrôlées.

Une des premières balises dans l'étude des missi dominici a été posée par le travail de [START_REF] Krause | Geschichte des Institutes der missi dominici[END_REF]. L'auteur a conclu à l'essor du système missatique exclusivement sous Charlemagne et a constaté que les agents ont été, dans la plupart des cas, recrutés parmi les vassi dominici (vassaux royaux) extérieurs aux lieux de leurs missions. Ces constats ont marqué en partie l'historiographie du début de XX e siècle, comme en témoigne par exemple le travail de [START_REF] Thompson | The decline of the missi Dominici in Frankish Gaul[END_REF]. Durant les décennies suivantes, le sujet a connu un intérêt modéré parmi les médiévistes. Les quelques travaux qui en résultèrent commençaient à nuancer les positions historiographiques précédentes. La vision étroite de l'essor de l'institution des missi sous le règne de Charlemagne a été mise en doute par des enquêtes poussées démontrant l'évolution progressive du système tout au long du IX e siècle [START_REF] Eckhardt | Die Capitularia missorum specialia von 802[END_REF][START_REF] Ganshof | Charlemagne et les institutions de la monarchie franque[END_REF][START_REF] Werner | Missus -marchiocomes : entre l'administration centrale et l'administration locale de l'Empire carolingien[END_REF]. La disparition du réseau des missi semble être davantage causée par les transformations profondes, sociales et économiques, de la royauté franque que par la faiblesse de l'institution missatique elle-même. En même temps, les nouvelles études ont affirmé que l'appel aux vassi dominici, souvent enclins à la corruption, a été rapidement abandonné au profit du recrutement des missi parmi les membres des familles aristocratiques locales ou parmi les élites ayant déjà un ancrage fort dans les territoires de leurs affectations [START_REF] Eckhardt | Die Capitularia missorum specialia von 802[END_REF]Hanning 1984b). Plus récemment, le travail prosopographique de [START_REF] Kikuchi | Untersuchungen zu den Missi dominici. Herrschaft, Delegation und Kommunikation in der Karolingerzeit[END_REF] a marqué une étape majeure dans l'étude du système missatique. Grâce au recours à une riche palette de sources, il a tenté de reconstituer les activités et le parcours du plus grand nombre de missi connus à ce jour et a montré les changements dans l'utilisation de ce réseau des agents au cours des différents règnes. Jusqu'à ce jour, les études de l'ensemble du système missatique sont toutefois rares et il n'est possible de recenser qu'une dizaine de travaux sur le sujet (à l'exception de ceux déjà cités : [START_REF] De Clercq | Neuf capitulaires de Charlemagne concernant son oeuvre réformatrice par les « Missi[END_REF]Hanning 1983 ;Hanning 1984a ;[START_REF] Depreux | L'absence de jugement datant du règne de Louis le Pieux : l'expression d'un mode de gouvernement reposant plus systématiquement sur le recours aux missi[END_REF][START_REF] Gravel | Du rôle des missi impériaux dans la supervision de la vie chrétienne. Témoignage d'une collection de capitulaires du début du IX e siècle[END_REF][START_REF] Mckitterick | Charlemagne's missi and their books[END_REF]Jégou 2010).

Finalement, le caractère parfois incertain aussi bien des fonctions que de la régularité et de l'ampleur des pratiques missatiques pouvait laisser subsister quelques interrogations sur la véritable nature institutionnelle du recours à ces agents par la cour royale franque. L'étude de ce réseau s'inscrit alors dans le cadre d'une recherche plus large sur le fonctionnement du système politique altomédiéval et sur les dynamiques de gouvernance aux temps pré-modernes. Si les questions sur les formes et l'existence même de l'État médiéval restent toujours ouvertes [START_REF] Werner | L'historien et la notion d'État[END_REF][START_REF] Reynolds | The historiography of the medieval state[END_REF][START_REF] Davies | The Medieval State : The Tyranny of a Concept[END_REF]Grunin 2019) un des points de vue dominants de l'historiographie propose de le percevoir comme un réseau complexe d'influence et de domination [START_REF] Werner | Missus -marchiocomes : entre l'administration centrale et l'administration locale de l'Empire carolingien[END_REF][START_REF] Althoff | Family, Friends and Followers : Political and Social Bonds in Early Medieval Europe[END_REF][START_REF] Dumézil | Servir l'État barbare dans la Gaule franque[END_REF] ii) La position historiographique actuelle fait état du recrutement, dans la majorité des cas, des missi en raison de leur appartenance aux familles liées aux pouvoirs en place ou à l'élite qui y exerçait déjà des fonctions. L'étude plus détaillée des liens qui reliaient les agents aux lieux de leurs affectations vise à examiner de plus près ce constat. La présence des relations significatives attestera la volonté de mettre en place un mécanisme de contrôle des territoires basé sur les forces locales.

L'ensemble de cette étude s'est appuyé sur plusieurs conventions terminologiques. La notion de fonction appliquée à l'aristocratie du haut Moyen Âge peut avoir des lectures multiples [START_REF] Depreux | Les élites et leurs espaces : mobilité, rayonnement, domination : du VI e au XI e siècle[END_REF][START_REF] Bougard | Les élites du haut Moyen Âge : identités, stratégies, mobilité[END_REF]. Dans ce travail, ce terme a été utilisé dans le cadre strictement analytique pour désigner la détention des différentes dignités telles que de comte, duc, abbé, etc. De ce fait, par les lieux de fonctions on entend les endroits et les possessions foncières auxquelles ces dignités pouvaient être rattachées. Les lieux d'affectations des missi comprennent uniquement les endroits où l'activité missatique a eu lieu. Les lieux d'attaches personnelles, quant à eux, renvoient aussi bien aux lieux d'origines géographiques des missi qu'aux endroits où les missi pouvaient avoir des liens de parenté.

II MÉTHODOLOGIE ET DONNÉES

Méthodologie

Les travaux précédents ont déjà dessiné plusieurs traits du système missatique et ont fourni un nombre important de renseignements. Les données recueillies ont donné la possibilité d'embrasser l'histoire des envoyés des rois carolingiens dans toute son ampleur. Cela a signifié de déplacer l'accent de l'examen des cas uniques à l'exploration des structures institutionnelles à une échelle plus large, aussi bien chronologique que géographique. Ce changement de perspective a nécessité le renouveau du cadre méthodologique. Il fallait aussi bien tenir compte de la complexité des liens (Thompson 2012). En dépit de ces difficultés, l'analyse de réseau, aidée par la démocratisation des outils informatiques, a progressivement fait son chemin en histoire et notamment en histoire médiévale [START_REF] Rosé | Reconstitution, représentation graphique et analyse des réseaux de pouvoir au haut Moyen Âge. Approche des pratiques sociales de l'aristocratie, à partir de l'exemple d'Odon de Cluny ( † 942)[END_REF][START_REF] Bouveyron | The Random Subgraph Model for the Analysis of an Ecclesiastical Network in Merovingian Gaul[END_REF][START_REF] Hammond | Social Network Analysis and the People of Medieval Scotland (PoMS) 1093-1286 Database[END_REF].

Corpus de données

Les travaux qui ont servi de base du corpus sont l'étude prosopographique de [START_REF] Kikuchi | Untersuchungen zu den Missi dominici. Herrschaft, Delegation und Kommunikation in der Karolingerzeit[END_REF] et, en second lieu, l'enquête de [START_REF] Krause | Geschichte des Institutes der missi dominici[END_REF]. Ce dernier a répertorié 214 missions couvrant la période de la deuxième moitié du VIII e siècle jusqu'au début du X e siècle. Les données retenues sont souvent lacunaires, mais permettent de dessiner les traits majeurs dans la reconstruction des territoires couverts par les missi et de retenir quelques informations sur les objectifs de leurs missions. Contrairement à son prédécesseur, [START_REF] Kikuchi | Untersuchungen zu den Missi dominici. Herrschaft, Delegation und Kommunikation in der Karolingerzeit[END_REF] prend les données prosopographiques comme la base de sa recherche. Le dépouillement embrasse les années 751-888 et fournit des informations sur plus de 400 missi dominici. Hormis la trajectoire personnelle de chaque agent, cette étude donne des indications relatives à leurs activités en tant qu'envoyés royaux. Les données de ces deux études ont été complétées par des informations ponctuelles issues des différentes enquêtes historiques (Hanning 1983 ;Hanning 1984a ;Hanning 1984b ;Kaiser 1986 ;[START_REF] Poly | La Provence et la société féodale 879-1166[END_REF][START_REF] Mccormick | Origins of the European economy : communications and commerce[END_REF][START_REF] Mccormick | Charlemagne's survey of the Holy Land. Wealth, personnel, and buildings of a Mediterranean church between Antiquity and the Middle Ages. With a critical edition and translation of the original text : Dumbarton Oaks[END_REF]. En outre, il faut citer le travail prosopographique de [START_REF] Depreux | Prosopographie de l'entourage de Louis le Pieux[END_REF] (Ganshof 1958, notamment pp.108-120 ;Tessier 1967, pp.273-439 ;Bühler 1986, notamment pp.484-490) I, n°18, p.259 ;Depreux 1997, notice 262, pp.383-384 ;Kikuchi 2013, pp.615-617 ;McKitterick 2009, p.262). Ce texte déjà bien connu et étudié [START_REF] Collins | Sur quelques vers de Theodulfe[END_REF][START_REF] Magnou-Nortier | La mission financière de Théodulf en Gaule méridionale d'après les « Contra iudices[END_REF][START_REF] Tignolet | Mobiliser des soutiens[END_REF]) nous livre non seulement un témoignage précieux, bien que partial, des dessous de la justice franque mais également les noms des villes visitées et les activités exercées par l'évêque d'Orléans. Même si la prudence a été de mise, ces informations ont pu enrichir les données sur les services missatiques de ce proche du premier empereur franc (Kikuchi 2013, pp.615-617).

Les difficultés liées à la nature hétérogène du corpus ont été accrues par l'ambiguïté, souvent présente, de l'emploi dans les sources du vocable missi lui-même. Une distinction a dû être faite entre les missi (envoyés) et les missi dominici (envoyés du roi). Si le premier de ces termes pouvait désigner un envoyé ou un messager relevant parfois d'une tout autre autorité que celle du roi, ce sont uniquement les mentions des missi dominici qui nous renvoient aux agents appartenant à l'institution du pouvoir central. La séparation claire entre ces deux catégories a pu être délicate. Le vocable dominus lui-même avait une valeur différente selon le contexte et désignait aussi bien les membres de l'élite altomédiévale [START_REF] Depreux | L'absence de jugement datant du règne de Louis le Pieux : l'expression d'un mode de gouvernement reposant plus systématiquement sur le recours aux missi[END_REF], que les chefs de la royauté franque [START_REF] Fleckenstein | Der karolingische Herrschaftsverband im 9, Jh. zwischen « Kirche » und « Königshaus[END_REF][START_REF] Goetz | Regnum : Zum politischen Denken in der Karolingerzeit[END_REF]. Une notice du plaid de règne de Louis le Pieux en est un exemple révélateur (Bernard et Bruel 1876, n°3, p.6). Ce texte, qui présente également un problème de datation, mentionne plusieurs missi parmi lesquels ceux envoyés par le roi sont difficiles à discerner. Si Krause (1890, appendice I, n°69, p.264) liste une grande partie des missi nommés, Depreux (1997, notice 208, pp.338-339) et Kikuchi (2013, pp.561-563), dont la position a été retenue dans ce travail, sont plus prudents et ne retiennent que le seul comte Ostoric, clairement désigné comme missus dominicus. La recension ici de tous les cas semblables est hors de propos ; on renvoie donc aux travaux déjà cités qui ont servi pour la construction de la base de données. Retenons seulement qu'en cas de doute c'est la position historiographique la plus récente qui a été systématiquement adoptée.

Cette ambiguïté du vocabulaire a été renforcée par l'absence dans les sources d'une distinction nette entre les missi dominici qui opéraient à l'intérieur des terres carolingiennes et ceux envoyés en tant * -Les dénominations des dirigeants francs des VIII e -IX e siècles ont connu de nombreuses évolutions ; les titres royaux et impériaux se sont côtoyés dans les titulatures des Carolingiens à partir de l'an 800 [START_REF] Schneider | Der rex Romanorum als gubernator oder administrator imperii[END_REF][START_REF] Sot | Références et modèles romains dans l'Europe carolingienne. Une approche iconographique du prince[END_REF]. Dans le cadre de cette recherche, il a été fait occasionnellement appel au vocable souverain, sans aucune référence à la notion de souveraineté des siècles postérieurs.

Dans les cas les moins riches en informations, on n'a disposé que des noms des agents, du souverain qui les a envoyés et de la date et du lieu de la mission. L'incomplétude des données a soulevé par conséquent la question du nombre réel des agents existant dans le cadre chronologique étudié. Même si quelques textes normatifs ont exprimé la volonté de mettre en place une structure fixe de l'emploi des missi dominici (par exemple Capitulare missorum generale 802, Capit. I, pp.91-99 ; Capitularia missorum specialia 802, Capit. I, pp.99-104), l'absence de données fiables sur la durée effective du service d'un agent et sur la fréquence de leur rotation a rendu impossible une quelconque estimation de leur nombre exact. L'absence d'une partie importante de données, notamment celles sur les liens entre les missi, a posé, dans le cadre de l'analyse de réseaux, des difficultés dans la construction des sociomatrices. Le choix s'est porté sur l'utilisation uniquement des données connues (Little et Rubin 2002). Plusieurs résultats obtenus ne peuvent par conséquent être généralisés à l'ensemble de la population qu'avec un certain degré de précaution.

Il faut également rappeler que le nombre d'agents et de missions déployés par chaque souverain devait nécessairement être mis en parallèle avec leurs durées de règnes respectifs (Table 2). L'estimation de ces dernières a été cependant une tâche extrêmement malaisée. La plupart des dates retenues par l'historiographie se sont avérées inopérantes. Pour Louis II d'Italie, par exemple, on choisit habituellement pour sa durée de règne celle de sa possession du titre impérial, c'est-à-dire les années 855-875 (voir par exemple [START_REF] Zielinski | Ludwig II[END_REF]Zielinski , col.2177 ; ;Contamine 2002, p.439). Sa première activité missatique pourtant a eu lieu en 845 (Manaresi 1955, n°49, pp.160-166 ;cité d'après Kikuchi 2013, pp.412-413 ; voir également Krause 1890, appendice II, n°139, p.294). L'intervalle durant lequel le fils de Lothaire faisait appel aux missi est ainsi plus espacé que sa durée de règne admise. Cette divergence s'explique en grande partie par la complexité de la situation politique en Europe occidentale durant la période étudiée. L'existence de plusieurs royaumes au début du IX e siècle, le morcellement de l'empire en entités politiques différentes à la deuxième moitié du même centenaire, la pratique des co-règnes entre le père et le fils ou bien encore des interruptions dans certains règnes (comme c'est cas de la courte abdication de Louis le Pieux) nous livre un tableau politique contrasté et difficile à saisir [START_REF] Werner | La genèse des duchés en France et en Allemagne. Nascita dell'Europa ed Europa carolingia : un'equazione da verificare, Spolète[END_REF][START_REF] Jong | The penitential state : authority and atonement in the age of Louis the Pious[END_REF]Goldberg 2006). La coexistence de plusieurs règnes explique également une discordance apparente entre la diminution, avec le temps, du nombre de missions (et d'agents) de chaque souverain et leur rythme soutenu, voire accéléré, tout au long du IX e siècle (Figure 1).

La question de la durée des règnes est simple et complexe à la foi : de quel règne s'agit-il ? Faut-il retenir pour Louis II d'Italie l'année 840, moment où il a entamé sa carrière royale en péninsule italienne ? Ou bien l'année 850 quand il a été couronné par le pape comme l'héritier de l'empire et a partagé le pouvoir avec son père Lothaire I encore sur le trône ? Ou plutôt, et c'est la date la plus souvent citée, son règne n'a-t-il commencé qu'en 855, moment à partir duquel il a été le seul à posséder le titre impérial ? Si son utilisation des missi a débuté en 845, c'est alors l'accession au trône du royaume de l'Italie (840) qui convenait au mieux pour cette étude. Les dates de début de chaque règne sont donc un sujet de débat et ont dû être examinées cas par cas. Leur choix a été dicté par l'accès, d'une façon ou d'une autre, au pouvoir royal et, par conséquent, par la possibilité de faire appel aux missi dominici. Il est donc impératif de souligner que ces dates ne sont proposées qu'à titre indicatif pour fournir un aperçu de la durée approximative durant laquelle chaque souverain pouvait employer des missi. (Pour toutes précisions sur les dates retenues voir les références dans Table 2, note 2).

En définitive, plusieurs types d'informations ont été recueillis dans le cadre de cette recherche. Pour les rois : nom et date du règne. Pour les missi dominici : fonction, lieu de fonction, mission, liens de parenté avec les autres envoyés ou avec les rois. Pour les missions : objectif, date et lieu. Enfin, pour chaque lieu mentionné on a collecté les coordonnées géographiques (latitude et longitude). Toutes les données ont été encodées et stockées dans une base de données relationnelle (MySQL). Le corpus contient ainsi des renseignements sur 14 rois/empereurs, 475 missi dominici, 398 missions et 307 lieux (Tables 1 et 2). La présence des informations sur les fonctions des missi a permis par ailleurs d'ajouter des données supplémentaires dans la description des agents. Selon le rôle exercé (comte, évêque, archevêque, etc.) une catégorie (laïc ou ecclésiastique) a été attribuée à chaque missus recensé. Les premières observations laissent entrevoir une distribution quasi paritaire, aussi bien dans l'ensemble du réseau que parmi les agents employés par chaque roi, entre ces deux catégories (Table 3). Sur l'ensemble des 475 agents étudiés, 164 (34%) agents sont répertoriés comme « ecclésiastique », 147 (31%) comme « laïc », 4 (1%) ont une double catégorie et pour 160 (34%) agents cette information est inconnue. 1 : Les dates correspondent à l'année de la première et de la dernière mission pour chaque roi.
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2 : Les dates des règnes sont données à titre strictement indicatif. Si la date du premier accès au pouvoir correspond à une année autre que celle retenue habituellement, elle a été mise avant la barre oblique. Sur toutes les dates mentionnées voir en premier lieu les notices dans Lexikon des Mittelalters: [START_REF] Zielinski | Ludwig II[END_REF]), (Störmer 1991a(Störmer , 1991b)), (Schneidmüller 1991a(Schneidmüller , 1991b(Schneidmüller , 1991c(Schneidmüller , 1993a(Schneidmüller , 1993b)), [START_REF] Jarnut | Les déplacements des 'missi dominici' dans l'Empire carolingien (fin VIII e -fin IX e siècle)[END_REF], (Goetz 1991a(Goetz , 1991b)), (Fleckenstein 1991a(Fleckenstein , 1991b[START_REF] Fleckenstein | Der karolingische Herrschaftsverband im 9, Jh. zwischen « Kirche » und « Königshaus[END_REF] ainsi que [START_REF] Vauchez | Dictionnaire encyclopédique du Moyen âge avec la collab[END_REF]) et également les tables des règnes : (Contamine 2002, p.439) ; (Gauvard 2002, pp.527-528) ; (Riché 1997, pp.403-407).

Quant aux objectifs des missions, bien que ces renseignements aient été retenus dans le corpus, leur analyse a été pour l'heure exclue de la présente étude. Un travail additionnel et approfondi les concernant fait partie des développements ultérieurs et il nécessitera sans doute le recours à des techniques autres que celles employées ici. On signalera uniquement que plusieurs pistes pour aborder les activités des missi dans le cadre de leur mission ont été déjà envisagées et ont donné des résultats prometteurs [START_REF] Depreux | L'absence de jugement datant du règne de Louis le Pieux : l'expression d'un mode de gouvernement reposant plus systématiquement sur le recours aux missi[END_REF].

Modèles d'analyses

L'approche de l'analyse de réseau a exigé un regard attentif sur les différents types de données retenues. Si, dans une perspective métaphorique, il est possible de parler d'un seul et unique réseau aristocratique constitué des agents et des rois [START_REF] Althoff | Family, Friends and Followers : Political and Social Bonds in Early Medieval Europe[END_REF]), dans le cadre méthodologique adopté il a été impératif de faire une distinction claire entre les différentes catégories des noeuds, les modes. Par un mode, on entend une collection des noeuds qui appartiennent au même type (Wasserman et Faust 1994, p.35 ;Newman 2010, pp.123-127). La nature des renseignements recueillis et les hypothèses de cette recherche ont dicté alors le choix des modes suivants : souverain, agent, mission. La complexité évoquée des données géographiques n'a pas permis de retenir également le « lieu » comme un mode supplémentaire. Dans le réseau construit, chaque mode a été relié par les missions commandées par le roi et effectuées par l'agent (Figure 2). Cependant l'analyse des relations entre ces trois modes a été difficile à appréhender dans le cadre d'un seul sociogramme. Le fait qu'un des modes est composé des missions (événements) a indiqué en outre qu'il s'agit d'un réseau d'affiliation [START_REF] Wilson | Relational networks : an extension of sociometric concepts[END_REF] ;
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Faust 1997) (Figure 3). La meilleure façon d'aborder ces interconnexions a été par conséquent d'établir plusieurs modèles d'analyse. 

Réseau 1-mode (agent)

La projection d'un événement (mission) sur l'acteur (agent) nous a permis d'obtenir un réseau 1-mode des agents reliés par les missions effectuées ensemble (lien non orienté et valué en fonction du nombre de missions en commun) (Table 4). Ce réseau a été construit pour des agents uniques de chaque roi (Table 2). Afin d'obtenir de meilleurs résultats, il était opportun de choisir les souverains ayant envoyé le plus grand nombre de missi : mettre en évidence les groupes que les agents formaient au cours de leurs missions conjointes, leur comparaison pour les différents souverains a tenu à examiner les transformations qui y interviennent dans le temps. Afin d'observer plus en détail la composition de ces réseaux, le présent modèle a été enrichi par des données sur les catégories des agents (laïc, ecclésiastique). 

Analyse de positionnement multidimensionnel

Outre les activités collégiales qui reliaient les missi, les données retenues ont permis d'examiner au plus près la proximité de leurs lieux de fonctions respectifs. À cette fin, il a été recouru au positionnement multidimensionnel classique à partir d'une matrice des distances euclidiennes (Table 5) [START_REF] Cox | Multidimensional Scaling[END_REF][START_REF] Bartholomew | Analysis of Multivariate Social Science Data[END_REF]. Chaque élément de matrice représente la distance la plus courte entre les lieux de fonctions des agents. Dans les cas où les missi dominici possédaient plusieurs lieux de fonctions, ce sont les endroits les plus proches l'un de l'autre qui ont été choisis pour le calcul. Le but de cette analyse a été d'observer les groupes que les agents pouvaient former selon l'éloignement entre leurs lieux de fonctions. Similaire au modèle de réseau 1-mode, le positionnement multidimensionnel a été réalisé pour six rois carolingiens ayant envoyé le plus grand nombre de missi. Les données sur les catégories des agents (laïc, ecclésiastique) ont été également introduites dans la visualisation. 8 et 9) ont été obtenus avec le logiciel Gephi. Pour la reproductibilité des résultats et la meilleure maîtrise des rendus visuels, les analyses de positionnement multidimensionnel ainsi que les analyses descriptives (Figures 7,8, 9 et 10) ont été effectuées avec R.

III RÉSULTAT

Caractéristiques et évolution du réseau des agents

Le premier volet des analyses porte sur l'examen de la structure du réseau missatique et de son évolution dans le temps à travers trois modèles : réseau 1-mode (agent), positionnement multidimensionnel et réseau 2-mode (agent-roi).

Dans le réseau 1-mode (Figure 4) la couleur des noeuds est définie par la catégorie à laquelle l'agent appartenait : rouge pour les ecclésiastiques, bleue pour les laïcs, verte pour les missi avec une catégorie double et grise si celle-ci est inconnue. Les liens qui relient les envoyés désignent les activités effectuées ensemble. Ces liens sont non orientés et valués en fonction du nombre des missions conjointes : plus ce nombre est élevé plus le lien est dense (Table 4). Si l'objectif de ce modèle est de mettre en lumière les missions communes comme un élément structurant du système missatique, la mise en perspective de réseaux de plusieurs souverains vise à observer si cette structure change dans le temps. Les six souverains retenus correspondent à ceux ayant le plus grand nombre de missi déployés (Table 2). Une grande différence dans le nombre de noeuds (agents) de chaque réseau appelle à être corrélée avec la durée de règne de chaque roi (Table 2).

Il n'est guère utile, par exemple, de comparer l'ampleur du réseau de Charlemagne (Figure 4b) qui est resté au pouvoir plus de 45 ans avec celui de Pépin le Bref (Figure 4a) qui n'a possédé le titre royal que durant 17 ans. La fragilité, déjà évoquée plus haut, de l'estimation de l'étendue exacte de la détention du pouvoir rend difficile, voire impossible, une quelconque évaluation quantifiée de la relation entre le nombre de missi au service d'un souverain et la durée de règne de ce dernier.

©JIMIS Les indicateurs statistiques livrent plusieurs éléments importants pour aborder l'examen de ces réseaux (Table 8). Une composante connexe désigne par exemple les noeuds interconnectés entre eux, mais non connectés aux autres composantes. Dans le cas des agents reliés par les activités missatiques, les composantes connexes sont les groupes formés par les agents qui ont exercé collégialement. Les noeuds isolés sont dès lors les missi qui n'ont fait aucune mission avec un autre agent. Un regard plus attentif sur la composition de ces groupes procure quelques indications sur la distribution des missi laïcs et ecclésiastiques. À l'exception de rares groupes, il ne semble pas toutefois exister un quelconque modèle apparent. La répartition générale des différentes catégories des agents aussi bien dans les composantes des réseaux que parmi les noeuds isolés paraît être aléatoire. Même si un pourcentage assez élevé des données inconnues sur les fonctions des agents nuit à la lecture complète de la structure des groupes, le résultat de ces observations nous renvoie en partie au constat déjà fait sur la distribution quasi paritaire des agents ecclésiastiques et laïcs dans les réseaux de tous les souverains (Table 3). Si l'étude des composantes est instructive à plusieurs égards, il sera cependant imprudent de comparer leur nombre entre les différents réseaux. En effet, ce chiffre doit être pondéré par le nombre de noeuds dans chaque graphe. Une fois de plus, il est peu étonnant que le réseau de Charlemagne (Figure 4b) possède plus de composantes que le réseau de Pépin le Bref (Figure 4a). Il est néanmoins possible de mettre ces informations en perspective grâce aux indicateurs de la densité (Table 8). La densité (∆) se traduit alors comme un nombre de liens présents sur un nombre de liens possibles entre les noeuds. Elle est calculée comme suit (Wasserman et Faust 1994, formule 4.3, p.101) :

∆= 2𝐿 𝑔(𝑔-1) (1) 
Où L est le nombre de liens dans le réseau et 𝑔 est le nombre de noeuds. Plus cette valeur s'approche de 1, plus le réseau contient de liens et plus ses noeuds sont interconnectés. Pour les réseaux étudiés où les liens représentent les activités conjointes, la densité nous indique si les agents ont effectué les missions en commun avec le plus grand nombre des autres agents. Même si tous les réseaux ont une densité relativement faible, les réseaux de Pépin le Bref (Figure 4a), de Lothaire I (Figure 4d) et de Louis II (Figure 4f) se distinguent quelque peu par leur densité plus élevée et le nombre moindre de composantes. Il n'est pas imprudent d'en déduire que par rapport aux envoyés des autres réseaux la plupart des missi de ces trois rois ont effectué plus de missions ensemble. Là encore, il ne faut pas perdre de vue le nombre moins important des agents, en comparaison avec les autres graphes, contenus dans ces trois réseaux. Une dernière observation des métriques porte sur le degré moyen de noeud. Cette mesure spécifie à combien d'autres noeuds, en moyenne, un noeud est connecté. Sa valeur (𝑑 ̅ ) est calculée comme suit (Wasserman et Faust 1994, formule 4.1, p.100) :

𝑑 ̅ = 2𝐿 𝑔 (2) 
Où L est le nombre de liens dans le réseau et 𝑔 est le nombre de noeuds. Plus le degré de noeud est élevé, plus il possède de connexions. Dans les réseaux où les liens désignent les missions conjointes, la lecture de cette valeur montre avec combien d'autres agents en moyenne chaque missus a effectué de missions. Les degrés moyens pour les réseaux de Charlemagne (Figure 4b), de Charles le Chauve (Figure 4e), de Louis II (Figure 4f) et, dans une moindre mesure, de Lothaire I (Figure 4d) sont les plus élevés. Les missi de ces réseaux ont été le plus souvent déployés avec des agents différents. Ce constat semble se confirmer par l'observation visuelle ; les réseaux b, e, f et d livrent des structures relativement plus complexes.

En définitive, l'intégralité des métriques des réseaux présents mettent en avant ceux de Charles le Chauve (Figure 4e), de Lothaire I (Figure 4d) et de Louis II d'Italie (Figure 4f). Les réseaux missatiques de ces souverains sont les plus connectés et ils disposent du degré moyen et de la densité les plus élevés proportionnellement à leur nombre de noeuds. Ce constat nous amène à penser que les missi de ces réseaux ont effectué les missions avec le plus grand nombre d'autres agents.
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Le premier survol des graphiques est néanmoins peu concluant : aucune structure apparente ne se dégage. De même que pour les réseaux précédents les missi disposés selon leurs lieux de fonctions ne semblent pas former des groupes spécifiques et la répartition des agents suivant leurs catégories (laïc, ecclésiastique, mixte, inconnu) est également incertaine (cf. Bougard 1995, p.178). Or, la comparaison de l'ampleur géographique des différents réseaux livre plusieurs informations intéressantes sur le cadre spatial des lieux de fonctions des missi engagés. Mis à part les envoyés de Pépin le Bref (Figure 5a), ce sont les agents de Charlemagne (Figure 5b) et de Louis le Pieux (Figure 5c) qui ont été recrutés dans un rayon assez important de plus de 1000 kilomètres (cf. McKitterick 2008, pp.178-186, notamment p.184). Les cas de Nibridius (Kikuchi 2013, pp.546-549) et de Hildebaud (Depreux 1997, notice 151, pp.246-247 ;Kikuchi 2013, pp.458-460) (Kikuchi 2013, pp.270-273), et l'évêque de Modène, Walpert (Kikuchi 2013, pp.644-645) auxquels recourut Louis II d'Italie témoignent bien de cette diminution de la distance entre les lieux de fonctions des agents mobilisés (Adalgis, point bleu, et Walpert, point rouge, sont situés à l'extrémité de l'axe X du Figure 5f). Les deux endroits, Spolète et Modène, logés sur les confins du cadre de recrutement de Louis II, ne sont séparés que par environ 300 kilomètres. La comparaison de l'agencement des zones à partir desquels des missi ont été enrôlés par Charlemagne (Figure 5b) et Louis le Pieux (Figure 5c) révèle en outre des schémas différents. Si pour le premier on note une dispersion relativement paritaire des agents avec l'embryon de deux groupes possibles (à gauche et à droite), le deuxième nous montre un ensemble moins polarisé. Les missi sous l'autorité de Charlemagne ont été, semble-t-il, recrutés davantage dans les aires périphériques tandis que ceux de son fils ont plutôt exercé leurs fonctions au coeur des territoires impériaux (cf. Werner 1980, pp.205, 210). (Depreux 1997, notice 74, pp.160-162 ;Kikuchi 2013, pp.368-371). On peut de même mentionner l'abbé Anségise de Fontenelle ayant servi comme missus une fois Charlemagne et à trois reprises Louis le Pieux (Depreux 1997, notice 30, pp.104-106 ;Kikuchi 2013, pp. 319-322). Une certaine prudence est néanmoins de mise face aux conclusions qui ont pu être tirées à partir de l'analyse de ce réseau. Le nombre d'agents ayant servi plusieurs souverains est peu élevé : sur l'ensemble de 475 missi, seulement 38 ont été envoyés par plus d'un souverain (dont 34 missi ayant servi 2 souverains différents et 4 missi ayant servi 3 souverains différents).

Il

Relations entre les agents et leurs lieux d'affectations

La deuxième partie de cette étude vise à répondre aux questions du recrutement des missi au sein de l'aristocratie locale. Les analyses des relations entre les lieux d'affectations des agents et leurs lieux de fonctions ou d'ancrages familiaux cherchent à évaluer la proximité de ces différents endroits entre eux. L'estimation des distances géographiques, bien qu'elle puisse paraître quelque peu réductrice au point de vue historique, apporte néanmoins plusieurs renseignements importants. Le recrutement des missi dans les zones proches de leur affectation a un impact manifeste sur la logique de gouvernance des territoires par le pouvoir central (Hannig 1984b). Il est toujours utile de souligner que les résultats obtenus sont influencés par une proportion importante d'informations manquantes. Les données recueillies ne fournissent que 44% de renseignements sur les lieux de fonctions des agents et 14% sur leurs attaches personnelles (Table 1). Le premier graphique livre la distribution des affectations par la distance la plus courte entre le lieu d'affectation et le lieu de fonction des missi (Figure 6). Dans les cas, fréquents, où plusieurs lieux de fonctions sont connus pour l'agent, cette distance a été calculée pour le lieu de fonction le plus proche de l'endroit de l'affectation (Table 7).
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De façon chiffrée, l'analyse statistique confirme ainsi l'hypothèse du recrutement des agents sur les territoires proches de ceux où ils ont été envoyés pour des activités missatiques. Un tiers des affectations (environ 200 sur un nombre total de 566 affectations analysées) ont eu lieu dans un rayon de 100 kilomètres à partir des endroits où l'agent était déjà en exercice. En même temps, dans quelques rares cas, on constate des distances considérables (plus de 3000 kilomètres) séparant les endroits des missions des agents de leurs lieux de pouvoir. (Depreux 1997, pp.234, 243, 262, 408 ;Kikuchi 2013, pp.295, 307-308, 451, 551). Werner 1980, p.203). Ces interrogations sont pourtant inévitables pour saisir les traits organisationnels d'une institution. Un regard attentif sur ce mécanisme des activités collégiales a permis de toucher au plus près, chiffres à l'appui, à cet aspect de l'architecture des réseaux missatiques de six souverains carolingiens (Figure 4 ; Table 8). 1986, p.95).

Un autre changement des dynamiques politiques se manifeste quant aux modalités de recrutement des missi dominici (Figure 5). L'ascension au pouvoir de Charles le Chauve a marqué une réduction considérable du cadre géographique de la provenance des agents. Il ne faut pas cependant perdre de vue les transformations profondes de la topographie du pouvoir qui affectaient l'Europe occidentale durant cette période. Les lots des héritiers du trône se resserraient comme une peau de chagrin sur la carte de l'ancien empire. Les limites de l'espace géographique dans lequel les souverains recrutaient leurs agents s'inscrivaient inévitablement dans cette conjoncture historique (cf. Bougard 1995, p.180). Charlemagne et Louis le Pieux, quant à eux, bien qu'ayant fait appel à des agents issus de l'espace impérial large encore unifié, ne semblent pas avoir suivi la même logique de recrutement. Si Charlemagne a souvent recouru à des agents qui sont en fonction dans les zones périphériques de son empire, son fils s'est appuyé davantage sur des missi issus plutôt du centre des territoires sous son contrôle. Là encore, il est imprudent de laisser de côté les mutations intervenues sous la gouvernance de Louis le Pieux. Ce dernier semblait vouloir, comme cela a été souligné maintes fois [START_REF] Eckhardt | Die Capitularia missorum specialia von 802[END_REF][START_REF] Kikuchi | Carolingian capitularies as texts : significance of texts in the government of the Frankish kingdom especially under Charlemagne. Configuration du texte en histoire[END_REF], inscrire le cadre géographique des activités missatiques dans le maillage des provinces ecclésiastiques reconstituées par tant d'efforts au siècle passé (Werner 1980, pp.197-198 ;cf. toutefois pour l'espace italien Bougard 1995, p.298). Seules les études futures pourront apporter une lumière suffisante pour éclaircir le dessin des circonscriptions missatiques et leur évolution dans le temps.

C'est également le successeur du premier empereur franc qui est apparu comme une passerelle importante dans la continuité du système missatique (Figure 6). 

I INTRODUCTION 1.1 Towards multidimensional urban network percolation

The structure of road networks can be used as a proxy to understand its past growth dynamics, but also has a significant impact on the future sustainability of territories it irrigates. Diverse methods to characterize the structure of spatial networks, and more particularly road networks, have been developed in that context. They include classical network indicators such as centralities [START_REF] Crucitti | Centrality measures in spatial networks of urban streets[END_REF] but also more elaborated constructions capturing more realistic processes in terms of street network use [START_REF] Lagesse | A spatial multi-scale object to analyze road networks[END_REF]. Such studies of urban networks are by essence interdisciplinary, or at least imply complementary viewpoints from diverse disciplines. These for example include architecture with space syntax [START_REF] Hillier | Space syntax[END_REF], physics with the study of spatial networks [START_REF] Barthélemy | Spatial networks[END_REF], or social science disciplines concerned with space such as geography [START_REF] Ducruet | Spatial science and network science: Review and outcomes of a complex relationship[END_REF].

A method to characterize the hierarchical structure of such urban spatial networks is network percolation, initially applied to urban road networks by [START_REF] Arcaute | Cities and regions in Britain through hierarchical percolation[END_REF]. Percolation in physics can be understood in a broad sense as processes related to the progressive occupation or connection of nodes of a network. It is generally associated to a phase transition with the emergence of a giant cluster at a given probability of connection [START_REF] Stauffer | Introduction to percolation theory[END_REF]. Practical applications in different fields include the quantification of network robustness [START_REF] Callaway | Network robustness and fragility: Percolation on random graphs[END_REF] or the modeling of epidemic spreading [START_REF] Newman | Scaling and percolation in the small-world network model[END_REF].

Such approaches have been applied to urban systems with other applications than the study of networks. to the study of urban traffic dynamics [START_REF] Li | Percolation transition in dynamical traffic network with evolving critical bottlenecks[END_REF][START_REF] Zeng | Switch between critical percolation modes in city traffic dynamics[END_REF]. In spatial statistics, this method can be used to characterize the spatial morphology of point patterns [START_REF] Huynh | Characterisation and comparison of spatial patterns in urban systems: A case study of U.S. cities[END_REF].

Existing heuristics generally focus on a single dimension or property of the urban system. However, such systems are known to be highly multidimensional. For example, the morphological dimension of networks is complementary to the functional properties of the urban environment [START_REF] Burger | Form follows function? linking morphological and functional polycentricity[END_REF]. The link between urban form and function remains in particular an open question [START_REF] Batty | Fractal cities: a geometry of form and function[END_REF]. More generally, the inclusion of multiple dimensions in urban analysis is still a research direction to be investigated, as in the case of agent-based models for example (Perez et al., 2016). This paper addresses such a gap in the case of urban network percolation, by introducing a multi-dimensional percolation heuristic. The method allows combining different dimensions of the urban system, the same way that Cottineau et al.

(2018) link population density with commuting flows to produce multiple definitions of urban areas. We can indeed expect significantly different qualitative behaviors when switching from a single-dimension percolation to a multi-dimensional one, since the spatial structure of different urban dimensions are correlated but also largely complementary. If this is the case, the method then captures more aspects of the urban system and some of their interrelations.

Sustainability of mega-urban regions

Beside these methodological issues of characterizing urban networks and more particularly their endogenous hierarchical structure, some related applied research issues can be considered. Indeed, quantitative tools are needed to evaluate the sustainability of recently emerged urban forms. In particular, according to [START_REF] Néchet | De l'étalement urbain aux régions métropolitaines polycentriques : formes de fonctionnement et formes de gouvernance[END_REF], the most recent transition of human settlement systems (in the sense of Sanders (2017), i.e. a change in the dynamical regime ruling the evolution of the spatial structure of settlements) is the emergence of mega-city regions. These have been defined by [START_REF] Hall | The polycentric metropolis: learning from mega-city regions in Europe[END_REF] as polycentric urban structures highly integrated in terms of flows. The transition imply complex processes such as changes in the governance structure, and can not be associated to the stylized transition identified by [START_REF] Louf | Modeling the polycentric transition of cities[END_REF] in a toy urban model including negative externalities of congestion only.

To what extent these new urban forms are sustainable, for example in the broad sense of UN development goals [START_REF] Komiyama | Sustainability science: building a new discipline[END_REF], remains an open question. Indeed, these integrated mega-city regions may for example imply different patterns of economic and transportation flows and thus exhibit various performances regarding different indicators of sustainability.

Case studies of targeted megacities have for example focused on the links between urban form and mobility or resources management [START_REF] Sorensen | Megacities: Urban form, governance, and sustainability[END_REF]. A significant literature has focused on the sustainability of mega urban regions with a qualitative approach, such as [START_REF] Laquian | The planning and governance of Asia's mega-urban regions[END_REF] which establishes a typology of these and corresponding governance structures in the Asian context. In the case of Europe, [START_REF] Marull | Emerging megaregions: A new spatial scale to explore urban sustainability[END_REF] use econometric analysis to see the economic and ecological advantage of integrated urban regions. [START_REF] Feng | Spatiotemporal characterization of megaregional polycentrality: Evidence for new urban hypotheses and implications for polycentric policies[END_REF] introduce a method to measure the level of polycentricity of an urban mega-region. [START_REF] Su | China's megaregion policy: Performance evaluation framework, empirical findings and implications for spatial polycentric governance[END_REF] propose a framework to evaluate the performance of urban mega-regions, regarding economic, environmental, social and spatial dimensions.

Beside these targeted studies, a remaining open issue, to the best of our knowledge never tackled at this small geographical scale, is the endogenous characterization of such urban regions. The delineation of these geographical systems is often taken as exogenous, and their performance and sustainability is then evaluated. Several approaches can be taken to define such systems, including integration through transportation networks, continuity of night lights, and economic productivity thresholds [START_REF] Lang | Beyond megalopolis: Exploring america's new "megapolitan" geography[END_REF][START_REF] Gulden | The rise of the mega-region[END_REF]. In these existing studies, parameters to define such regions remain fixed, and an endogenous hierarchical structure is possibly ignored. The second component of our research question will thus be the endogenous characterization of urban regions and how this can be applied to study their sustainability.

Proposed approach

This work proposes to partly tackle the two above research questions by linking them. More precisely, it first investigates from a methodological viewpoint how urban network percolation can be generalized to multiple dimensions, and secondly explores the endogenous characterization of mega-city regions using such a multi-dimensional percolation, and how this can be used to quantify the sustainability of these systems. These two axis are tightly linked. Indeed, on the one hand street network percolation has initially been proposed to identify endogenous entities in territorial systems, and on the other hand mega-urban regions are characterized simultaneously by morphological dimensions (continuity of the built environment) and functional dimensions (high integration of flows).

We therefore consider percolation on two dimensions of the urban systems, one linked to urban form which is the spatial distribution of population, and one linked to transportation networks, through structural indicators quantifying local road networks. We apply in particular the heuristic to urban morphology and road network topology measures in Europe. The idea to combine urban form with network topology measures relies on the capture of the link between urban form and function as already mentioned, urban functions being assumed as distributed by transportation networks [START_REF] Raimbault | Caractérisation et modélisation de la co-évolution des réseaux de transport et des territoires[END_REF]. In general, the interactions between transportation networks and territories have been shown to be central processes in urban dynamics [START_REF] Offner | Les effets structurants des infrastructures de transport[END_REF].

We thus introduce in this paper a multi-dimensional percolation method, and apply it to the endogenous characterization of urban regions, to finally compute stylized sustainability indicators on the constructed regions. These sustainability measures are extrapolated from gravity flows, and are used as a proof-of-concept of how this work can be applied towards policy-making. As detailed below, we use paradigmatic opposed dimensions of sustainability which are greenhouse gases emissions and economic productivity.

The originality of our contribution relies thus on several points: (i) this is to the best of our knowledge the first time a multi-dimensional percolation method is applied to urban systems;

(ii) we furthermore apply it on the significant spatial extent of all European Union; and (iii) we link the clusters obtained with simple sustainability measures.

The rest of this paper is organized as follows: we first describe the multi-dimensional percolation heuristic, the data and variables to which it is applied and how the network is constructed, and the indicators used to characterize the sustainability of clusters produced. We then describe the results of applying this method to population and road network indicators for the whole European Union, focusing on the endogenous regions produced and their sustainability properties. We finally discuss possible developments and the implications of this methodology to the design of policies. 

II METHODS

Multi-dimensional percolation

Proposed heuristic

Percolation processes in multilayer networks have been proposed as an extension within simple networks [START_REF] Boccaletti | The structure and dynamics of multilayer networks[END_REF]. A generalization of epidemic spreading can for example be achieved using this framework (Son et al., 2012). In the case of multilayer networks sharing the same nodes for all layers, often called multiplex networks (Aleta and Y., 2018), bond percolation has also been studied [START_REF] Hackett | Bond percolation on multiplex networks[END_REF]. In the case of our heuristic, bond percolation is operated between two cells given a distance threshold, and furthermore with a threshold parameter for each layer assuming a node function within each layer. The distance-based connection is similar to generative processes for random euclidian networks [START_REF] Penrose | Agent-based modelling for urban planning current limitations and future trends[END_REF].

We do not call our method "multi-layer percolation", since nodes are common between layers. We show in Figure 1 for a schematic representation of the method. It can be implemented with a propagation heuristic or directly working on adjacency matrices. The rationale behind combining a thresholding for each layer variable with a distance thresholding relies on the idea that a first component for two points to interact is a geographical proximity. The second component is a strong enough intensity of the urban dimension captured by each layer, simultaneously for all layers considered. This recalls Tobler's first law of geography [START_REF] Tobler | On the first law of geography: A reply[END_REF]) in a multidimensional way.

Formal description

More formally, let assume a set of nodes V = v i common to all layers of the network, and layers edges E j for layer j taken as empty at the initial state of the algorithm. Each node has a value of the considered variables associated to each layer, written as a matrix v ij . The algorithm works as follows:

1. Percolation is first done within each layer. For each layer, a link e kl ∈ E j is created if d(v k , v l ) < r 0 where d is the distance between the nodes (which can be any distance) and r 0 the percolation radius, and if v kj > θ j and v lj > θ j where θ j is the threshold for layer j. 2. Layers are combined, by computing the final percolated network edges E as the links contained within all layers simultaneously. The multi-dimensional percolation clusters are then the connected components of this network (V, E). The parameters implied in this heuristic are the percolation radius r 0 and the variable thresholds θ = θ j for each layer j. Varying these parameters allows considering different levels of percolation.

Application to gridded networks

The previous generic method must be applied to a consistent urban network, in the sense of multiple variables associated to spatial nodes. To each variable then corresponds a network layer. We propose to work on gridded networks, namely nodes regularly spaced in two dimensions. In practice, these nodes will be the center of raster cells. We will consider two layers, one defined by population density and the other by road network structure indicators computed at the same resolution.

Empirical data and network construction

We detail now how the empirical layers were computed and the network constructed. A grid of population density morphology indicators has been computed on spatial moving windows of width 50km for all European Union by Raimbault (2018a), with an offset resolution of 5km. From this study we get the aggregated population, producing a raster grid of population with a resolution of 5km. Furthermore, road network topology indicators were computed at a similar resolution by Raimbault (2019). In practice, (i) the full OpenStreetMap road network for Europe was simplified at the minimal resolution of 100m, keeping the topological properties and link attributes (including maximal speed for example); (ii) for each cell of the population morphology raster, the road network within the same spatial window of width 50km was retrieved; (iii) network structure indicators (summary statistics, centralities, etc.) were computed on this local network, providing a network indicators raster at the same resolution than population.

We use this data to construct a two layers abstract network: a layer which variable is given by population density, and a second layer which variable is given by a road network indicator.

Nodes are the center of cells (thus disposed in space on a grid of step 5km). We test several possible networks by varying the road indicator taken into account for the second layer. In particular, we test the following indicators:

1. number of edges N E ; 2. number of vertices N V ; 3. cyclomatic number µ which is defined by µ = N E -N V + c where c is the number of connected components of the graph; this measure captures the number of distinct cycles in the graph; 4. euclidian efficiency v 0 , defined by Banos and Genre-Grandpierre (2012), as the average rate between network distance and euclidian distance for all couples of links. The choice of these measures is aimed at capturing basic aspects of network structure, and functional properties especially for the two last. Indeed, euclidian efficiency measures how the network is performant to link nodes, while the number of cycles is linked to redundancy of paths and in a way to robustness. These choices are arbitrary, but several aspects of transportation networks are still captured by these indicators. An increase of each is related to a more performant network regarding different dimensions, what is relevant for our application. A systematic study with other indicators such as centralities or accessibilities is out of the scope of this paper.

The percolation on such an abstract network is a necessary condition in our case to link the different dimensions considered, namely population distribution and local road network properties. We have therefore two levels of networks in our approach, namely the physical road network which local properties are taken here as input, and the abstract two layer network on which we do the percolation.

We will in the following write θ P for the threshold parameter of the population layer, and θ N for the threshold parameter of the network layer. In practice, these parameters will be given in the following as quantile level of the corresponding variable, for an easier interpretation and conception of experience plans. The name of the road network indicator considered will be written v N .

Sustainability indicators

As already detailed, urban regions may perform more or less well regarding different dimensions of sustainability. We propose to use the endogenous definition of regional urban systems produced by the percolation algorithm to evaluate their sustainability, in terms of conflicting objectives of economic integration and greenhouse gases emissions. The definition of sustainability, or sustainable development, is by essence multi-dimensional [START_REF] Viguié | Trade-offs and synergies in urban climate policies[END_REF]. Its characterization as quantitative indicators is even more subject to numerous degrees of freedom. We work here with these two stylized indicators for two conflicting dimensions, as a proof-of-concept. These dimensions can furthermore be approximated indirectly from gravity models as we will describe below. By introducing other datasets, our work could be extended to more realistic indicators and other dimensions.

We use the EDGAR database (Janssens-Maenhout et al., 2017) (version 4.3.2) for local grid estimates of greenhouse gases emissions. We use the latest year available, namely 2012. As its resolution is much smaller than our indicator grid, we aggregate the emissions on the closer indicator point for each cell of the emission database. Since according to [START_REF] Lashof | Relative contributions of greenhouse gas emissions to global warming[END_REF] most of the greenhouse effect is caused by CO 2 , and as in terms of emissions in the database we find that it represents 98.2% in mass proportion of all gases, we only consider it.

Applying a gravity model to each region, we estimate abstract transportation flows within each with a gravity model. More precisely, following [START_REF] Raimbault | Indirect evidence of network effects in a system of cities[END_REF], a potential flow between two points i and j can be estimated with the following expression

φ (k) ij = v (k) i v (k) j ( l v l ) 2 γ • exp -d ij d 0 (1) 
where v

(k) i are either population or effective local GHG emissions computed with the EDGAR database (indexed by k = 1, 2 respectively), d ij the distance between the two points, d 0 a distance decay parameter, and γ a scaling parameter. Indeed, the economic activity follows relatively well scaling laws of populations [START_REF] Bettencourt | Growth, innovation, scaling, and the pace of life in cities[END_REF], the exponent being dependant on the activity and the definition of areas on which it is estimated [START_REF] Cottineau | Diverse cities or the systematic paradox of urban scaling laws[END_REF]. The distance decay captures the geographical span of potential interactions. These two parameters γ, d 0 are left free and varying them allows considering stylized configurations, such as long or short span interactions, or infra-or supra-linear scaling activities. Finally, considering the flow with the population variable (k = 1) provides a proxy for economic flows, while with the GHG emissions (k = 2) it provides a proxy for emissions in relation with this economic activity. Indeed, effective emissions are linked to local emissions and transportation emissions linked to the intensity of flows.

We then consider the sum of all these flows of points within the geographical span of a given cluster of nodes in our network. These clusters are obtained with the percolation method described above, and are numbered by 1 ≤ c ≤ C. For the sake of simplicity, we approximate the corresponding geographical area as the convex Hull envelope of the points in the cluster, that we write K c . By cumulating the flows, we therefore define the total economic flow as the sum of economic flows by

E c = i,j∈Kc φ (1) ij (2)
and the total emissions due to flows by

G c = i,j∈Cc φ (2) ij (3)
These indicators have no interpretable unit and need to be renormalized. This allows defining a relative economic inefficiency by

e c = 1 - max c E c -E c max c E c -min c E c (4) 
where max c E c (resp. min c E c ) is the maximal (resp. minimal) value of E c across all clusters. We define in a similar way the relative potential emissions by For descriptive purposes, we also consider summary measures of clusters, as the population P c and effective emissions EM c taken as the sum of population (resp. emissions) of the points in K c .

g c = max c G c -G c max c G c -min c G c ( 

III RESULTS

Implementation

In practice, the analysis is implemented using R and the igraph package. Source code, data and results are available on the open git repository of the project at https://github.com/ JusteRaimbault/UrbanMorphology. The network is constructed by superposing the population density layer with the network layer, starting from the 5km resolution spatial fields for morphological and network indicators. This network is filtered with the threshold parameters for each layer and with the radius parameter. Connected components yield the clusters that we interpret as endogenous regions.

Percolation transition and fractal dimension

In its application to road networks by [START_REF] Arcaute | Cities and regions in Britain through hierarchical percolation[END_REF], the structure of the national urban system for UK is captured by studying the percolation transition, i.e. the variation of the size of the largest cluster as a function of the percolation radius. As this signature is tightly linked to historical, cultural and geographical conditions, the application to different urban systems should yield different results. We study here this property, for different threshold parameter values. We make the radius vary between 8km and 100km with a one km step, have a fixed population threshold θ P = 0.85, test all road network indicators, and three network layer thresholds θ N ∈ {0; 0.8; 0.95}. These values yield a good precision for the radius which is the most important variable to study transition and estimate fractal dimensions, while this population threshold is enough to provide a broad coverage for large radiuses (as shown by other explorations described below). Changing network variables and their threshold allows us to investigate how the transition behavior does change regarding the dimension considered and its intensity. On the right, the plot is similar but with the size relative to the size of the largest cluster obtained with the maximal radius in each configuration. The absolute and relative sizes of the largest cluster are plotted in Figure 2 as a function of the percolation radius. This aspect first gives methodological information on multilayer percolation. Indeed, comparing the result with θ N = 0 (single layer percolation) with positive values of θ N shows a significantly different behavior. As expected, absolute size are much smaller, but when looking at relative sizes we observe that the abrupt steps typical to percolation transitions have different distributions across the different parametrizations. This result is particularly interesting regarding the first axis of our research question, as it shows that the structure of clusters obtained is not only due to the population layer, and that the multi-dimensional percolation captures a complementary signal.

The more regular curve seems to be the standard percolation on population only, whereas at θ N = 0.95, different road network indicators produce either very early transitions (for µ for example) or very late (for N V ). Also, changing of scale compared to [START_REF] Arcaute | Cities and regions in Britain through hierarchical percolation[END_REF] gives more steps and less abrupts curves in general, confirming the integration of subsystems with different structures in our analysis and the importance of scale in such analysis. As the addition of a layer also changes drastically the results, one should stay careful when switching from a mono-dimensional percolation to a multi-dimensional percolation.

We study also the evolution of the fractal dimension of clusters as a function of r 0 , to verify how the initial percolation approach is robust to multi-dimensionality. Following Arcaute et al.

(2016), we estimate the fractal dimension α of clusters with a simple OLS regression between cluster size and cluster diameter, namely

log N c = k + α • log δ c ( 6 
)
where N c is the size of cluster c and δ c its diameter. These estimations are shown in Figure 3. As a negative result, which could be due to the abstract nature of our network, a clear maximum in the value of the fractal dimension can not be found. Either it is located at a resolution that our method can not reach due to the minimal 5km limit imposed by the abstraction in the network construction, or it does not exist when coupling dimensions. Determining which assumption is more plausible is out of the scope of this paper.

We do not plot the standard error σ of fractal dimensions (obtained as the estimation error in the OLS) for visibility purposes, but their relative value given by α/σ [α] is in average 0.10 and in maximum 0.196 on all points, meaning that these estimations remain however consistent.

Regarding the variability of fractal dimension as a function of the percolation radius r 0 , we study the possible existence of a significant maximum when r 0 varies. We therefore simply consider the difference (α -σ [α]) M -(α -σ [α]) m where the first is taken at the maximum value of α and the other at its minimum value. This intuitively corresponds to checking if confidence intervals do not overlap between the maximum and the minimum of the curve. We find that the configuration for µ and θ N = 0.95 has a clearly significant maximum (difference at 0.38). For this coupling, the endogenous structure given by the maximum may be defined.

Other configurations yield non-significant maximums (negative values of the difference).

This study of percolation transition and fractal dimension thus shows that our multi-dimensional percolation heuristic remains relevant, as results analog but qualitatively different to the onedimensional approach can be obtained. 

Extracting endogenous mega-city regions

We now switch the experience plan to a full grid, for parameters r 0 , θ P , θ N and the road network indicator considered, and also make γ and d 0 vary. We systematically explore the clusters obtained for 4800 parameter configurations, such that for all road network indicator, θ P ∈ {0.8; 0.9; 0.95}, θ N ∈ {0; 0.8; 0.95}, r 0 ∈ {8; 10; 15; 20; 50} km, γ ∈ {0.5; 1; 1.5; 2}, and d 0 ∈ {0.1; 1; 10; 50; 100} km.

We obtain very different endogenous morphologies for the different parametrizations. Maps reveal that some configurations resemble the actual distribution of European mega-city regions, which are functionally integrated polycentric urban areas [START_REF] Hall | The polycentric metropolis: learning from mega-city regions in Europe[END_REF]. These are here defined endogenously from the bottom-up and have a priori no reason to coincide with these functional regions. We show some examples in Figure 4. The first map of this figure, obtained for high population and network thresholds (θ P = 0.95 and θ N = 0.9), but a low radius r 0 = 8km and edge count N E to define the road network layer, include several mega-city regions described by [START_REF] Hall | The polycentric metropolis: learning from mega-city regions in Europe[END_REF], namely London metropolitan area, the Randstad in Netherland, the Rhein-Main and Rhein-Ruhr in Germany, Greater Paris in France, Brussels area in Belgium. The same parameters with θ N = 0 yield not exactly the same regions, as confirmed by the transition curves in Figure 2, what means that our approach taking into account two dimensions may capture effective processes of mega-city regions, in particular by including the road network which is crucial as these regions are integrated in terms of flows. The bottom-left map show an example of large clusters emerging in UK and in the center of Europe, the South remaining largely disconnected. Finally, the last map shows the result obtained with a very high radius r 0 = 54km, with a giant cluster spanning most of Europe. UK is still disconnected and the transition where it connects happens at r 0 = 55km. This does not necessarily mean that UK should be disconnected from continental Europe, as we considered geographic distances only, hiding the high speed connection of the Channel tunnel.

The behavior of sustainability indicators for different population, network and distance thresholds yield different distributions of performances across clusters within a configuration but also between configurations. Before considering the flow-based indicators described above, we can already study basic summary measures such as population P c and effective emissions EM c . We show in Figure 5 point clouds of log EM c against 1 -log P c for some configurations. Indeed, regarding the population it contains, an area can be more or less efficient in terms of emissions.

Seeing the population as an objective to be maximized (thus the plotted value to be minimized) while the emissions must be minimized, we observe a Pareto front for all points (i.e. all clusters across all configurations). Given different dimensions to be minimized, a Pareto front consists of the points which are not Pareto-dominated by any other point, i.e. that there exists no other point performing best on all objectives. In practice, this yields optimization compromises in the context of multi-objective optimization, when no aggregation of the dimensions is possible or desirable. In Figure 5, the front is the lower bound of the point cloud. We also find no dominating point for each configuration, i.e. that considering point clouds of a single color, a Pareto front with more than one point is still present. Some clusters are therefore optimal compromises in the Pareto sense in each configuration, while some are dominated and thus not efficient. This confirms that urban systems are generally compromises between multiple objectives. Other intermediate values for these parameters yield similar behaviors. As PC1 is mainly linked to monocentricity, there seems to exist an optimal intermediate level of monocentricity for emissions alone.

Color level give the share of population within the considered clusters in comparison to all European population.

Linking urban morphology and sustainability

We now consider the sustainability indicators, aggregated for a configuration on all clusters. An important question is how these relate with measures of urban form [START_REF] Néchet | Urban spatial structure, daily mobility and energy consumption: a study of 34 European cities[END_REF]. For a given parametrization of endogenous city regions, one can relate them to morphological indicators for population density spatial distribution. Such indicators were computed by Raimbault (2018a), and capture different dimensions of the spatial distribution of population, such as spatial autocorrelation (Moran index), homogeneity (entropy index), hierarchy (rank-size exponent), or level of aggregation (average distance between individuals). We average them here on clusters. This establishes a link between urban morphology and sustainibility. A principal component analysis on considered points yield 96% of variance with two components, and 73% explained by the first component alone. The first component relates to a level of monocentricity (P C1 = -0. entropy, and h level of hierarchy). In a nutshell, the principal dimension of urban form in differentiating our urban clusters is the level of monocentricity. We can relate it with indicators for emissions and economic efficiency.

We show in Figure 6 the value of c gc as a function of the first morphological principal component, for extreme values of γ and d 0 . There seems to exist an optimal intermediate value for PC1 regarding the minimization of the normalized indicator for emissions only. This would correspond to an intermediate level of monocentricity, meaning that urban areas which are too polycentric and spread would emit more, but also areas that are too much monocentric. This behavior does not occur for long-range d 0 = 100km and low-hierarchy γ = 0.5 interactions. The mostly monocentric but emitting configurations capture most of population (given by the level of color), whereas the intermediate configurations capture around half of the population, what means that these low-emissions potential urban regions can cover a significant part of European population.

However, when considering both emissions and economic indicators, urban form then acts as a compromise variable. We show in Figure 7 the point clouds of c g c against c e c , which produce clear Pareto fronts, which shape varies with γ and d 0 . As the color level gives the value of PC1, we can see the points on the different fronts with very different morphological properties. In some cases, highly monocentric areas (yellow points) can be a good compromise, whereas the intermediate optimal for emissions shown before may yield highly inefficient areas (dominated green points). For example, considering the fronts for γ = 2 which have both very similar shape, the points with the lowest emissions are on the top-left of the front and correspond to the optimal unveiled in Figure 6. These have however a very low economic efficiency (high inefficiency) and small improvements can be done with the points below, before switching to a totally different urban form with a high value of PC1 (yellow points, highly monocentric). Increasing more the economic efficiency is then at the price of much more emissions, with more polycentric areas. This analysis therefore unveils morphological trade-offs, confirming that there is no optimal urban form, but different compromises regarding the conflicting sustainability indicators.

IV DISCUSSION

4.1 From multi-dimensional percolation to the sustainability of mega-city regions From the methodological point of view, we showed that network percolation can successfully be applied to multidimensional urban networks. This requires a consistent overlay within the same nodes of the different dimensions considered. The existence of percolation transitions which are different to the unidimensional case confirms that the approach captures complementary information, and that it could be applied to characterize urban systems in a more refined way. The non-existence of a significant maximum for the fractal dimension remains to be investigated, since it could be due a bias of our abstract network construction. Studies on other dimensions or on non-abstract networks remain to be done to understand how multi-dimensional percolation differs from the unidimensional one.

Regarding the second axis of our research question, we showed that multi-dimensional percolation is a useful tool to extract endogenous mega-urban regions while taking into account complementary aspects of population distribution and performance of transportation networks. Varying the parameters of the percolation algorithm provides a comparative view on possible clustering structures for the European urban system, and corresponding performance in terms of stylized sustainability indicators. Indeed, this work is exploratory in terms of possible definitions of urban subsystems. The fact that some systems obtained coincide with effective functional regions [START_REF] Hall | The polycentric metropolis: learning from mega-city regions in Europe[END_REF] shows that some thresholds of population and road network performance intensity capture actual functional linkages. This correspondance could not be predicted a priori nor explained through simple arguments as our approach reconstructs clusters from the bottom-up. Finally, the links between urban form and sustainability indicators made in the last section are also interesting for the management of urban systems, suggesting a certain performance of polycentric systems in particular regarding emissions.

Developments

Further work may consist in the use of calibration heuristics to find in a more robust way optimal parameter values. The OpenMOLE model exploration platform provides a transparent access to genetic algorithms for multi-objective optimization [START_REF] Reuillon | OpenMOLE, a workflow engine specifically tailored for the distributed exploration of simulation models[END_REF]. The use of such calibration algorithms would allow unveiling the effective form of Pareto fronts, that we may have missed here through the grid sampling.

An other development would consist in extrapolating transportation flows with a spatially explicit gravity and transportation flow model as a kind of simplified four step model [START_REF] Mcnally | The four step model[END_REF]. It could then be adjusted on actual transportation flows emissions database which are also available in the Edgar database. The corresponding gravity parameters could then be used within the economic and emissions potentials, and the sustainability patterns produced compared with the hypothetical ones we produced here.

Finally, an important development would imply crossing our endogenous definitions of urban regions with socio-economic databases, and compute indicators implied in other dimensions of sustainability, for example related to socio-economic inequalities, spatial distribution of accessibilities, or activities with different scaling exponents. This includes the mitigation of spatial inequalities and segregation [START_REF] Tammaru | A multi-factor approach to understanding socioeconomic segregation in European capital cities[END_REF], which are an important dimension of sustainability.

Towards policy applications

Our work suggests the possibility to design policies in terms of regional integration to increase the sustainability of mega-city regions. The way such results could actually be transferred to policy-making recommandations remains an open question, but Pareto-optimal configurations can be used for the planning of regional transportation networks for example, or to design policies for the distribution of subsidies. Indeed, privileging some infrastructure developments but also collaborations between urban centers can be seen as an aspect of a small scale planning, or territorial strategy. As we integrated potential flows that would result from such development, and considered their economic and emissions consequences, and did it in an endogenous way, we suggest that evidence-based strategies for territorial development at the European level could be inspired by this work. This would naturally imply a more thorough data integration, model calibration and operationalization.

V CONCLUSION

In conclusion, our multilayer percolation approach captures in a way the multi-dimensionality of urban systems and a link between form and function in urban system. In particular, in our application on the bilayer case of an abstract network constructed from population density and road network indicators, it is shown to capture a different structure than in the unidimensional case. Its application to the issue of sustainable mega-city regions show how its properties of constructing urban clusters from the bottom-up can be used to study sustainability issues. This work also illustrates the importance of following data-driven paradigms even when developing new methods, as what is understood of the behavior of the heuristic is through its application to real data and issues.

6. 2

 2 Période V NAUSIPPOS Vc(113), AGORANAX Vc(108), ANTIPATROS VI, ARISTEIDAS3 Vc(111), ARISTA-NAX2 Vc(112), DAMON Vc(110), AISCHINAS Vc(116), ARISTOMBROTIDAS Vc(117), EUANOR Vc(119), ARCHINOS Vc(120), ARISTOPOLIS Vc(118), ARCHIBIOS Vc(115), HESTIEIOS Vc(114), ARATOPHANES2 Vc(109) ; HIERON2 Vb(121), TIMAGORAS1 Vb(124-122), TEISAMENOS Vb(124-122), KLENOSTRATOS Vb(126), ARISTRATOS Vb(124-122), KALLIKRATES3 Vb(130), ARISTOGENES Vb(129), LEON-TIDAS Vb(127), POLYARATOS2 Vb(125), ARISTAKOS Va(137-135), TIMOTHEOS Vb(128), NIKA-SAGORAS2 Vb(131), ANDRONIKOS Vb(132) ; ARCHEMBROTOS1 Va(134-133), ANDRIAS Va(137-135), LAPHEIDES Va(140-138), THERSAN-DROS Va(137-135), ASTYMEDES2 Va(144), ANAXIBOULOS Va(140-138), TIMODIKOS Va(145), ANAXANDROS Va(143-142), TEISAGORAS Va(142-141), ALEXIADAS Va(140-138), Pour cette période, le découpage en sous-périodes est parfaitement respecté, sauf pour ARIS-TAKOS Va placé avec les Vb. Mais ARISTOGEITOS Va, se retrouve au onzième rang de la période IV. 6.6 Période I THEUDOROS1 Ic/IIa(244-236), DAMOKRATES1 Ic(244-236), HIPPOKLES Ic(262-247), TIMAR-CHOS Ic(262-247), POLYKLES Ic(262-247), AGESTRATOS1 Ic(262-247), AINESIDAMOS1 Ic(245), POLYCHARMOS Ic/IIa(244-236), LYKAON Ic(246), EUPHRANORIDAS Ic/IIa(244-236), TI-MOKLES1 Ic/IIa(244-236), PEITHIADAS Ic/IIa((244-236), HAGESIS Ic/IIa(244-236), PHILINOS Ic/IIa(244-236), STHENELAS Ic/IIa(244-236), TIMASITHEOS Ic(262-247), HIPPOSTRATOS Ic(262-247), HAGEMON Ic(262-247), ARISTANAX1 Ic(262-247), BOULAKRINES Ic(262-247), PHILODA-MOS1 Ic(262-247), TIMOSTRATOS Ic(262-247), ARISTARCHOS Ic(262-247), ISODOTOS Ic(262-247), PHRASILAS Ic(262-247), KLEONYMOS1 Ic(263), LYSANDROS Ic(262-247), EPICHARMOS Ic(262-247), ARISTION Ic(264), AGRIOS Ic(265), ANTILEON Ic(267), POLYARATOS1 Ib/c(270-268), CHRYSOSTRATOS Ic(266), BOULAGORAS Ib/c(270-268) ; ATHANO(1 Ia/b, PHOKION Ib/c(270-268), EUKLES1 Ia/b, TIMAR( Ia/b, MENTAIOS Ia/b, SOSIDA-MOS Ia/b, POLYEUKTOS Ia/b, DIOPEITHES Ia/b, DAMOSTHENES Ia/b, APATOURIOS Ia/b.

Figure 1 :

 1 Figure 1: The global architecture of GraFC2T2, our general purpose graph-based recommender framework. Recommender graphs are built from three components: a basic graph that models user-item relations, content-based features that enrich basic graph, and link time-weight function that penalizes old edges, see Sections II and III. Then, we perform top-N recommendation over this graph using user trust and personalized PageRank, see Section IV.

Figure 3 :

 3 Figure 3: Classical bipartite graph, Session-based temporal graph and Link stream graph obtained from our guiding example. The weight of each edge is 1.

Figure 5 :

 5 Figure 5: Inclusion of nodes and links representing content-based features with the CIU strategy, for each basic recommender graph.

Figure 6 :

 6 Figure 6: Edge time-weight functions.

7. 1

 1 Trust-based recommender systems CF usually suffers from data sparsity and cold start problems, which may be solved in part with user trust. For instance,[START_REF] Papagelis | Alleviating the sparsity problem of collaborative filtering using trust inferences[END_REF] used trust inference by transitive associations between users in a social network.[START_REF] Ma | An explicit trust and distrust clustering based collaborative filtering recommendation approach[END_REF] use explicit trust and distrust to improve clustering-based CF recommendation, while[START_REF] Guo | Merging trust in collaborative filtering to alleviate data sparsity and cold start[END_REF] merge ratings of trusted neighbors to infer probable preferences of other users, and identify similar users for item recommendations.

Figure 1 :

 1 Figure 1: An example of link stream, where nodes 2 and 3 interact at time 0.5, nodes 1 and 3 at time 1, and so on.

Figure 3 :

 3 Figure 3: Examples of evaluation scores for activity prediction in link streams. Left: prediction underestimates the actual number of occurring links. Right: prediction overestimates it.

Figure 4 :

 4 Figure 4: Illustration of the different periods used in our protocol: the training and validation periods (top) used to train the algorithm and the observation and prediction periods (bottom) used to make the actual prediction.

Figure 5 :

 5 Figure 5: Summary of the prediction protocol. The learning and evaluation phases are described in agreement with the implementation depicted in Figure 4

Figure 6 :

 6 Figure 6: Metric coefficients repartition computed by the learning algorithm for the following datasets and training periods (from top to bottom): Highschool (1h), InfoCom (2h), Reality Mining (1d) and Taxi (1d).

Figure 7 :

 7 Figure 7: Number of links appearing over time during Reality Mining 2 days experiment (Granularity: 1000 seconds) and Highschool 2 hours experiment (Granularity: 40 seconds).

Figure 8 :

 8 Figure 8: F -score of the predictions with different weight ratios between the activity during the last 1000 seconds and three other metrics for Highschool (1h) (top) and between the Pair activity extrapolation and three other metrics for Infocom (2h) (bottom). Dashed lines indicate the ratio between the two main metrics during the experiment in Section 4.4 (in green in both figures).

Figure 9 :

 9 Figure 9: F -score of the predictions for the mixing between PAE1000S and CN as a function of α for different categories of node pairs for the Highschool (top) and Infocom (bottom) datasets using respectively 1 hour and 2 hours long observation and predictions periods. Green crosses: All links, Orange squares: New links, Purple circles: Recurrent links.

Figure 10 :

 10 Figure 10: Correlation matrix of the values of each metric over all pair of nodes during the 2 hours training phase on Infocom.

Figure 11 :

 11 Figure 11: Metric coefficients repartition computed by the learning algorithm during prediction by classes on Infocom using 2 hours periods.
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Figure 1 :

 1 Figure 1 : Nombre des agents (a) et des missions (b) durant la période étudiée.
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Figure 2 :

 2 Figure 2 : Visualisation d'un réseau avec les noeuds (roi, agent, mission) reliés par les missions commandées et effectuées. (Couleurs des noeuds : vert -roi, bleu -agent, orange -mission).

  Pépin le Bref, Charlemagne, Louis le Pieux, Charles le Chauve, Lothaire I et Louis II d'Italie. La succession de ces six rois respecte par ailleurs l'évolution chronologique du système missatique durant les VIII e -IX e siècles. Si la visée de ce modèle a été de ©JIMIS, Creative Commons Revue en libre accès : j i mi s . e p i s c i e n c e s . o r g Volume : 5 -Année : 2019, DOI : 10.18713/JIMIS-180719-5-4

Figure 3 :

 3 Figure 3 : Représentation graphique d'un réseau d'affiliation constitué de deux modes d'acteurs (roi, agent) et d'un mode d'événement (mission).

4 Figure 4 :

 44 Figure 4 : Réseaux 1-mode des agents participant aux mêmes missions (couleurs : bleu -laïc, rougeecclésiastique, vert -mixte, gris -inconnu). (a -Pépin le Bréf ; b -Charlemagne ; c -Louis le Pieux ; d-Lothaire I ; e -Charles le Chauve ; f -Louis II d'Italie)
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4 Figure 5 :

 45 Figure 5 : Positionnement multidimensionnel des agents selon la distance la plus courte (en km) entre leurs lieux de fonctions (couleurs : bleu -laïc, rouge -ecclésiastique, vert -mixte, gris -inconnu). (a -Pépin le Bréf ; b -Charlemagne ; c -Louis le Pieux ; d -Lothaire I ; e -Charles le Chauve ; f -Louis II d'Italie)
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Figure 7 :Figure 8 :

 78 Figure 7 : Distribution des affectations par la distance la plus courte entre le lieu de fonction d'un agent et son lieu d'affectation. (Le nombre d'affectations analysées est de 566)

4 Figure 9 :

 49 Figure 9 : Distribution des affectations par la distance la plus courte entre le lieu d'attaches personnelles d'un agent et son lieu d'affectation. (Le nombre d'affectations analysées est de 155)
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Figure 1 :

 1 Figure 1: Schematic representation of the multi-dimensional network percolation heuristic. Two layers are considered here, with similar nodes but different links in each. To each layer is associated a node variable. In each layer, links are created according to a distance threshold (percolation radius) and a variable value threshold. The final clusters (bottom in color) are obtained by considering the links present in each layer.

  5)where max c G c (resp. min c G c ) is the maximal (resp. minimal) value of G c across all clusters.Both indicators should be minimized for sustainability. Their value is dependant on the number of clusters and their extent, i.e. the geographical surface they cover. To be able to compare values across different clusterings (corresponding to different parameter values for the percolation heuristic), we finally define normalized indicators ẽc , gc in a similar way, but the extrema being computed on all other possible urban configurations with the same γ, d 0 values. Using these potential flows follows the logic of[START_REF] Arbabi | On the development logic of city-regions: inter-versus intra-city mobility in England and Wales[END_REF] which show a need for improved intra-city-region mobility in England and Wales. Considering the regions as entities in which such transportation development policies can more easily been developed, we look at the sustainability of different possible regions if these potential flows were realized. Varying the parameters γ and d 0 allows controlling for the economic activity considered (high γ values correspond to high added-value activities) and the span of interactions through d 0 .

Figure 2 :

 2 Figure 2: Percolation transition. On the left, we plot the size of the largest cluster in each configuration in terms of nodes, as a function of the percolation radius r 0 . Color gives the other percolation parameters.On the right, the plot is similar but with the size relative to the size of the largest cluster obtained with the maximal radius in each configuration.

Figure 3 :

 3 Figure 3: Fractal dimension. We plot for each parametrization given by the curve color the evolution of the fractal dimension α as a function of r 0 . Standard errors are not plotted for readability.

Figure 4 :

 4 Figure 4: Examples of obtained clusters for different parameter values.In the top-right case for example (θ P = 0.9, θ N = 0.8, variable vcount,r 0 = 8km), we obtain the urban regions of West midlands and London in the UK, Randstad merged with Rhein-Rhur and Rhein-Main in Germany, Paris in France, also with capital cities such as Copenhaguen, Stockholm and Helsinki. There is no cluster in South Europe in that case, due to the high population density threshold.

Figure 5 :

 5 Figure 5: Point clouds of region-level indicators, namely population and emissions, for different parametrizations, given by the color. Each point represent an endogenous urban region.

Figure 6 :

 6 Figure 6: Aggregated values of normalized potential emissions c gc , as a function of the first morphological principal component (PC1), for varying values of parameters d G (rows) and γ G (columns).Other intermediate values for these parameters yield similar behaviors. As PC1 is mainly linked to monocentricity, there seems to exist an optimal intermediate level of monocentricity for emissions alone. Color level give the share of population within the considered clusters in comparison to all European population.

Figure 7 :

 7 Figure 7: Relative potential emissions c g c against relative potential economic inefficiency c e c (both indicators should be minimized), for varying values of γ G (columns) and d G (rows). Color level gives the value of PC1, whereas point size gives the share of total population contained within considered areas.

  

TABLE 1 -

 1 Taux moyens de réussite pour 100 tables aléatoires.

Quelles conclusions en tirer ? -D'abord que la méthode est efficace, si on ne part pas d'un ordre trop éloigné de l'ordre optimal. En effet si T auL > 0,3, elle échoue souvent à converger vers l'ordre initial. Donc il faut partir d'un ordre proche de l'ordre chronologique, éventuellement guidé par les périodes connues. -Ensuite, son taux de réussite ne varie guère, quel que soit le pourcentage de 0 dans l'intervalle entre le premier et le dernier 1. C'est plutôt bon signe, car il varie grandement dans nos données. -Pour finir, nous avons repris les mêmes simulations en ne permutant que des lignes proches (avec un écart d'au plus 10 rangs). Ces désordres locaux font comme si on partait d'un ordre qui respecte les périodes, mais qui soit brouillé à l'intérieur. Et dans ce cas, la méthode retrouve toujours l'ordre initial ou un ordre meilleur, donc avec une réussite de 100 %, même dans le cas où T auL = 0.7 ! VI LE MEILLEUR CLASSEMENT La méthode décrite au paragraphe 4, en particulier la troisième étape, peut s'appliquer à toute table binaire déjà bien ordonnée. Et donc aux tables correspondant aux différentes périodes. Il suffit de reprendre tous les éponymes a priori rattachés aux périodes I, II, III, IV, V et VI/VII, rangés dans le meilleur ordre obtenu précédemment (N bZ = 1275) et de traiter ces tables. Comme elles sont plus petites, le minimum cherché devrait être plus proche de l'optimal. Elles ne tiennent pas compte des correspondances entre leurs fabricants et les éponymes de périodes différentes. Elles se ré-ordonnent donc de fac ¸on différente de celle de la table globale.

  6.1 Période VII/VI NIKOTIMOS VII, HIPPIAS VI, DIONYSOS VII, THEUGENES VI, TIMOSTHENES VI/VII, ZENO-DOTOS VI/VII, HERAKLEITOS VI, AUTOKRATES2 VI, MENOPHILOS VI, PTOLEMAIOS VI/-VII, KLEUDIKOS VI/VII, SOKRATES VI , ARISTOBOULOS VI, PASIPHON VI, KALLIANAX VI, ANAXAGORAS VI/VII, ARISTOMENES VI/VII, ARISTONYMOS VII, ARCHEMBROTOS2 VI, ARISTOMACHOS2 VI, KALLIXEINOS VI, NIKOMACHOS VI, APOLLONIOS VI/VII, HIE-ROKLES VII, ANTILOCHOS2 VI, MNASEAS VII, IASON VI, CHRYSAON/CHRYSAOR VI, ECHE-BOULOS VI, PHAINILAS VI, TIMOKLES2 VI, ATHANAGORAS VI/VII, DAMATRIOS VI/VII, DA-MOKRATES2 VI, ARISTONOMOS VI.
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u Figure 2: Guiding example: we consider the link stream L = (T, U, I, E) in which the set of users is
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	(c) LSG + CI
	Figure 4: Inclusion of nodes and links representing content-based features with the CI strategy, for each
	basic recommender graph.

Table 1 :

 1 Basic data statistics

		Start date End date	U	I	C Ratings Trust	δ r	δ t
	Epinions 2010-01-01 2010-12-31 1 843 15 899 24 17 722 4 867 0.06% 0.14%
	Ciao	2007-01-01 2010-12-31 879 6 005	6	8 109 23 121 0.15% 3.00%

Table 2 :

 2 Predefined values of parameters

Table 4

 4 

	also shows that the best combination of side information

Table 3 :

 3 Epinions and Ciao -Performance with optimal settings. Each cell contains the value of an evaluation metric for the recommender graph made of basic graph in column and side information in row. White color of cell corresponds to the best result and dark color indicates lower performance

	F@10 H@10 M@10 F@10 H@10 M@10	1 2 3 No 1 2 3 1 2 3 1 2 3 No 1 2 3 1 2 3	2.18 6.34 190% CIU-EDF-IT 2.18 5.69 160% CIU-LDF-IT 2.18 5.29 142% CIU-LDF Basic Best Imp. BIP-Best BIP 5.17 7.82 51% CIU-EDF-IT 5.17 7.82 51% CIU-LDF-IT 5.17 7.69 48% CI-EDF 2.23 3.32 48% CIU-EDF-IT 2.23 3.23 45% CIU-EDF 2.23 3.18 42% CIU-LDF-IT 1.18 7.74 556% CIU-LDF 1.18 5.07 330% CIU-LDF-IT 1.18 4.62 291% CIU-EDF-IT Basic Best Imp. BIP-Best BIP 5.26 11.1 110% CIU-LDF-IT 5.26 10.7 103% CI-LDF-IT 5.26 10.3 96% CIU-EDF-IT 1.9 3.46 82% CIU-LDF 1.9 3.34 76% CIU-LDF-IT 1.9 3.32 74% CIU-EDF-IT	Epinions Dataset 2.0 7.66 282% CIU-EDF-IT 2.0 6.48 223% CIU-EDF 2.0 6.13 206%CIU-EDF-ET Basic Best Imp. STG-Best STG 4.77 7.96 66% CIU-EDF-IT 4.77 7.69 61% CIU-EDF 4.77 7.43 55% CIU-EDF-ET 2.17 3.18 46% CIU-EDF-IT 2.17 3.07 41% CIU-LDF-IT 2.17 3.03 39% CIU-EDF Ciao Dataset 1.48 6.42 332%CIU-LDF-ET 1.48 6.11 311% CIU-LDF-IT 1.48 5.79 290% CIU-LDF Basic Best Imp. STG-Best STG 5.63 11.3 100% CI-LDF-IT 5.63 11.1 96% CIU-LDF-IT 5.63 10.5 87% CIU-EDF-IT 1.99 3.37 69% CIU-EDF-IT 1.99 3.35 68% CIU-LDF-IT 1.99 3.34 67% CIU-LDF-ET	LSG Basic Best Imp. LSG-Best 1.14 3.68 221% CIU-LDF-IT 1.14 3.41 197% CI-LDF-IT 1.14 3.29 187% LDF-IT 4.24 7.29 71% CI-LDF-IT 4.24 7.16 68% LDF-IT 4.24 7.03 65% CIU-LDF-IT 1.71 3.17 85% CIU-LDF-IT 1.71 3.01 76% LDF-IT 1.71 2.66 55% CI-LDF-IT LSG Basic Best Imp. LSG-Best 1.45 3.27 125% LDF 1.45 2.96 104% CIU-IT 1.45 2.9 99% CI-EDF-IT 6.53 9.26 41% LDF 6.53 9.07 38% CIU-LDF-IT 6.53 8.71 33% LDF-IT 2.24 3.51 57% LDF 2.24 3.18 42% CIU-LDF-IT 2.24 3.16 41% CI-LDF-IT

Table 4 :

 4 Best recommender graphs -Comparison of the three best recommender graph combinations with the associated basic graph. We display the obtained improvement percentage.

Table 5 :

 5 

Experiment results on Epinions and Ciao datasets for Top-10. Performances are given in percentage and best ones are highlighted in bold.

Table 6 :

 6 Epinions Dataset -Performances with optimal settings for Top-20.

	-ET IT EDF LDF CI CIU EDF-ET EDF-IT LDF-ET LDF-IT CI-ET CI-IT CIU-ET CIU-IT CI-EDF CI-LDF CIU-EDF CIU-LDF CI-EDF-ET CI-EDF-IT CI-LDF-ET CI-LDF-IT CIU-EDF-ET CIU-EDF-IT CIU-LDF-ET CIU-LDF-IT EPINIONS BIP STG LSG 1.06 1.08 0.91 0.95 1.05 0.87 1.16 1.16 0.97 1.25 1.28 1.04 1.14 1.15 0.99 1.55 1.48 0.56 1.59 1.53 0.48 1.09 1.11 0.89 1.36 1.34 0.97 0.97 1.08 0.87 1.18 1.16 0.98 1.43 1.47 0.56 1.49 1.47 0.89 1.49 1.49 0.48 1.51 1.55 0.91 1.74 1.66 0.58 1.67 1.51 0.6 1.63 1.77 0.55 1.59 1.55 0.54 1.72 1.63 0.59 1.52 1.66 0.88 1.56 1.52 0.56 1.49 1.49 0.93 1.52 1.75 0.55 1.62 1.73 0.91 1.47 1.55 0.51 1.52 1.53 0.97 F1@50	BIP STG LSG 15.3 15.4 13.9 14.2 15.1 13.5 16.0 16.4 14.7 17.1 16.4 15.4 16.0 16.0 14.7 19.0 18.4 9.68 19.0 18.6 8.62 15.5 15.5 14.2 17.5 16.8 15.0 14.6 15.4 13.5 16.6 16.4 14.9 18.2 18.3 9.68 18.4 18.4 14.2 18.3 18.6 8.49 18.6 18.6 14.6 19.9 19.9 9.95 19.6 18.7 10.1 19.4 19.9 9.81 19.0 19.0 9.95 19.8 19.8 9.95 18.8 19.9 14.2 19.0 18.8 9.68 18.6 18.6 14.5 18.7 19.9 9.81 19.6 19.8 14.6 18.2 19.0 9.42 18.7 18.8 15.1 HR@50	3.36 3.45 3.27 2.83 3.18 1.84 3.65 3.48 2.54 3.02 3.29 1.83 3.14 3.14 2.82 2.65 3.06 1.93 3.1 2.99 2.46 2.71 2.93 1.94 3.2 3.33 1.92 3.5 3.36 1.84 2.89 3.05 1.95 3.29 3.06 1.94 3.07 3.29 2.5 2.76 3.27 1.83 2.77 3.03 2.41 2.63 3.05 1.93 3.09 3.09 3.07 2.28 2.4 2.38 2.83 2.74 2.73 2.43 2.33 2.52 3.01 3.26 1.83 2.87 3.15 1.93 2.5 2.4 2.72 2.64 2.71 2.7 2.52 2.63 2.55 2.3 2.4 1.99 2.5 2.55 2.03 BIP STG LSG MAP@50

Table 7 :

 7 Epinions Dataset -Performances with optimal settings for Top-50.

	-ET IT EDF LDF CI CIU EDF-ET EDF-IT LDF-ET LDF-IT CI-ET CI-IT CIU-ET CIU-IT CI-EDF CI-LDF CIU-EDF CIU-LDF CI-EDF-ET CI-EDF-IT CI-LDF-ET CI-LDF-IT CIU-EDF-ET CIU-EDF-IT CIU-LDF-ET CIU-LDF-IT EPINIONS BIP STG LSG 0.7 0.72 0.67 0.69 0.68 0.66 0.74 0.77 0.66 0.77 0.77 0.67 0.71 0.72 0.67 0.89 0.91 0.39 0.87 0.92 0.39 0.71 0.7 0.65 0.76 0.79 0.67 0.71 0.69 0.66 0.75 0.79 0.66 0.87 0.88 0.39 0.88 0.88 0.58 0.86 0.92 0.39 0.89 0.92 0.59 0.92 0.98 0.42 0.89 0.88 0.42 0.91 1.03 0.4 0.89 0.94 0.41 0.91 0.95 0.42 0.92 0.95 0.58 0.88 0.89 0.41 0.88 0.88 0.57 0.91 1.02 0.39 0.91 1.02 0.59 0.88 0.94 0.39 0.89 0.92 0.59 F1@100	BIP STG LSG 22.5 22.4 21.9 22.3 22.0 21.5 23.3 23.6 21.9 22.9 23.3 21.9 22.5 22.3 21.9 26.3 26.3 14.3 26.0 27.5 14.3 22.1 22.0 21.2 23.5 23.9 22.3 22.4 21.9 21.5 23.6 23.9 21.9 25.9 25.7 14.3 26.1 26.5 20.0 25.9 27.5 14.3 26.5 27.3 20.2 26.8 27.6 15.1 26.3 26.0 15.1 26.3 28.5 14.5 26.3 27.6 15.0 26.5 27.2 15.0 26.7 27.2 20.0 25.7 25.7 14.6 26.1 26.5 20.0 26.1 28.5 14.3 27.2 28.5 20.2 26.0 27.6 14.3 26.5 27.3 20.3 HR@100	3.37 3.43 3.26 2.79 3.17 1.82 3.73 3.44 2.55 2.94 3.21 1.82 3.16 3.16 2.82 2.61 2.95 1.83 3.2 3.06 2.49 2.71 2.89 1.84 3.12 3.33 1.9 3.58 3.34 1.83 2.88 2.95 1.89 3.29 3.15 1.85 3.15 3.35 2.52 2.85 3.36 1.82 2.78 2.93 2.48 2.6 2.96 1.83 3.1 3.1 3.02 2.33 2.42 2.36 2.9 2.77 2.77 2.44 2.33 2.54 3.03 3.35 1.82 2.84 3.13 1.83 2.54 2.42 2.65 2.66 2.66 2.72 2.6 2.68 2.61 2.35 2.43 2.09 2.54 2.59 2.13 BIP STG LSG MAP@100

Table 8 :

 8 Epinions Dataset -Performances with optimal settings for Top-100.

	-ET IT EDF LDF CI CIU EDF-ET EDF-IT LDF-ET LDF-IT CI-ET CI-IT CIU-ET CIU-IT CI-EDF CI-LDF CIU-EDF CIU-LDF CI-EDF-ET CI-EDF-IT CI-LDF-ET CI-LDF-IT CIU-EDF-ET CIU-EDF-IT CIU-LDF-ET CIU-LDF-IT CIAO	BIP STG LSG 1.61 1.93 1.71 1.36 1.69 1.61 3.08 2.72 2.2 2.24 2.35 2.51 2.05 1.99 2.7 3.13 3.58 1.03 2.93 4.39 0.87 2.01 2.01 1.69 3.15 2.69 2.34 1.44 1.69 1.61 2.82 2.82 2.6 2.59 3.25 1.09 3.35 3.47 2.76 3.78 4.39 1.03 3.64 4.71 3.27 4.81 3.95 1.48 4.27 3.92 1.54 4.37 4.19 1.32 3.43 4.55 1.39 2.19 3.78 1.47 4.18 3.86 2.95 2.7 3.33 1.24 4.87 4.92 3.38 3.7 4.38 1.32 3.84 4.56 3.39 4.2 4.5 1.21 5.06 4.36 3.28 F1@20	BIP STG LSG 9.26 9.98 10.2 8.71 9.26 9.98 13.1 12.9 11.8 11.1 11.4 12.3 10.2 10.2 13.2 12.2 12.3 7.44 13.2 14.5 6.72 10.7 10.3 11.4 14.2 13.8 12.0 8.71 9.26 9.98 12.3 12.5 12.3 11.6 12.2 7.8 13.4 14.0 12.7 14.0 14.5 7.26 14.5 14.7 13.4 15.1 13.8 9.26 14.9 14.2 10.3 15.8 14.7 8.17 15.2 15.4 9.62 13.8 13.6 9.07 15.4 14.9 13.1 11.6 13.1 8.71 15.1 14.5 13.8 15.8 14.5 8.17 16.0 15.8 13.6 14.5 15.4 8.35 16.0 15.8 14.5 HR@20	3.59 3.69 3.49 2.79 3.69 1.69 3.63 3.64 2.69 3.24 3.42 1.84 3.44 3.48 3.45 2.31 2.44 2.01 3.41 3.42 2.76 2.76 2.78 1.93 3.62 3.68 2.82 3.66 3.6 1.84 3.29 3.21 2.92 2.77 3.01 1.84 3.13 3.39 2.66 2.73 3.51 1.63 2.87 2.83 2.68 2.3 2.39 1.88 3.06 3.25 2.81 2.02 2.22 2.36 3.27 3.11 2.56 2.0 2.36 2.41 2.8 3.43 1.55 2.37 2.45 1.75 2.74 3.0 3.78 2.28 2.56 2.65 2.76 2.75 2.51 1.96 2.13 2.35 2.13 2.25 2.44 BIP STG LSG MAP@20

Table 9 :

 9 Ciao Dataset -Performances with optimal settings for Top-20.

	-ET IT EDF LDF CI CIU EDF-ET EDF-IT LDF-ET LDF-IT CI-ET CI-IT CIU-ET CIU-IT CI-EDF CI-LDF CIU-EDF CIU-LDF CI-EDF-ET CI-EDF-IT CI-LDF-ET CI-LDF-IT CIU-EDF-ET CIU-EDF-IT CIU-LDF-ET CIU-LDF-IT CIAO	BIP STG LSG 1.46 1.55 1.51 1.58 1.52 1.47 1.69 1.72 1.62 1.74 1.74 1.81 1.47 1.62 1.77 2.27 2.18 0.97 2.37 2.65 0.88 1.63 1.59 1.59 1.98 1.79 1.7 1.59 1.58 1.47 1.9 1.69 1.65 2.34 2.07 0.98 2.53 2.29 1.57 2.27 2.66 0.88 2.52 2.86 1.58 2.45 2.36 1.26 2.56 2.23 1.17 2.57 2.71 1.03 2.62 2.78 1.13 2.63 2.34 1.29 2.6 2.44 1.59 2.31 2.21 0.99 2.51 2.42 1.64 2.69 2.69 1.07 2.82 2.69 1.61 2.55 2.72 1.08 2.99 2.88 1.61 F1@50	BIP STG LSG 19.4 19.6 19.8 19.6 19.2 20.0 20.9 21.1 20.5 21.4 20.7 20.9 19.4 20.3 20.9 22.1 22.5 15.2 24.0 24.9 14.3 20.3 20.9 20.7 22.1 21.8 21.2 19.6 19.6 20.0 21.8 20.5 20.5 23.0 23.0 15.4 23.6 22.7 20.5 24.0 24.7 14.2 24.7 25.8 21.2 23.0 24.0 18.9 23.4 22.9 17.6 24.0 25.4 16.5 24.0 24.7 16.9 24.1 23.8 18.9 24.5 24.1 20.7 23.4 23.8 15.4 23.8 23.8 21.1 24.3 25.8 16.9 25.4 25.4 21.4 23.8 25.2 16.7 24.9 24.9 20.9 HR@50	3.69 3.76 3.51 3.0 3.86 1.93 3.69 3.73 2.91 3.42 3.7 2.07 3.61 3.56 3.61 2.63 2.75 2.05 3.53 3.56 2.94 3.01 3.04 2.05 3.74 3.82 3.01 3.87 3.87 2.07 3.45 3.29 3.12 2.98 3.18 2.02 3.26 3.62 2.88 2.98 3.75 1.74 2.98 2.91 2.76 2.51 2.68 1.92 3.18 3.29 2.99 2.25 2.54 2.68 3.39 3.23 2.81 2.24 2.65 2.73 3.03 3.67 1.72 2.55 2.71 1.92 2.91 3.0 3.97 2.56 2.78 2.86 2.92 2.84 2.73 2.2 2.43 2.67 2.34 2.5 2.74 BIP STG LSG MAP@50

Table 10 :

 10 Ciao Dataset -Performances with optimal settings for Top-50.

	-ET IT EDF LDF CI CIU EDF-ET EDF-IT LDF-ET LDF-IT CI-ET CI-IT CIU-ET CIU-IT CI-EDF CI-LDF CIU-EDF CIU-LDF CI-EDF-ET CI-EDF-IT CI-LDF-ET CI-LDF-IT CIU-EDF-ET CIU-EDF-IT CIU-LDF-ET CIU-LDF-IT CIAO	BIP STG LSG 1.11 1.15 1.06 1.08 1.15 1.03 1.16 1.15 1.07 1.25 1.27 1.18 1.23 1.14 1.17 1.54 1.51 0.96 1.58 1.57 0.89 1.21 1.27 1.11 1.22 1.26 1.09 1.11 1.15 1.03 1.14 1.18 1.07 1.57 1.52 0.98 1.52 1.53 1.09 1.57 1.56 0.9 1.48 1.5 1.09 1.66 1.56 1.01 1.6 1.49 1.0 1.73 1.74 0.9 1.56 1.5 0.89 1.71 1.54 1.01 1.57 1.54 1.16 1.55 1.55 0.98 1.49 1.5 1.15 1.84 1.76 0.91 1.74 1.73 1.1 1.59 1.57 0.9 1.52 1.51 1.13 F1@100	BIP STG LSG 27.9 28.3 27.8 27.9 28.1 27.4 28.7 28.7 27.9 30.5 31.0 29.9 29.6 28.5 29.2 33.8 33.4 26.7 34.3 34.5 25.8 29.2 30.3 28.3 28.9 30.1 27.9 28.7 28.7 27.6 27.9 29.2 27.9 33.9 33.4 26.5 33.2 33.4 29.9 34.8 35.2 25.8 33.4 34.1 29.2 34.5 33.6 28.5 34.5 33.6 27.2 35.0 35.9 26.5 34.5 34.3 26.0 34.5 33.6 29.2 33.0 33.4 29.8 33.9 33.4 26.5 32.7 33.8 30.5 35.8 35.9 26.9 34.7 35.8 29.6 34.7 34.7 25.8 33.2 34.5 30.5 HR@100	3.75 3.79 3.46 3.04 3.72 1.98 3.64 3.68 2.89 3.33 3.66 2.17 3.58 3.59 3.5 2.63 2.71 2.16 3.41 3.55 2.85 2.91 2.98 2.12 3.7 3.81 2.98 3.83 3.76 2.17 3.37 3.32 3.18 2.92 3.13 2.14 3.23 3.47 2.85 3.03 3.6 1.8 2.97 2.91 2.83 2.58 2.65 2.04 3.22 3.31 3.02 2.32 2.47 2.57 3.37 3.22 2.78 2.18 2.57 2.62 3.08 3.51 1.72 2.62 2.74 2.02 2.96 3.05 3.94 2.46 2.64 2.86 2.88 2.85 2.73 2.25 2.36 2.56 2.39 2.49 2.64 BIP STG LSG MAP@100

Table 11 :

 11 Ciao Dataset -Performances with optimal settings for Top-100. F@20

	H@20 M@20	No	1.56 3.45 121% CIU-EDF 1.56 3.44 120% CIU-EDF-IT 1.56 3.25 109% CI-EDF-IT Basic Best Imp. BIP-Best BIP 8.22 11.8 43% CIU-EDF 8.22 11.7 41% CI-EDF 8.22 11.7 41% CIU-EDF-IT 2.38 3.55 49% CIU-EDF-IT 2.38 3.45 45% CIU-EDF 2.38 3.33 40% CI-EDF	Epinions Dataset 1.59 3.33 109% CIU-EDF-IT 1.59 3.26 105% CI-EDF-IT 1.59 2.93 84% CIU-EDF Basic Best Imp. STG-Best STG 8.22 11.5 40% CIU-EDF-IT 8.22 11.4 38% CI-EDF-IT 8.22 11.3 37% CIU-EDF 2.4 3.41 41% CIU-EDF-IT 2.4 3.26 35% CIU-EDF 2.4 3.24 34% CIU-LDF-IT	LSG Basic Best Imp. LSG-Best 1.11 2.55 129% EDF 1.11 2.46 121% EDF-ET 1.11 2.43 118% EDF-IT 7.16 10.6 48% EDF 7.16 10.5 46% LDF-IT 7.16 10.3 44% EDF-ET 1.84 3.26 77% CIU-LDF-IT 1.84 3.06 66% LDF-IT 1.84 2.77 50% CI-LDF-IT
	F@50 H@50 M@50	No	1.06 1.74 64% CI-EDF 1.06 1.72 61% CI-EDF-ET 1.06 1.67 57% CI-LDF Basic Best Imp. BIP-Best BIP 15.3 19.9 30% CI-EDF 15.3 19.8 29% CI-EDF-ET 15.3 19.6 28% CI-LDF 2.5 3.65 45% CIU-EDF-IT 2.5 3.5 40% CIU-EDF 2.5 3.36 34% CIU-LDF-IT	Epinions Dataset 1.08 1.77 62% CIU-EDF 1.08 1.75 61% CIU-EDF-ET 1.08 1.73 59% CIU-EDF-IT Basic Best Imp. STG-Best STG 15.4 19.9 29% CI-EDF 15.4 19.9 29% CIU-EDF 15.4 19.9 29% CI-EDF-IT 2.55 3.48 36% CIU-EDF-IT 2.55 3.45 35% CIU-LDF-IT 2.55 3.36 31% CIU-EDF	LSG Basic Best Imp. LSG-Best 0.91 1.04 14% EDF 0.91 0.99 9% LDF 0.91 0.98 7% LDF-IT 13.9 15.4 10% EDF 13.9 15.1 8% CIU-LDF-IT 13.9 15.0 7% EDF-IT 2.03 3.27 61% CIU-LDF-IT 2.03 3.07 51% LDF-IT 2.03 2.82 38% CI-LDF-IT
	F@100 H@100 No M@100	0.7 0.92 30% CI-EDF-IT 0.7 0.92 30% CI-EDF 0.7 0.91 29% CIU-EDF-IT Basic Best Imp. BIP-Best BIP 22.5 27.2 20% CIU-EDF-IT 22.5 26.8 18% CI-EDF 22.5 26.7 18% CI-EDF-IT 2.54 3.73 46% CIU-EDF-IT 2.54 3.58 41% CIU-EDF 2.54 3.37 33% CIU-LDF-IT	Epinions Dataset 0.72 1.03 44% CIU-EDF 0.72 1.02 42% CIU-EDF-ET 0.72 1.02 42% CIU-EDF-IT Basic Best Imp. STG-Best STG 22.4 28.5 27% CIU-EDF 22.4 28.5 27% CIU-EDF-ET 22.4 28.5 27% CIU-EDF-IT 2.59 3.44 32% CIU-EDF-IT 2.59 3.43 32% CIU-LDF-IT 2.59 3.36 29% CIU-ET	0.67 0.67 0% LSG Basic Best Imp. LSG-Best -0.67 0.67 0% LDF 0.67 0.67 0% EDF-IT 21.9 22.3 1% EDF-IT 21.9 21.9 0% -21.9 21.9 0% IT 2.13 3.26 53% CIU-LDF-IT 2.13 3.02 41% LDF-IT 2.13 2.82 32% CI-LDF-IT

Table 12 :

 12 Epinions Dataset -Best recommender graphs for Top-20, -50 and -100. Comparison of the three best recommender graph combinations with the associated basic graph. F@20

	H@20 M@20	No	1.61 5.06 215% CIU-LDF-IT 1.61 4.87 202% CI-LDF-IT 1.61 4.81 199% CI-EDF Basic Best Imp. BIP-Best BIP 9.26 16.0 72% CIU-EDF-IT 9.26 16.0 72% CIU-LDF-IT 9.26 15.8 70% CIU-EDF 2.13 3.66 72% CIU-EDF 2.13 3.63 70% CIU-EDF-IT 2.13 3.62 70% CIU-LDF	Ciao Dataset 1.93 4.92 155% CI-LDF-IT 1.93 4.71 144% CIU-IT 1.93 4.56 136% CIU-EDF-IT Basic Best Imp. STG-Best STG 9.98 15.8 58% CIU-EDF-IT 9.98 15.8 58% CIU-LDF-IT 9.98 15.4 54% CIU-LDF 2.25 3.69 64% CIU-LDF-ET 2.25 3.69 64% CIU-LDF-IT 2.25 3.68 63% CIU-LDF	LSG Basic Best Imp. LSG-Best 1.71 3.39 98% CIU-EDF-IT 1.71 3.38 97% CI-LDF-IT 1.71 3.28 91% CIU-LDF-IT 10.2 14.5 42% CIU-LDF-IT 10.2 13.8 35% CI-LDF-IT 10.2 13.6 33% CIU-EDF-IT 2.44 3.78 54% LDF 2.44 3.49 42% CIU-LDF-IT 2.44 3.45 41% CI-LDF-IT
	F@50	No	1.46 2.99 104% CIU-LDF-IT 1.46 2.82 93% CIU-EDF-IT 1.46 2.69 83% CIU-EDF-ET Basic Best Imp. BIP-Best BIP	Ciao Dataset 1.55 2.88 85% CIU-LDF-IT 1.55 2.86 84% CIU-IT 1.55 2.78 79% CIU-LDF Basic Best Imp. STG-Best STG	1.51 1.7 12% EDF-IT 1.51 1.77 17% LDF 1.51 1.81 20% EDF Basic Best Imp. LSG-Best LSG
	H@50				

Table 1 :

 1 Summary of notations, where

Table 2 :

 2 Table 3 the exact starting and ending times for Highschool and Infocom experiments. The choice of these periods have important consequences on the prediction quality, as we shall see in the next section. Metric Acronyms

	Acronym	Metric		
	CN		Number of Common Neighbors
	AA		Adamic-Adar Index	
	RA		Resource Allocation Index
	SI		Sørensen Index	
	JI		Jaccard Index	
	WCN		Weighted Number of Common Neighbors
	WAA		Weighted Adamic-Adar
	WRA		Weighted Resource Allocation Index
	WSI		Weighted Sørensen Index
	PAE		Pair Activity Extrapolation
	PAE10L		Activity by unit of time during the last 10 links
	PAE100S	Activity during the last 100 seconds
	PAE1000S Activity during the last 1,000 seconds
	PAE10000S Activity during the last 10,000 seconds
	Dataset	Duration	A 1	Ω 1 = A 2 Ω 2 = A	Ω
			1h	8:30 am	9:30 am 10:30 am 11:30 am
	Highschool		2h	8:30 am	10:30 am 12:30 am 2:30 pm
			3h	8:30 am	11:30 am 2:30 pm 5:30 pm
			1h	9:00 am	10:00 am 11:00 am 12:00 am
	Infocom		2h	9:00 am	11:00 am 1:00 pm 3:00 pm
			3h	9:00 am	12:00 am 3:00 pm 6:00 pm
			1d	Tuesday Wednesday Thursday	Friday
	Reality Mining		2d	Tuesday	Thursday Saturday Monday
			3d	Tuesday	Friday Monday Thursday
			1d Wednesday	Thursday	Friday Saturday
	Taxi		2d Wednesday	Friday	Sunday Tuesday
			3d Wednesday	Saturday Tuesday	Friday

Table 3 :

 3 Starting and ending time of each periods for each dataset

  DatasetDuration F -score Precision Recall N predicted N occurring

		1h	0.44	0.33	0.69	1,123	857
	Highschool	2h	0.17	0.18	0.15	1,751	2,178
		3h	0.29	0.22	0.41	3,072	1,900
		1h	0.59	0.58	0.59	8,167	8,220
	InfoCom	2h	0.55	0.50	0.60	16,737	14,051
		3h	0.67	0.63	0.70	22,568	20,850
		1d	0.47	0.41	0.56	6,105	8,733
	R.Mining	2d	0.09	0.05	0.65	18,537	1,591
		3d	0.41	0.73	0.29	11,395	29,078
		1d	0.18	0.19	0.17	872,173	971,204
	Taxi	2d	0.10	0.07	0.16	1,904,076	910,457
		3d	0.16	0.20	0.14	1,843,329	2,865,449

Table 4 :

 4 F -score, Precision, Recall and number of links predicted and occurring.

Table 5 :

 5 F -score and number of link predicted and appeared by class on Infocom using 2h periods.

  de cette recherche est un réseau d'agents du pouvoir central (missi dominici) mis en place par les Carolingiens en Europe occidentale durant le premier Moyen Âge. Bien que, comme le montreHanning (1983), la pratique d'appel aux missi semble déjà être apparue vers la moitié du VIII e siècle, c'est le règne de Charlemagne qui a marqué un tournant important : le recours à ces agents est devenu régulier et le système a survécu, peu ou prou, jusqu'à la fin du IX e siècle. La première mission répertoriée pour cette recherche date de 751 et la dernière de 886. Plusieurs capitulaires ont fixé les lignes directrices de l'exercice du pouvoir des missi dominici et ont témoigné de l'évolution de l'institution dans le temps 2 . Si la tâche principale de ces agents a été le contrôle et l'inspection des territoires sous la domination franque, leurs activités sur place pouvaient être variées, du règlement des conflits juridiques et la diffusion des décrets royaux jusqu'à l'inspection des marchés[START_REF] Ganshof | Charlemagne et les institutions de la monarchie franque[END_REF][START_REF] Werner | Missus -marchiocomes : entre l'administration centrale et l'administration locale de l'Empire carolingien[END_REF][START_REF] Davis | Charlemagne's Practice of Empire[END_REF]. Constitués généralement d'un laïc et d'un ecclésiastique, ces groupes d'agents royaux devaient effectuer des tournées régulières dans les différentes parties du royaume regroupées en zones d'inspection, missatica. Cependant le contour aussi bien géographique que temporel des missatica suscite plusieurs interrogations. Si quelques textes les ont mentionnés de façon explicite, les autres n'ont donné que des informations lacunaires sur les lieux d'exercice des missi dominici. Le travail de reconstitution de ces zones d'inspection, déjà commencé par[START_REF] Eckhardt | Die Capitularia missorum specialia von 802[END_REF], mérite d'être poursuivi et approfondi. Hors des missi « ordinaires » inscrits dans le cadre de leur circonscription, on peut faire état des missi « extraordinaires » envoyés pour un objectif ponctuel dans les territoires périphériques
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Volume : 5 -Année : 2019 Titre du numéro: Analyse de graphes et réseaux complexes Éditeur : Vincent Labatut Résumé Cette étude propose plusieurs modèles d'analyse d'un réseau politique des agents du pouvoir central du haut Moyen Âge, les missi dominici. Complétées par l'analyse statistique, plusieurs hypothèses de recherche fondées sur les positions de l'historiographie actuelle ont été étayées. D'une part, l'examen du réseau des agents a permis de mettre en lumière une certaine évolution liée à la structuration du système missatique et au mécanisme de la transition des agents d'un règne à l'autre. D'autre part, l'étude des relations entre les agents et les lieux de leurs missions a confirmé une certaine amplification, avec le temps, de la politique du recrutement des missi au sein de l'aristocratie locale. Enfin, plusieurs difficultés liées tant au caractère lacunaire des données issues des sources médiévales qu'à la complexité de modélisation et d'analyse d'un réseau politique multimodal ont été évoquées.

  . Dans cette optique, l'étude des agents royaux doit nous permettre d'observer au plus près la nature de cette structure du pouvoir.Les points de départ de cette enquête se sont fondés ainsi sur deux postulats de l'historiographie actuelle : i) Bien que le réseau des missi dominici semble avoir existé tout au long du IX e siècle, son essor a été marqué par les règnes de trois souverains : Charlemagne, Louis le Pieux et Charles le Chauve. La survivance du système des agents royaux durant plusieurs décennies témoigne de l'existence d'une réelle structure politique et pas seulement d'une spécificité de gouvernance d'un seul souverain. La première étape de cette recherche consiste alors à étudier les caractéristiques propres du réseau des agents du pouvoir central et à mettre en évidence les changements qui s'y opéraient au fil du temps.

  qui pouvaient relier les agents entre eux ou avec leurs lieux d'affectations que déceler les transformations qui s'y produisaient. L'analyse de réseaux, centrée sur l'étude des relations et appuyée par l'analyse statistique multivariée répondait parfaitement à ces exigences. Le recours à ces approches en sciences humaines et sociales a déjà une longue histoire et leur description détaillée, largement faite ailleurs, dépasse de loin le propos de ce travail. On renvoie donc à[START_REF] Scott | Social Network Analysis[END_REF] et[START_REF] Kadushin | Understanding Social Networks : Theories, Concepts, and Findings[END_REF] qui ont donné une présentation des principes fondamentaux de l'analyse de réseaux, et à[START_REF] Wasserman | Social Network Analysis : methods and applications[END_REF], et à Newman (2010) pour leurs argumentations mathématiques. L'analyse statistique et le traitement des données longitudinales ont été de même amplement abordés aussi bien de façon générale (à titre d'exemple : Crawley 2015 ; Hamilton 1994) que dans le contexte de leur utilisation en histoire (Hudson et Ishizu 2016 ; Lemercier et Zalc 2019 et plus généralement pour les sciences sociales : Kolenikov et al. 2010).Il n'est pas inutile toutefois d'attirer attention sur quelques spécificités, tantôt réelles, tantôt apparentes, que l'utilisation de ces techniques, et notamment celle de l'analyse de réseaux, peut révéler[START_REF] Lemercier | Analyse de réseaux et histoire[END_REF][START_REF] Collar | Analyser les réseaux du passé en archéologie et en histoire[END_REF] Brughmans et al. 2016). D'une part, une distinction est requise entre la notion de réseau introduite sous l'effet de mode dans les enquêtes historiques et dont l'utilisation dépasse rarement le sens métaphorique du terme, et l'analyse de réseaux en tant qu'un ensemble défini des techniques avec son propre vocabulaire et sa méthodologie[START_REF] Lemercier | Analyse de réseaux et histoire[END_REF][START_REF] Collar | Analyser les réseaux du passé en archéologie et en histoire[END_REF] et dans une moindre mesure Collar 2015). Si la lecture symbolique reste encore dominante en sciences humaines, cela est dû, comme le souligne à juste titre Beauguitte
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Volume : 5 -Année : 2019, DOI : 10.18713/JIMIS-180719-5-4 (2016), à la complexité supposée de la dimension technique de l'approche. D'autre part, l'incomplétude des informations issues des sources lacunaires semble entraver le déploiement de la méthode qui exige des renseignements précis, obstacle toutefois surmontable et déjà surmonté au sein des autres disciplines dans lesquelles la quête des données exhaustives a été depuis longtemps abandonnée au profit d'un échantillonnage

  qui donne des renseignements sur 280 individus du règne de Louis le Pieux, dont une partie est relative aux missi dominici, et la base numérique « The Making of Charlemagne's Europe (768-814) » de[START_REF] Rio | The Making of Charlemagne's Europe[END_REF] qui contient des données sur 64 missi du règne de Charlemagne. La reconstitution des liens entre les souverains, les agents et les lieux de leurs missions a également incité à consulter les une des caractéristiques du réseau étudié, la recherche plus approfondie des relations familiales au sein de l'aristocratie franque dépassait largement le cadre de ce travail.Toutes les données utilisées dans cette recherche sont issues des enquêtes historiques précédemment citées. La consultation des sources a été ponctuelle en cas de doutes sur des informations précises. Pour la présentation détaillée des corpus mobilisés, on renvoie à Kikuchi (2013) et, en tout dernier lieu, à[START_REF] Krause | Geschichte des Institutes der missi dominici[END_REF]. Il est toutefois indispensable de s'attarder sur quelques difficultés liées tant à la nature des sources qu'à leur vocabulaire.La reconstitution de l'histoire missatique s'est appuyée sur une documentation hétérogène, aussi bien normative que narrative. Une grande partie du corpus a été, par exemple, constituée des capitulaires qui sont une des sources majeures pour dresser les lignes directrices des activités des missi dominici : missions commandées, noms des agents, lieux d'affectations[START_REF] De Clercq | Neuf capitulaires de Charlemagne concernant son oeuvre réformatrice par les « Missi[END_REF][START_REF] Mckitterick | Charlemagne's missi and their books[END_REF][START_REF] Kikuchi | Carolingian capitularies as texts : significance of texts in the government of the Frankish kingdom especially under Charlemagne. Configuration du texte en histoire[END_REF][START_REF] Kikuchi | Untersuchungen zu den Missi dominici. Herrschaft, Delegation und Kommunikation in der Karolingerzeit[END_REF]. Or, comme tout texte du haut Moyen Age, certains capitulaires présentent un problème inhérent de datation. On s'est fié aux datations proposées et les plus largement admises

travaux prosopographiques d'un cadre temporel plus large, notamment les études d'

[START_REF] Ebling | Prosopographie der Amtsträger des Merowingerreiches[END_REF] 

et

de Borgolte (1986)

. Cependant il était nécessaire de se limiter dans l'étendue de certaines données, notamment généalogiques. Si la reconstitution de ce type de liens devait permettre de mieux cerner ©JIMIS, Creative Commons Revue en libre accès : j i mi s . e p i s c i e n c e s . o r g Volume : 5 -Année : 2019, DOI : 10.18713/JIMIS-180719-5-4

  . La reconstitution des éléments du parcours personnel d'un agent (origines géographiques, liens de parenté, etc.) s'est nécessairement reliée aux sources narratives : textes hagiographiques, correspondances ou annales. Bien qu'il soit nécessaire de garder une certaine réserve à l'égard des informations transmises par ce type de documentation, ces textes nous ont donné des renseignements importants. A titre d'exemple on ne citera que le poème écrit par Théodulf d'Orléans après son voyage vers 798 en tant que missus dominicus de Charlemagne dans les territoires méridionaux du royaume (Theodulfi, Contra Iudices. Sur cette mission voirKrause 1890, appendice 

Table 1 .

 1 qu'ambassadeurs à l'étranger(Scior 2009 ;[START_REF] Nelson | Messagers et intermédiaires en Occident et au-delà à l'époque carolingienne[END_REF]. Plusieurs termes, tels que legatus, missus et nuntius se sont entremêlés dans les textes de l'époque[START_REF] Dreillard | La conclusion des traités à l'ère carolingienne[END_REF]. Les mentions de la délégation expédiée par Charlemagne à Constantinople sont un parfait exemple pour démontrer cette ambivalence. Si les Annales regni Francorum mentionnent pour l'année 802 l'envoi d'une légation constituée de Helmgaud (comte de Meaux) et de Jessé (évêque d'Amiens) (Annales regni Francorum, a.802, p.117), le même texte nous relate pour l'année 803 le retour des missi dominici de Constantinople (Annales regni Francorum, a.803, p.118. Sur cette mission voir égalementDepreux 1997, p.408 ; Kikuchi 2013, p.451). La thèsede Dreillard (2001) qui propose de distinguer, dans le cadre des ambassades carolingiennes, les missi dominici, qui transmettent les décisions royales, des legati, qui ont le pouvoir de négocier, mérite alors d'être nuancée. Comme pour la mission de 802-803 à Constantinople, les sources pouvaient, semble-t-il, appeler les mêmes agents tantôt legati, tantôt missi. Dans ce cas, et aussi dans d'autres semblables, le caractère équivoque des textes ne laisse pas de place à une quelconque argumentation solide pour trancher dans tel ou tel sens. Le choix a été ainsi arrêté de retenir Helmgaud et Jessé en tant que missi dominici. De même, la datation de certaines missions, l'identification des lieux et des agents employés a pu être un objet de débat. S'il était impossible de prendre en compte et de quantifier l'ambiguïté de ces informations, les données retenues correspondent aux positions historiographiques actuellement admises. En revanche, dans les cas d'Arn, pour qui le lieu de fonction a été Salzbourg et le lieu d'affectation la Bavière, l'analyse des relations entre ces deux endroits a été plus délicate. Le calcul de la distance euclidienne la plus courte entre les différents lieux a été choisi comme la technique la plus opportune de traitement de ce type d'information. Deux modèles de mesure ont été alors possibles :d'une part, la distance la plus courte entre deux points (deux villes) a été calculée comme la distance minimale sur une surface. De ce fait, la distance entre le lieu d'affectation et le lieu de fonction d'Adalhelmus est égale à 0. Les deux points sont les mêmes, la ville de Bordeaux.d'autre part, pour la distance la plus courte entre un polygone et un point (une région et une ville), que le point soit contenu ou non dans le polygone, le calcul s'est effectué à partir du barycentre mathématique du polygone jusqu'au point donné. Dans le cas d'Arn, la distance entre son lieu de Les mêmes principes de calcul se sont appliqués lors de l'analyse des distances entre les lieux d'affectations et les lieux d'attaches personnelles. Dans les cas où l'agent avait plusieurs lieux de fonctions (ou d'attache personnelle), la distance a été calculée pour le lieu de fonction (ou d'attaches personnelles) le plus proche de son lieu d'affectation. La nature parfois incertaine des données géographiques incite toutefois à garder des réserves face aux résultats obtenus. Une précaution supplémentaire concerne l'impossibilité d'établir avec certitude le cadre temporel dans l'évolution des lieux de fonctions ou d'attaches personnelles d'un agent. Les informations souvent disparates des sources médiévales n'ont pas permis de corréler les dates des missions avec les dates du parcours personnel de chaque missus.Enfin, le caractère lacunaire des sources médiévales a conduit inévitablement au problème des données manquantes. Pour un grand nombre d'agents ou pour certaines missions, il était impossible de reconstituer l'ensemble des renseignements (Table1). Résumé des données manquantes et connues.

		Données connues,	Données inconnues,	Nombre
		nb. (pourcentage)	nb. (pourcentage)	total
	Missions (lieu)	394 (99%)	4 (1%)	
	Missions (date)	398 (100%)	-	398 missions
	Missions (objectif)	371 (93%)	27 (7%)	
	Agents (fonction) (comte, évêque, etc.)	315 (66%)	160 (34%)	
	Agents (lieu de fonction)	211 (44%)	264 (56%)	475 agents
	Agents (lien de parenté)			
	(avec d'autres agents ou	68 (14%)	407 (86%)	
	appartenance familiale)			
	Souverains*	-	-	14 souverains*
	Lieux	-	-	307 lieux

©JIMIS, Creative Commons Revue en libre accès : j i mi s . e p i s c i e n c e s . o r g Volume : 5 -Année : 2019, DOI : 10.18713/JIMIS-180719-5-4

Le problème d'imprécision des informations disponibles a concerné tout particulièrement le traitement des données géographiques. L'aspect souvent sommaire de ce type de renseignements a dicté les méthodes de leur encodage. Adalhelmus, archevêque de Bordeaux, a été, par exemple, commandité en 816 comme missus, dans la même ville où il exerçait déjà ses fonctions ecclésiastiques (Conc. 2.1, pp.458-406 ; voir également Kikuchi 2013, p.282 ; Krause 1890, appendice II, n°63, p. 287). Arn, archevêque de Salzbourg, quant à lui, a été envoyé en 802 pour une action missatique en Bavière (on ne cite qu'une des deux missions d'Arn pour l'année 802 : Bitterauf 1905, n°183, p.174 cité d'après Kikuchi 2013, pp.285-286 ; sur la même mission Krause 1890, appendice I, n°31, p.261). Si dans le premier cas, le lieu d'affectation se présentait comme une ville et a dû être encodé en tant qu'un point dans l'espace, dans le deuxième cas, le lieu d'affectation correspondait à une région et a dû, par conséquent, être encodé en tant qu'un polygone. Dans le cadre de l'analyse des relations entre les lieux d'affectations et les lieux d'attaches personnelles ou de fonctions d'un agent, le traitement et l'analyse de ces données ont posé plusieurs difficultés. Dans la configuration la plus simple, quand les lieux d'affectations et de fonctions, par exemple, sont exactement les mêmes, la relation se présente comme existante. C'est le cas d'Adalhelmus pour qui le lieu de fonction et le lieu d'affectation ont été la même ville, Bordeaux. fonction et son lieu d'affectation a été égale à 80 kilomètres. C'est la distance entre la ville de Salzbourg, encodée comme un point, et le barycentre mathématique de la région Bavière, encodée comme un polygone. ©JIMIS, Creative Commons Revue en libre accès : j i mi s . e p i s c i e n c e s . o r g Volume : 5 -Année : 2019, DOI : 10.18713/JIMIS-180719-5-4

Durée de l'utilisation des missi (dates de première et de dernière mission) 1

  

				Durée	Nombre de	Nombre	Nombre	Proportion
				approximative	missions 3	d'agents	d'agents	d'agents
				des règnes 2		(total) 4	(uniques) 4	uniques
	Pépin III le Bref	17 ans (751-768)	751-768	15	25	21	0.84
	Carloman I	1 an	(763)	754/768-771	1	2	2	1.00
	Charlemagne	51 ans (763-814)	754/768-814	129	231	153	0.66
	Pépin d'Italie	3 ans (804-807)	781-810	2	5	5	1.00
	Louis le Pieux	45 ans (795-840)	781/814-840	114	184	135	0.73
	Pépin I d'Aquitaine	6 ans (828-834)	814-838	2	2	2	1.00
	Lothaire I	30 ans (823-853)	814/843-855	20	38	33	0.86
	Louis II de Germanie	43 ans (829-872)	817/843-876	17	21	18	0.85
	Charles II le Chauve	33 ans (844-877)	843-877	57	118	83	0.7
	Louis II d'Italie	29 ans (845-874)	840/855-875	37	64	49	0.77
	Lothaire II de Lotharingie	1 an	(859)	855-869	1	1	1	1.00
	Carloman de Bavière	1 an	(879)	876-880	1	2	2	1.00
	Louis II le Bègue	1 an	(879)	877-879	1	1	1	1.00
	Charles III le Gros	10 ans (876-886)	876/881-888	9	17	12	0.71

Table 2 :

 2 Résumé des données sur les missions, les agents et les souverains. (Dans l'ordre chronologique des débuts de règnes)

Table 4 :

 4 Sociomatrice d'un réseau 1-mode des agents, où le lien agenti → agentj est la mission effectuée ensemble.

Table 7 :

 7 {distance1, distance2, …, distancek}. Le même principe s'est appliqué pour l'étude des relations entre les lieux d'affectations d'un agent et ses lieux de fonctions. Schéma des données utilisées pour l'analyse des relations entre l'agent et son lieu d'affectation.

		Lieux de fonctions	Lieux d'attaches personnelles	Année	Mission Roi-commanditaire	Lieux d'affectations	Distance
		lieu.fonction1	lieu.att.perso1			lieu.affectation1	distance1
					roi1		
	agent	lieu.fonction2	lieu.att.perso2	année		lieu.affectation2	distance2	distance la plus courte
					roi2		
		lieu.fonctionn lieu.att.persom			lieu.affectationl	distancek
	Les visualisations et les indicateurs statistiques pour les analyses des réseaux (Figures 4, 5 et 6 ;
	Tables						
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Table 8 .

 8 Indicateurs statistiques pour les réseaux 1-mode des agents.

		Nb. de	Nb. de	Degré	Densité	Nb. de composants
		noeuds	liens	moyen	du réseau	connexes
	(a) Pépin le Bref	21	11	1.048	0.052	11
	(b) Charlemagne	153	181	2.366	0.016	66
	(c) Louis le Pieux	135	90	1.333	0.010	71
	(d) Lothaire I	33	26	1.576	0.049	15
	(e) Charles le Chauve	83	95	2.289	0.028	35
	(f) Louis II d'Italie	49	42	1.714	0.036	24

  qui ont servi tous les deux aussi bien le premier empereur franc que son fils donnent une perception de l'étendue de cette distance. Si le premier s'acquittait de ses fonctions d'archevêque à Narbonne, Hildebald, quant à lui, exerçait à Cologne ; les deux villes étant séparées par plus de 1100 kilomètres. Le territoire à partir duquel les missi ont été appelés est cependant réduit de presque deux fois durant les règnes de Lothaire I, de Charles leChauve et de Louis II d'Italie (Figures 5d, 5e et 5f). Deux missi, Adalgis, comte de Spolète

sortant Degré sortant pondéré Centralité intermédiaire Pépin III le Bref

  est néanmoins nécessaire de garder une certaine modération à l'égard des résultats fournis par le positionnement multidimensionnel. L'évolution constante de la topographie du pouvoir, affectée par des partages territoriaux et des successions, est difficile à appréhender dans le cadre de cette analyse. Tantôt scindés, tantôt assemblés, les royaumes et leurs frontières n'ont été guère statiques dans la deuxième moitié du IX e siècle.Tout compte fait, il est imprudent de se limiter, dans l'examen du réseau missatique, à la seule étude des agents. Les relations qu'ils entretenaient avec le pouvoir central ont joué un rôle important dans la construction de l'institution. Cependant, les données disponibles restreignent considérablement la palette des relations possibles à examiner. Toute tentative d'appréhender le rapport entre les rois et leurs envoyés à travers, par exemple, des liens de parenté est compromise : seulement 14% de cette information est connue (Table1). Il est toutefois possible de cerner quelques nouveaux aspects de leurs interconnexions par le biais des missions qui reliaient les souverains et leurs missi. L'observation d'un réseau composé des agents, des rois et des missions (Figure2) nous a déjà livré un tableau chronologique assez fidèle de l'ensemble du système missatique où chaque souverain représentait une étape importante dans l'évolution du réseau. Cette visualisation a laissé également entrevoir le mécanisme de transition des agents d'un règne à l'autre. Un modèle plus précis d'un réseau 2-mode (agent, roi) déjà présenté plus haut (Table6) invite à examiner ce processus de plus près (Figure6). Ce réseau est constitué des missi ayant servi plus d'un roi et des souverains (48 noeuds, dont 10 rois et 38 agents ; les rois suivants ne disposaient d'aucun missus ayant servi plus d'un souverain : Pépin I d'Aquitaine, Lothaire II, Carloman de Bavière, Louis II le Bègue). Si l'orientation des liens désigne les missions commandées par un souverain à un missus, leur épaisseur indique le nombre de ces missions.Le premier constat est immédiat : Charlemagne et Louis le Pieux ont eu le plus grand nombre de missi en commun. Rappelons-le toutefois : Charlemagne et son fils disposaient de la quantité la plus importante de missions commandées et d'agents déployés. Leurs durées de règnes respectifs sont également parmi les plus longues (Table2). L'observation suivante confirme les conclusions antérieures (Figure2) : deux branches se distinguent clairement, d'un côté Charles le Chauve, Louis II de Germanie et Charles III le Gros, de l'autre, Lothaire I et son fils Louis II d'Italie. Cette disposition, tout comme le dessin général du réseau, semble se conformer à la succession des règnes. De fait, après la mort de Pépin le Bref en 768, ce sont ses fils Charlemagne et Carloman I qui ont codirigé brièvement le royaume jusqu'à la mort du dernier en 771. Pépin d'Italie, le fils de Charlemagne, est monté sur le trône des territoires apennins en 781 encore très jeune et y est resté jusqu'à sa mort en 810. Quant à Louis le Pieux, un autre fils de Charlemagne, c'est lui qui a hérité en 814 de l'empire de son père. La succession de Louis a connu cependant plusieurs tourmentes et ce n'est qu'en 843 lors du partage de Verdun que ses fils sont arrivés à cosigner un accord. Deux camps s'y sont retrouvés : Charles le Chauve et Louis II de Germanie d'un côté et Lothaire I de l'autre. Au fil des legs et des partages, le fils aîné de ce dernier, Louis II d'Italie a hérité de son père d'abord le royaume d'Italie et ensuite le titre impérial. Le fils de Louis II de Germanie, Charles III le Gros est parvenu toutefois, vers la fin de sa vie, à cumuler plusieurs titres royaux et à restaurer peu ou prou l'espace impérial unifié du début du IX e siècle.Figure 6 : Réseau orienté 2-mode (agent, roi) avec des agents ayant servi plus d'un roi.

		Degré 3	3.0	0.0020
	Carloman I	2	2.0	0.0006
	Charlemagne	23	33.0	0.4200
	Pépin d'Italie	5	5.0	0.0090
	Louis le Pieux	22	37.0	0.6400
	Lothaire I	9	13.0	0.1400
	Louis II de Germanie	2	3.0	0.0800
	Charles II le Chauve	5	5.0	0.1600
	Louis II d'Italie	8	16.0	0.0900
	Charles III le Gros	1	1.0	0.0000
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Table 9 .

 9 Indicateurs statistiques pour le réseau 2-mode (agent, roi). (Dans l'ordre chronologique des débuts de règnes, voir Table2).Pour les métriques de ce réseau trois indicateurs ont été retenus : degré sortant, degré sortant pondéré et centralité intermédiaire.Le premier, degré sortant, désigne, pour les réseaux orientés, le nombre de liens partant du noeud. Cela indique, dans notre cas, à combien de missi chaque roi a fait appel. Charlemagne et son fils, avec leurs degrés respectifs de 23 et 22, possèdent une partie dominante de tous les agents présents. Mis en perspective avec le nombre total de leurs missi dominici ce constat est toutefois peu surprenant (Table2).Le degré sortant pondéré, quant à lui, propose une mesure qui « pondère » le nombre des liens partant du noeud par la valeur desdits liens. Comme déjà évoqué, la valeur des liens correspond pour ce réseau au nombre des missions confiées à l'agent. Le degré sortant pondéré permet ainsi de prendre en compte l'intensité des liens entre le souverain et ses missi. Par cette mesure Louis le Pieux dépasse non pas uniquement son père (37 contre 33) mais, et de loin, tous les autres rois. Le fils de Charlemagne a donc été le plus apte à commander des missions aux agents ayant exercé pour d'autres rois. C'est, par exemple, le cas pour Donat, comte de Melun, qui a effectué 7 missions, dont 6 pour Louis le Pieux et une pour Charles le Chauve
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  Le dernier indicateur, centralité intermédiaire, cherche à évaluer l'importance (centralité) d'un noeud dans le réseau.3 Plus souvent un noeud se trouve « intermédiaire » sur le « chemin » entre deux autres noeuds, plus cette mesure est élevée. Dans le réseau étudié c'est Louis le Pieux qui possède la centralité intermédiaire la plus élevée (0.64) non pas uniquement vis-à-vis de son père Charlemagne (0.42) mais aussi à l'égard des autres rois. Parmi tous les souverains, Charles le Chauve et Lothaire I n'arrivent pas à franchir le seuil de deux dixièmes (0.14 pour Lothaire I et 0.16 pour Charles le Chauve). L'héritier du premier empereur franc confirme ainsi son rôle en tant que point d'articulation important dans le réseau de transition des agents entre les différents règnes. Il suffit en effet d'enlever Louis le Pieux du graphe pour constater que ce dernier se fractionnera en trois groupes distincts : Pépin le Bref, Carloman I, Pépin d'Italie et Charlemagne d'un côté, Lothaire I et Louis II de l'autre, et enfin Charles le Chauve, Louis II de Germanie et Charles le Gros.

  Le problème, déjà évoqué, de la dénomination des différents types d'envoyés et de l'emploi du vocable missi pour les délégations diplomatiques à l'étranger explique aisément un tel éloignement. L'exemple de Hugo qui a servi Charlemagne le démontre bien. Ce missus ayant des charges comtales à Tours s'est vu confier en 811 une mission, avec deux autres agents, à Constantinople (Annales regniFrancorum, a. 811, p.133 ; Kikuchi 2013, p.295). Une autre illustration de distances parfois longues parcourues par les missi est fournie par la délégation commandée en 814/815 par Louis le Pieux. Ricouin, comte de Poitiers, a été envoyé, comme Hugo quelques années avant lui, du coeur des terres franques à la capitale de l'empire byzantin (Annales regniFrancorum, a. 814, pp.140-141 ; Depreux 1997, notice 233, p.365 ; Kikuchi 2013, p.551 ; sur le lieu de fonction de ce comte, voirHlawitschka 1960, p.296).La mise en perspective temporelle des distances entre le lieu de fonction d'un agent et son lieu de mission offre la possibilité d'étudier au plus près l'évolution chronologique de cette relation (Figure7). Appuyé par l'analyse statistique, le graphique apporte plusieurs renseignements intéressants. Tout d'abord, la corrélation entre les deux variables (la distance et l'année d'affectation) est de -0.428 avec p-valeur égal à 0. Il n'est pas imprudent d'en conclure alors que la diminution de la distance est corrélée à l'augmentation de l'année. Le trajet parcouru par les missi entre leur assise locale et l'endroit de leur affectation s'est réduit au fil du IX e siècle. Or, rien ne nous indique de façon précise quelle a été la cause exacte de ce phénomène. En dépit d'un résultat statistiquement significatif (p-valeur moins de 0.0005), la régression linéaire pour les relations entre les variables « année » et « distance » reste peu élevée (R 2 =0.183). Le temps n'est qu'un des paramètres pour expliquer la baisse de la portée géographique des activités missatiques.Le lissage (ligne rouge) présent sur le graphique apporte la possibilité d'un suivi plus détaillé de l'évolution chronologique des distances entre les lieux d'affectations et les lieux de fonctions des agents. Utilisée souvent en analyse des données longitudinales, cette mesure dresse une courbe en fonction de la moyenne calculée sur les valeurs avoisinantes (voir par exemple[START_REF] Simonoff | Smoothing methods in Statistics[END_REF]. Son tracé, bien qu'il semble confirmer la tendance de régression déjà constatée, nuance néanmoins les faits ; le mouvement n'est guère rectiligne et un bond important se dessine pour les années 800-815. Ce bond correspond aux missions à Constantinople déjà mentionnées pour les années 802, 811, 813 et 814 (dont trois envoyées par Charlemagne et une par Louis le Pieux)

  Bien que ces analyses soient en grande partie affectées par un nombre important de données manquantes, il est également opportun d'avoir un aperçu de la distance entre les lieux d'affectations des missi et leurs lieux d'attaches personnelles. Le premier constat semble corroborer les conclusions antérieures : une partie non négligeable des affectations a eu lieu dans un rayon de 100 kilomètres autour des endroits d'attaches personnelles des missi (30 affectations sur 155 analysées) (Figure8). La lecture du graphique du changement dans le temps de cette distance est marquée sans surprise par le caractère lacunaire des renseignements. De même, les analyses statistiques sont peu éloquentes : la régression linéaire et la corrélation (variables « distance » et « année ») ont une p-valeur supérieure à 0.05. Le tracé confus de lissage amène à une conclusion similaire.En dépit de ces faiblesses apparentes, les analyses de la distribution de la distance la plus courte entre les lieux d'affectations d'un agent et ses lieux d'attaches personnelles fournissent quelques indications dignes d'intérêt. Les trajets les plus longs effectués par les missi depuis leurs lieux d'origines géographiques ou endroits où ils avaient des liens de parenté ne dépassaient que rarement le seuil de 1200-1300 kilomètres. Cet éloignement s'est tout particulièrement accentué vers la fin du VIII e siècle, le début et le milieu du siècle suivant. Quelques activités missatiques en témoignent fort bien. Le comte Audulf, originaire, en toute vraisemblance, de la noblesse bavaroise, a été envoyé par Charlemagne en 786 pour une mission militaire en Bretagne (Annales regni Francorum, a. 786, p.72 ;Krause 1890, appendice II, n°19, p.283 ; Kikuchi 2013, p.335). Erlwin, le comte palatin issu de la famille Widonides native d'Austrasie et implantée par la suite en Italie, intervient en tant que missus de Louis II de Germanie en Rhin moyen au cours de l'année 865(DD LD, n°117, pp.166-167 ; Krause 1890, appendice II, n°199, p.299 ; Kikuchi 2013, p.384). L'exemple du comte de Paris Gérard est également évocateur. Apparenté, par son mariage avec Bertha, la soeur d'Ermengarde de Tours, à la famille Étichonides, avec leur forte assise alsacienne, Gérard s'est retrouvé, lors de son unique mission en 847, en Italie méridionale(Conc. 3, n°12, pp.133-139, ici page 139 ; Krause 1890, appendice II, n°138, p.294 ; Kikuchi 2013, pp.420-421). Quoi qu'il en soit, le faible nombre de données connues et le caractère peu significatif des tests statistiques nous invitent à garder une grande prudence devant les résultats de ces deux dernières analyses. Cette recherche a essayé de porter un regard nouveau sur les agents du pouvoir central en Europe occidentale du premier Moyen Âge. Les premières observations se sont concentrées sur la structure du réseau missatique et les changements qui s'y sont opérés durant plus d'un siècle. Les questions de rotation des agents et des groupes qu'ils pouvaient former au fil des missions conjointes semblent quelque peu avoir échappé à la loupe des enquêtes historiques précédentes (cf. toutefoisEckhardt 1956, p.516 ; 

	IV DISCUSSION ET CONCLUSION

  Tout compte fait, ce sont les réseaux de Charles le Chauve, Lothaire I et Louis II d'Italie qui ont été les plus structurés. La rotation des envoyés spéciaux a été moindre et la plupart d'entre eux ont effectué des missions ensemble. Cela laisse à penser que le pouvoir central a commencé à s'appuyer sur les mêmes agents, ce qui, si ce n'est pas un signe de l'institutionnalisation du système, en précise au moins les contours (cf. Bougard 1995, p.180 et dans une moindre mesure, Kaiser

  Le fils de Charlemagne s'appuyait sur les agents déjà utilisés par ses prédécesseurs et « transmettait » les siens à ses héritiers. Tout bien considéré, la transition des missi entre les souverains s'inscrit parfaitement dans la logique de l'évolution de la situation politique et familiale du IX e siècle. Les camps adverses utilisaient des agents différents, les fils faisaient appel aux missi de leur père. Ce processus et ces agents ont été jusqu'à là peu connus par l'histoire de cette institution. À terme, l'étude d'un tel mécanisme peut être abordée de plusieurs façons. Avant tout, la question de l'importance de ce type d'agents se pose. Si, dans l'optique de l'analyse de réseau, ce travail prête à l'examen plus attentif de la position et du prestige de ces envoyés dans l'ensemble du réseau, pour un historien, c'est tout d'abord la question des figures influentes de la politique carolingienne qui est soulevée. Enfin, le processus de la transition des agents d'un règne à l'autre, d'une cour à l'autre, invite à réfléchir sur la notion d'héritage politique et sur la continuité des mêmes pratiques de gouvernance dans le temps[START_REF] Airlie | Bonds of Power and bonds of association in the court circle of Louis the Pious[END_REF][START_REF] Airlie | The aristocracy in the service of the state in the Carolingian period[END_REF].Ces quelques premiers constats plaident en faveur du maintien des pratiques missatiques importantes durant le IX e siècle. Le nombre d'agents et de missions de chaque souverain a certes diminué, mais, en même temps, l'institution semblait évoluer vers une structure relativement plus complexe. Toujours en proie aux bouleversements qui secouent l'Europe occidentale, les mécanismes de recrutement et le cadre géographique changeaient et s'adaptaient avec le temps, mais le système est resté toutefois actif tout au long de la période étudiée. majorité des disciplines[START_REF] Beauguitte | L'analyse de réseaux en sciences sociales et en histoire. Vocabulaire, principes et limites[END_REF]. Un regard attentif sur toutes les données de l'histoire missatique recueillies à ce jour (Table1) invite à une vigilance redoublée face à tout bilan, passé ou futur, qu'il est possible d'en tirer. Peut-on se prononcer de manière arrêtée sur les liens de parenté des missi dominici, alors que l'on ne dispose à cet égard d'informations que sur 14% d'entre eux ? Est-il judicieux de projeter ces conclusions sur l'ensemble de l'institution ? Les pratiques missatiques en Bavière étudiées par Hanning (1984b) ou en Italie traitées par[START_REF] Bougard | La justice dans le royaume d'Italie de la fin du VIII e siècle au début du XI e siècle[END_REF] ne sont que des cas spécifiques inscrits dans une conjoncture particulière. Ces interrogations, connues des historiens, peuvent trouver des réponses nouvelles dans le cadre méthodologique revisité : de l'échantillonnage déjà habituel aux techniques plus élaborées de traitement des données manquantes (voir par exemple[START_REF] Little | Statistical analysis with missing data[END_REF]. Si, pour l'heure, ce travail ne fait que le souligner, une fois de plus, les futures pistes de développement semblent se dessiner d'elles-mêmes.Le changement d'approche nous a également invités à une vision plus large du système missatique. Si chaque cas est unique et si le contexte est indiscutablement important, embrasser toutes les données disponibles exige de centrer notre attention sur les modèles globaux qui se dégagent au fil des analyses. Le formalisme des techniques réticulaires appuyées par les démarches statistiques n'a pas effacé la singularité des faits, mais a apporté une vue du processus dans son ensemble et dans sa continuité. Les modèles de réseaux ainsi que les méthodes analytiques proposées apportent alors un regard nouveau, à travers l'exemple des agents du pouvoir central, sur l'un des aspects des dynamiques de gouvernance durant le premier Moyen Âge.
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  [START_REF] Makse | Modeling urban growth patterns with correlated percolation[END_REF] model urban growth with a local percolation model for site occupancy.[START_REF] Arcaute | Cities and regions in Britain through hierarchical percolation[END_REF] focus on the analysis of street networks and extract endogenous urban regions for UK which correlate with socio-economic properties, and provide a definition of urban areas which highly correlates with land-cover data.[START_REF] Piovani | Urban retail location: insights from percolation theory and spatial interaction modeling[END_REF] apply road network percolation at the mesoscopic scale of London metropolitan area, in relation with a retail location model. At a larger scale, the paradigm of percolation transition has been applied
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Les premiers jalons de ce travail ont été présentés lors du séminaire de recherche de l'équipe SAMM (Statistique, Analyse et Modélisation Multidisciplinaire) (EA 4543, Université Paris 1 Panthéon-Sorbonne) organisé par Julien Randon-Furling le 16 juin

Duplex legationis edictum (789), Capit. I, pp.62-64, Capitulare missorum generale (802), Capit. I, pp.91-99 et Capitularia missorum specialia (802), Capit. I, pp.99-104. Sur le dernier texte voir[START_REF] Eckhardt | Die Capitularia missorum specialia von 802[END_REF]. Sans oublier les écrits postérieurs : Commemoratio missis data (825),Capit. I, Capitulare Missorum Silvacense (853), Capit. I, 

Il serait toutefois hâtif de tirer des conclusions sur la structure des réseaux missatiques et leur évolution à partir uniquement des données sur les missions conjointes. D'autres types de liens et de relations reliaient les missi au service du pouvoir central.[START_REF] Althoff | Family, Friends and Followers : Political and Social Bonds in Early Medieval Europe[END_REF] et plusieurs autres ont déjà montré que l'aristocratie altomédiévale formait un cercle relativement fermé fondé sur des interactions de dépendance, de domination ou d'obligation. Cependant, les sources ne nous laissent entrevoir qu'une partie infime de ces rapports complexes. L'ampleur extrêmement réduite des informations, par exemple, sur les liens de parenté des missi (seulement 14%, Table1) rend illusoire toute tentative d'une analyse concluante de ce type de relation. Or, outre les délégations partagées, les missi recensés pour cette étude bénéficient d'un nombre important de renseignements sur leurs lieux de fonctions respectifs. Les étudier de plus près non seulement donne un aperçu de la spatialisation du système missatique, mais permet également de mettre en lumière d'autres types de relations qui pouvaient relier les agents. Le positionnement multidimensionnel déjà présenté plus haut (Figure5), qui procède par le placement des points dans un espace à deux dimensions, a été à cet égard une des analyses les plus pertinentes. En fonction de la distance la plus courte entre leurs lieux de fonctions, les missi des réseaux précédents ont été positionnés sur les graphiques. Plus la distance entre les lieux des fonctions des agents a été courte, plus proches les agents se trouvent l'un de l'autre. Tout comme pour l'analyse des réseaux des missions conjointes, ce type de visualisation vise à mettre en lumière les groupes que les agents pouvaient former selon la proximité de leurs lieux de fonctions. Cependant, en raison des informations manquantes, cette analyse ne pouvait être effectuée que pour les agents ayant un lieu de fonction connu. Une partie des agents des réseaux précédemment analysés (Figure4) ont été par conséquent exclus. Bien que ce type de visualisation garde les distances réelles, exprimées en kilomètres, et tente de respecter la disposition géographique des lieux (les lieux situés plus au nord sont en haut de chaque visualisation, les lieux situés plus au sud sont en bas, etc.), ces représentations ne sont qu'une approximation de la carte géographique réelle et les points zéro varient d'un graphique à l'autre.

Bien que la centralité intermédiaire puisse être calculée de façons différentes pour les graphes orientés[START_REF] White | Betweeness centrality measures for directed graphs[END_REF][START_REF] Faust | Centrality in affiliation networks[END_REF]), dans le cas présent elle est évaluée pour les liens pris comme non orientés.
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Le deuxième volet des analyses s'est efforcé d'éclaircir la question du recrutement des missi dominici au sein de l'aristocratie locale. Les relations entre les lieux des missions et les endroits de fonctions et d'attaches personnelles ont été au centre des interrogations. La mesure des distances les plus courtes entre lesdites places a livré plusieurs indices fructueux et a confirmé les thèses historiographiques actuelles (Figures 7 et 9). Une grande partie des agents effectuaient leurs activités missatiques dans un rayon de 100-125 kilomètres de leurs lieux de pouvoir. L'absence d'un nombre important de données, notamment sur les liens de parenté, n'a pas permis toutefois de confirmer ce constat avec force. Les distances longues, quant à elles, dépassaient rarement 3000 kilomètres et semblaient être liées avant tout, comme cela a été montré, à l'ambiguïté du vocable missi employé tantôt pour les envoyés à l'intérieur de l'empire tantôt pour les délégués à l'étranger.

Ces distances ont évolué également dans le temps (Figures 8 et 10). Dès le deuxième tiers du IX e siècle, le recrutement des missi dominici se faisait de plus en plus au sein de l'aristocratie sur place. Hannig (1983), Werner (1980) et, en mesure moindre, Kaiser (1986) (cf. toutefois Bougard 1995, p.296) ont souligné les avantages de cette politique : les agents locaux disposaient déjà d'une autorité naturelle dans les zones de leurs affectations. Or, les raisons d'un tel changement de la logique de recrutement peuvent
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