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Introduction

Since 2020 [START_REF] Ripà | On the constant congruence speed of tetration[END_REF], by assuming the standard decimal numeral system (radix-10), we have shown that the integer tetration (also known as hyper-4) b a :=

   a if b = 1 a ( (b-1) a) if b ≥ 2
has a unique, mesmerizing, property [START_REF]Tetration. In Hyper operators. Googology Wiki | Fandom[END_REF] involving the number of new frozen rightmost digits for any unit increment of its hyperexponent, b ∈ Z + [START_REF] Ripà | The congruence speed formula[END_REF][START_REF] Ripà | Number of stable digits of any integer tetration[END_REF]. Indeed, this value does not depend on b when b is sufficiently large and the tetration base, a ∈ Z + , is not a multiple of 10.

We refer to the mentioned property as the constancy of the congruence speed of tetration (see Definition 2.1).

From Reference [START_REF] Ripà | The congruence speed formula[END_REF], we know that any positive integer a > 1, which is not a multiple of 10, is characterized by a finite, strictly positive, integer value of its own constant congruence speed (the map of the constant congruence speed of every a is fully described in [START_REF] Ripà | The congruence speed formula[END_REF][START_REF] Ripà | Number of stable digits of any integer tetration[END_REF]).

The aim of the present paper is to constructively prove the existence of infinitely many perfect powers with any given positive constant congruence speed.

A noteworthy result, which follows from Theorem 3.4 as a corollary, is the existence, for any given positive integer c, of infinitely many c-th perfect powers (i.e., an integer a > 1 is a c-th perfect power if there are integers ã and c such that a = ãc , so we have perfect squares if c = 2, perfect cubes if c = 3, and so forth) having a constant congruence speed of c.

Preliminary investigations with the automorphic numbers

In order to present the results in a compact way, let us properly define the constant congruence speed of tetration as already done in Reference [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF], p. 442, Definitions 1.1&1.2. Definition 2.1. Let n ∈ N 0 and assume that a ∈ N -{0, 1} is not a multiple of 10. Then, given b-1 a ≡ b a (mod 10 n ) ∧ b-1 a ̸ ≡ b a (mod 10 n+1 ), ∀b ∈ Z + , V (a, b) returns the non-negative integer such that b a ≡ b+1 a (mod 10 n+V (a,b) ) ∧ b a ̸ ≡ b+1 a (mod 10 n+V (a,b)+1 ), and we define V (a, b) as the "congruence speed" of the base a at the given height of its hyperexponent b. Furthermore, let b := min b {b ∈ Z + : V (a, b) = V (a, b + k), ∀k ∈ Z + } so that we define as "constant congruence speed" of a the positive integer V (a) := V (a, b).

We know that a sufficient but not necessary condition for having V (a) = V (a, b) is to set b := a + 1 (for a tighter bound on b := b(a), holding for any a ̸ ≡ 0 (mod 10), see [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF], p. 450, line 6).

Lemma 2.2. Let a ∈ N : a ̸ ≡ 0 (mod 10). Then, ∀t ∈ N 0 , ∃ ∞ c ∈ Z + : V (a c ) = t.
Proof. Disregarding the special case t = 0, this proof immediately follows from Definition 2.1.

For any integer a > 1 which is not a multiple of 10, the constant congruence speed of the tetration b a is well-defined and it is the same for any b ∈ {a + 1, a + 2, a + 3, . . . }. Thus, by the last line of Equation (2) in Reference [START_REF] Ripà | The congruence speed formula[END_REF], it is sufficient to consider â := 10 t -1 so that V (â) = t is true for any given positive integer t and then we can easily complete the proof by observing that V (1) = 0 is stated in Definition 1.3 of Reference [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF].

Trivially,

V (â, b) = V (â, b + 1) = V (â, b + 2) = .
. . is certainly true for every integer b ≥ â + 1 and, by assuming that t ∈ Z + , for all the aforementioned values of b, we have that â = 10 t -1 ⇒ V (â, b) = t (while from a = 1 ⇒ t = 0 it follows that V (1 c ) = 0 for any non-negative integer c).

Consequently, let t ∈ Z + , assume b ∈ {10 t , 10 t + 1, 10 t + 2, . . . }, and then V ((10 t -1) c , b) = V ((10 t -1) c ) = t is true for any c ∈ { b-1 (10 t -1), b (10 t -1), b+1 (10 t -1), . . . } so that the proof of Lemma 2.2 is complete. Thus, Lemma 2.2 shows the existence of infinitely many c-th powers of a : a ≡ {1, 2, 3, 4, 5, 6, 7, 8, 9} (mod 10) characterized by any given (arbitrarily large) non-negative constant congruence speed.

Remark 2.1. We note that, in radix-10, there exist only 3 positive 1-automorphic numbers [START_REF] Weisstein | MathWorld -A Wolfram Web Resource[END_REF] and they are congruent modulo 100 to 1, 25, and 76. Thus, the corresponding three integers found by considering the two rightmost digits of the analogous solutions of the fundamental decadic equation y 5 = y, by [START_REF] Ripà | The congruence speed formula[END_REF], describe 1-automorphic numbers (e.g., α 76 → a 76 := 76 since 76 2 ≡ 76 (mod 10 2 ) and we know that, in radix-10, there are only 4 decadic solutions, including α 00 := . . . 000000, of the equation y 2 = y [2, 7, 8]). Consequently, by looking at lines 4, 5, and 7 of Equation ( 16) [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF], we can see that the recurrences described by Equations ( 1) to (3) hold for every c ∈ Z + .

ã ≡ 6 (mod 10) ⇒ V (ã)    = V (ã c ) iff c ≡ {1, 2, 3, 4} (mod 5) ≤ V (ã c ) iff c ≡ 0 (mod 5)
.

(1)

ã ≡ 5 (mod 20) ⇒ V (ã)    = V (ã c ) iff c ≡ 1 (mod 2) ≤ V (ã c ) iff c ≡ 0 (mod 2)
.

(2)

ã ≡ 1 (mod 20) ⇒ V (ã)    = V (ã c ) iff c ≡ {1, 2, 3, 4} (mod 5) ≤ V (ã c ) iff c ≡ 0 (mod 5) . (3) 
The investigation of this observation (with specific reference to Equation ( 2)) leads us to the following theorem.

Theorem 2.3. ∀c ∈ Z + ∃ ∞ a ≡ 5 (mod 20) : ( c √ a ∈ Z + ∧ V ( c √ a) = t ∧ V (a) ≥ t, ∀t ∈ N -{0, 1}). Symmetrically, ∀t ∈ N -{0, 1} ∃ ∞ a ≡ 5 (mod 20) : ( c √ a ∈ Z + ∧ V ( c √ a) = t ∧ V (a) ≥ t, ∀c ∈ Z + ).
Proof. Let us (constructively) prove first the last statement of Theorem 2.3, since it simply follows from the constancy of the congruence speed as it has been shown in Reference [START_REF] Ripà | The congruence speed formula[END_REF], Section 2.1 (our strategy here is also reminiscent of the proof of Theorem 2 in [START_REF] Ripà | The congruence speed formula[END_REF], Section 4).

Consider the rightmost t ∈ N -{0, 1} digits of the decadic integer α 25 := {5 2 n } ∞ , say x t x t-1 . . . 2 5, and then juxtapose to the left the (t+1)-th digit plus 1 if x t+1 ≤ 8 or the (t+1)-th

digit minus 1 if x t+1 = 9. So, let xt+1 :=    x t+1 + 1 if x t+1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 
8}

x t+1 -1 if x t+1 ∈ {9}
.

Thus, the base ã := xt+1 x t x t-1 . . . 2 5 is characterized by a constant congruence speed of t (i.e., V (x t+1 x t x t-1 . . . 2 5) = V (ã) = t for any t ∈ N -{0, 1}). This property follows from Reference [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF], Equation [START_REF] Weisstein | MathWorld -A Wolfram Web Resource[END_REF], line 5 (i.e., 2 t | xt+1 x t x t-1 . . . 2 5 ∧ 2 t+1 ∤ xt+1 x t x t-1 . . . 2 5, for any t ≥ 2). Since (as discussed in Remark 2.1) α 25 → a 25 := 25 and 25 2 ≡ 25 (mod 10 2 ), from Hensel's lemma [START_REF] Lewis | A formal proof of Hensel's lemma over the p-adic integers[END_REF] (see also [START_REF] Germain | On the Equation a x ≡ x (mod b)[END_REF][START_REF] Urroz | On the Equation a x ≡ x (mod b n )[END_REF]), we have that (ã ≡ α 25 (mod 10 t ) ∧ ã ̸ ≡ α 25 (mod 10 t+1 )) ⇒ ãc ≡ α 25 (mod 10 t ), for any given c ∈ Z + (in general, we cannot assert that (ã ≡ α 25 (mod 10 t ) ∧ ã ̸ ≡ α 25 (mod 10 t+1 )) implies ãc ̸ ≡ α 25 (mod 10 t+1 ) for the given pair (t, c)).

Consequently, by simply taking a := (x t+1 x t x t-1 . . . 2 5) c (as c is free to run over the positive integers), we have proven the existence, for any given t ∈ N -{0, 1}, of infinitely many tetration bases a ≡ 5 (mod 20) such that V (a) ≥ t holds for all the elements of the aforementioned set, a set that contains ℵ 0 distinct perfect powers originated from the string xt+1 x t x t-1 . . . 2 5 (since ã is a positive integer by definition, then a

= ãc ⇒ c √ a ∈ Z + ). Hence, V (x t+1 x t x t-1 . . . 2 5) = t ⇒ V ((x t+1 x t x t-1 . . . 2 5) c ) ≥ t by observing that V ((x t+1 x t x t-1 . . . 2 5) c ) = V (. . . x t x t-1 . . . 2 5
), and trivially c (x t+1 x t x t-1 . . . 2 5) c ∈ Z + ∀c ∈ Z + (we point out that, for any t ≥ 2 and as long as c is a positive integer, (x t+1 x t x t-1 . . . 2 5) c ≡ x t x t-1 . . . 2 5 (mod 10 t ) holds by construction [START_REF] Weisstein | MathWorld -A Wolfram Web Resource[END_REF]). Now, let us prove the first statement of Theorem 2.3 and complete the proof. For this purpose, it is sufficient to note that V (x t+1 x t x t-1 . . . 2 5) = V (10 k+t + xt+1 x t x t-1 . . . 2 5) is true for any positive integer k. So, we can take the c-th power of every integer of the form 10 k+t + xt+1 x t x t-1 . . . 2 5 in order to get k distinct sets of cardinality ℵ 0 each, whose elements, by construction, always satisfy the first statement of the theorem (we have already shown that, for any given c ∈ Z + , V (10 k+t + xt+1 x t x t-1 . . . 2 5) = t ⇒ V (10 k+t + xt+1 x t x t-1 . . . 2 5) c ≥ t holds for every t ∈ N -{0, 1}).

Therefore, both the statements of Theorem 2.3 have been shown to be true and this concludes the proof.

Main result

From here on, let us indicate the p-adic valuation [START_REF] Quick | p-adic Absolute Values[END_REF] of any tetration base a as ν p (a), for any prime number p.

Then, we need the following lemma in order to prove the existence, for any ã ∈ N -{0, 1} : (ã ̸ ≡ 0 (mod 10) ∧ V (ã) = t), of infinitely many c-th powers of ã having a constant congruence speed of t, t + 1, t + 2, t + 3, and so forth. Furthermore, for any given positive integer c, Lemma 3.1 shows the existence of infinitely many tetration bases of the form (10 k+t + 10 t + 1) c (where k ∈ Z + , as usual) characterized by any positive value, t, of their constant congruence speed. Lemma 3.1. ν 5 ((10 k+t + 10 t + 1) c -1) = t + ν 5 (c) is true for any t, k, c ∈ Z + .

Proof. We prove Lemma 3.1 by induction on c: "∀c ∈ Z + , ν 5 ((10 k+t + 10 t + 1) c -1) = t + ν 5 (c), where t, k ∈ Z + ".

Let us start with the base case, so c = 1. By [START_REF]P-adic Valuation is Valuation[END_REF], we know that the p-adic valuation is a valuation and then c = 1 ⇒ ν 5 ((10 k+t + 10 t + 1) c -1) = ν 5 (10 k+t + 10 t ) = ν 5 (10 t • (10 k + 1)) = ν 5 (10 t ) + ν 5 (10 k + 1). Since 10 k + 1 ≡ 1 (mod 5) for any positive integer k, it follows that ν 5 (10 k + 1) = 0. Hence, ν 5 (10 t ) + ν 5 (10 k + 1) = ν 5 (10 t ) = ν 5 (2 t • 5 t ) = ν 5 (5 t ) = t.

Thus, c = 1 ⇒ ν 5 ((10 k+t + 10 t + 1) c -1) = t.

In order to prove the inductive step, we assume that ν 5 ((10 t+k + 10 t + 1) c -1) = t + ν 5 (c) is true for c = n and we show that it is also true for c = n + 1. For this purpose, we note that ν 5 ((10 t+k + 10 t + 1) n+1 -1) = ν 5 ((10 t+k + 10 t + 1) n+1 -( 1 n+1 )), so we can invoke the Lifting The Exponent lemma (see [START_REF] Parvardi | Lifting The Exponent Lemma (LTE) -Version 6[END_REF] and [START_REF] Heuberger | Elliptic curves with isomorphic groups of points over finite field extensions[END_REF], Lemma 2.6) for odd primes, stating that for any integers x, y, a positive integer n + 1, and a prime number p such that p ∤ x ∧ p ∤ y, if p divides x -y, then v p (x n+1 -y n+1 ) = v p (x -y) + v p (n + 1). Thus, by observing that p := 5 is an odd prime satisfying all the conditions above for x := 10 k+t + 10 t + 1 ∧ y := 1 (since 10 k+t + 10 t is a multiple of 5), ν 5 ((10 k+t + 10 t + 1) n+1 -1 n+1 ) = ν 5 (10 k+t + 10 t ) + ν 5 (n + 1) and then c = n + 1 ⇒ ν 5 ((10 k+t + 10 t + 1) c -1) = t + ν 5 (c) is finally proven.

Therefore, we have shown that ν 5 ((10 t+k +10 t +1) c -1) = t+ν 5 (c) is true for any t, c, k ∈ Z + and the proof is complete. Theorem 3.2. For any t, k, c ∈ Z + , V ((10 k+t + 10 t + 1) c ) = t + ν 5 (c).

Proof. Theorem 3.2 easily follows from Lemma 3.1. By [START_REF] Ripà | Number of stable digits of any integer tetration[END_REF], Equation ( 16), line 7, we have that V ((10 k+t + 10 t + 1) c ) = ν 5 ((10 k+t + 10 t + 1) c -1) and, since Lemma 3.1 asserts that ν 5 ((10 t+k + 10 t + 1) c -1) = t + ν 5 (c), it follows that V ((10 k+t + 10 t + 1) c ) = t + ν 5 (c) for any positive integers t, k, and c. Remark 3.1. Let the tetration base a : a ≡ 6 (mod 10) be given. Then, by looking at the two rightmost digits of the corresponding decadic solution, α 76 = . . . 7109376 (see Remark 2.1), and applying the usual strategy (already described in the proof of Theorem 2.3), we find the sequence a n := 10 n+1 + 86, n ∈ Z + (defining also the set {186, 1086, 10086, 100086, . . . }). Now, we can obviously create an infinite set consisting of the c-th powers of each aforementioned term, a set whose elements are all characterized by a unit constant congruence speed as long as c is not a multiple of 5. Thus,

5 ∤ c ⇒ V (186 c ) = V (1086 c ) = V (10086 c ) = V (100086 c ) = . . . = 1.
The above is just another example of the xt+1 idea, introduced in the proof of Theorem 2.3, shown by taking into account t = 1 and the solution α 76 := 1 -5 2 n ∞ of the equation y 2 = y in the commutative ring of decadic integers (as we know, the other three solutions are α 00 := 0, α 01 := 1, and α 25 := 5 2 n ∞ [START_REF] Ripà | The congruence speed formula[END_REF]).

Corollary 3.3. Let t ∈ Z + and assume that V (ã) = t. Then, ∃ ∞ c ∈ Z + : V (ã c ) = t + h, for any non-negative integer h.

Proof. Let k ∈ Z + . If t > 1, it is sufficient to observe that, by Theorem 3.2, V ((10 k+t + 10 t + 1) c ) = t + ν 5 (c). So, let ã := 10 k+t + 10 t + 1 and then, for any h ∈ N 0 , ãc := ã2 k-1 •5 h identifies an infinite set of valid tetration bases (since ν 5 (2 k-1 • 5 h ) = h is true for any positive integer k and, consequently, the constant congruence speed of ã2 k-1 •5 h does not depend on k).

For the remaining case, t = 1, we note that Remark 3.1 gives us a valid set of solutions (i.e., any tetration base of the form (10 k+1 + 86) 2 k-1 •5 h does the job, since V (10 k+1 + 86) = 1 for every positive integer k).

Theorem 3.4. Let the integer a > 1 not be a multiple of 10.

Then, ∀c ∈ Z + , ∃ ∞ a : ( c √ a ∈ Z + ∧ V (a) = V ( c √ a) = t, ∀t ∈ Z + : t > ν 5 (c)).
Proof. Since Theorem 3.2 states that V ((10 k+t + 10 t + 1) c ) = t + ν 5 (c) for any k ∈ Z + , it follows that every tetration base of the form (10 k+t-ν 5 (c) + 10 t-ν 5 (c) + 1) c is characterized by a constant congruence speed of (t -ν 5 (c)) + ν 5 (c), as long as t ≥ 1 + ν 5 (c). Although this is enough to constructively prove the theorem, we are free to simplify the generic form of the above by observing that V ((10 k+t + 10 t-ν 5 (c) + 1) c ) = ν 5 ((10 k+t + 10 t-ν 5 (c) + 1) c -1 c ) = ν 5 (10 k+t + 10 t-ν 5 (c) ) + ν(c) = min{ν 5 (10 k+t ), ν 5 (10 t-ν 5 (c) )} + ν(c) [START_REF] Cassels | Local fields[END_REF] (since k > -ν 5 (c) ⇒ ν 5 (10 k+t ) > ν 5 (10 t-ν 5 (c) )) and then V ((10 k+t + 10 t-ν 5 (c) + 1) c ) = ν 5 (10 t-ν 5 (c) ) + ν(c) = t -ν 5 (c) + ν 5 (c) = t. Therefore, V ((10 k+t + 10 t-ν 5 (c) + 1) c ) = t is true for any c, k ∈ Z + and t > ν 5 (c), so the proof is complete. Now, let t = c and observe that ν 5 (c) ≤ c -1 holds for any positive integer c. Then, the proof of Theorem 3.4 shows the existence of a very special set of tetration bases that are c-th powers of an integer and whose constant congruence speed is c, a set including all the bases of the form (10 c+k + 10 c-ν 5 (c) + 1) c , k ∈ Z + (e.g., (c = 250 ∧ k = 10000) ⇒ V (10 10250 + 10 247 + 1) 250 = 250).

Therefore, we have finally proven Corollary 3.5 as a special case of Theorem 3.4.

Corollary 3.5. Let a ∈ N -{0, 1} not be a multiple of 10. Then, ∀c ∈ Z + , ∃ ∞ a : ( c √ a ∈

Z + ∧ V (a) = V ( c √ a) = c).
Since, for any given c ∈ Z + , the set of all the integers of the form 10 c+k + 10 c-ν 5 (c) + 1 contains infinitely many elements that are not divisible by themselves (as digit sum(10 c+k + 10 c-ν 5 (c) + 1) = 3, 3 | 10 c+k + 10 c-ν 5 (c) + 1 and 3 2 ∤ 10 c+k + 10 c-ν 5 (c) + 1, implying that none of these numbers can be a perfect power of degree greater than 1), there exist infinitely many perfect powers of degree c = 1, 2, 3, 4, . . . having a constant congruence speed of c, and it is sufficient to consider all the tetration bases of the form (10 c+k + 10 c-ν 5 (c) + 1) c .

Conclusion

In the previous section, we have shown the existence of infinitely many perfect powers of degree c with a constant congruence speed of ν 5 (c) + 1, ν 5 (c) + 2, ν 5 (c) + 3, and so forth.

Moreover, for any given positive integer c, we have constructed an infinite set of c-th perfect powers that are also characterized by a constant congruence speed of c, providing the general equation V ((10 k+t + 10 t-ν 5 (c) + 1) c ) = t (k ∈ Z + , t ∈ Z + : t > ν 5 (c)) so that if t = c, then V ((10 k+c + 10 c-ν 5 (c) + 1) c ) = c is always true.
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