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Abstract

In extreme value theory and other related risk analysis fields, proba-
bility weighted moments (PWM) have been frequently used to estimate
the parameters of classical extreme value distributions. This method-
of-moment technique can be applied when second moments are finite,
a reasonable assumption in many environmental domains like climato-
logical and hydrological studies. Three advantages of PWM estimators
can be put forward: their simple interpretations, their rapid numeri-
cal implementation and their close connection to the well-studied class
of U -statistics. Concerning the later, this connection leads to precise
asymptotic properties, but non asymptotic bounds have been lacking
when off-the-shelf techniques (Chernoff method) cannot be applied, as
exponential moment assumptions become unrealistic in many extreme
value settings. In addition, large values analysis is not immune to the
undesirable effect of outliers, for example, defective readings in satellite
measurements or possible anomalies in climate model runs. Recently,
the treatment of outliers has sparked some interest in extreme value
theory, but results about finite sample bounds in a robust extreme
value theory context are yet to be found, in particular for PWMs or
tail index estimators. In this work, we propose a new class of robust
PWM estimators, inspired by the median-of-means framework of De-
vroye et al. [2016]. This class of robust estimators is shown to satisfy a
sub-Gaussian inequality when the assumption of finite second moments
holds. Such non asymptotic bounds are also derived under the general
contamination model. Our main proposition confirms theoretically the
trade-off between efficiency and robustness pointed out by Brazauskas
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and Serfling [2006]. Our simulation study indicates that, while classi-
cal estimators of PWMs can be highly sensitive to outliers, our new
approach remains weakly affected by the degree contamination.

Key words: Probability weighted moments; Concentration inequalities;
Robustness; Extreme Value Analysis.

1 Introduction

Let X be an integrable real-valued random variable with cumulative distri-
bution function F . The probability weighted moments (PWMs) of X are
defined as

E
(
XF (X)rF (X)s

)
where r and s are non-negative integers, and F = 1−F denotes the survival
function associated with F . The use of these moments have been motivated
by hydrologists and applied statisticians [see, e.g. Hosking and Wallis, 1987,
Landwehr et al., 1979, Greenwood et al., 1979].They also appear naturally
in the expression of the parameters of several distributions used in extreme
value theory [see, e.g. de Haan and Ferreira, 2006]. For example, if F cor-
responds to a generalized extreme value distribution with shape parameter
ξ ∈ R, then

3E(XF 2(X)− E(X)

2E(XF (X))− E(X)
=

3ξ − 1

2ξ − 1
,

and a similar formula is available for the generalized Pareto distribution.
Such moment equalities provide simple building blocks to quickly and

efficiently implement a method-of-moment to estimate both generalized ex-
treme value distribution or generalized Pareto parameters. Two main ap-
proaches have been used to infer PWMs. The first one consists in replacing
the function F by its empirical version and taking the mean over the sam-
ple. The second one takes advantage of the link between PWMs and order
statistics. More precisely, if (X1, . . . , Xm) is an independent and identi-
cally distributed (i.i.d.) sample with common distribution function F , and
if X(1:m) ≤ · · · ≤ X(m:m) is the ordered sample, then a simple calculation
shows that, for all 1 ≤ k ≤ m,

θk:m = E(X(k:m)) = k

(
m

k

)
E
(
XF (X)k−1F (X)m−k

)
.

This indicates that, in the i.i.d. setting, the estimation of PWMs can be
deduced from the order statistics. A natural choice for estimating θk:m, with
1 ≤ k ≤ m ≤ n, is thus to use the unbiased estimator

1(
n
m

) ∑
1≤i1<···<im≤n

Ψk(Xi1 , . . . , Xim) (1.1)
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where Ψk(Xi1 , . . . , Xim) corresponds to the k-th order statistic in the sub-
sample (Xi1 , . . . , Xim). For instance, Landwehr et al. [1979] considered the
special case of k = 1. Those two approaches are closely related and their
asymptotic properties have been studied in detail [see, e.g. Hosking et al.,
1985, Ferreira and de Haan, 2015, Diebolt et al., 2008, Guillou et al., 2009,
Diebolt et al., 2003, 2004, 2007].

The literature on non asymptotic properties of PWM estimators is, to
our knowledge, sparse. Furrer and Naveau [2007] derived explicit variance
expressions for finite samples, but only in the case where the sample distri-
bution is a generalized Pareto distribution. Estimators such as (1.1) have at
least two drawbacks. First, in heavy-tailed scenarios where the underlying
distribution has only low-order moments, estimate properties are not estab-
lished for finite samples. In particular, classical concentration inequalities
based on exponential decay of the tail cannot be directly applied to quan-
tities like (1.1). Second, they may be extremely sensitive to the presence of
outliers in the sample. The main motivation of this work is thus to design es-
timators of θk:m with good concentration properties under a second moment
assumption only, and that would be robust to the presence of outliers.

Let us mention that the treatment of outliers for PWM estimation has
rarely been covered within the extreme value theory community [see, e.g.
Hubert et al., 2008, Dupuis and Victoria-Feser, 2006]. Reducing the nega-
tive impact of outliers, i.e. large corrupted anomalies, on the estimation of
extreme value parameters demands a careful statistical analysis. Therefore,
inference tools based on robust statistics [see e.g. Minsker and Wei, 2020,
Hubert et al., 2008, Lecué and Lerasle, 2019, Devroye et al., 2016] need to
be adapted to extreme value theory. For example, Brazauskas and Serfling
[2006] leveraged the concept of generalized quantiles to obtain favourable
trade-offs between efficiency and robustness in the estimation of the param-
eters of a generalized Pareto distribution. Recently, Bhattacharya et al.
[2019] studied a trimmed version of the Hill estimator to infer positive ξ and
they proposed a methodology to identify extreme outliers in heavy-tailed
data. Bhattacharya and Beirlant [2019] extended their work to light tail
distributions and built a tail-adjusted boxplot. Still, all these studies fo-
cused on developing asymptotic distributions for their estimators, but non
asymptotic bounds were not obtained.

To derive concentration bounds without exponential moment assumption
and to achieve robustness, we propose, in Section 2, to adapt the so-called
median-of-means concentration technique [see e.g. Devroye et al., 2016, Joly
and Lugosi, 2016, Lecué and Lerasle, 2019, 2020] to the estimation of θk:m.
Our estimator is actually defined in the much more general context of esti-
mating the mean of symmetric multivariate kernels, when usual U -statistics
may not give reliable estimates. In Section 3, we establish non asymptotic
performance bounds, for degenerate and non-degenerate kernels, with sharp
variance proxys. In addition, we show that our estimator is strongly robust
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to the presence of outliers in the sample, under a very generic contamina-
tion scheme introduced by Lecué and Lerasle [2019]. Section 4 combines
the problem of tail index estimation with our robust median-of-means in-
ference scheme. In Section 5, numerical experiments are used to compare
the classical PWM approach with our method. All proofs can be found in
Section 6. In the appendix, the bounds derived in Section 3 are generalized
beyond the i.i.d. setting by considering exchangeable sequences satisfying a
negative dependence condition know as conditional negative association.

2 Median-of-means estimators

In this section, we recall the median-of-means techniques and the construc-
tion of the associated estimators. As its name suggests, a median-of-means
estimator is obtained as the median of means, the latter being, in this work,
computed as U -statistics on independent blocks of the original given sample.

In the sequel, we assume that samples are all independent and identically
distributed, unless otherwise specified. Let X1, . . . , Xn be a sample with
values in some measurable set X . We are interested in the robust estimation
of quantities of the form

θ = E (Ψ(X1, . . . , Xm)) ∈ R (2.1)

where, for an integer m ≥ 1, Ψ : Xm → R is a symmetric function, called
kernel. Let vk = var (E [Ψ(X1, . . . , Xm) |X1, . . . , Xk]), the kernel Ψ is said
to be q-degenerate, for q ∈ {1, . . . ,m}, if v1 = · · · = vq−1 = 0 and vq > 0. If
v1 > 0, Ψ is said to be non-degenerate.

Assuming n ≥ m, a natural estimator for θ is given by the following
U -statistics

Un =
1(
n
m

) ∑
A⊂[n]
|A|=m

Ψ(XA) ,

where [n] = {1, . . . , n} and XA = (Xi)i∈A. In the case of PWM, θ = θk:m =
E(X(k:m)) and Ψ = Ψk corresponds to the k-th order statistics in a sample
of size m.

As shown by Joly and Lugosi [2016], robust estimation of the parameter
θ, defined in (2.1), can be obtained using median-of-means techniques. We
present here a new estimator of θ based on these techniques. The main
idea is to divide the sample (X1, . . . , Xn) into K blocks, that is disjoint
subsets. To fix this number K of blocks, the practitioner first needs to
choose an error level δ ∈ [e−bn/mc, 1[ and then the integer K can be defined
as K = dlog(1/δ)e. By construction, 1 ≤ K ≤ bn/mc and the set [n] =
{1, . . . , n} is then divided into K disjoint blocks B1, . . . , BK , each of size
|Bj | ≥ bn/Kc ≥ m.
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Within each block j, we construct the U-statistic estimator

θ̂(j) =
1(|Bj |
m

) ∑
A⊂Bj
|A|=m

Ψ(XA) ,

and then compute the median among blocks, i.e.

θ̂n = median
(
θ̂(1), . . . , θ̂(K)

)
, (2.2)

where median(z1, . . . , zK) corresponds to the smallest value z ∈ {z1, . . . , zK}
such that

|{j ∈ [K] , zj ≤ z}| ≥ K/2 and |{j ∈ [K] , zj ≥ z}| ≥ K/2 .

Obtaining non asymptotic concentration inequalities for Un with the
correct variance factor turns out to be a difficult problem, even in the non-
degenerate case. Hoeffding or Bernstein-type inequalities have been ob-
tained, but they require the kernel Ψ to be bounded or to have sufficiently
light tails. For instance, if |Ψ| ≤ c, Maurer [2019] that, for all t ≥ 0,

pr (|Un − E(Un)| ≥ t) ≤ 2 exp

(
− nt2

2m2v1 + 4m4vm
n + 16m2ct

3

)

[see also Arcones, 1995]. Previously, Hoeffding [1963] had shown a sub-
Gaussian inequality for Un.

However, when Ψ is heavy-tailed, exponential inequalities might not hold
anymore. Since, PWM estimators are classically used to construct estima-
tors in extreme value analysis. We are interested in deriving non asymptotic
bounds with minimum moments conditions. In the next section, we show
that our median-of-means estimator exhibits exponential concentration with
the correct variance factor, see Proposition 3.1. We show also that this es-
timator is robust to the presence of outliers in the sample, in a very generic
contamination scheme, see Proposition 3.3.

3 Sub-Gaussian and Bernstein-type bounds for median-
of-means estimators

In this section, we derive sub-Gaussian and Bernstein-type bounds for gen-
eral median-of-means estimators with non-degenerate or degenerate kernel.
Then, the issue of the robustness to the presence of outliers in the sample
is also addressed. The results are stated in a general context and PWM
estimators simply correspond to a particular case.
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Proposition 3.1. Let X1, . . . , Xn be an i.i.d. sample with values in X , and,
for a positive integer m ∈ [n], let Ψ : Xm → R be a symmetric q-degenerate
kernel, q ∈ [m], with E [Ψ(X1, . . . , Xm)] = θ and vm < ∞. Then, for all
δ ∈ [e−bn/mc, 1), the median-of means estimator θ̂n defined by (2.2) with
K = dlog(1/δ)e satisfies

pr

|θ̂n − θ| > 2e

√(
m−1
q−1
)
(2m)qvm dlog(1/δ)eq

nq

 ≤ δ , (3.1)

and

pr

|θ̂n − θ| > 2e

√(
m
q

)
(2m)qvq dlog(1/δ)eq

nq
+

(
m−1
q

)
(2m)q+1vm dlog(1/δ)eq+1

nq+1

 ≤ δ .
(3.2)

Bound (3.1) is similar to the one obtained by Joly and Lugosi [2016]
for their estimator. Bound (3.2) is new and gives a significant improvement
over (3.1), especially in the regime where log(1/δ)/n = o(1). In that case,
the second term under the square root can be neglected, and the variance
factor in the first term is improved to(

m
q

)
(2m)qvq

nq
,

which is close to the asymptotic variance obtained by Hoeffding [1948] which
states that

var (Un) ∼
n→∞

q!

(
m

q

)2 vq
nq
,

for non-degenerate kernels, var(Un) ∼
n→∞

m2v1/n, and Un is asymptotically

normal: √
n(Un − θ)  

n→∞
N (0,m2v1) .

In the case q = 1, i.e. in the non-degenerate case, then Equation (3.1) states
that θ̂n − θ is sub-Gaussian on both tails with variance factor proportional
to mvm/n:

pr

(
|θ̂n − θ| > 2e

√
2mvm dlog(1/δ)e

n

)
≤ δ , (3.3)

while Equation (3.2) states that it is sub-gamma on both tails with variance
factor proportional to m2v1/n and scale factor proportional to

√
m3vm/n:

pr

|θ̂n − θ| > 2e

√
2m2v1 dlog(1/δ)e

n
+

4m3vm dlog(1/δ)e2

n2

 ≤ δ . (3.4)
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Since mv1 ≤ vm, the variance factor in (3.4) is always smaller than the one
in (3.3). Due to the scale factor in (3.4), either inequality might be better,
depending on the value of δ.

Remark 3.2. The estimator θ̂n depends on the pre-chosen confidence thresh-
old δ. As shown by Devroye et al. [2016, Theorem 4.2], when an upper-bound
v?m on vm is available, an estimator θ̃n independent of δ may be constructed.
The notation θ̂n,δ below highlights this connection. From Proposition 3.1,
for all k ∈ {1, . . . , bn/mc}, the interval

Îk =

[
θ̂n,e−k ± 2e

√
2mv?mk

n

]

is a confidence interval with level 1 − e−k, where θ̂n,e−k denote the estima-

tor (2.2) obtained with δ = e−k. Now, let

k̂ = min

1 ≤ k ≤ bn/mc ,
bn/mc⋂
j=k

Îj 6= ∅

 ,

and define the estimator θ̃n as the midpoint of the interval
⋂bn/mc
j=k̂

Îj. Then,

the estimator θ̃n satisfies, for all δ ∈
[
e−bn/mc/(1− e−1), 1

[
,

pr

|θ̃n − θ| > 4e

√√√√2mv?m

(
1 + log

(
1

1−e−1

)
+ log

(
1
δ

))
n

 ≤ δ . (3.5)

Recall that our main goal was two-fold. First, we aim at proposing a
family of estimators of θ for which sharp concentration bounds are available
under minimal moment conditions. Then, we also wish to address the issue
of robustness of these estimators. This is the purpose of the next result
which concerns the robustness of the estimator θ̂n to the presence of outliers
in the original sample. To translate the presence of outliers, we consider the
contamination scheme introduced by Lecué and Lerasle [2019]: the index
set [n] is divided into two disjoint subsets, the subset I of inliers, and the
subset O of outliers. The sequence (Xi)i∈I is i.i.d. while no assumption is
made on the variables (Xi)i∈O. In what follows, prO∪I corresponds to the
distribution of such a contaminated sample.

Proposition 3.3. Let (X1, . . . , Xn) be a contaminated sample under the
O ∪ I model. For all δ ∈ [e−bn/mc, 1), let θ̂n be defined as in (2.2) with
K = dlog(1/δ)e. If |O| ≤ K/4, then

prO∪I

(
|θ̂n − θ| >

16e2

3
√

3

√
2mvm dlog(1/δ)e

n

)
≤ δ ,
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and

prO∪I

|θ̂n − θ| > 16e2

3
√

3

√
2m2v1 dlog(1/δ)e

n
+

4m3vm dlog(1/δ)e2

n2

 ≤ δ .
To obtain non asymptotic bounds for θk:m, it suffices to take Ψ = Ψk,

that is the k-th order statistic in a sample of size m, which is symmetric
and non-degenerate. This introduces our new class of robust estimators
θ̂k:m of θk:m = E(X(k:m)) as defined in (2.2) with K = dlog(1/δ)e for some

δ ∈ [e−bn/mc, 1[. Thus, θ̂k:m satisfies sub-Gaussian and Bernstein-type in-
equalities for uncontaminated or contaminated samples, that is θ̂k:m satisfies
Propositions 3.1 and 3.3 with vm = var(X(k:m)) and v1 = var(E(X(k:m)|X1)).

4 Sub-Gaussian and Bernstein-type bounds for the
median-of-means PWM estimator of the tail in-
dex

Considering a sample X1, . . . , Xn distributed according to a generalized ex-
treme value distribution Gξ. As mentioned in the introduction, the pa-
rameter ξ can be linked to PWM. Here, we consider the following explicit
expression proposed by Ferreira and de Haan [2015, Remark 2.2]:

ξ =
1

log 2
log

(
4E(XG3

ξ(X))− 2E(XGξ(X))

2E(XGξ(X))− E(X)

)
=

1

log 2
log

(
θ4 − θ2
θ2 − θ1

)
,

(4.1)
where θj = θj:j = E(max(X1, . . . , Xj)). Therefore, a natural estimator of ξ
is obtained by simply estimating the θj , j = 1, 2, 4 in (4.1) and a median-
of-means PWM estimator of ξ is thus given by

ξ̂n =
1

log 2
log

(
θ̂4 − θ̂2
θ̂2 − θ̂1

)
, (4.2)

where θ̂j be the median-of-means estimate θj for j ∈ {1, 2, 4} constructed
with K = dlog(1/δ)e blocks for δ ∈ [e−bn/4c, 1[. The next result shows
that ξn is sub-Gaussian on both tails for uncontaminated or contaminated
samples.

Proposition 4.1. Let X1, . . . , Xn be a sample with distribution function F .
Then,

pr

(
|ξ̂n − ξ| ≥

2e(2ξ + 1)(2−ξ̂ + 2−ξ)

log(2)(θ̂2 − θ̂1)

√
8 max(v1, v2, v4) dlog(1/δ)e

n

)
≤ 3δ ,
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where vj = var (max(X1, . . . , Xj)).
Moreover, if the sample X1, . . . , Xn is contaminated by outliers with the

same scheme of Proposition 3.3, then

prO∪I

(
|ξ̂n − ξ| ≥

16e2(2ξ + 1)(2−ξ̂ + 2−ξ)

3 log(2)
√

3(θ̂2 − θ̂1)

√
8 max(v1, v2, v4) dlog(1/δ)e

n

)
≤ 3δ .

In extreme value theory, statisticians are interested in the estimation of
this parameter ξ which reflects the heaviness of the tail of the distribution.
Our median-of-mean estimator thus provide a robust and with good finite
sample properties estimation of such quantity.

5 Numerical experiments

This section illustrates the robustness of our median-of-means PWM esti-
mators θ̂k:m and ξ̂. We consider the following setting. We simulate 1 000
generalized extreme value samples contaminated by outliers. For that pur-
pose, we first draw samples of inliers of size nI distributed according a
generalized extreme value distribution with 3 different values for the tail in-
dex ξ =-0.4, 0 and 0.4. These samples are then contaminated by nO outliers,
such that n = nI + nO constant equal to 200. To simulate the outliers, we
distinguish two cases: ξ < 0 and ξ ≥ 0. When ξ < 0, the probability that a
generalized extreme value variable with parameter ξ < 0 exceeds any value
−1/ξ is equal to 0. The outliers Xi, i = 1, . . . , nO are then obtained as

Xi ∼ Unif[0, 20− 1

ξ
], i = 1, . . . , nO.

When ξ ≥ 0, The outliers Xi, i = 1, . . . , nO are obtained

Xi ∼ N (qξ(1− 10−4), 1), i = 1, . . . , nO.

where qξ(1− 10−4) denotes the (1− 10−4)-quantile of a generalized extreme
value of parameter ξ.

Let us highlight that when the kernel Ψ = Ψk, the procedure to build
θ̂k:m does not require to solve an optimisation problem (in contrast to max-
imum likelihood techniques) and is computationally straightforward to im-
plement. In this special case, computing the U -statistics θ̂(j) within bloc Bj
does not require going through all the m subsets of Bj . Instead, we may
notice that

1(
n
m

) ∑
A⊂[n]
|A|=m

Ψk (XA) =
1(
n
m

) n∑
i=1

(
n− i
m− k

)(
i− 1

k − 1

)
X(i:n) := Tk:m . (5.1)

For comparison, we also consider the estimator Tk:m of θk:m which corre-
sponds to the classical U -statistics estimate over the whole sample (taking
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Figure 1: Estimates of a) θ3:4, b) θ4:4, c) ξ and d) qξ(0.95) obtained with
the median-of-mean estimator (MM, in blue, see Equation (4.2)), and the
estimator computed as a linear combination (LC, in red, see Equation (5.1)),
when the shape parameter ξ is equal to -0.4, 0 and 0.4, in columns, and the
number of outliers nO is equal to 0, 5, 15 and 20, in rows. In each graph,
the blue dotted line corresponds to the true value of the quantity to be
estimated.
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K = 1 block). As a weighted mean of the order statistics, it is very sensitive
to the presence of outliers.

In both cases, we estimate θk:m, for m = 1, . . . , 4 and k ≤ m, the param-
eter ξ and the 0.95-quantile, denoted qξ(0.95), with the linear combination

estimator Tk:m and the median-of-means estimator θ̂k:m. Figure 1 displays
the boxplots of both estimators as the number of outliers nO varies for θ3:4,
θ4:4, ξ and qξ(0.95) (the other graphs can be found along with the code online
git@github.com:maudmhthomas/PWM.git). It can be seen that the classi-
cal estimator is highly sensitive to outliers. Our median-of-means estimator
inherits the robustness properties of the median.

6 Proofs

To prove Proposition 3.1, we first establish the following lemma, which gives
non asymptotic bounds on the variance of U -statistics.

Lemma 6.1. Let Ψ : Xm → R be a symmetric q-degenerate kernel, with
q ∈ [m], such that vm <∞. For n ≥ m, let X1, . . . , Xn be an i.i.d. sample,
and define

Un =
1(
n
m

) ∑
A⊂[n]
|A|=m

Ψ (XA) .

Then,

var(Un) ≤
(
m−1
q−1
)
mqvm

nq
, (6.1)

and

var(Un) ≤
(
m
q

)
mqvq

nq
+

(
m−1
q

)
mq+1vm

nq+1
. (6.2)

of Lemma 6.1. Recall the identity

var (Un) =
1(
n
m

) m∑
k=1

(
m

k

)(
n−m
m− k

)
vk . (6.3)

Now if Ψ is q-degenerate, then v1 = · · · = vq−1 = 0, and the sum above
may be started at k = q. Hoeffding [1948, Theorem 5.1] showed that, for all
1 ≤ k ≤ ` ≤ m,

vk
k
≤ v`

`
. (6.4)
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Hence, noting that vk ≤ kvm/m,

var (Un) ≤ 1(
n
m

) m∑
k=q

(
m

k

)(
n−m
m− k

)
k

m
vm

=
vm(
n
m

) m−1∑
k=q−1

(
m− 1

k

)(
n−m

m− 1− k

)

≤
vm
(
m−1
q−1
)(

n−q
m−q

)(
n
m

) ,

where the last inequality comes from the fact that the number of ways to
choose m − 1 elements in a set of size n − 1 with at least q − 1 elements
taken from a given subset of size m − 1 is less that the number of ways to
first choose q − 1 elements in that subset, and then m− q elements in what
remains. Then, since (

n−q
m−q

)(
n
m

) ≤ (m
n

)q
,

we obtain

var (Un) ≤
(
m−1
q−1
)
mqvm

nq
,

establishing (6.1). The second bound (6.2) is obtained by singling out the
term corresponding to k = q in (6.3) and using vk ≤ kvm/m only for k ≥
q + 1. This yields

var (Un) ≤
(
m
q

)(
n−m
m−q

)(
n
m

) vq +
1(
n
m

) m∑
k=q+1

(
m

k

)(
n−m
m− k

)
k

m
vm .

Now, on the one hand,(
m
q

)(
n−m
m−q

)(
n
m

) ≤
(
m

q

)(n−q
m−q

)(
n
m

) ≤ (m
q

)(m
n

)q
·

On the other hand,

1(
n
m

) m∑
k=q+1

(
m

k

)(
n−m
m− k

)
k

m
=

1(
n
m

) m∑
k=q+1

(
m− 1

k − 1

)(
n−m
m− k

)

=
1(
n
m

) m−1∑
k=q

(
m− 1

k

)(
n−m

m− 1− k

)

≤
(
m−1
q

)(
n−q−1
m−q−1

)(
n
m

)
≤
(
m− 1

q

)(m
n

)q+1
·

12



Finally,

var (Un) ≤
(
m
q

)
mqvq

nq
+

(
m−1
q

)
mq+1vm

nq+1

establishing (6.2).

Before proving Proposition 3.1, we first state a well-known but useful
fact. We include the proof for completeness.

Lemma 6.2. Let (Y1, . . . , YK) be independent Bernoulli random variables
such that for all j ∈ [K], we have E(Yj) ≤ p, for some p ∈ (0, 1). Then, for
all a ∈ (0, 1),

pr

 K∑
j=1

Yj ≥ aK

 ≤ (p
a

)aK (1− p
1− a

)(1−a)K
.

In particular, for a = 1/2,

pr

 K∑
j=1

Yj ≥ K/2

 ≤ (2
√
p(1− p)

)K
≤ (2
√
p)K .

of Lemma 6.2. Let λ ≥ 0, then

logE
(

eλ
∑K
j=1 Yj

)
=

K∑
j=1

logE
(

eλYj
)

=

K∑
j=1

log
(
E(Yj)e

λ + 1− E(Yj)
)
.

Since E(Yj) ≤ p,

logE
(

eλ
∑K
j=1 Yj

)
≤ K log

(
peλ + 1− p

)
.

Next, using a Chernoff bound,

pr

 K∑
j=1

Yj ≥ aK

 ≤ exp

{
−K sup

λ≥0

(
λa− log(peλ + 1− p)

)}
.

Observing that the supremum is attained for λ = log (a(1− p)/(p(1− a))),

pr

 K∑
j=1

Yj ≥ aK

 ≤ (p
a

)aK (1− p
1− a

)(1−a)K
.

13



of Proposition 3.1. Let t = min{t1, t2}, with

t1 = 2e

√(
m−1
q−1
)
(2m)qvm dlog(1/δ)eq

nq
, (6.5)

and

t2 = 2e

√(
m
q

)
(2m)qvq blog(1/δ)cq

nq
+

(
m−1
q

)
(2m)q+1vm dlog(1/δ)eq+1

nq+1
. (6.6)

By definition of the median, both the number of j such that θ̂(j) ≥ θ̂n and
the number of j such that θ̂(j) ≤ θ̂n are at least K/2. This leads to write

pr
(
|θ̂n − θ| > t

)
≤ pr

 K∑
j=1

Yj ≥ K/2

 ,

where Yj = 1{|θ̂(j)−θ|>t}. We now look for an upper bound on E(Yj) so as

to apply Lemma 6.2. By Chebyshev Inequality, for all j ∈ {1, . . . ,m},

E(Yj) = pr
(
|θ̂(j) − θ| > t

)
≤

var
(
θ̂(j)
)

t2
·

When t = t1, one may use the bound (6.1) in Lemma 6.1 with |Bj | instead
of n. Since |Bj | ≥ bn/Kc ≥ n/(2K),

E(Yj) ≤
(
m−1
q−1
)
mqvm

|Bj |qt21
≤
(
m−1
q−1
)
(2mK)qvm

nqt21
=

1

4e2
.

When t = t2, the bound (6.2) in Lemma 6.1 entails

E(Yj) ≤
(mq )mqvq
|Bj |q +

(m−1
q )mq+1vm

|Bj |q+1

t22
≤

(mq )(2mK)qvq

nq +
(m−1

q )(2mK)q+1vm

nq+1

t22
=

1

4e2
,

where as above, we used that |Bj | ≥ bn/Kc ≥ n/(2K). In both cases,
Lemma 6.2 can be applied with a = 1/2 and p = e−2/4 to obtain

pr

 K∑
j=1

Yj ≥ K/2

 ≤ e−K ≤ δ .

Concerning the proof of Equation (3.5) in Remark 3.2. Let δ ∈
[
e−bn/mc/(1− e−1), 1

[
and let kδ be the smallest integer k ∈ {1, . . . , bn/mc} such that δ ≥ e−k/(1−
e−1). By a union bound,

pr

bn/mc⋂
j=kδ

{
θ ∈ Îj

} ≥ 1−
bn/mc∑
j=kδ

e−j ≥ 1− e−kδ

1− e−1
≥ 1− δ .

14



Now, on the event
⋂bn/mc
j=kδ

{
θ ∈ Îj

}
, one has

⋂bn/mc
j=kδ

Îj 6= ∅, hence k̂ ≤ kδ.

But if k̂ ≤ kδ, then θ̃n also belongs to
⋂bn/mc
j=kδ

Îj and

|θ̃n − θ| ≤ 4e

√
2mv?mkδ

n
≤ 4e

√√√√2mv?m

(
1 + log

(
1

1−e−1

)
+ log

(
1
δ

))
n

,

which proofs Equation (3.5).

of Proposition 3.3. Let t = 8e min{t1, t2}/(3
√

3), with t1 and t2 as defined
in (6.5) and (6.6). Then,

prO∪I

(
|θ̂n − θ| > t

)
≤ prO∪I

 K∑
j=1

Yj ≥ K/2

 ,

with Yj = 1{|θ̂(j)−θ|>t}. Letting B be the set of blocks that do not intersect

O,

prO∪I

 K∑
j=1

Yj ≥ K/2

 ≤ prO∪I

|Bc|+∑
j∈B

Yj ≥ K/2

 .

Since |Bc| ≤ |O| ≤ K/4 by assumption, we get

prO∪I

(
|θ̂n − θ| > t

)
≤ pr

 K∑
j=1

Yj ≥ K/4

 ,

where pr, here, corresponds to the probability measure for an i.i.d. sample.
By Chebyshev Inequality, we have

E(Yj) ≤
var
(
θ̂(j)
)

t2
·

In the proof of Proposition 3.1, we have shown that

var
(
θ̂(j)
)

min{t1, t2}2
≤ 1

4e2
,

leading to E(Yj) ≤ 332−8e−4. We may thus apply Lemma 6.2 with a = 1/4
and p = 332−8e−4 to obtain

pr

 K∑
j=1

Yj ≥ K/4

 ≤ e−K ≤ δ .
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of Proposition 4.1. Let

cn(δ) = c

√
8 max(v1, v2, v4) dlog(1/δ)e

n

with c denoting either 2e or 16e2/(3
√

3) depending on whether the sample
is contaminated or not. For j = 1, 2, 4, consider the event

Ej =
{
|θ̂j − θj | ≤ cn(δ)

}
.

On the one hand, from Propositions (3.1) and 3.3, pr(E1∩E2∩E4) ≥ 1−3δ
and prO∪I(E1 ∩ E2 ∩ E4) ≥ 1− 3δ depending on the value of c.

On the other hand,

2ξ̂ − 2ξ =
θ̂4 − θ̂2
θ̂2 − θ̂1

− θ4 − θ2
θ2 − θ1

=
(θ̂4 − θ̂2)(θ2 − θ1)− (θ4 − θ2)(θ̂2 − θ̂1)

(θ̂2 − θ̂1)(θ2 − θ1)

=
(θ̂4 − θ4)(θ2 − θ1)− (θ̂2 − θ2)(θ4 − θ1) + (θ̂1 − θ1)(θ4 − θ2)

(θ̂2 − θ̂1)(θ2 − θ1)
.

On the event E1 ∩ E2 ∩ E4,

|2ξ̂ − 2ξ| ≤ 2cn(δ)(θ4 − θ1)
(θ̂2 − θ̂1)(θ2 − θ1)

=
2cn(δ)(2ξ + 1)

θ̂2 − θ̂1
.

Using that for a, b > 0,

| log(a)− log(b)| ≤ 1

2
|a− b|

(
1

a
+

1

b

)
,

we obtain that, with probability larger than 1− 3δ,

|ξ̂ − ξ| ≤ cn(δ)

log(2)(θ̂2 − θ̂1)
(2ξ + 1)(2−ξ̂ + 2−ξ) .

A Concentration bounds under exchangeability and
negative association

Definition A.1. A sequence of real-valued random variables (X1, . . . , Xn)
is said to be negatively associated if for all subset A ⊂ [n], and for all
(coordinate-wise) non-decreasing functions f : R|A| → R and g : Rn−|A| → R
such that the expectations below are well-defined, one has

E
[
f (XA) g

(
X[n]\A

)]
≤ E [f (XA)]E

[
g
(
X[n]\A

)]
.
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Definition A.2. A sequence of real-valued random variables (X1, . . . , Xn)
is said to be conditionally negatively associated (CNA) if for all S ⊂ [n] and
A ⊂ S, and for all non-decreasing functions f : R|A| → R and g : R|S\A| → R
such that the expectations below are well-defined, one has

E
[
f (XA) g

(
XS\A

) ∣∣XS

]
≤ E

[
f (XA)

∣∣XS

]
E
[
g
(
XS\A

) ∣∣XS

]
.

In other words, the sequence is CNA if it is negatively associated and all
conditionalizations are negatively associated.

A immediate consequence is that sums of negatively associated random
variables concentrate at least as well as sums of independent random vari-
ables with the same marginals. More precisely, the Laplace transform can
be bounded by the product of marginal transforms: if (X1n . . . ,XXn) is
NA, then for all λ ∈ R,

E
[
eλ

∑n
i=1Xi

]
≤

n∏
i=1

E
[
eλXi

]
.

Let us also mention an important proposition of NA.

Proposition A.3. If (X1, . . . , Xn) is NA, if A1, . . . , Ak are disjoint subsets
of [n], and if h1, . . . , hk are non-decreasing functions defined on R|A1|, . . . ,R|Ak|
respectively, then the sequence (h1(XA1), . . . , hk(XAk)) is NA.

The following result generalizes Proposition 3.1 to the case where the
sample (X1, . . . , Xn) is exchangeable and CNA. For simplicity, we only prove
it in the non-degenerate case (q = 1). Notice that the symmetric function
Ψ needs to be non-decreasing. Under this additional assumptions, the same
bounds hold, with probability 1− 2δ instead of 1− δ.

Proposition A.4. Let (X1, . . . , Xn) be an exchangeable CNA sample, and
, for m ∈ [n], let Ψ : Rm → R be a non-decreasing symmetric function
such that E [Ψ(X1, . . . , Xm)] = θ and var (Ψ(X1, . . . , Xm)) < ∞. For all
1 ≤ k ≤ m, let

vk = var (E [Ψ(X1, . . . , Xm) |X1, . . . , Xk]) .

Then, for all δ ∈ [ebn/mc, 1), the median-of-means estimator θ̂n defined by
(2.2) satisfies

pr

(
|θ̂n − θ| > 2e

√
2mvm dlog(1/δ)e

n

)
≤ 2δ , (A.1)

and

pr

|θ̂n − θ| > 2e

√
2m2v1 dlog(1/δ)e

n
+

4m3vm dlog(1/δ)e2

n2

 ≤ 2δ . (A.2)
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Proof of Proposition A.4. Let t = min{t1, t2}, with

t1 = 2e

√
2mvm dlog(1/δ)e

n

and

t2 = 2e

√
2m2v1 dlog(1/δ)e

n
+

4m3vm dlog(1/δ)e2

n2
.

To deal with monotone events, we first have to decompose the absolute
value:

pr
(
|θ̂n − θ| > t

)
= pr

(
θ̂n − θ > t

)
+ pr

(
θ̂n − θ < −t

)
.

Let us show that both terms on the right-hand side above are less than δ. We

only detail the argument for pr
(
θ̂n − θ > t

)
. The term pr

(
θ̂n − θ < −t

)
can be treated similarly. We have

pr
(
θ̂n − θ > t

)
≤ pr

 K∑
j=1

Yj ≥ K/2

 ,

with Yj = 1{θ̂(j)−θ>t}. Since Ψ is non-decreasing, the sequence (Y1, . . . , YK)

is NA thanks to Property A.3. The bounds of Lemma 6.2 (which come from
bounds on the Laplace transform) thus apply here as well, and it remains
to verify that E(Yj) ≤ 1

4e2
, as in the proof of Proposition 3.1. To that aim,

it suffices to show that the variance bounds of Lemma 6.1 also holds in the
exchangeable CNA setting, under the assumption that Ψ is non-decreasing.
We have

var (U) =
1(
n
m

)2E

 ∑
A⊂[n]
|A|=m

(Ψ (XA)− θ)


2

=
1(
n
m

)2 m∑
k=0

∑
A,B⊂[n]

|A|=|B|=m, |A∩B|=k

E [(Ψ (XA)− θ) (Ψ (XB)− θ)] .

By exchangeability and CNA, and since Ψ is non-decreasing and symmetric,
we have, for all subsets A and B of size m such that |A ∩B| = k,

E [(Ψ (XA)− θ) (Ψ (XB)− θ)] = E
[
E
[
(Ψ (XA)− θ) (Ψ (XB)− θ)

∣∣XA∩B
]]

≤ E
[(
E
[
Ψ(X1, . . . , Xm)

∣∣X1, . . . , Xk

]
− θ
)2]

.
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Since the number of subsets A and B of size m such that |A ∩ B| = k is
equal to

(
n
m

)(
m
k

)(
n−m
m−k

)
, we arrive at

var (U) ≤ 1(
n
m

) m∑
k=0

(
m

k

)(
n−m
m− k

)
vk ,

where vk = E
[(
E
[
Ψ(X1, . . . , Xm)

∣∣X1, . . . , Xk

]
− θ
)2]

. At this point, all

the proof of Lemma 6.1 can be repeated, after checking that the proof of
Inequality (6.4) in [Hoeffding, 1948] only requires exchangeability.
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