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Context
Realisability is a technique that extracts the computational content of proofs [Miq09]. It was first introduced in 1945
by Kleene for Heyting Arithmetic – an Intuitionnistic axiomatization of arithmetic – based on the codes of Gödel’s
partial recursive functions [Kle45]. Fixing an untyped computational model the methodology of Realisability is based
on two aspects:

• Types are given a computational status: the interpretation of a type1 𝐴 is a set of programs ⟦𝐴⟧, which behave
similarly – its element are called realizers of 𝐴.

• A simple process transforming the proofs of the realized logic in programs is defined, introducing a non trivial
predicate on programs, namely, some programs represent a proof, the correct programs, while others do not,
the incorrect programs.

A theorem of adequacy or soundness usually follows, e.g. each proof of 𝐴 corresponds to a realizer of 𝐴. However,
not all realizers are correct programs thus not all realizers represent a proof. In fact, it was revealed by realisability
models based on orthogonality that the presence of incorrect programs is crucial to give a computational status to
correctness.

The models of Realisability involving a notion of orthogonality appeared years after the introduction of Realis-
ability by Kleene. At the time realisability was only considered for intuistionnistic logics due to their ‘constructive’
nature, and it is only in 1990 that Jean-Louis Krivine introduced classical realisability aiming at extending realisabil-
ity techniques to classical logic. This construction is based on an extension of the untyped lambda calculus, but, in
order to capture a given context (stack) to potentially restore it later, the syntax is not only extended with the call/cc
operator but also with a countably infinite set of stack constants. As a consequence, (as in Kleene’s realisability) only
some of the programs represent a proof, namely those not containing stack constants.

This introduction of "incorrect" terms is essential, as it introduces in the syntax semantic information [NPS16]
that can be used to test correct (and incorrect) terms. This concept of testing is captured by the definition of an
orthogonality relation (here between terms and stacks), which is used to define the interpretation of types (as the set
of terms passing a given set of tests).

In parallel with the work of Krivine, similar realisability constructions have been introduced by Jean-Yves Girard
in order to interpret Linear Logic. While the orthogonality construction was clearly put forth in Ludics, the ideas
and first occurrences can be traced back to the first model of geometry of interaction (GoI) [Gir87], restricted to
multiplicative linear logic, which interpreted proofs as permutations.

Later GoI construction took several diverse forms, generalising permutations by operators in a C*-algebra (goi1
[Gir89], goi2 [Gir88]), first-order prefix rewriting (goi3) [Gir95], or von Neumann Algebras (goi5) [Gir11].

In a series of recent papers [Sei12; Sei16; Sei17; Sei13; Sei15], Thomas Seiller proposed a combinatorial approach
to the Geometry of Interaction, interaction graphs, which specialises to all the previous ‘geometries’ of interaction
proposed by Girard. It is crucial to note that this work on goi constructs the types of Linear Logic via a realisabilty
method, involving orthogonality within the computational model of interaction graphs. However, proofs are inter-
preted in these models as abstract objects (generalisations of dynamical systems) which remain far from the general
intuition of what a proof is.

This is where our work starts: we extend the use of realizability techniques to Linear Logic in an untyped variant
of the well known and ‘canonical’ context of proof nets; at first to Multiplicative Linear Logic, and then together
with second order quantification. We obtain the results of soundness (e.g. adequacy) and completeness both for

1Equivalently, having the Curry–Howard correspondence in mind, 𝐴 is a formula.



MLL and MLL✠ – with furthermore assumptions on the interpretation basis. Soundness is also true at the second–
order for MLL2 proofs. Moreover we show that the types constructed by induction for both the multiplicative and
second–order preserve the finite testability 2. In particular this is true for the types capturing the proofs of the
multiplicative fragment: this is done by encoding the Danos Regnier criterion [DR89] inMLL✠ proofs, we provide, to
our knowledge, the first proper proof of the folklore result which states that ’tests of𝐴 are proofs of its negation’. We
are still investigating how to capture the proofs of the second order multiplicative fragment while remaining finitely
testable. We believe this will lead to a novel correctness criterion for second order multiplicative proof structures.

Summary of our work
As a computational model we chose the model of nets a modern formulation – as hypergraphs – of the model of proof
structures introduced by Jean Yves Girard in his seminal paper.

Definition 1 (Directed labelled hypergraph). Given a set 𝑉 we denote P≤ (𝑉 ) the set of finite and totally ordered
subsets of 𝑉 . Suppose given a set 𝐿 of labels.

A directed (𝐿-labelled) hypergraph is a tuple (𝑉 , 𝐸, s, t, ℓ) where 𝑉 is a set of positions, and 𝐸 is a set of elements
called links, s : 𝐸 → P≤ (𝑉 ) is the source map, t : 𝐸 → P≤ (𝑉 ) is the target map, and ℓ : 𝐸 → 𝐿 is the labelling map.

The conclusion of an hypergraph is a position which is source of no link 𝑒 . An ordered hypergraph (H , 𝑎) is an
hypergraph together with an order on its conclusions.

Remark 2. We consider all the hypergraphs to be ordered.

Definition 3. Given two hypergraphsH1 = (𝑉1, 𝐸1, s1, t1, ℓ1) andH2 = (𝑉2, 𝐸2, s2, t2, ℓ2) their sum is

H1 + H2 ≜ (𝑉1 ∪𝑉2, 𝐸1 ⊎ 𝐸2, s1 ⊎ s2, t1 ⊎ t2, ℓ1 ⊎ ℓ2).

Remark 4. The sum is defined for hypergraphs which have disjoint set of links but the vertices need not to be disjoint.
The definition can be adapted to any pair of hypergraphs after a carefull renaming of their links. Thus we consider
each sum to occur between two hypergraphs with disjoint links.
Notation 5. A link 𝑒 will be written as ⟨𝑢 ▷𝑙 𝑣⟩ where s(𝑒) = 𝑢, t(𝑒) = 𝑣 , and ℓ (𝑒) = 𝑙 . With this notation, a directed
labelled hypergraph with no isolated position (e.g. that are neither output or input of an edge) can always be written
as a formal sum ∑︁

𝑒∈𝐸
⟨s(𝑒) ▷ℓ (𝑒 ) t(𝑒)⟩.

The definition is given in all generality but the proof–structures corresponds to a subclass of directed hypergraphs.

Definition 6. An hypergraphH = (𝑉 , 𝐸, t, s) is:
• surjective whenever

⋃
𝑒∈𝐸 t(𝑒) = 𝑉 . Meaning each position of the hypergraph is the target of some link.

• source–disjoint if the sets s(𝑒) for 𝑒 ∈ 𝐸 are pairwise disjoint.
• target–disjoint if the sets t(𝑒) for 𝑒 ∈ 𝐸 are pairwise disjoint.

Definition 7 (Multiplicative module). The set of labels is fixed as 𝐿 = {✠, ⊗,`, cut}. A multiplicative module is
an ordered hypergraph (H , 𝑎) which is target and source disjoint, and such that ✠-labelled links have no inputs,
cut-labelled links have exactly two inputs and no outputs, and ⊗- and `-labelled links have exactly two inputs and
one output.

In other words,H is a sum (preserving the source–disjoint and target–disjoint properties) of links of the form:

⟨▷✠ 𝑝1, . . . , 𝑝𝑛⟩, ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩, ⟨𝑝1, 𝑝2 ▷` 𝑝⟩, ⟨𝑝1, 𝑝2 ▷cut⟩

At this point we can define multiplicative proof structures, for simplicity we call them nets (while the terminology
proof nets remains unchanged).

Definition 8 (Multiplicative net). A multiplicative net is a surjective multiplicative module.

The model of nets comes with a notion of computation which correspond to a rewriting of the hypergraph.

Definition 9 (Types of cut). Given a multiplicative net 𝑆 the type of cut link 𝑐 = ⟨𝑝, 𝑞 ▷⟩ occuring in 𝑆 is the pair of
labels of the links of output 𝑝 and 𝑞. Thus there are 6 types of cuts (up to symmetry). More precisely, we distinguish:

• multiplicative cuts, of type (⊗/`);
• clash cuts, of type (⊗/⊗) or (`/`);
• glueing cuts, of type (✠/✠);
• non–homogeneous cuts, reversible cuts of type (⊗/✠) and irreversible cuts of type (`/✠).

2



1 2 3 4
`
5

⊗

6

cut

→
1 2 3 4

cut cut

1 2 3 4
`
5

`
6

cut

→ 0 𝑝1 . . . 𝑝𝑛 𝑞1 . . . 𝑞𝑘

✠ ✠

cut

→ 𝑝1 . . . 𝑝𝑛−1 𝑞2 . . . 𝑞𝑘

✠

4 5

𝑝1 . . . 𝑝𝑛

`
6

✠

cut

→ 4 5 𝑝11 𝑞1 . . . 𝑞𝑘 𝑝21 𝑞𝑘+1 . . . 𝑞𝑛

✠ ✠

cut cut

4 5

𝑝1 . . . 𝑝𝑛

⊗

6
✠

cut

→ 4 5 𝑝11 𝑝21 𝑝2 . . . 𝑝𝑛

✠

cut cut

Figure 1: Rules for the homogeneous cut elimination (in the first row) and non homogeneous cut–elimination
(in the second row). The non–homogeneous cut elimination of a daimon against a `–link is non deterministic,
{𝑞1, . . . , 𝑞𝑘 }, {𝑞𝑘+1, . . . , 𝑞𝑛} is a partition of {𝑝2, . . . , 𝑝𝑛}.

Notation 10. We write 𝑢 · 𝑣 the concatenation of sequences. Given 𝑢 = (𝑢1, . . . , 𝑢𝑛) a sequence of element in a set 𝑋
and an integer 𝑖 ∈ {1, . . . , 𝑛}, we denote by 𝑢<𝑖 (resp. 𝑢>𝑖 ) the sequence (𝑢1, . . . , 𝑢𝑖−1) (resp. (𝑢𝑖+1, . . . , 𝑢𝑛)). Moreover,
we write 𝑢 [𝑖 ← 𝜖] the sequence 𝑢<𝑖 · 𝑢>𝑖 . Note this induces a reindexing of elements that will need to be handled
with care.

Definition 11 (homogeneous cut elimination). The relation of homogeneous cut elimination on multiplicative nets is
the rewriting relation defined as the contextual closure of the following:

⟨▷✠ 𝑝⟩ + ⟨▷✠ 𝑞⟩ + ⟨𝑝𝑖 , 𝑞 𝑗 ▷⟩ → ⟨▷✠ 𝑝 [𝑖 ← 𝜖] · 𝑞 [ 𝑗 ← 𝜖]⟩
⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ + ⟨𝑝, 𝑞 ▷⟩ → ⟨𝑝1, 𝑞1 ▷⟩ + ⟨𝑝2, 𝑞2 ▷⟩

Definition 12 (Non–homogeneous cut elimination). The non homogeneous reduction is denoted→𝑛ℎ , and defined
as the extension of the homogeneous cut-elimination with the following rules:

• A redex ⟨▷✠ 𝑝⟩ + ⟨𝑝𝑖 , 𝑞 ▷cut⟩ + ⟨𝑞1, 𝑞2 ▷` 𝑞⟩ reduces to ⟨▷✠ 𝑢, 𝑟1⟩ + ⟨▷✠ 𝑣, 𝑟2⟩ + ⟨𝑟1, 𝑞1 ▷cut⟩ + ⟨𝑟2, 𝑞2 ▷cut⟩,
where 𝑢, 𝑣 are such that 𝑢 · 𝑣 is a reordering of 𝑝 [𝑖 ← 𝜖], and 𝑟1, 𝑟2 are fresh positions.

• A redex ⟨▷✠ 𝑝⟩ + ⟨𝑝𝑖 , 𝑞 ▷cut⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩ reduces to ⟨▷✠ 𝑢⟩ + ⟨𝑟1, 𝑞1 ▷cut⟩ + ⟨𝑟2, 𝑞 ▷cut⟩, where 𝑟1, 𝑟2 are
fresh positions and 𝑢 = 𝑝<𝑖 · 𝑟1 · 𝑟2 · 𝑝>𝑖 .

Remark 13. The non homogeneous cut elimination is not confluent. In particular the reduction of irreversible cuts
may make normal forms of the original net unreachable.
Notation 14. Given a net 𝑆 we use out(𝑆) to denote the conclusions of 𝑆 .

Nets can interact in a natural manner: by placing cuts between their outputs.

Definition 15 (Interface). The interface of two nets 𝑆 and 𝑅 is an injective and functional relation on out(𝑆) ×out(𝑅).
An interface is total whenever it is defined for all conclusions of 𝑆 .

An interface between two nets (𝑆, 𝑝1 < · · · < 𝑝𝑛) and (𝑅,𝑞1 < · · · < 𝑞𝑘 ). is regular whenever it contains only pair
of the form (𝑝𝑖 , 𝑞𝑖 ). The identity interface is the relation, denoted id, defined when𝑛 = 𝑘 by id = {(𝑝𝑖 , 𝑞𝑖 ) | 1 ≤ 𝑖 ≤ 𝑛}.
The projective interface of size 𝑙 ≤ 𝑛 is the regular interface between 𝑆 and 𝑅 that is defined exactly for the elements
of {𝑝1, . . . , 𝑝𝑙 } we denote it pr𝑛𝑙 .

Definition 16 (Interaction of two nets). Let 𝑆,𝑇 be two multiplicative modules and 𝜎 and interface of 𝑆 and 𝑇 . The
interaction of the nets 𝑆 and 𝑇 along the interface 𝜎 , is denoted 𝑆 ::𝜎 𝑇 and corresponds to

𝑆 ::𝜎 𝑇 ≜ 𝑆 +𝑇 +
∑︁
(𝑝,𝑞) ∈𝜎

⟨𝑝, 𝑞 ▷cut⟩.

Definition 17 (Orthogonality). Two nets 𝑆1 and 𝑆2 are orthogonal if there exists an interface 𝜎 such that 𝑆1 ::𝜎 𝑆2 →∗
⟨▷⟩. In that case we write 𝑆1 ⊥ 𝑆2.

Notation 18. For the purpose of readability given two nets 𝑆 and𝑇 with respective conclusions 𝑝1, . . . , 𝑝𝑛 and𝑞1, . . . , 𝑞𝑘 ,
say𝑚 =𝑚𝑖𝑛(𝑛, 𝑘), we will denote the interaction 𝑆 ::pr𝑚 𝑇 by 𝑆 :: 𝑇 , whenever there is no ambiguity. For instance if
𝑆 and 𝑇 have the same number of conclusion, 𝑆 :: 𝑇 denotes 𝑆 ::id 𝑇 .

Definition 19 (Types). The orthogonal 𝐴⊥ of a set of multiplicative nets 𝐴 is defined by {𝑃 | ∀𝑎 ∈ 𝐴, 𝑃 ⊥ 𝑎}. A type
A is a set of multiplicative nets such that A⊥⊥ = A, or equivalently such that A = 𝐵⊥ for some set 𝐵.

2A type A is finitely testable if there exists a finite set 𝐵 such that A = 𝐵⊥.
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Remark 20. The nets in a type A need to all have the same number of conclusion.
Notation 21. Given a net 𝑆 we let Pos(𝑆) denote its set of positions.

Definition 22 (Constructions on types). The parallel sum of two types A and B is defined as

A ∥ B = {𝑎 + 𝑏 | 𝑎 ∈ A, 𝑏 ∈ B, Pos(𝑎) ∩ Pos(𝑏) = ∅}⊥⊥.

The functional composition of two types A and B, is defined as:

A · B = {𝑆 | for any 𝑎 ∈ A⊥, 𝑆 :: 𝑎 ∈ B}⊥⊥

Notation 23. Given a net 𝑆 with its conclusion ordered as 𝑝1 < · · · < 𝑝𝑛 for an integer 1 ≤ 𝑖 ≤ 𝑛 we denote 𝑆 (𝑖) the
conclusion 𝑝𝑖 of 𝑆 .

Definition 24 (Sequential construction on types). Given A and B two types we define two constructions:
• The tensor product of two types, A ⊗ B = {𝑎 + 𝑏 + ⟨𝑎(1), 𝑏 (1) ▷⊗ 𝑝⟩ | Pos(𝑎) ∩ Pos(𝑏) = ∅, 𝑎 ∈ A, 𝑏 ∈ B}⊥⊥.
• The `–product of two types, A` B = (A⊥ ⊗ B⊥)⊥.

Definition 25 (Interpretation Basis). An interpretation basis B is a function that associate to each atomic proposition
𝑋 a type ⟦𝑋⟧B , the interpretation of 𝑋 , such that

• Each net in ⟦𝑋⟧B has one conclusion.
• For any atomic proposition 𝑋 we have ⟦𝑋⊥⟧B = ⟦𝑋⟧⊥B .

Definition 26 (Realizer of a formula). Given an interpretation basis B, the interpretation of a formula is lifted from
atomic formula’s to any formula of MLL by induction;

⟦𝐴 ⊗ 𝐵⟧B ≜ ⟦𝐴⟧B ⊗ ⟦𝐵⟧B .
⟦𝐴 ` 𝐵⟧B ≜ ⟦𝐴⟧B ` ⟦𝐵⟧B .

If there is no ambiguity we relax the notation ⟦𝐴⟧B to ⟦𝐴⟧. A realizer of a formula 𝐴 is a net 𝑆 belonging to ⟦𝐴⟧;
this is denoted 𝑆 ⊩B 𝐴. Eventually we might relax the notation to 𝑆 ⊩ 𝐴.

A multiplicative net 𝑆 realizes a sequent 𝐴1, . . . , 𝐴𝑛 ofMLL formulas whenever 𝑆 belongs to the type ⟦𝐴1⟧ • · · · •
⟦𝐴𝑛⟧. In that case we denote 𝑆 ⊩B 𝐴1, . . . , 𝐴𝑛 , and the set of realizers is denoted ⟦𝐴1, . . . , 𝐴𝑛⟧B .

Notation 27. A well–known inductive process maps a proof 𝜋 fromMLL,MLL✠ (orMLL2) to a class of (second order)
multiplicative net ⟦𝜋⟧ called its representant. Whenever a net 𝑆 represents a proof 𝜋 of Γ from a proof system S we
denote 𝑆 ⊢S Γ.

Definition 28 (Approximable interpretation basis). An interpretation basis B is approximable whenever for any
propositional variable 𝑋 the interpretation ⟦𝑋⟧B contains the unary daimon link ⟨▷✠ 𝑝⟩.

Theorem 29 (Soundness). Given Γ a sequent ofMLL and 𝑆 a multiplicative net.
• For any interpretation basis B; 𝑆 ⊢MLL Γ ⇒ 𝑆 ⊩B Γ.
• For any approximable interpretation basis B; 𝑆 ⊢MLL✠ Γ ⇒ 𝑆 ⊩B Γ.

Notation 30. Given an interpretation basisB we letB denote the interpretation basis such that for any atomic formula
𝑋 we have ⟦𝑋⟧B = ⟦𝑋⟧⊥B .

Definition 31. A multiplicative net is cut–free when it does not contain any cut–links.

Theorem 32 (MLL✠ completeness). Given some sequent Γ and 𝑆 a cut–free net and B an approximable interpretation
basis, if 𝑆 realizes both ⟦Γ⟧B and ⟦Γ⟧B then 𝑆 represents a proof of Γ from MLL✠ .

Remark 33. The previous theorems imply that in particular – for cut–free nets –
⋂
B:𝑎𝑝𝑝𝑟𝑜𝑥⟦Γ⟧B corresponds to the

proofs of Γ inMLL✠ .
Notation 34. Given an interpretation basis B and a type A we denote B{𝑋 ↦→ A} the base which maps 𝑋 to A and
𝑌 ≠ 𝑋 to ⟦𝑌⟧B .

Definition 35 (Intersection and union type). Let B be an interpretation basis, and Ω be a set of types with one
output. Given a Γ a sequent ofMLL formulas and 𝑋 a propositional variable the intersection type on Ω of Γ in 𝑋 w.r.t.
to B is defined as follow;

⟦
⋂
𝑋 ∈Ω

Γ⟧B ≜
⋂
𝑅∈Ω
⟦Γ⟧B{𝑋 ↦→𝑅} .

Furthermore we define the dual construction the union type of 𝐴 over 𝑋 as its orthogonal,

⟦
⋃
𝑋 ∈Ω

Γ⟧B ≜
(⋃
𝑅∈Ω
⟦Γ⟧B{𝑋 ↦→𝑅}

)⊥⊥
.
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Definition 36. A cyclic test is a net ⟨▷✠ 𝑝1, 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷⊗ 𝑝⟩, it is denoted 𝑇 (⊗). A disjoint test is a net ⟨▷✠
𝑝1⟩ + ⟨▷✠ 𝑝2⟩ + ⟨𝑝1, 𝑝2 ▷` 𝑝⟩, it is denoted 𝑇 (`).

The cyclic resp. disjoint types are the types generated by the cyclic (resp. disjoint) tests. They are denoted T(⊗)
and T(`).

Given an interpretation basis B and 𝑋 a propositional variable the set of test for 𝑋 relatively to B is denoted
TB (𝑋 ) and corresponds to the set made of three types {⟦𝑋⟧B, T(⊗), T(`)}.
Definition 37. A multiplicative net is proof like whenever its daimon links have exactly two outputs.

Theorem 38 (MLL completeness). Given 𝑆 a proof like and cut–free net and B some approximable interpretation basis.
If 𝑆 belongs to

⋂
𝑋 ∈V⟦

⋂
𝑋 ∈TB (𝑋 ) Γ⟧B and

⋂
𝑋 ∈V⟦

⋂
𝑋 ∈TB (𝑋 ) Γ⟧B then 𝑆 is the image of a proof in MLL.

Remark 39. Let Ω be the set of types with one output,
⋂

𝑋 ∈V⟦
⋂

𝑋 ∈Ω Γ⟧B is contained in
⋂

𝑋 ∈V⟦
⋂

𝑋 ∈TB (𝑋 ) Γ⟧B .
Furthermore, since a cut free element of

⋂
𝑋 ∈V⟦

⋂
𝑋 ∈TB (𝑋 ) Γ⟧B is a proof (and so cut free nets form a filter3 of that

type) the soundness forMLL proofs ensure that this type belongs to the intersection
⋂

𝑋 ∈V⟦
⋂

𝑋 ∈Ω Γ⟧B . Hence these
two sets are the same.

This is important to ensure the finiteness of the testability of the intersection type on Ω: the finite intersections
of finitely testable types remain finitely testable.

Definition 40 (realizers ofMLL2). Let B be an approximable interpretation basis and Ω denote the set of types with
one output. Given a formula 𝐴 ofMLL2 its set of realizers is given by the following induction:

⟦𝐴 ⊗ 𝐵⟧ ≜ ⟦𝐴⟧ ⊗ ⟦𝐵⟧
⟦𝐴 ` 𝐵⟧ ≜ ⟦𝐴⟧ ` ⟦𝐵⟧

⟦∀𝑋 𝐴⟧ ≜ {𝑆 + ⟨𝑆 (1) ▷∀ 𝑞⟩ | 𝑆 ∈ ⟦
⋂

𝑋 ∈Ω 𝐴⟧}
⟦∃𝑋 𝐴⟧ ≜ {𝑆 + ⟨𝑆 (1) ▷∃ 𝑞⟩ | 𝑆 ∈ ⟦

⋃
𝑋 ∈Ω 𝐴⟧}⊥⊥

Theorem 41 (Soundness forMLL2). Let B be an approximable interpretation basis. Given 𝑆 a proof–like multiplicative
second order net. If 𝑆 represents a proof of the sequent Γ then 𝑆 belongs to ⟦Γ⟧B .
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