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Abstract: This paper provides a link between integer exponentiation and integer tetration, since
it is devoted to introduce some peculiar sets of perfect powers characterized by any given value
of their constant congruence speed, revealing a fascinating relation between the degree of every
perfect power belonging to any congruence class modulo 20 and the number of digits frozen
by these special tetration bases, in radix-10, for any unit increment of the hyperexponent. In
particular, given any positive integer c, we constructively prove the existence of infinitely many
c-th perfect powers having a constant congruence speed of c.
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1 Introduction

Since 2020 [12], by assuming the standard decimal numeral system (radix-10), we have shown

that the integer tetration (also known as hyper-4) ba :=

a if b = 1

a(
(b−1)a) if b ≥ 2

has a unique,

mesmerizing, property [4] involving the number of new frozen rightmost digits for any unit
increment of its hyperexponent, b ∈ Z+ [13, 14]. Indeed, this value does not depend on b when b

is sufficiently large and the tetration base, a ∈ Z+, is not a multiple of 10.
We refer to the mentioned property as the constancy of the congruence speed of tetration (see

Definition 2.1).
From Reference [13], we know that any positive integer a > 1, which is not a multiple of 10,

is characterized by a finite, strictly positive, integer value of its own constant congruence speed
(the map of the constant congruence speed of every a is fully described in [13, 14]).

The aim of the present paper is to constructively prove the existence of infinitely many perfect
powers with any given positive constant congruence speed.

A noteworthy result, which follows from Theorem 3.4 as a corollary, is the existence, for any
given positive integer c, of infinitely many c-th perfect powers (i.e., an integer a > 1 is a c-th
perfect power if there are integers ã and c such that a = ãc, so we have perfect squares if c = 2,
perfect cubes if c = 3, and so forth) having a constant congruence speed of c.
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2 Preliminary investigations with the automorphic numbers

In order to present the results in a compact way, let us properly define the constant congruence
speed of tetration as already done in Reference [14], p. 442, Definitions 1.1&1.2.

Definition 2.1. Let n ∈ N0 and assume that a ∈ N − {0, 1} is not a multiple of 10. Then, given
b−1a ≡ ba (mod 10n) ∧b−1 a ̸≡ ba (mod 10n+1), ∀b ∈ Z+, V (a, b) returns the non-negative
integer such that ba ≡ b+1a (mod 10n+V (a,b)) ∧ ba ̸≡ b+1a (mod 10n+V (a,b)+1), and we define
V (a, b) as the “congruence speed” of the base a at the given height of its hyperexponent b.
Furthermore, let b̄ := minb {b ∈ Z+ : V (a, b) = V (a, b+ k),∀k ∈ Z+} so that we define as
“constant congruence speed” of a the positive integer V (a) := V (a, b̄).

We know that a sufficient but not necessary condition for having V (a) = V (a, b̄) is to set
b̄ := a + 1 (for a tighter bound on b̄ := b̄(a), holding for any a ̸≡ 0 (mod 10), see [14], p. 450,
line 6).

Lemma 2.2. Let a ∈ N : a ̸≡ 0 (mod 10). Then, ∀t ∈ N0, ∃∞c ∈ Z+ : V (ac) = t.

Proof. Disregarding the special case t = 0, this proof immediately follows from Definition 2.1.
For any integer a > 1 which is not a multiple of 10, the constant congruence speed of the

tetration ba is well-defined and it is the same for any b ∈ {a + 1, a + 2, a + 3, . . . }. Thus, by
the last line of Equation (2) in Reference [13], it is sufficient to consider â := 10t − 1 so that
V (â) = t is true for any given positive integer t and then we can easily complete the proof by
observing that V (1) = 0 is stated in Definition 1.3 of Reference [14].

Trivially, V (â, b) = V (â, b + 1) = V (â, b + 2) = . . . is certainly true for every integer
b ≥ â + 1 and, by assuming that t ∈ Z+, for all the aforementioned values of b, we have that
â = 10t − 1 ⇒ V (â, b) = t (while from a = 1 ⇒ t = 0 it follows that V (1c) = 0 for any
non-negative integer c).

Consequently, let t ∈ Z+, assume b ∈ {10t, 10t+1, 10t+2, . . . }, and then V ((10t−1)c, b) =

V ((10t − 1)c) = t is true for any c ∈ {b−1(10t − 1), b(10t − 1), b+1(10t − 1), . . . } so that the
proof of Lemma 2.2 is complete.

Thus, Lemma 2.2 shows the existence of infinitely many c-th powers of a : a ≡
{1, 2, 3, 4, 5, 6, 7, 8, 9} (mod 10) characterized by any given (arbitrarily large) non-negative
constant congruence speed.

Remark 2.1. We note that, in radix-10, there exist only 3 positive 1-automorphic numbers [16]
and they are congruent modulo 100 to 1, 25, and 76. Thus, the corresponding three integers found
by considering the two rightmost digits of the analogous solutions of the fundamental decadic
equation y5 = y, by [13], describe 1-automorphic numbers (e.g., α76 7→ a76 := 76 since 762 ≡
76 (mod 102) and we know that, in radix-10, there are only 4 decadic solutions, including α00 :=

. . . 000000, of the equation y2 = y [2, 7, 8]). Consequently, by looking at lines 4, 5, and 7 of
Equation (16) [14], we can see that the recurrences described by Equations (1) to (3) hold for
every c ∈ Z+.
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ã ≡ 6 (mod 10) ⇒ V (ã)

= V (ãc) iff c ≡ {1, 2, 3, 4} (mod 5)

≤ V (ãc) iff c ≡ 0 (mod 5)
. (1)

ã ≡ 5 (mod 20) ⇒ V (ã)

= V (ãc) iff c ≡ 1 (mod 2)

≤ V (ãc) iff c ≡ 0 (mod 2)
. (2)

ã ≡ 1 (mod 20) ⇒ V (ã)

= V (ãc) iff c ≡ {1, 2, 3, 4} (mod 5)

≤ V (ãc) iff c ≡ 0 (mod 5)
. (3)

The investigation of this observation (with specific reference to Equation (2)) leads us to the
following theorem.

Theorem 2.3. ∀c ∈ Z+ ∃∞a ≡ 5 (mod 20) : ( c
√
a ∈ Z+ ∧ V ( c

√
a) = t ∧ V (a) ≥ t,

∀t ∈ N− {0, 1}). Symmetrically, ∀t ∈ N− {0, 1} ∃∞a ≡ 5 (mod 20) : ( c
√
a ∈ Z+ ∧ V ( c

√
a) =

t ∧ V (a) ≥ t,∀c ∈ Z+).

Proof. Let us (constructively) prove first the last statement of Theorem 2.3, since it simply
follows from the constancy of the congruence speed as it has been shown in Reference [13],
Section 2.1 (our strategy here is also reminiscent of the proof of Theorem 2 in [13], Section 4).

Consider the rightmost t ∈ N − {0, 1} digits of the decadic integer α25 := {52n}∞, say
xt xt−1 . . . 2 5, and then juxtapose to the left the (t+1)-th digit plus 1 if xt+1 ≤ 8 or the (t+1)-th

digit minus 1 if xt+1 = 9. So, let x̃t+1 :=

xt+1 + 1 if xt+1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}
xt+1 − 1 if xt+1 ∈ {9}

.

Thus, the base ã := x̃t+1 xt xt−1 . . . 2 5 is characterized by a constant congruence
speed of t (i.e., V (x̃t+1 xt xt−1 . . . 2 5) = V (ã) = t for any t ∈ N − {0, 1}). This
property follows from Reference [14], Equation (16), line 5 (i.e., 2t | x̃t+1 xt xt−1 . . . 2 5 ∧
2t+1 ∤ x̃t+1 xt xt−1 . . . 2 5, for any t ≥ 2). Since (as discussed in Remark 2.1) α25 7→
a25 := 25 and 252 ≡ 25 (mod 102), from Hensel’s lemma [6] (see also [3, 15]), we have that
(ã ≡ α25 (mod 10t) ∧ ã ̸≡ α25 (mod 10t+1)) ⇒ ãc ≡ α25 (mod 10t), for any given c ∈ Z+ (in
general, we cannot assert that (ã ≡ α25 (mod 10t) ∧ ã ̸≡ α25 (mod 10t+1)) implies ãc ̸≡ α25

(mod 10t+1) for the given pair (t, c)).
Consequently, by simply taking a := (x̃t+1 xt xt−1 . . . 2 5)c (as c is free to run over

the positive integers), we have proven the existence, for any given t ∈ N − {0, 1}, of
infinitely many tetration bases a ≡ 5 (mod 20) such that V (a) ≥ t holds for all the
elements of the aforementioned set, a set that contains ℵ0 distinct perfect powers originated
from the string x̃t+1 xt xt−1 . . . 2 5 (since ã is a positive integer by definition, then a =

ãc ⇒ c
√
a ∈ Z+). Hence, V (x̃t+1 xt xt−1 . . . 2 5) = t ⇒ V ((x̃t+1 xt xt−1 . . . 2 5)c) ≥

t by observing that V ((x̃t+1 xt xt−1 . . . 2 5)c) = V (. . . xt xt−1 . . . 2 5), and trivially
c
√

(x̃t+1 xt xt−1 . . . 2 5)c ∈ Z+ ∀c ∈ Z+ (we point out that, for any t ≥ 2 and as long as c is
a positive integer, (x̃t+1 xt xt−1 . . . 2 5)c ≡ xt xt−1 . . . 2 5 (mod 10t) holds by construction
[16]).
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Now, let us prove the first statement of Theorem 2.3 and complete the proof.
For this purpose, it is sufficient to note that V (x̃t+1 xt xt−1 . . . 2 5) = V (10k+t +

x̃t+1 xt xt−1 . . . 2 5) is true for any positive integer k. So, we can take the c-th power of every
integer of the form 10k+t + x̃t+1 xt xt−1 . . . 2 5 in order to get k distinct sets of cardinality ℵ0

each, whose elements, by construction, always satisfy the first statement of the theorem (we
have already shown that, for any given c ∈ Z+, V (10k+t + x̃t+1 xt xt−1 . . . 2 5) = t ⇒
V (10k+t + x̃t+1 xt xt−1 . . . 2 5)c ≥ t holds for every t ∈ N− {0, 1}).

Therefore, both the statements of Theorem 2.3 have been shown to be true and this concludes
the proof.

3 Main result

From here on, let us indicate the p-adic valuation [11] of any tetration base a as νp(a), for any
prime number p.

Then, we need the following lemma in order to prove the existence, for any ã ∈ N− {0, 1} :

(ã ̸≡ 0 (mod 10) ∧ V (ã) = t), of infinitely many c-th powers of ã having a constant congruence
speed of t, t+ 1, t+ 2, t+ 3, and so forth. Furthermore, for any given positive integer c, Lemma
3.1 shows the existence of infinitely many tetration bases of the form (10k+t + 10t + 1)c (where
k ∈ Z+, as usual) characterized by any positive value, t, of their constant congruence speed.

Lemma 3.1. ν5((10k+t + 10t + 1)c − 1) = t+ ν5(c) is true for any t, k, c ∈ Z+.

Proof. We prove Lemma 3.1 by induction on c: “∀c ∈ Z+, ν5((10
k+t+10t+1)c−1) = t+ν5(c),

where t, k ∈ Z+”.
Let us start with the base case, so c = 1. By [10], we know that the p-adic valuation is a

valuation and then c = 1 ⇒ ν5((10
k+t+10t+1)c−1) = ν5(10

k+t+10t) = ν5(10
t · (10k+1)) =

ν5(10
t) + ν5(10

k + 1). Since 10k + 1 ≡ 1 (mod 5) for any positive integer k, it follows that
ν5(10

k + 1) = 0. Hence, ν5(10t) + ν5(10
k + 1) = ν5(10

t) = ν5(2
t · 5t) = ν5(5

t) = t.
Thus, c = 1 ⇒ ν5((10

k+t + 10t + 1)c − 1) = t.
In order to prove the inductive step, we assume that ν5((10t+k + 10t + 1)c − 1) = t + ν5(c)

is true for c = n and we show that it is also true for c = n + 1. For this purpose, we note
that ν5((10t+k + 10t + 1)n+1 − 1) = ν5((10

t+k + 10t + 1)n+1 − (1n+1)), so we can invoke the
Lifting The Exponent lemma (see [9] and [5], Lemma 2.6) for odd primes, stating that for any
integers x, y, a positive integer n + 1, and a prime number p such that p ∤ x ∧ p ∤ y, if p divides
x− y, then vp (x

n+1 − yn+1) = vp(x− y) + vp(n+ 1). Thus, by observing that p := 5 is an odd
prime satisfying all the conditions above for x := 10k+t + 10t + 1 ∧ y := 1 (since 10k+t + 10t

is a multiple of 5), ν5((10k+t + 10t + 1)n+1 − 1n+1) = ν5(10
k+t + 10t) + ν5(n + 1) and then

c = n+ 1 ⇒ ν5((10
k+t + 10t + 1)c − 1) = t+ ν5(c) is finally proven.

Therefore, we have shown that ν5((10t+k+10t+1)c−1) = t+ν5(c) is true for any t, c, k ∈ Z+

and the proof is complete.

Theorem 3.2. For any t, k, c ∈ Z+, V ((10k+t + 10t + 1)c) = t+ ν5(c).
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Proof. Theorem 3.2 easily follows from Lemma 3.1. By [14], Equation (16), line 7, we have
that V ((10k+t + 10t + 1)c) = ν5((10

k+t + 10t + 1)c − 1) and, since Lemma 3.1 asserts that
ν5((10

t+k + 10t + 1)c − 1) = t+ ν5(c), it follows that V ((10k+t + 10t + 1)c) = t+ ν5(c) for any
positive integers t, k, and c.

Remark 3.1. Let the tetration base a : a ≡ 6 (mod 10) be given. Then, by looking at the two
rightmost digits of the corresponding decadic solution, α76 = . . . 7109376 (see Remark 2.1), and
applying the usual strategy (already described in the proof of Theorem 2.3), we find the sequence
an := 10n+1 + 86, n ∈ Z+ (defining also the set {186, 1086, 10086, 100086, . . . }). Now, we can
obviously create an infinite set consisting of the c-th powers of each aforementioned term, a set
whose elements are all characterized by a unit constant congruence speed as long as c is not a
multiple of 5. Thus, 5 ∤ c ⇒ V (186c) = V (1086c) = V (10086c) = V (100086c) = . . . = 1.

The above is just another example of the x̃t+1 idea, introduced in the proof of Theorem 2.3,
shown by taking into account t = 1 and the solution α76 := 1 −

{
52

n}
∞ of the equation y2 = y

in the commutative ring of decadic integers (as we know, the other three solutions are α00 := 0,
α01 := 1, and α25 :=

{
52

n}
∞ [13]).

Corollary 3.3. Let t ∈ Z+ and assume that V (ã) = t. Then, ∃∞c ∈ Z+ : V (ãc) = t+ h, for any
non-negative integer h.

Proof. Let k ∈ Z+. If t > 1, it is sufficient to observe that, by Theorem 3.2, V ((10k+t + 10t +

1)c) = t+ ν5(c). So, let ã := 10k+t + 10t + 1 and then, for any h ∈ N0, ãc := ã2
k−1·5h identifies

an infinite set of valid tetration bases (since ν5(2
k−1 · 5h) = h is true for any positive integer k

and, consequently, the constant congruence speed of ã2k−1·5h does not depend on k).
For the remaining case, t = 1, we note that Remark 3.1 gives us a valid set of solutions (i.e.,

any tetration base of the form (10k+1+86)2
k−1·5h does the job, since V (10k+1+86) = 1 for every

positive integer k).

Theorem 3.4. Let the integer a > 1 not be a multiple of 10. Then, ∀c ∈ Z+, ∃∞a : ( c
√
a ∈

Z+ ∧ V (a) = V ( c
√
a) = t,∀t ∈ Z+ : t > ν5(c)).

Proof. Since Theorem 3.2 states that V ((10k+t + 10t + 1)c) = t + ν5(c) for any k ∈ Z+, it
follows that every tetration base of the form (10k+t−ν5(c) + 10t−ν5(c) + 1)c is characterized by a
constant congruence speed of (t− ν5(c)) + ν5(c), as long as t ≥ 1 + ν5(c). Although this is
enough to constructively prove the theorem, we are free to simplify the generic form of the above
by observing that V ((10k+t + 10t−ν5(c) + 1)c) = ν5((10

k+t + 10t−ν5(c) + 1)c − 1c) = ν5(10
k+t +

10t−ν5(c)) + ν(c) = min{ν5(10k+t), ν5(10
t−ν5(c))} + ν(c) [1] (since k > −ν5(c) ⇒ ν5(10

k+t) >

ν5(10
t−ν5(c))) and then V ((10k+t+10t−ν5(c)+1)c) = ν5(10

t−ν5(c))+ν(c) = t−ν5(c)+ν5(c) = t.
Therefore, V ((10k+t + 10t−ν5(c) + 1)c) = t is true for any c, k ∈ Z+ and t > ν5(c), so the

proof is complete.

Now, let t = c and observe that ν5(c) ≤ c− 1 holds for any positive integer c.
Then, the proof of Theorem 3.4 shows the existence of a very special set of tetration bases

that are c-th powers of an integer and whose constant congruence speed is c, a set including
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all the bases of the form (10c+k + 10c−ν5(c) + 1)c, k ∈ Z+ (e.g., (c = 250 ∧ k = 10000) ⇒
V (1010250 + 10247 + 1)250 = 250).

Therefore, we have finally proven Corollary 3.5 as a special case of Theorem 3.4.

Corollary 3.5. Let a ∈ N − {0, 1} not be a multiple of 10. Then, ∀c ∈ Z+, ∃∞a : ( c
√
a ∈

Z+ ∧ V (a) = V ( c
√
a) = c).

Since, for any given c ∈ Z+, the set of all the integers of the form 10c+k + 10c−ν5(c) + 1

contains infinitely many elements that are not divisible by themselves (as digit sum(10c+k +

10c−ν5(c) +1) = 3, 3 | 10c+k +10c−ν5(c) +1 and 32 ∤ 10c+k +10c−ν5(c) +1, implying that none of
these numbers can be a perfect power of degree greater than 1), there exist infinitely many perfect
powers of degree c = 1, 2, 3, 4, . . . having a constant congruence speed of c, and it is sufficient to
consider all the tetration bases of the form (10c+k + 10c−ν5(c) + 1)c.

4 Conclusion

In the previous section, we have shown the existence of infinitely many perfect powers of degree
c with a constant congruence speed of ν5(c) + 1, ν5(c) + 2, ν5(c) + 3, and so forth.

Moreover, for any given positive integer c, we have constructed an infinite set of c-th perfect
powers that are also characterized by a constant congruence speed of c, providing the general
equation V ((10k+t + 10t−ν5(c) + 1)c) = t (k ∈ Z+, t ∈ Z+ : t > ν5(c)) so that if t = c, then
V ((10k+c + 10c−ν5(c) + 1)c) = c is always true.
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