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Abstract—Accurate classification of cognitive states from Elec-
troencephalographic (EEG) signals is crucial in neuroscience
applications such as Brain-Computer Interfaces (BCIs). Clas-
sification pipelines based on Riemannian geometry are often
state-of-the-art in the BCI field. In this type of BCI, covariance
matrices based on EEG signals of independent frequency bands
are used as classification features. However, there is significant
neuroscience evidence of neural interactions across frequency
bands, such as cross-frequency coupling (CFC). Therefore, in this
paper, we propose novel symmetric positive definite (SPD) matrix
representations considering CFC for Riemannian geometry-based
EEG classification. The spatial interactions of phase and ampli-
tude within and between frequency bands are described in three
different CFC SPD matrices. This allows us to include additional
discriminative neurophysiological features that are not available
in the conventional Riemannian EEG features. Our method was
evaluated using a mental workload classification task from a
public passive BCI dataset. Our fused model of the three CFC
covariance matrices showed statistically significant improvements
in average classification accuracies from the conventional covari-
ance matrix in the theta and alpha bands by 18.32% and in
the beta and gamma bands by 4.34% with smaller standard
deviations. This result confirmed the effectiveness of considering
more diverse neurophysiological interactions within and between
frequency bands for Riemannian EEG classification.

Index Terms—Electroencephalography (EEG), Riemannian ge-
ometry, Brain-computer interfaces (BCI), cross-frequency cou-
pling (CFC)

I. INTRODUCTION

Electroencephalographic (EEG) signals analysis is at the
heart of numerous research disciplines. Thanks to its high
temporal resolution, non-invasiveness, and relatively low cost,
EEG is extensively used for applications monitoring brain
activity, such as medical diagnosis, neuroscience research or
Brain-Computer Interfaces (BCIs) [1]. BCIs are technology
that can translate human brain activity into commands to
control external devices without any physical movement [2].
EEG-based BCIs are notably promising as assistive devices for
motor-impaired users [3], detector of intraoperative awareness
during general anesthesia [4], real-time monitoring of pilots’
mental states [5] and many more. The state-of-the-art of
classification pipeline for EEG-based BCIs is the Riemannian
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BCIs [6]. In this pipeline, features are extracted by cross-
channel covariance matrices (Cov) considering the variance
and covariance of EEG signals across channels. Those matri-
ces are known to be Symmetric Positive-Definite (SPD). Then,
classification is conducted on the Riemannian manifold of SPD
matrices, by defining a manifold with a metric considering the
space curvature. Riemannian BCIs have shown significant im-
provements from conventional BCI system relying on spatial
filters and won many EEG classification competitions [6], [7].

To further improve BCIs, various Riemannnian specific
approaches have been developed including EEG channel selec-
tion [8], dimensionality reduction [9], artifact/outlier detection
[10] or frequency band (FB) selection [11], among other. All
these methods have in common that they operate after the
covariance matrix estimations, and all apply on conventional
cross-channel Cov only. Here, we take a different angle and
aim to improve Riemannian BCIs by proposing new forms
of SPD matrix representing novel neurophysiological features
that have not been explored in conventional Riemannian BCIs.

More specifically, in this paper, we propose three different
SPD matrices considering phase and amplitude within and be-
tween FBs. In fact, an oscillatory signal, such as EEG, consists
of amplitudes and phases. Amplitudes and phases between
different FBs are known to play a crucial role in organizing
large-scale networks and integration across functional brain
regions [12]. However, conventional Riemannian BCIs do not
consider phases nor interactions between different FBs. To the
best of our knowledge, this paper is the first work considering
CFC, particularly phase-amplitude coupling (PAC), for EEG
classification in Riemannian BCIs. Our CFC Cov were eval-
uated individually or in fusion and their effectiveness were
confirmed on a public mental workload dataset.

This paper is organized as follows: Section II explains the
principles of Riemannian geometry while Section III intro-
duces related work. Section IV describes our new approach,
and Section V the experimental evaluations. Then, Sections
VI and VII describe the results and discussion, respectively,
while Section VIII concludes the paper.

II. RIEMANNIAN GEOMETRY FOR EEG CLASSIFICATION

In this section, we briefly introduce Riemannian geometry
from the practical point of view of EEG signal classification.



A. EEG covariance matrix (EEG Cov)

Let X ∈ RM×T be a filtered EEG trial, with M channels
and T time samples. Its Cov CX is defined as:

CX =
1

T − 1
XX⊤ ∈ RM×M . (1)

The diagonal entries of this matrix represent the variance
of each channel signal, i.e., the band power of each channel,
while the off-diagonal terms contain the covariance of each
pair of channels. When the number of time samples is large
enough with respect to the number of EEG channels, the
estimated Cov is empirically full rank, and thus SPD. The
set of SPD matrices forms a differentiable manifold called
the Riemannian manifold. On such curved spaces, distances
between matrices are computed along geodesics. The affine-
invariant Riemannian metric (AIRM) δr is a geodesic distance
that respects the original curvature of the manifold and is given
as follows:

δr(C1, C2) = ∥log(C1
− 1

2C2C1
− 1

2 )∥F =

(
m∑
i=1

log2λi

)1/2

(2)
where λi are the positive eigenvalues of C1

− 1
2C2C1

− 1
2 and

∥.∥F is the Frobenius norm of the matrix.

B. Tangent space mapping (TSM) based classification

On a differentiable manifold M, tangent vectors can be
defined at p ∈ M, and the set of tangent vectors spans a
Euclidean space called the tangent space TpM. When the set
of SPD matrices is concentrated locally, the tangent space
is the local approximation of the space of the set of SPD
matrices. Let {Ci} (i = 1, 2, · · · , N) is a set of SPD matrices,
the projection of Ci on the tangent space at C is defined as:

vi = Upper
(
log
(
C

−1/2
CiC

−1/2
))

∈ RM(M+1)/2 (3)

where Upper(·) is a half-vectorization operator applying unit
weights to diagonal entries and

√
2 to off-diagonal entries of a

given SPD matrix and log(·) is the principal matrix logarithm
[13]. In this work, C is estimated by the Riemannian mean
of the whole set of SPD matrices. As a tangent space is a
Euclidean space, TSM allows us to classify vectorized SPD
matrices by applying any vector-based classifier, such as Lin-
ear Discriminant Analysis (LDA). TSM-based classification
showed the best performance in Riemannian BCIs [6].

III. RELATED WORK FOR PROPOSED SPD MATRICES

This section briefly reviews the existing work that inspired
our proposal for new spatial CFC covariance matrices.

A. Phase-amplitude coupling (PAC)

PAC is a type of CFC, which is a coupling phenomenon
between bursts of high-frequency oscillations and the phase of
lower-frequency rhythms. In other words, the fast oscillation
is modulated by the cycle of the slower oscillation [14]. PAC
is speculated to have high relevance for cognitive processing,
such as memory processes and decisions making [14], [15].

Various indicators have been developed to quantify PAC, but
no gold-standard exists yet [15]. Each metric has different pros
and cons, thus, should be chosen according to the study goal.
As our aim was developing a new SPD representation based
on PAC, we focused on the direct PAC (dPAC), formulated as:

dPAC :=
1√
T

∣∣∣∑T
t=1 afHe

iϕfL (t)
∣∣∣√∑T

t=1 afH(t)
2

(4)

where t = 1, 2, · · · , T is time samples, ϕfL is the phase of
lower FB fL and afH is the amplitude of higher FB fH. The
dPAC is reported as a more accurate estimator than others [16]
and can estimate PAC strength for concise data segments [17].

B. Cross-frequency covariance matrix (crossFB Cov)

CrossFB Cov, CcrossFB, was proposed for brain age predic-
tion from EEG in [18]. To describe interactions of five FBs
f1, f2, · · · , f5 in a Cov, filtered EEG are first concatenated as:

XcrossFB =


Xf1(t)
Xf2(t)

...
Xf5(t)

 ∈ R5M×T (5)

Then, CcrossFB ∈ 5M × 5M was estimated using Eq.1. In this
Cov, the block matrices within the FBs are aligned diagonally
(i.e., conventional Riemannian Cov), and the cross-FB block
matrices between band pairs are off-diagonal blocks. CcrossFB
showed better regression performance than a model estimating
covariance matrices for each FBs separately. However, CcrossFB
has not been explored for BCI classification, thus, we include
it as one of the CFC Cov in our study with two FBs, i.e.
CcrossFB ∈ 2M × 2M .

IV. PROPOSED METHODS

Our proposed CFC Cov capture PAC in two different ways,
described below.

A. Phase-amplitude covariance matrix (PA Cov)

PA Cov, CPA, aims to quantify the relationship between the
phase of the low-FB and the amplitude of the high-FB. Once
these two components extracted using Hilbert transforms, a
data matrix is defined as:

XPA =

cos(ϕfL(t))
sin(ϕfL(t))

afH(t)

 ∈ R3M×T . (6)

As phase is a circular variable, the phase value is divided into
cosine and sine. Then the covariance matrix of XPA, CPA ∈
R3M×3M , is estimated with Eq. 1.

B. Direct PAC covariance matrix (dPAC Cov)

dPAC Cov, CdPAC, aims to quantify the channel-to-channel
interaction of dPAC values measured based on phase and



amplitude within a channel. To this end, we modified dPAC
given by Eq. 4 to be a time-resoluted index as follows:

XdPAC =



∣∣∣afHe
iϕfL (t)

∣∣∣
ch1√∑T

t=1 afH (t)
2

ch1∣∣∣afHe
iϕfL (t)

∣∣∣
ch2√∑T

t=1 afH (t)
2

ch2
...∣∣∣afHe

iϕfL (t)
∣∣∣

chM√∑T
t=1 afH (t)

2
chM


∈ RM×T (7)

where eiϕfL (t) is euler formula of phase ϕfL . The numerator
is the absolute value of the complex composite signal of each
channel and the denominator is a normalizing factor based on
the amplitude of each channel. CdPAC is estimated with Eq. 1
and it quantifies the variance and covariance of dPAC values.

V. EXPERIMENTAL EVALUATION

A. Data description

We evaluated our method on the COG-BCI dataset [19].
This dataset comprises EEG data from 29 subjects who per-
formed N-back tasks, a widely used mental workload induction
protocol. Participants were instructed to memorize the order
in which the numbers appeared and to respond by pressing
the space key on their keyboard if the number presented was
the same as the N th previously presented number. In a trial,
the number was first displayed for 500 ms, then a blank
screen for 1500 ms. Therefore, the each trial duration was 2
seconds. Participants performed totally three different N-back
conditions (N = 0, 1, 2). and for three sessions (i.e., three
days). One session was divided into three recording blocks
and each block took about two minutes consisting of 48 trials
for each N-back condition. In this study, we used 0 and 2-
back conditions EEG data from the first session. The first two
trials were removed from each block of each task because
the cognitive state in those trials in the 2-back condition was
expected to be different from other trials. Thus 46 trials per
block were used for each task in our analysis. We used the
first two blocks as the training set and the third block as the
testing set without any shuffle. This guarantees the cognitive
states independence between the training and testing sets.

EEG were recorded using 62 channels. Among them, we
used 16 channels [F3, Fz, F4, FC5, FC1, FC2, FC6, C3, C4,
CP5, CP1, CP2, CP6, P3, Pz, P4] for the first nine subjects and
17 channels (the same 16 plus Cz) for the remaining subjects.
Cz was missing for the first nine subjects in the dataset.

B. Pre-processing

The preprocessing was performed on training and test data
separately. EEG data was first referenced using right mastoid
electrode. Secondly, a high-pass filter was applied at 1 Hz
using a FIR filter using pop eegfiltnew.m from EEGLAB
(v2022.1) [20] with default parameters. Next, electrodes de-
tected as outlier based on their standard deviation (with a mean
+ two standard deviation threshold on the training set) were
rejected and then interpolated using spherical interpolation

using pop interp.m from EEGLAB. Then, independent com-
ponent analysis (ICA) was applied using second-order blind
identification (SOBI) [21], and components with a likelihood
greater than 95% to be muscular, ocular or cardiac artifacts,
according to EEGLAB plugin ICLabel [22], were rejected.
After that, data was low-pass filtered at 90 Hz and re-
referenced using common average reference.

Then, bandpass filtering was applied in five FBs, δ : 1− 4
Hz, θ : 4 − 8 Hz, α : 8 − 13 Hz, β : 13 − 30, γ : 30 − 90
Hz, using non-causal forward-backward FIR filter from MNE-
python (v1.1.0) [23] with the default filter order. Then, the
data was epoched into each trial, i.e., two second-long epochs
without any overlap. All Cov in this study were estimated with
the oracle approximating shrinkage [24].

C. Frequency band pair selection

For proper PAC quantification, two main constraints should
be satisfied. First, the FB for phase should always be
lower than the one for amplitude because PAC is a phe-
nomena for which the phase of a low-frequency oscil-
lation modulates the power of a high-frequency oscilla-
tion. Secondly, the bandwidth for the high-FB should be
at least twice as large as the bandwidth of the low-
frequency component, in order to capture the amplitude mod-
ulation effect [25]. Thus, to respect those two conditions,
for CPA and CdPAC, the best FB pair was selected among
[fL, fH] = {[δ, β], [θ, β], [α, β], [δ, γ], [θ, γ], [α, γ], [β, γ]}. For
CcrossFB, the best FB pair (i.e., two bands) was selected from
all possible pairs from δ to γ. The best pair was selected for
each CFC Cov type, for each subject. To this end, we selected
the FB pair whose CFC Cov became the most discriminative
on the manifold, using the ClassDis metric [26] on the training
set.

D. Compared models

We compared the following three types of pipelines with
totally six different classification models:

a) Baselines: We used the conventional Riemannian Cov
given by Eq. 1 with two different FB separately. The Cov of
each FB was estimated individually, then after TSM, the two
vectorized Cov were concatenated into a single vector. Thus,
the feature vector size is M(M + 1). It does not contain any
cross-frequency component. The FB pairs used were:

• C[θ,α]: [θ, α] bands pair was chosen as they are known
to be collaboratively associated with mental workload
changes [5]. We set this model as the most basic baseline.

• C[β,γ]: In the FB pair selection for CcrossFB (Section V-C),
[β, γ] bands pair was always selected as the best FB pair
for all subjects. Thus, to investigate how much benefit the
inclusion of cross-frequency components would bring, we
also included this model as baseline.
b) Individual CFC pipelines: In this pipeline, we evalu-

ated three different CFC Cov independently: CPA, CdPAC (both
proposed in this paper) and CcrossFB. The FB pair used in
each model was selected by the selection method described in
Section V-C. For CcrossFB, we concatenated the filtered EEG



data as Eq. 5 using two different FBs f1 and f2. Therefore,
CcrossFB ∈ R2M×2M contains conventional Cov as diagonal
block matrices, and in addition to this, the Cov between f1
and f2 are included as off-diagonal block matrices.

c) Fusion CFC pipeline: To combine the benefits of all
CFC Cov, the vectorized features of each Cov (i.e., CPA +
CdPAC + CcrossFB) were fused, as described in Fig. 1. First,
all CFC Cov were vectorized after TSM with Eq. 3. Then,
those vectorized features were concatenated to form one large
vector, as done in [18], and its size became (7M +3)M . This
concatenated vector contains different feature scales, including
multiple FBs of phase, amplitude and PAC values. Thus, we re-
scaled the vector by subtracting its mean and scaling it to unit
variance. This re-scaling was applied for all feature vectors of
all methods, to make a fair comparison.

CPA

CdPAC

CcrossFB

M

M

3M

3M

2M

2M

3M(3M + 1)
2

M(M + 1)
2

2M(2M + 1)
2

(7M + 3)M

1. TSM 2. Concatenation 3. Standardization 

Fig. 1. Illustration of fusion pipeline of three different SPD representations

For all pipelines, a Ridge Regression was applied as a classifier
using RidgeClassifier from Scikit-learn (v1.2.1) [27] with
default parameters. To investigate statistical differences, we
performed a Friedman test for Model (C[θ,α], C[β,γ], CPA,
CdPAC, CcrossFB, and CPA + CdPAC + CcrossFB) after checking
the normality assumption. In case where a statistical signifi-
cance was observed, a Post-hoc analysis was performed using
Durbin-Conover pairwise tests.

VI. RESULTS

Average classification accuracies for each model are sum-
marized in Table I, while Fig. 2 shows the distribution of
classification accuracy of each model. Our fusion model
showed the highest average performance and smallest standard
deviation among all models. Friedman test revealed a statistical
significant difference in Model [X2(5) = 75.4; p < 0.001].
Post-hoc analysis with Durbin-Conover pairwise tests showed
that all proposed models except CdPAC were significantly better
than C[θ,α] (p < 0.001). Compared to C[β,γ], fusion model
showed significant improvement (p = 0.034), while CdPAC
was significantly worse (p < 0.001). Among our proposed
methods, CPA was significantly better than CdPAC (p < 0.001).
Also, the fusion model was significantly better than CPA, CdPAC
and CcrossFB (p < 0.001).

The selected best FB pair for CPA and CcrossFB was [β, γ]
for all subjects. On the other hand, CdPAC had more variety in
the selection result. Among the 29 subjects, [δ, γ] was selected
for 10 subjects, [θ, γ] for 10, [α, γ] for five and [β, γ] for four.

VII. DISCUSSION

The aim of this experiment was to investigate the validity
of our proposed CFC Cov, either individually or in fusion
compared to conventional Cov. We set two different baseline
models. Among them, C[β,γ] showed significant improvement
from C[θ,α] simply by changing the FBs to use. Those high-
FBs, β or γ are typically filtered out in most BCI designs. For
instance, in the recent passive BCI classification competition,
the dataset was initially low-pass filtered at 40 Hz [7]. Our
results suggest that such high-FBs may be worth considering
if artifacts are removed carefully, as we did here with ICA.

The fusion model showed the best average accuracy among
all models. This suggests that combining various CFC covari-
ance matrix features results in enhanced class discriminability.
However, the resulting accuracy was not statistically signif-
icantly better than that of the best individual models. This
may be due to the overly large dimension of the concatenated
feature vector. To overcome this, future work should explore
sparse classification of the concatenated features.

Regarding the individual pipelines, our proposed methods
showed globally higher average accuracy than two baseline
methods, except CdPAC. The main difference between CdPAC
and the other CFC Cov was that CPA and CcrossFB included
amplitude block matrices independently in one covariance
matrix, while CdPAC did not. This result may imply that the
independent inclusion of amplitude features is essential to
maximize classification accuracy. However, we stress that it
is premature to conclude that including PAC is ineffective.
The current CdPAC only considers PAC within channels, i.e.,
the amplitude of the high-frequency component and the phase
of the low-frequency component are calculated from the same
channel, even though PAC plays a crucial role in both local and
long-distance neuronal communication across brain regions.
For instance, in [28], a correlation was observed between
the phase from the visual cortex Electrocorticography (ECoG)
electrodes and the amplitude in the medial frontal lobes during
visuomotor tasks. As such, it is worth exploring ways to embed
cross-channel PAC in SPD matrices in the future.

The only difference between CcrossFB and C[β,γ] was the
inclusion of cross-frequency terms since the [β, γ] pair was
selected for all subjects in CcrossFB. The average accuracy of
CcrossFB was slightly higher than C[β,γ] but not significantly.
It may be worthwhile to estimate CcrossFB with more than two
bands, as done in [18].

VIII. CONCLUSION

In this paper, we proposed novel SPD matrix representations
considering CFC for EEG classification using Riemannian
geometry. In most EEG classification approaches, including
Riemannian BCIs, frequency band powers have been used
as the major features. Here, we incorporated more diverse



TABLE I
AVERAGE CLASSIFICATION ACCURACY ACROSS THE 29 SUBJECTS, FOR EACH MODEL

baseline individual fusion
C[θ,α] C[β,γ] PA dPAC crossFB PA+dPAC+crossFB

Ave. std [%] 73.58± 15.5 87.56± 18.2 88.27± 11.0 74.06± 16.1 88.53± 10.9 91.90± 9.75

Fig. 2. Distribution of classification accuracies for each model.

neural interactions, such as inter- and intra-frequency band
power and phase relationships, into SPD matrices. Through
comparative experiments, their effectiveness was demonstrated
and especially the fusion model of our proposed CFC matri-
ces showed the highest average accuracy. Additionally, CFC
matrices including block matrices of amplitude (i.e., CPA and
CcrossFB) showed globally higher average accuracy than base-
line. Those results thus suggested that to improve Riemannian
BCIs, we need to combine amplitude block matrices with other
neurophysiological features within the SPD matrix.

Future works will deepen neurophysiological interpretation
of the empirical effectiveness of our new SPD representations.
Furthermore, we will consider how to integrate CFC Cov fea-
tures with conventional features more effectively, notably by
using sparse modeling. We will also explore ways to quantify
cross-channel PAC into SPD matrices efficiently. Finally, we
will investigate our approach with non-linear classifiers or in
more complex BCI setups, such as cross-session or multi-class.

REFERENCES

[1] E. Niedermeyer and F. da Silva, Electroencephalography: basic prin-
ciples, clinical applications, and related fields. Lippincott Williams &
Wilkins, 2005.

[2] M. Clerc, L. Bougrain, and F. Lotte, Brain-Computer Interfaces 1. 2016.
[3] G. Pfurtscheller, G. R. Müller-Putz, R. Scherer, and C. Neuper, “Reha-

bilitation with Brain-Computer Interface systems,” Computer, vol. 41,
no. 10, pp. 58–65, 2008.

[4] S. Rimbert, P. Riff, N. Gayraud, D. Schmartz, and L. Bougrain, “Median
nerve stimulation based BCI: a new approach to detect intraoperative
awareness during general anesthesia,” Front. Neurosci., vol. 13, 2019.

[5] F. Dehais, A. Duprès, S. Blum, N. Drougard, S. Scannella, R. N.
Roy, and F. Lotte, “Monitoring pilot’s mental workload using ERPs
and spectral power with a six-dry-electrode EEG system in real flight
conditions,” Sensors, vol. 19, no. 6, p. 1324, 2019.

[6] F. Yger, M. Berar, and F. Lotte, “Riemannian approaches in Brain-
Computer Interfaces: a review,” IEEE Trans. Neural Sys. Rehab., vol. 25-
10, pp. 1753–1762, 2016.

[7] R. N. Roy, M. F. Hinss, L. Darmet, S. Ladouce, E. S. Jahanpour,
B. Somon, X. Xu, N. Drougard, F. Dehais, and F. Lotte, “Retrospective
on the first passive brain-computer interface competition on cross-
session workload estimation,” Front. Neuroerg., 2022.

[8] K. Sadatnejad and F. Lotte, “Riemannian channel selection for BCI with
between-session non-stationarity reduction capabilities,” IEEE Trans.
Neural Syst. Rehab., vol. 30, pp. 1158–1171, 2022.

[9] M. S. Yamamoto, F. Yger, and S. Chevallier, “Subspace oddity-
optimization on product of stiefel manifolds for EEG data,” in Proc.
ICASSP, pp. 1080–1084, 2021.

[10] M. S. Yamamoto, K. Sadatnejad, T. Tanaka, R. Islam, Y. Tanaka, and
F. Lotte, “Detecting EEG outliers for BCI on the Riemannian manifold
using spectral clustering,” in EMBC2020, pp. 438–441, IEEE, 2020.

[11] M. S. Yamamoto, F. Lotte, F. Yger, and S. Chevallier, “Class-
distinctiveness-based frequency band selection on the Riemannian man-
ifold for oscillatory activity-based BCIs: preliminary results,” in Proc.
IEEE/EMBS EMBC, pp. 3690–3693, 2022.

[12] V. Jirsa and V. Müller, “Cross-frequency coupling in real and virtual
brain networks,” Front. Comput. Neurosci., vol. 7, p. 78, 2013.

[13] A. Barachant, A. Andreev, and M. Congedo, “The Riemannian Potato: an
automatic and adaptive artifact detection method for online experiments
using Riemannian geometry,” in TOBI Workshop lV, pp. 19–20, 2013.

[14] M. X. Cohen, C. E. Elger, and J. Fell, “Oscillatory activity and phase–
amplitude coupling in the human medial frontal cortex during decision
making,” J. Cog. Neur., vol. 21, no. 2, pp. 390–402, 2008.

[15] R. T. Canolty and R. T. Knight, “The functional role of cross-frequency
coupling,” Trends Cog. Sci., vol. 14, no. 11, pp. 506–515, 2010.
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