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Abstract

Latent variable models are powerful tools for modeling complex phenomena involving
in particular partially observed data, unobserved variables or underlying complex unknown
structures. Inference is often difficult due to the latent structure of the model. To deal
with parameter estimation in the presence of latent variables, well-known efficient methods
exist, such as gradient-based and EM-type algorithms, but with practical and theoretical
limitations. In this paper, we propose as an alternative for parameter estimation an effi-
cient preconditioned stochastic gradient algorithm. Our method includes a preconditioning
step based on a positive definite Fisher information matrix estimate. We prove convergence
results for the proposed algorithm under mild assumptions for very general latent vari-
ables models. We illustrate through relevant simulations the performance of the proposed
methodology in a nonlinear mixed effects model and in a stochastic block model.

1 Introduction

Latent variable models are widely used in many fields to describe complex phenomena whose
mechanisms are indirectly observed and whose consideration in the model requires the use of
unobserved variables. One can mention, for instance, mixture models McLachlan and Basford
[1988] or stochastic block models Abbe [2018], Lee and Wilkinson [2019] that are respectively used
to describe the existence of an unknown group structure in a population and in an interaction
network, or mixed-effects models whose latent structure is intended to describe some inter-
individual variability Lavielle [2014], Pinheiro and Bates [2000b]. While bringing a certain level
of detail to the modeling, the use of latent variables leads to more complex inference in general,
as the observed likelihood often does not have an explicit form. This has led to the development
of specific numerical methods for parameter estimation in latent variable models. Among the
most common approaches, one can find the EM algorithm Dempster et al. [1977] and its variants
such as the Stochastic Approximation EM (SAEM) algorithm Delyon et al. [1999] or even the
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Variational EM (VEM) algorithm Bernardo et al. [2003]. There are also gradient-based methods
(see e.g chapters 10-11 in Cappé et al. [2005]), in particular some stochastic versions of the
gradient descent algorithm have been specifically developed for latent variable models Cai [2010],
Fang and Li [2021], Gu and Kong [1998].

EM-type algorithms are popular for their ease of implementation in curved exponential models
where only operations on the sufficient statistics of the model are required at each iteration. These
algorithms can still be applied in more general latent variable models but the methodology is not
generic and requires new developments for each new model considered. To face this restrictive
assumption, Debavelaere and Allassonnière [2021] suggested to use the exponentialization trick
which consists in performing inference in an extended model belonging to the curved exponential
family instead of in the initial model. However this approach has limitations in practice, mainly
due to difficult algorithmic settings and tuning. Besides, the theoretical properties of EM-
type algorithms have been the subject of many contributions. To our knowledge, the existing
convergence theorems however all assume that the model belongs to the curved exponential
family and none of them brings any guarantee beyond this framework (see Wu [1983] for EM
and Delyon et al. [1999] for SAEM).

Gradient-based methods are an attractive alternative when EM-type algorithms are not easy
to implement since their main ingredient is the log-likelihood gradient which is easily available in
any latent variable model or at least approximated by combining the Fisher’s identity (see Cappé
et al. [2005]) with Monte-Carlo methods. Among these, we find in particular the algorithms of Cai
[2010] and Fang and Li [2021]. The former has no theoretical guarantee and the latter, although
supported by a convergence theorem, applies only to models that do not contain parameters to
be estimated in the distribution of the latent variables. In recent stochastic gradient algorithms,
some attention is also given to variance control for the full gradient estimation when it is obtained
by processing mini-batches of the original sample (see e.g. Fang et al. [2018], Johnson and Zhang
[2013], Reddi et al. [2016]). For all the above mentioned algorithms, although often supported by
theoretical convergence guarantees, the practical performance is strongly affected by the choice
of the learning rate which is a difficult setting. To overcome this difficulty and speed up the
convergence, some people propose to precondition the gradient, but as suggested in Li [2017],
one also has to be careful with the definition of the preconditioner so as not to degrade the
behavior of the algorithm.

In this paper, our contribution consists in presenting a new stochastic gradient algorithm
for maximum likelihood parameter estimation in general latent variable models. The proposed
algorithm distinguishes itself from other stochastic gradient-based algorithms by including an
easily available and structurally positive definite preconditioner based on Delattre and Kuhn
[2023], which is also an estimate of the Fisher information matrix (FIM) in independent data
models. As the FIM corresponds to the Hessian matrix of the objective function, it is therefore
a natural choice regarding the second-order approximation (see Li, 2017). In addition, as the
FIM estimate proposed by Delattre and Kuhn [2023] has the nice structural property of being
symmetric positive definite, our preconditioning step allows to scale the different directions of
the parameter space, homogenizing the evolution of the algorithm, and ensures that the search
direction corresponds to a descent direction.

Since the algorithm entails updating the estimate of the Fisher information matrix at each
iteration, asymptotic confidence intervals can also be easily computed for all parameters as a by-
product of the algorithm. Theoretical convergence results are provided that, unlike the existing
results for competing EM-type algorithms, are also valid beyond the curved exponential family.
The algorithm implementation is straightforward in practice, as it only requires the computation
of the gradients of the log-densities of the latent variables and the gradients of the conditional
log-densities of the observations given the latent, both of which being readily available quantities
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for the classical stochastic gradient descent. In addition, we propose a generic warming procedure
which simplifies tuning and improves the algorithm efficiency in practice. Finally, it can also be
easily extended to Bayesian maximum a posteriori estimation as well as to regularized estimation.

The paper is organized as follows. Section 2 introduces latent variable models. Section 3
presents our new Fisher-preconditioned stochastic gradient algorithm called Fisher-SGD and
provides theoretical analysis. Some details on algorithmic settings are also given. Numerical
results are presented in Section 4 that show the good performances of the algorithm. Some
concluding remarks are given in Section 5.

2 Maximum Likelihood Estimation in latent variable mod-
els

2.1 Description of latent variable models

Let us consider observed random variables denoted by Y taking value in Y and latent random
variables denoted by Z taking value in Z which are not observed. We assume that the couple
(Y, Z) admits a parametric density f parameterized by θ taking value in Θ ⊂ Rd, where d is a
non-zero positive integer. We denote by y and z realizations of the random variables Y and Z
respectively. We denote by pθ(· | y) the density of the posterior distribution, i.e. the conditional
distribution of Z given y.

Popular examples are mixture models, mixed effects models Davidian and Giltinan [1995],
hidden Markov models Cappé et al. [2005], stochastic block models Nowicki and Snijders [2001],
or frailty models Duchateau and Janssen [2008].

Estimation of model parameters is not trivial in these models due to the presence of the
latent structure and the unobserved variables Z. Namely one has to estimate θ only using the
observed values of variables Y denoted by y.

2.2 Examples

In this section, we provide several examples of latent variable models, that will be used in the
numerical experiments.

2.2.1 Mixed-effect models

Mixed-effects models are commonly used when repeated data are available for each observational
unit, e.g. in longitudinal studies or population models. They allow to account for both intra-
and inter-individual variabilities through the use of fixed and random effects, the former being
common to all the individuals while the latter vary from one individual to the other. These
models can be described hierarchically, with a first layer giving the marginal distribution of the
latent variables Z, and a second layer specifying the conditional distribution of the observations Y
given the latent variables Z. More specifically, denoting by Yij the j-th observation of individual
i, with j = 1, . . . , J and i = 1, . . . , N , we consider the following model:{

Zi ∼ N (β,Γ)
Yij = h(α,Zi, Xij) + εij , εij ∼ N (0, σ2)

where α is a vector of fixed effects, Xij is a set of known covariates, h is a nonlinear function
representing the intra-individual variability and εij is a random error term. The random effects
are the latent variables Zi, and are assumed to be mutually independent. The sequences (Zi)
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and (εi), with εi = (εi1, . . . , εiJ)T are also assumed mutually independent. The parameters to
be estimated are α, β,Γ and σ2.

We consider now the specific case of the logistic growth curve model, which is commonly used
in the nonlinear mixed-effect models community (see e.g. Pinheiro and Bates [2000a] and their
famous example of orange trees growth), where function h is given by:

h(α,Zi, Xij) =
Zi1

1 + exp
(
−Xij−Zi2α

) , (1)

where Zi = (Zi1, Zi2)
T ∼ N (β,Γ), with β = (β1, β2)

T
and Γ a 2× 2 symmetric positive definite

matrix. The model parameters are β ∈ R∗+ × R, α ∈ R∗+, Γ ∈ S++
2 , where S++

p is the set of
symmetric, positive definite matrices of size p× p and σ ∈ R+.

Due to the presence of the fixed effect α, the joint density of (Yi, Zi) does not belong to the
curved exponential family as defined in Delyon et al. [1999]. Note that the implementation of
stochastic versions of the EM algorithm are not trivial in such cases, involving complex terms
evaluated by induction.

2.2.2 Stochastic block models

The Stochastic Block Model (SBM) is a common model in graph analysis, introduced by Holland
et al. [1983] and Nowicki and Snijders [2001]. For a directed graph of N nodes, the SBM assumes
a latent unknown node classification (here Z), and assumes edge presences as independent and
identically distributed conditionally on the cluster of nodes with a probability distribution which
depends only on node clusters. We note Y the adjacency matrix of the graph, K the number of
groups, Zi the latent class indicator (one hot encoding) of node i. The SBM is formulated as
follow: {

Zi ∼M(1;α) with α ∈ R∗+
K ,
∑
k αk = 1

Yij |ZikZjl = 1 ∼ B(pkl) with ∀k, l, pkl ∈ (0, 1)
(2)

In this formulation, matrix Y is the observed variable and Z the latent variable. The param-
eters are α ∈ R∗+

K s.t.
∑
k αk = 1 and p ∈ (0, 1)

K×K
.

Please note the non independence of (Zi)i:1≤i≤N conditionally on Y , thus the log-likelihood
will be not splittable in terms involving only one Zi each.

2.3 Maximum likelihood estimation in latent variable models

We consider the marginal density of Y denoted by g and defined by

g(y; θ) =

∫
Z
f(y, z; θ) dz

The maximum likelihood estimate (MLE) for parameter θ, denoted by θ̂, is defined as:

θ̂ = arg max
θ
g(y; θ)

This estimate is very popular in statistics since it has very nice asymptotic properties in a
wide class of statistical models. Assuming mild conditions, as the number of observations goes
to infinity, the MLE is consistent, asymptotically Gaussian and efficient Van der Vaart [2000].
Therefore one can build asymptotic confidence intervals for model parameters as soon as an
estimate of the Fisher information matrix is available.
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However, computing this estimate in latent variable models through the maximization of
the marginal likelihood g often requires numerical tools. Indeed the marginal density does not
usually admit an explicit expression. Most popular tools are EM-like algorithms Ng et al. [2012],
used to maximize the density g with respect to θ.

Another way to compute the MLE θ̂ in latent variable models, often omitted but well discussed
in Cappé et al. [2005], consists in searching the zeros of the derivative of log g using gradient-
based methods. Indeed, assuming regularity conditions on f , we get the Fisher identity Cappé
et al. [2005] which states that for all θ ∈ Θ:

∇θ log g(y; θ) = E (∇θ log f(y, Z; θ) | y; θ) (3)

Solving a function defined as an expectation can be done using stochastic gradient algorithms.
Note however that the quantity θ is involved twice in the Fisher identity, namely in the derivative
of the log-likelihood and in the posterior distribution of Z.

Therefore we will consider in the following section a stochastic gradient type algorithm to
solve the Fisher identity (3).

3 Efficient stochastic gradient algorithm with precondi-
tioning step

In this section, we present our algorithm Fisher-SGD and some convergence results. We first
present the algorithm in the case of independent observations and give in a second time a more
general version for non-independent observations.

3.1 Description of the algorithm in the independent case

One of the main ideas of our algorithm is to pre-condition, in the stochastic gradient descent at
iteration k, by the positive definite estimate of the Fisher information Î(θ) proposed by Delattre
and Kuhn [2023] and detailed in Appendix B. The algorithm is described in Algorithm 1 (more
details can be found in Algorithm 3 in the Appendix).

Algorithm 1 Fisher-SGD in the independent case

Input: z0, θ0, y1, . . . , yN ,r
for k = 1, . . . ,K do

for i = 1, . . . , N do
zki ∼ q where q is either the posterior pθk−1

(· | yi) or a Markov kernel Πθk−1
(· | ·, yi)

Compute ∆k
i = (1− γk)∆k−1

i + γk∇θ log f
(
yi, z

k
i ; θk−1

)
end for
Compute vk = 1

N

∑N
i=1∇θ log f

(
yi, z

k
i ; θk−1

)
Compute Ik =

1

N

∑N
i=1 ∆k

i

(
∆k
i

)T
Set θk = θk−1 + γkI

−1
k vk

end for
Output: Estimated parameter θk, estimated Fisher information matrix of the whole sample
NIk, r-quasi-sample of latent variables in the posterior distribution

(
zK−r+1 · · · zK

)
.

Remark 3.1. 1. The proposed algorithm computes the MLE in latent variable models without
requiring that the joint density belongs to the curved exponential family.
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2. The proposed algorithm allows to compute asymptotic confidence intervals for free since
the MLE and a Fisher matrix estimate are available as a by-product of the algorithm.

3. The proposed algorithm can be run either using exact simulation of the latent variables
according to their conditional distribution given the observations whenever possible, or
using the transition kernel of an ergodic Markov Chain having the posterior distribution as
invariant distribution. Note that one common practical choice for such MCMC sampling
scheme is the Metropolis-Hastings or the Metropolis-within-Gibbs algorithm Robert et al.
[1999].

4. The proposed algorithm can be extended to compute maximum a posteriori (MAP) esti-
mate in Bayesian settings or regularized estimates, by adding to the criterion to be maxi-
mized a term corresponding to the prior distribution or the regularization term, and then
considering an additional proximal step as in Atchadé et al. [2017].

5. The stochasticity of the stochastic gradient in our setting is due to the sampling of the latent
random variable which allows to compute the target criterion defined as an expectation on
the latent space.

6. In settings where the number of independent observations is large, usual minibatch tech-
niques can be easily included in the proposed algorithm to deal with the high dimension
of the observations (Schmidt et al. [2017]).

3.2 Theoretical results

We now present two convergence results for the algorithm, depending on how the realizations
of Z are generated at each iteration of the algorithm, either from the posterior distribution or
from the transition kernel of a Markov Chain Monte Carlo algorithm. For the sake of simplicity
in the next section we drop the index 1 ≤ i ≤ N in the notations. We first need some general
regularity assumptions on the statistical model and on the sequence of step sizes (γk).

Assumption 3.2. 1. The joint density f is twice differentiable for θ ∈ Θ.

2. For all y ∈ Y the observed log-likelihood log g(y, θ) is continuously differentiable on Θ and

∇θg(y, θ) =

∫
Z
∇θf(y, z, θ)dz.

3. The sequence of step-sizes (γk)k satisfies for all k ≥ 0, 0 ≤ γk ≤ 1,
∑+∞
k=1 γk = +∞ and∑+∞

k=1 γ
2
k < +∞.

All these assumptions are classical for maximum likelihood estimation in latent variable
models Delyon et al. [1999], Kuhn and Lavielle [2004].

We omit in the sequel the dependency of several quantities in y since it is considered as fixed.
Let us define the objective function to minimize F (θ) = − log g(y, θ). Therefore solving the
Fisher identity (3) is equivalent to solving ∇θF (θ) = 0.

3.2.1 First case: simulating from the posterior

To obtain the convergence of the algorithm in this context, we need additional assumptions.

Assumption 3.3. 1. The gradient of F is L-Lipschitz on Θ.
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2. There exists C > 0 such that for all y and θ, E
[
‖∇θ log f(y, Z; θ)‖2

]
≤ C.

3. There exist µm > 0 and µM > 0 such that for all k, ∀µ ∈ Eig(Ik), µm < µ < µM , where
Eig(A) denotes the set of eigenvalues (the spectrum) of matrix A.

The first two assumptions are classical when proving the convergence of a stochastic gradient
algorithm. The third one is specific to our pre-conditioning using a positive definite estimate
of the Fisher information. Note that in all regular models where the FIM is positive definite,
this last assumption is satisfied for N and k large enough since the FIM estimate proposed by
Delattre and Kuhn [2023] is convergent when the sample size N goes to infinity and the algorithm
is convergent when the number of iterations k goes to infinity.

Theorem 3.4. Under Assumptions 3.2 and 3.3, the iterates (θk)k defined in Algorithm 1 with
q equals to the posterior distribution pθk−1

at iteration k satisfy the convergence guarantee

E

[
min

0≤l≤k
‖∇θF (θl)‖2

]
≤2(F (θ0)−minF )

2µm
∑k
l=0 γl

+
µ2
MCL

∑k
l=0 γ

2
l

2µm
∑k
l=0 γl

.

Proof: See Appendix B.
The control bound in Theorem 3.4 goes well to 0 when k goes to infinity and is similar to those

obtained by, e.g., Bottou et al. [2018] or Ghadimi and Lan [2013] for the standard stochastic
gradient algorithm.

3.2.2 Second case: simulating from a kernel

In this context, we need additional assumptions on the Markov chain. Let us introduce the
following notations: for a measurable function V : Z → [1,+∞), a measure µ on the σ-field of
Z and a function f : Z → R, we define

|f |V = sup
z∈Z

|f(z)|
V (z)

, ‖µ‖V = sup
f,|f |V ≤1

∣∣∣∣∫ fdµ

∣∣∣∣.
Assumption 3.5. 1. For all θ ∈ Θ, the transition kernel Πθ is a Markov kernel with invariant

distribution the posterior pθ.

2. There exist 0 < λ < 1, 0 < b, p ≥ 2 and a measurable function W : Z → [1,+∞) such that
supθ∈Θ |∇θ log f(·, y; θ)|W <∞ and supθ∈Θ ΠθW

p ≤ λW p + b.

3. For any 0 < ν < p, there exist a constant C and 0 < ρ < 1 such that for any z ∈ Z,
supθ∈Θ ‖Πm

θ (z, ·)− pθ‖W ν ≤ CρmW ν(z).

4. There exists a constant C such that for any (θ, θ′) ∈ Θ2,

|∇θ log f(·, y; θ)−∇θ log f(·, y; θ′)|W ≤ C‖θ − θ
′‖

|pθ − pθ′ |W ≤ C‖θ − θ
′‖

sup
z

‖Πθ(z, ·)−Πθ′(z, ·)‖
W (z)

≤ C‖θ − θ′‖.
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These assumptions are standard sufficient conditions in the literature to ensure the uniform
ergodicity of the Markov chain with respect to θ and the existence of a solution to the Poisson
equation associated to function ∇θ log f(·, y; θ) (see for example Allassonniere and Kuhn [2015],
Fort et al. [2011]). Concerning the logistic growth nonlinear mixed effects model defined in

section 2.2.1 using (1), the function W can be chosen equal to W (z) = 1 + ‖z‖2.

Assumption 3.6. The sequence of step sizes (γk) satisfies
∑
|γk+1 − γk| <∞.

This step size assumption is classical when controlling stochastic approximation and is satis-
fied in particular when the step size sequence is decreasing.

Theorem 3.7. Under Assumptions 3.2, 3.3, 3.5, 3.6 and assuming that Θ is bounded, the iter-
ates (θk)k defined in Algorithm 1 with q equal to a transition kernel Πθk−1

satisfy the convergence
guarantee

E

[
min

0≤l≤k
‖∇θF (θl)‖2

]
≤ 2(F (θ0)−minF )

2µm
∑k
l=0 γl

+
µ2
MCL

∑k
l=0 γ

2
l + C

2µm
∑k
l=0 γl

.

Proof: See Appendix B.
This result extends that of Theorem 3.4 to the setting often used in practice when it is not

possible to generate the latent variables from the posterior distribution. We obtain a similar
bound as the one in Theorem 3.4 with an additional residual term that appears because of the
MCMC procedure used to simulate zk. The proof is postponed to the supplementary material
and relies on technical tools involving Poisson equation solution for the control of Markov chain
where the parameter evolves simultaneously.

3.3 Description of the algorithm in the non-independent case

In the non-independent case, the algorithm should be adapted as the log-likelihood is not sep-
arable into terms involving only one Zi. The proposed methodology uses the global criterion
f(y, z; θk). The adapted algorithm is provided in Algorithm 2. There is no general formula to
write the estimation of the Fisher information matrix in this case. See the adaptation for the
SBM in Section 2.2.2 for an example.

Remark 3.8. Theorems 3.4 and 3.7 can be immediately extended to the non-independent setting.

3.4 Practical implementation

The implementation of the algorithm should be done in practice with some precautions, in
particular at the beginning of the algorithm for the learning step γk and the calculation of the
preconditioning matrix Ik.

3.4.1 Evolution of the learning step

The authors propose a strategy in three steps, similar to the warm-up strategies used for example
by Loshchilov and Hutter [2017] and Smith and Topin [2019]:

pre-heating: first, at the very beginning of the algorithm, the learning step is gradually in-
creased following an exponential growth, starting from a very small value until reaching
1.
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Algorithm 2 Fisher-SGD in the non-independent case

Input: z0, θ0, y, r
for k=1,. . . ,K do
zk ∼ q where q is either the posterior pθk−1

(· | y) or a Markov kernel Πθk−1
(· | ·, y)

Compute vk = ∇θ log f
(
y, zk; θk−1

)
Compute Ik with a custom method.
Set θk = θk−1 + γkI

−1
k vk

if k > K − r then
Compute ∇2

θ log f
(
y, zk; θk

)
end if

end for
Output: Estimated parameter: θk, estimated Fisher information matrix of the whole
sample: 1

r

∑K
k=K−r+1∇2

θ log f
(
y, zk; θk

)
, sample of latent in the posterior distribution:(

zK−r+1 · · · zK
)
.

heating: then, the step is kept at 1 during a certain time, constituting the heating period.

decreasing steps: after stabilization, the steps are decreasing (such that
∑
k γk = +∞ and∑

k γ
2
k < +∞).

We thus obtain:

γk =


γ

(
1− k

Kpre-heating

)
0 if k ≤ Kpre-heating

1 else if k ≤ Kheating

(k −Kheating)
−α

else

The authors propose to use Kpre-heating = 1000 and γ0 = 10−4. The proposed setting seems
to be conservative for most situations, but Kpre-heating and γ0 can be respectively increased and
decreased to improve stabilization of the pre-heating phase.

Concerning the choice of Kheating, the authors propose to use an adaptive method, averaging
the norms of the gradients calculated with a third order filter of constant 1

1000 and to stop the
heating phase when the norm of the averaged gradient does not decrease anymore.

Concerning the choice of α, to ensure
∑
k γk = +∞ and

∑
k γ

2
k < +∞, the authors propose

to use α = 2/3.
The complete algorithm using the preheating and the adaptive length heating is given in the

Appendix in Algorithm 3.

3.4.2 Preconditioning matrix

At the beginning of the algorithm, a bad preconditioning can lead to unstable behavior. Thus
during the whole preheating period, instead of using Ik as defined in algorithm 1, we use a
stabilized version. Let us introduce

Î∗k =
1

N

N∑
i=1

∆k
i

(
∆k
i

)T
and define the new preconditioner by:

Ik =

{
(1− γk)rkId+ γk Î

∗
k if k < Kpre-heating

Î∗k otherwise.
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We can choose rk = 1 or, to further avoid instabilities we can choose rk = max
(

1, tr
(
Î∗k

))
.

The complete algorithm using this stabilization is given in the Appendix in Algorithm 3.

3.4.3 Auto-differentiation and parametrization

Nowadays, there is high interest in using automatic differentiation over analytical calculation of
gradients. The authors propose to compute all gradients by means of automatic differentiation.

The parameters of the statistical models are rarely all parameters in Rd, but the algorithm
is presented in the framework of Θ = Rd. Using the functional invariance property of maxi-
mum likelihood, the authors propose to systematically reparametere to Rd, through a bijective
reparametrization. For obvious reasons of derivatives use, these reparametrizations must be dif-
feomorphisms and must be differentiable by automatic differentiation to be used transparently
in the framework proposed here. The parametrization Cookbook Leger [2023] introduces a set
of classical reparametrizations in statistics that verify these properties. The obtained maximum
likelihood properties (and, in particular, the confidence intervals) can then be transferred to the
initial space using a delta method Van der Vaart [2000].

4 Numerical experiments

4.1 Logistic growth mixed-effects model

We generated data according to the logistic growth model presented in Section 2.2, withN = 1000
individuals, with the same vector of observation times for each individual, defined as a vector of
m = 20 equally spaced values between 100 and 1500, and using the following parameter values:
β = (200, 500)

T
,Γ = diag (40, 100), α = 150 and σ = 10. Using a reparametrization, Algorithm 1

was run in the reparameterized space Rd with d = 7. The code is available in the Git repository
https://github.com/baeyc/fisher-sgd-nlme.

To evaluate the performance and the robustness of our approach with respect to maximum
likelihood estimate and confidence regions, we compared our algorithm to the competing MCMC-
SAEM algorithm Kuhn and Lavielle [2004]. This algorithm is, to the best of our knowledge, the
only other one providing theoretical convergence guarantees towards the MLE when the model
belongs to the curved exponential family. Since we introduced a fixed effect in the model,
the considered model does no longer belong to the exponential family. Therefore, we used a
specific implementation of the MCMC-SAEM algorithm [Comets et al., 2017] which rely on an
exponentialization trick for models that do not belong to the curved exponential family, but is
only usable for some specific nonlinear mixed-effects models. It is also noteworthy to mention
that this algorithm relies on a block-diagonal estimate of the FIM, which has no particular reason
to be block-diagonal in general.

The Fisher-SGD algorithm (we used the version given in Algorithm 1 using a Metropolis-
within-Gibbs sampler) was run on M=1000 datasets generated using the same parameter values.
The competing MCMC-SAEM algorithm was run on the same simulated datasets using the R
package saemix.

Table 1 gives the root mean squared errors (RMSE) associated with each parameter and the
empirical coverages computed as the proportion of the M datasets for which the true parameter
value used to generate the data felt into the 95% confidence region. The confidence regions were
built using automatic differentiation and the delta method (see Appendix C for details). Our ap-
proach performed better than the MCMC-SAEM algorithm, especially for variance components
parameters, i.e. for Γ11, Γ12 and Γ22. Since the RMSE are similar with both algorithms, these
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Table 1: Root mean squared error (RMSE) and empirical coverage of confidence regions built at
the nominal level of 0.95 using the FIM and the parameter estimates, for a total of M = 1000
repetitions. The first line corresponds to the vector of all parameters θ, and thus the coverage
is associated to the confidence region in R7. The simulated values for the parameters are β1 =
200, β2 = 500, α = 150, Γ11 = 40, Γ12 = 0, Γ22 = 100 and σ2 = 100.

Type
Fisher-SGD MCMC-SAEM

RMSE Coverage RMSE Coverage

θ 15.13 0.952 ± 0.014 17.24 0.935 ± 0.015
β1 0.234 0.942 ± 0.012 0.236 0.941 ± 0.015
β2 0.586 0.958 ± 0.010 0.625 0.941 ± 0.015
α 0.414 0.972 ± 0.013 0.416 0.968 ± 0.011

Γ11 2.221 0.951 ± 0.013 2.241 0.949 ± 0.014
Γ12 4.156 0.948 ± 0.014 4.334 0.935 ± 0.015
Γ22 14.324 0.948 ± 0.014 16.492 0.905 ± 0.018
σ2 1.005 0.957 ± 0.012 1.010 0.951 ± 0.013

results suggest that the FIM estimate obtained with Fisher-SGD is more accurate than the one
obtained with the saemix package.

As an illustration, Figure 1 gives the evolution of one of the M trajectories, in the original
parameter space. We can see that the algorithm reaches a neighborhood of the true value at the
end of the pre-heating phase, stabilizes itself around this true value during the heating phase
and reaches convergence during the last phase. Figure 3 in Appendix D.1 gives the evolution
of the diagonal of the estimated FIM, along with the evolution of the learning step across the
iterations.

4.2 Stochastic Block model

We generated 2000 simulated networks according to the Stochastic Block Model presented above
in Section 2.2, with K = 4 groups and with N = 100 nodes or N = 200 nodes.

All networks are generated from the same set of parameters, we choose:

α = (1/4, 1/4, 1/4, 1/4)

p =


2/3 2/3 1/3 2/3
2/3 2/3 2/3 1/3
1/3 2/3 2/3 2/3
2/3 1/3 2/3 2/3


As αT p and pα are constant vectors, expected inner and outer degrees of node do not depend

on clusters, therefore this simulation setting is not an easy case where naive algorithm can be
applied, e.g. Channarond et al. [2012].

As described in Section 2.2, parameters are in a constrained space. To handle these con-
straints, a reparametrization is applied (see Appendix C for details). The complete algorithm
used for estimation in Stochastic Block Model is a particular case of Algorithm 2 where the
preconditionning matrix is computed with the same idea than for the independent case and the
sampling is made with a Gibbs sampler. The complete algorithm is given in Algorithm 5 in
the appendix. However, this algorithm is not sufficient to handle all the cases and for some
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initializations the sampling and the algorithm behavior leads to empty classes: in these cases the
algorithm is restarted from the beginning with a new random initialization. The code is available
in the Git repository https://gitlab.com/jbleger/sbm_with_fisher-sgd.

As other model-based classification methods, SBM is subject to label-switching and the pa-
rameter is identifiable up to a permutation of classes. To compare the estimation to the simulated
value, classes are permuted to maximize the congruence between the posterior of Z and the sim-
ulated value of Z.

The main advantage of our method is that we obtain an estimate of the FIM. As we have the
asymptotic normality property Bickel et al. [2013], we can compute asymptotic confidence interval
of parameters. Then we illustrate our method by evaluating the estimation error with root mean
squared error (RMSE) and by evaluating the coverage of 95% confidence interval obtained with
the parameter estimate and the Fisher Information Matrix estimate. See Appendix C for details.

We chose not to compare ourselves to other methods, since to the authors’ knowledge there
is no method computing the MLE for not small SBM networks, disallowing computation of
asymptotic confidence intervals.

In Figure 2, we show the evolution of parameter estimates (after transformation in the original
parameter space). We see here the practical importance of the pre-heating phase: when latent
variable are not acceptable, rapid evolution of parameters can lead to non convergent algorithm.

Table 2: Results of Fisher-SGD applied on SBM with 2000 replications. Root mean squared
error (RMSE) and empirical coverage of confidence regions built at the nominal level of 0.95
using the FIM and the parameter estimates, for a total of M = 2000 repetitions. The first line
corresponds to the vector of parameters θ, and thus the coverage is associated to the confidence
region in RK2+K−1. See Table 3 in Appendix for complete results with N = 100 and N = 200.

Parameter Simulated
N = 100

RMSE Coverage

θ 0.648 0.936 ± 0.011
α1 0.250 0.044 0.943 ± 0.010
α2 0.250 0.044 0.939 ± 0.010
p1,1 0.667 0.023 0.940 ± 0.010
p1,2 0.667 0.019 0.947 ± 0.010
p1,3 0.333 0.022 0.948 ± 0.010
p1,4 0.667 0.019 0.947 ± 0.010

Results are presented for N = 100 for a subset of the original parameters in Table 2. Results
for all parameters for N = 100 and N = 200 are given in the appendix in Table 3. We deduce
that computed confidence ellipsoid for θ and confidence intervals for α and p are correct, which
validate the MLE and Fisher Information Matrix estimation provided by our algorithm.

5 Conclusion

In this article, we consider parameter estimation in latent variable models. We propose an ef-
ficient stochastic gradient algorithm that includes a preconditioning step to scale the different
directions of the parameter space, homogenizing the evolution of the algorithm. The precon-
ditioner we use corresponds to a positive definite estimate of the Fisher information matrix in
independent data models, which allows to get for free asymptotic confidence intervals for the pa-
rameters as a by-product of the algorithm. Theoretical convergence results are provided under
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mild assumptions for very general latent variables models, without assuming that the density
belongs to the curved exponential density family. Using simulations, we show that our new al-
gorithm performs satisfactorily and gives similar to better performances compare to competing
methods. As we also propose a warming procedure, the method is generic enough to be easily
implemented in very general latent variable models.
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Figure 1: Evolution of the parameter estimates across the iterations in the logistic growth model.
Yellow line: simulated value. The red line is the end of the pre-heating, and the green line is the
end of the heating.
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Figure 2: Evolution of the parameter estimates across the iterations with N = 100 in the
stochastic block model. Yellow line: simulated value. The red line is the end of the pre-heating,
and the green line is the end of the heating. Results for all parameters are given in appendix
Figures 6 and 7.
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A Algorithms

A.1 Algorithms in the independent and non independent case with
details

Algorithms 3 and 4 includes practical details as warming and soft-start described in Section 3.4 in
respectively the independent case and the non-independent case. The authors uses the following
parameters:

• γ0 = 10−4,

• Kpre-heating = 1000,

• Cheating = 1
1000 ,

• α = 2
3 ,
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Algorithm 3 Fisher-SGD in the independent case with details

Input: z0, θ0, y1, . . . , yN
Algorithm parameters: γ0,Kpre-heating, Cheating, α
Initialize a 3-order mean filter with constant Cheating to compute mean grad.
Set heating as not finished
for k=1,. . . ,K do
{The following loop is operated with vector calculus without explicit loop.}
for i=1,. . . ,N do
zki ∼ Πθk−1

(
·
∣∣ zk−1
i , yi

)
where Πθ(· | ·, yi) is a transition kernel of a MCMC having pθ(· | yi)

as stationary distribution for all θ
end for
if k < Kpre-heating then

Set γk = exp ((1− k/Kpre-heating) log γ0)
else if heating not finished then

Set γk = 1
else

Set γk = (k −Kend-heating)
−α

end if
{The following loop is computed without explicit loop, all the gradients are computed in one
step as the jacobian of the vector of criterion, and ∆ with vector calculus.}
for i=1,. . . ,N do

Compute Jki = ∇θ log f
(
yi, z

k
i ; θk−1

)
Compute ∆k

i = (1− γk)∆k−1
i + γkJ

k
i

end for
Compute vk = 1

N

∑N
i=1 J

k
i

{The following loop is computed with vector calculus}
Compute Ik =

1

N

∑N
i=1 ∆k

i

(
∆k
i

)T
if k < Kpre-heating then

Set Pk = (1− γk) max (1, tr (Ik))Id+ γkIk
else

Set Pk = Ik
end if
if k > Kpre-heating and heating not finished then

Update 3-order mean filter with vk
if norm-2 of 3-order mean of gradient is increasing then

Set heating finished
Set Kend-heating = k

end if
end if
Set θk = θk−1 + γkP

−1
k vk

end for
Output: Estimated parameter: θk, estimated Fisher information matrix of the whole sample:
NIk, sample of latent in the posterior distribution:

(
zK−r+1 · · · zK

)
.
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Algorithm 4 Fisher-SGD in the non independent case with details

Input: z0, θ0, y
Algorithm parameters: γ0,Kpre-heating, Cheating, α
Initialize a 3-order mean filter with constant Cheating to compute mean grad.
Set heating as not finished
for k=1,. . . ,K do
zk ∼ Πθk−1

(
·
∣∣ zk−1, y

)
where Πθ(· | ·, y) is a transition kernel of a MCMC having pθ(· | y) as

stationary distribution for all θ
if k < Kpre-heating then

Set γk = exp ((1− k/Kpre-heating) log γ0)
else if heating not finished then

Set γk = 1
else

Set γk = (k −Kend-heating)
−α

end if
Compute vk = ∇θ log f

(
y, zk; θk−1

)
Compute Ik with custom method.
if k < Kpre-heating then

Set Pk = (1− γk) max (1, tr (Ik))Id+ γkIk
else

Set Pk = Ik
end if
if k > Kpre-heating and heating not finished then

Update 3-order mean filter with vk
if norm-2 of 3-order mean of gradient is increasing then

Set heating finished
Set Kend-heating = k

end if
end if
Set θk = θk−1 + γkP

−1
k vk

if k > K − r then
Compute ∇2

θ log f
(
y, zk; θk

)
end if

end for
Output: Estimated parameter: θk, estimated Fisher information matrix of the whole
sample: 1

r

∑K
k=K−r+1∇2

θ log f
(
y, zk; θk

)
, sample of latent in the posterior distribution:(

zK−r+1 · · · zK
)
.
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Algorithm 5 Fisher-SGD for the Stochastic Block Model with details

Input: z0, θ0, y
Algorithm parameters: γ0,Kpre-heating, Cheating, α
Initialize a 3-order mean filter with constant Cheating to compute mean grad.
Set heating as not finished
for k=1,. . . ,K do
{Here, a Gibbs sampler is used}
for i in random permutation of 1,. . . ,N do

zki ∼ f
(
·
∣∣∣ (zk−1

j

)
j 6=i, y; θk−1

)
end for
if k < Kpre-heating then

Set γk = exp ((1− k/Kpre-heating) log γ0)
else if heating not finished then

Set γk = 1
else

Set γk = (k −Kend-heating)
−α

end if
{The following loops is computed without explicit loops, all the gradients are computed in
one step as the jacobian of the vector of criterion, and ∆obs with vector calculus.}
for i in 1,. . . ,N do

for j in 1,. . . ,N do
Compute Jk,obs

ij = ∇θ log f
(
yij |zki , zkj ; θk−1

)
Compute ∆k,obs

ij = (1− γk)∆k−1,obs
ij + γkJ

k,obs
ij

end for
end for
{The following loop is computed without explicit loop, all the gradients are computed in one
step as the jacobian of the vector of criterion, and ∆lat with vector calculus.}
for i in 1,. . . ,N do

Compute Jk,lat
i = ∇θ log f

(
zki ; θk−1

)
Compute ∆k,lat

i = (1− γk)∆k−1,lat
i + γkJ

k,lat
i

end for
Compute vk =

∑
ij J

k,obs
ij +

∑
i J

k,lat
i

{The following computation is computed efficiently with Einstein summation}

Compute Ik =
∑
ij ∆k,obs

ij

(
∆k,obs
ij

)T
+
∑
i ∆k,lat

i

(
∆k,lat
i

)T
if k < Kpre-heating then

Set Pk = (1− γk) max (1, tr (Ik))Id+ γkIk
else

Set Pk = Ik
end if
if k > Kpre-heating and heating not finished then

Update 3-order mean filter with vk
if norm-2 of 3-order mean of gradient is increasing then

Set heating finished
Set Kend-heating = k

end if
end if
Set θk = θk−1 + γkP

−1
k vk

end for
Output: Estimated parameter: θk, estimated Fisher information matrix of the whole
sample: 1

r

∑K
k=K−r+1∇2

θ log f
(
y, zk; θk

)
, sample of latent in the posterior distribution:(

zK−r+1 · · · zK
)
.
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B Proofs of the theorems

Let us first recall the expression of the FIM estimate proposed by Delattre and Kuhn [2023]:

Î(θ) =
1

N

N∑
i=1

E (∇θ log f(yi, Zi; θ) | yi; θ) E (∇θ log f(yi, Zi; θ) | yi; θ)T .

B.1 First setting: realizations of latent are generated from the poste-
rior distribution

We adapt the proof of the convergence of the standard stochastic gradient algorithms (see, e.g.
Bottou et al. [2018] or Ghadimi and Lan [2013]) to our algorithm. The specificity in our proof
comes from the control of the preconditioner term.

Proof of Theorem 3.4. By Taylor-Lagrange inequality and under Assumption 3.3.1, we get for
all k

F (θk+1) ≤F (θk) + 〈∇θF (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2

≤F (θk) + γk〈∇θF (θk), Î(θk)
−1∇θ log f(y, Zk+1; θk)〉

+ γ2
k

L

2
‖Î(θk)

−1∇θ log f(y, Zk+1; θk)‖2

We introduce some notations to simplify the writing of the proof. LetHθ(Z) = −∇θ log f(y, Z; θ).
We introduce also the following notation Ek for the expectation taking with respect to the pos-
terior distribution pθk .

Taking the conditional expectation in the previous inequality and noting that Ek(Hθk(Zk+1)) =
∇θF (θk), we get:

Ek[F (θk+1)] ≤F (θk)− γk〈∇θF (θk), Î(θk)
−1

Ek(Hθk(Zk+1))〉

+ γ2
k

L

2
Ek[‖Î(θk)

−1
Hθk(Zk+1)‖2]

≤F (θk)− γk‖Î(θk)−1/2∇θF (θk)‖2

+ γ2
k

L

2
Ek[‖Î(θk)

−1
Hθk(Zk+1)‖2]

Under Assumption 3.3.2 and 3, taking the total expectation and the sum for l between 0 and k,
we obtain

µm E

(
k∑
l=0

γl‖∇θF (θl)‖2
)
≤ F (θ0)− E(F (θk+1)) + µ2

M

CL

2

k∑
l=0

γ2
l .

We finally obtain the result by noticing that for all 0 ≤ l ≤ k ‖∇F (θl)‖2 ≥ min0≤l′≤k ‖∇F (θl′)‖2
for all l and E[F (θk+1)] ≥ minF .

B.2 Second setting: realizations of latent are generated from a tran-
sition kernel from an ergodic Markov chain having the posterior
distribution as stationary distribution

Proof of Theorem 3.7. We consider now the setting where at iteration k the realization Zk is
sampled from a transition kernel of a Markov chain having the posterior distribution as stationary
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distribution. To state the convergence proof in this setting let us introduce for all integer k the
σ−algebra Fk = σ(θ0, Zl, 0 ≤ l ≤ k).

In this case the expectation E(Hθk(Zk+1)|Fk) is not equal to∇θF (θk), leading to the presence
of a supplementary term due to the use of a MCMC in the simulation task. The proof begins
the same way as in the previous case.

By Taylor-Lagrange inequality and under Assumption 3.3.1, we get for all k

F (θk+1) ≤F (θk) + 〈∇θF (θk), θk+1 − θk〉+
L

2
‖θk+1 − θk‖2

≤F (θk) + γk〈∇θF (θk), Î(θk)
−1∇θ log f(y, Zk+1; θk)〉

+ γ2
k

L

2
‖Î(θk)

−1∇θ log f(y, Zk+1; θk)‖2

Taking first the expectation conditionally to the σ−algebra Fk and introducing ∇θF (θk), we
get:

E(F (θk+1)|Fk) ≤F (θk)− γk〈∇θF (θk), Î(θk)
−1∇θF (θk)〉

+ γk〈∇θF (θk), Î(θk)
−1

(∇θF (θk)− E(Hθk(Zk+1)|Fk))〉

+ γ2
k

L

2
E(‖Î(θk)

−1
Hθk(Zk+1)‖2|Fk)

The difficulty here is to control the additional term Bk = 〈∇θF (θk), Î(θk)
−1

(∇θF (θk) −
E(Hθk(Zk+1)|Fk))〉 in the second line raised up by the MCMC procedure used for the simulation
of Zk.

Let us introduce the notation ηk = Hθk(Zk+1)−∇θF (θk).
Taking full expectation of the previous inequality, we get

E(F (θk+1)) ≤E(F (θk))− γk E(〈∇θF (θk), Î(θk)
−1∇θF (θk)〉)

− γk E(〈∇θF (θk), Î(θk)
−1

E(ηk|Fk)〉)

+ γ2
k

L

2
E(‖Î(θk)

−1
Hθk(Zk+1)‖2)

Therefore reordering the terms we get

γk E(〈∇θF (θk), Î(θk)
−1∇θF (θk)〉) ≤E(F (θk))− E(F (θk+1))

− γk E(〈∇θF (θk), Î(θk)
−1

E(ηk|Fk)〉)

+ γ2
k

L

2
E(‖Î(θk)

−1
Hθk(Zk+1)‖2)

Under Assumption 3.3.2 and 3.3.3, suming for l between 0 and k, we obtain

µm E

(
k∑
l=0

γl‖∇θF (θl)‖2
)
≤ F (θ0)− E(F (θk+1)) + µ2

M

CL

2

k∑
l=0

γ2
l

− E(

k∑
l=0

γl〈∇θF (θl), Î(θl)
−1

E(ηl|Fl)〉)
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To control the last term, we apply the result of Lemma B.3 below which proves that
∑
γk〈∇θF (θk), Î(θk)

−1
ηk〉

converges almost surely. Therefore we get:

µm E

(
k∑
l=0

γl‖∇θF (θl)‖2
)
≤ F (θ0)− E(F (θk+1)) + µ2

M

CL

2

k∑
l=0

γ2
l + C

Finally we get the result by dividing the inequality by
∑k
l=0 γl.

Before stating Lemma B.3, we first establish several preliminary results needed for the proof.
In particular we first introduce the Poisson equation as done for example in Allassonniere and
Kuhn [2015], Atchadé et al. [2017] and establish several technical lemmas derived below. Recall
Hθ(Z) = −∇θ log f(y, Z; θ) and ηk = Hθk(Zk+1)−∇θF (θk).

Lemma B.1. Assume 3.5. Then there exists a measurable function (θ, z) → Ĥθ(z) such that
supθ |Ĥθ|W <∞ and for any (θ, z) ∈ Θ×Z,

Ĥθ(z)−ΠθĤθ(z) = Hθ(z)−
∫
Hθ(z)pθ(z)dz (4)

Moreover there exists a constant C such that for any (θ, θ′) ∈ Θ2,

‖ΠθĤθ(z)−Πθ′Ĥθ′(z)‖W ≤ C‖θ − θ′‖

Proof of Lemma B.1. The proof is established in details in Lemma 4.2 of Fort et al. [2011].

Lemma B.2. Under Assumptions 3.5.1,3.5.2, we have supk E(W p(Zk)) <∞.

Proof of Lemma B.2. Since Zk+1 is generated from the transition kernel Πθk(·|Zk, y), we get :

E(W p(Zk+1)) = E(E(W p(Zk+1)|Fk)) = E(ΠθkW
p(Zk))

Applying the drift inequality of Assumption 3.5.2, we get

E(W p(Zk+1)) ≤ λE(W p(Zk)) + b

The result is then obtained by induction.

Lemma B.3. Assume Assumptions 3.5.1, 3.5.2, 3.5.3, 3.6 and Θ is bounded. Then
∑
γk〈∇θF (θk), Î(θk)

−1
ηk〉

converges almost surely.

Proof of Lemma B.3. Applying Lemma B.1, we get that there exist a function Ĥθk satisfying

equation (4). Therefore we get ηk = Ĥθk(Zk+1) − ΠθkĤθk(Zk+1). Let us denote by Mk =

Ĥθk(Zk+1)−ΠθkĤθk(Zk), Rk = ΠθkĤθk(Zk)−Πθk+1
Ĥθk+1

(Zk+1), andR′k = Πθk+1
Ĥθk+1

(Zk+1)−
ΠθkĤθk(Zk+1) such that ηk = Mk + Rk + R′k. We will prove successively that the three sums

E(
∑
γk‖〈∇θF (θk), Î(θk)

−1
Mk〉‖) , E(

∑
γk‖〈∇θF (θk), Î(θk)

−1
Rk〉‖) , E(

∑
γk‖〈∇θF (θk), Î(θk)

−1
R′k〉‖)

are finite with probability one.
Let us first note that the term γk〈∇θF (θk), Î(θk)

−1
Mk〉 is a martingale increment with re-

spect to the filtration (Fk). By Lemma B.1 and under Assumption 3.5.2, we get that there exists
C such that with probability one for all k ‖Mk‖ ≤ C(W (Zk+1) + W (Zk)). Applying classi-

cal result on martingales Hall and Heyde [2014], we get that
∑
γk〈∇θF (θk), Î(θk)

−1
Mk〉 con-

verges almost surely if
∑
γ2
k‖Î(θk)

−1∇θF (θk)‖2‖Mk‖2 < ∞ almost surely. By Assumption 3.2,
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‖Î(θk)
−1∇θF (θk)‖2 ≤ Cµ2

M and ‖Mk‖2 ≤ 2C(W 2(Zk+1)+W 2(Zk)) leading to E(
∑
γ2
k‖Î(θk)

−1∇θF (θk)‖2‖Mk‖2) <
∞ which gives the control of the second sum.

Concerning the second term, applying the Abel transformation leads to

K∑
k=0

γk〈∇θF (θk), Î(θk)
−1
Rk〉 =

K∑
k=1

〈γk Î(θk)
−1∇θF (θk)− γk−1Î(θk−1)

−1∇θF (θk−1),ΠθkĤθk(Zk)〉

+ γ0〈Î(θ0)
−1∇θF (θ0),Πθ0Ĥθ0(Z0)〉 − γK〈Î(θK)

−1∇θF (θK),ΠθK+1
ĤθK+1

(ZK+1)〉

Let us denote by ξk = γk Î(θk)
−1∇θF (θk)− γk−1Î(θk−1)

−1∇θF (θk−1). Therefore we get

‖ξk‖ ≤ |γk − γk−1|‖Î(θk)
−1∇θF (θk)‖+ γk−1‖Î(θk)

−1∇θF (θk)− Î(θk)
−1∇θF (θk−1)‖

+ γk−1‖Î(θk)
−1∇θF (θk−1)− Î(θk−1)

−1∇θF (θk−1)‖

Under Assumption 3.2, there exists M > 0 such that for all k ‖Î(θk)
−1 − Î(θk−1)

−1‖ ≤M‖θk −
θk−1‖ therefore we get

‖ξk‖ ≤ |γk − γk−1|‖Î(θk)
−1∇θF (θk)‖+ γk−1µM‖∇θF (θk)−∇θF (θk−1)‖

+ γk−1CM‖θk − θk−1‖
≤ |γk − γk−1|CµM + γk−1µML‖θk − θk−1‖+ γk−1CM‖θk − θk−1‖

Taking the expectation, we get

E(‖ξk‖) ≤ |γk − γk−1|CµM + γ2
k−1C(µML+ CM)

By Lemma B.1 and Assumptions 3.5.2 and 3.5.3 there exists C such that with probability one
for all k ‖ΠθkĤθk(Zk)‖ ≤ CW (Zk). Moreover by Lemma B.2, we get supk E(W 2(Zk)) <∞ thus

we get
∑

E(‖γk〈∇θF (θk), Î(θk)
−1
Rk〉‖) <∞ which control the second sum.

Finally let us consider the third sum. By Lemma B.1 there exists C such that with probability
one for all k

‖〈∇θF (θk), Î(θk)
−1
R′k〉‖ ≤ CµM‖θk − θk+1‖W (Zk+1)

≤ Cµ2
Mγk+1W

2(Zk+1)

By Lemma B.2 we get
∑
γ2
k E(W 2(Zk+1)) <∞ which implies that E(

∑
γk‖〈∇θF (θk), Î(θk)

−1
R′k〉‖)

is finite almost surely.
This concludes the proof of Lemma B.3.
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C Reparametrization of models and confidence intervals

C.1 Reparametrization

Models in numerical experiments use a constrained parameter space.
In particular, we have:

Logistic growth mixed-effects model: parameters are β ∈ R∗+×R, α ∈ R∗+, Γ ∈ S2
++, where

S++
p is the set of symmetric, positive definite matrices of size p× p and σ ∈ R∗+. Then, the

original parameter space is R∗+×R×R∗+×S++
2 ×R∗+ where S++

2 is the set of 2× 2 positive
definite matrix.

Stochastic Block Model: parameters are α ∈ S̊K−1 and p ∈ (0, 1)
K×K

where S̊K−1 ⊂ RK is
the K − 1 dimentionnal open unit simplex.

Handling directly this parameter space in our algorithm could lead to constraint violations.
To handle constraints we propose to use a bijective differentiable mapping from the constrained
parameter space to Rd.

Reparametrization are build using the Parametrization Cookbook Leger [2023], and practi-
cally using the Python module parametrization cookbook.

We introduce the original parameter as a function of θ ∈ Θ = Rd.

Logistic growth mixed-effects model: Θ = Rd with d = 7, and we use αθ, βθ, Γθ and σθ.

Stochastic Block Model: Θ = Rd with d = K2 +K − 1, and we use αθ and pθ.

C.2 Confidence ellipsoid

We obtain θ̂ an estimate of θ0 and Îwhole

(
θ̂
)

the estimation of the Fisher Information Matrix of

the whole sample. Therefore we have asymptotically:

Îwhole

(
θ̂
)1/2(

θ̂ − θ0

)
(d)−−−−−→

n→+∞
N (0, Id).

So we compute the asymptotic confidence ellipsoid on θ0 at confidence level 1− a:{
θ ∈ Rd :

(
θ − θ̂

)T [
Îwhole

(
θ̂
)](

θ − θ̂
)
≤ χ2

d;1−a.

}
C.3 Confidence interval on original parameter

With η an original parameter of the model before reparametrization (see section above for
original parameter in logistic growth mixed-effects model or in stockastic block model). After
reparametrization this original parameter is a function of θ, noted ηθ.

Applying the reparametrization, from θ̂, we obtain ηθ̂ an estimate of η0.
Applying delta-method Van der Vaart [2000], we obtain the asymptotic distribution of ηθ̂:

ηθ̂ − η0√
gTη
θ̂

[
Îwhole

(
θ̂
)]−1

gη
θ̂

(d)−−−−−→
n→+∞

N (0, 1),

with

gη
θ̂

=
d ηθ
d θ

∣∣∣∣
θ=θ̂

,
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and gη
θ̂

is computed with automatic differentiation.
Then we obtain the asymptotic confidence interval on η0 at confidence level (1− a):[

ηθ̂ ± u1−a/2

√
gTη
θ̂

[
Îwhole

(
θ̂
)]−1

gη
θ̂

]
.
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D Supplementary numerical results

D.1 Logistic growth mixed-effects model
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Figure 3: Evolution of the diagonal elements of the FIM estimate across the iterations (in blue),
along with the evolution of the learning step (in red).

D.2 Real data analysis

We applied our algorithm to a real dataset from a study on coucal growth rates [Goymann et al.,
2016]. In this study, body weights of N = 259 birds were collected from their hatching date until
they left the nest (see Figure 4). The number of measurements per bird ranges from 1 to 9.

The logistic growth mixed model defined in Section D.1 was fitted to the dataset, with the
asymptotic weight and the inflexion point (i.e. the age at which bird i reaches half its asymptotic
body mass) as random effects. The tuning parameters of the algorithm were set as follows:
Kpre−heating = 2000, K = 10000, Cheating = 100, α = 2/3, λ0 = 10−4, and the algorithm was
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Figure 4: Evolution of body weight (in g) as a function of age (in days from hatching)

initialized at a random value for θ. Results are given in Figure 5. The final estimates were
β̂1 = 97.15, β̂2 = 6.50, α̂ = 2.80, Γ̂11 = 271.00, Γ̂12 = 7.75, Γ̂22 = 1.10 and σ̂2 = 19.80. Our
results are consistent with those provided by the semix package implemented in R, which performs
maximum likelihood estimation using the SAEM algorithm for which theoretical guarantees only
exist in the exponential family setting. However in our case, due to the presence of a fixed effect,
the model does not belong to the curved exponential family as explained in the main body of
the paper.
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Figure 5: Evolution of the parameter estimates across the iterations on the real dataset.
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D.3 Stochastic Block Model
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Figure 6: Evolution of the α estimates across the iterations with N = 100 and K = 4. Yellow
line: simulated value. The red line is the end of the pre-heating, and the green line is the end of
the heating.

31



0.0

0.2

0.4

0.6

0.8

1.0
p11 p12 p13 p14

0.0

0.2

0.4

0.6

0.8

1.0
p21 p22 p23 p24

0.0

0.2

0.4

0.6

0.8

1.0
p31 p32 p33 p34

0 1000 2000
iterations

0.0

0.2

0.4

0.6

0.8

1.0
p41

0 1000 2000
iterations

p42

0 1000 2000
iterations

p43

0 1000 2000
iterations

p44

Figure 7: Evolution of the p estimates across the iterations with N = 100 and K = 4. Yellow
line: simulated value. The red line is the end of the pre-heating, and the green line is the end of
the heating.
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N = 100 N = 200
Parameter Simulated value RMSE Empirical coverage RMSE Empirical coverage
Global θ 0.648 0.936± 0.011 0.415 0.956± 0.009

α1 0.250 0.044 0.943± 0.010 0.031 0.940± 0.010
α2 0.250 0.044 0.939± 0.010 0.031 0.943± 0.010
α3 0.250 0.044 0.941± 0.010 0.031 0.931± 0.011
α4 0.250 0.044 0.945± 0.010 0.031 0.940± 0.010
p1,1 0.667 0.023 0.940± 0.010 0.012 0.949± 0.010
p1,2 0.667 0.019 0.947± 0.010 0.010 0.949± 0.010
p1,3 0.333 0.022 0.948± 0.010 0.012 0.953± 0.009
p1,4 0.667 0.019 0.947± 0.010 0.010 0.948± 0.010
p2,1 0.667 0.020 0.944± 0.010 0.010 0.947± 0.010
p2,2 0.667 0.022 0.945± 0.010 0.012 0.952± 0.009
p2,3 0.667 0.020 0.940± 0.010 0.010 0.953± 0.009
p2,4 0.333 0.020 0.942± 0.010 0.011 0.951± 0.010
p3,1 0.333 0.023 0.943± 0.010 0.013 0.943± 0.010
p3,2 0.667 0.019 0.950± 0.010 0.010 0.939± 0.011
p3,3 0.667 0.023 0.941± 0.010 0.013 0.955± 0.009
p3,4 0.667 0.020 0.943± 0.010 0.009 0.950± 0.010
p4,1 0.667 0.020 0.939± 0.010 0.009 0.957± 0.009
p4,2 0.333 0.020 0.949± 0.010 0.011 0.947± 0.010
p4,3 0.667 0.019 0.955± 0.009 0.010 0.952± 0.009
p4,4 0.667 0.024 0.946± 0.010 0.011 0.954± 0.009

Table 3: Detailed result for numerical experiments on SBM with 2000 replications. The RMSE

given for θ is the empirical mean of ‖θ̂ − θ0‖
2

and the coverage is the coverage of the confidence

ellipsoid in RQ2+Q−1 built at the nominal level of 0.95. For all original parameter, the RMSE is
computed after transformation of θ̂ in original parameter space, and the confidence interval built
at the nominal level of 0.95 is obtained by applying delta method with the Fisher Information
Matrix estimate.
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