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How does the brain process syntactic structure while listening?

Syntactic parsing is the task of assigning a syntactic structure to a sentence. There are two popular syntactic parsing methods: constituency and dependency parsing. Recent works have used syntactic embeddings based on constituency trees, incremental top-down parsing, and other word syntactic features for brain activity prediction given the text stimuli to study how the syntax structure is represented in the brain's language network. However, the effectiveness of dependency parse trees or the relative predictive power of the various syntax parsers across brain areas, especially for the listening task, is yet unexplored. In this study, we investigate the predictive power of the brain encoding models in three settings: (i) individual performance of the constituency and dependency syntactic parsing based embedding methods, (ii) efficacy of these syntactic parsing based embedding methods when controlling for basic syntactic signals, (iii) relative effectiveness of each of the syntactic embedding methods when controlling for the other. Further, we explore the relative importance of syntactic information (from these syntactic embedding methods) versus semantic information using BERT embeddings. We find that constituency parsers help explain activations in the temporal lobe and middle-frontal gyrus, while dependency parsers better encode syntactic structure in the angular gyrus and posterior cingulate cortex. Although semantic signals from BERT are more effective compared to any of the syntactic features or embedding methods, syntactic embedding methods explain additional variance for a few brain regions. We make our code publicly available 1 . 118 hension effort (Friederici, 2011) using carefully de-119 signed sentence/phrase stimuli. In the past decade, 120 the study of syntactic processing has been extended 121 to naturalistic settings that use narratives, such as 122 reading (Reddy and Wehbe, 2021) or listening to 123 stories (Bhattasali et al., 2018; Zhang et al., 2022) 124 generally in a task-free setting. Due to the com-125 plexity of extracting syntactic word embeddings 126 from sentence parsers, investigation of the predic-127 tive power of sentence parsers for brain encoding, 128 especially for the neuroimaging data from natural-129 istic listening paradigms is still under-explored. 130 Brain Regions of Interest (ROIs) for syntactic 131 processing: Several classical studies report the 132 involvement of a language network of mostly left-133 lateralised cortical regions including the left in-134 ferior frontal gyrus (IFG) with sub regions (BA 135 44 and BA 45), the left posterior superior tempo-136 ral gyrus (pSTG), and the left anterior temporal 137

Introduction

A key assumption in psycholinguistics is that sentence processing involves two operations: (i) the construction of a syntactic structure that represents 1 https://tinyurl.com/BrainSyntax the relation between its components and (ii) the retrieval of the meaning of single linguistic units from semantic memory. When presented with a sentence in a task, humans can understand word meaning effectively while reading and listening. Listeners and readers appear to extract a similar semantic meaning from narrative stories [START_REF] Donald L Rubin | Reading and listening to oral-based versus literate-based discourse[END_REF][START_REF] Diakidoy | The relationship between listening and reading comprehension of different types of text at increasing grade levels[END_REF], hence suggesting that the brain represents semantic information in an amodal form, i.e., independent of input modality. Further, earlier language-fMRI encoding studies have observed that sentence semantics alone cannot explain all the variance in brain activity; syntactic information can also be used to explain some of the variance [START_REF] Jeffrey R Binder | Toward a brainbased componential semantic representation[END_REF][START_REF] Fedorenko | Reworking the language network[END_REF].

Prior to different aspects of semantic interpretation, the brain performs syntactic structure analysis inherently [START_REF] Hirst | A semantic process for syntactic disambiguation[END_REF]. The syntactic information helps to identify the structural constituents that have to be interpreted as nominal, ordinal, or noun phrases, e.g., we identify "Brazil", "four", "world cups", and "2002" in a sentence: "Brazil won four world cups till 2002" before interpreting the semantics. Hence, investigating how the brain encodes syntactic word features is crucial for understanding language comprehension in the brain. Two paradigms of syntactic parsing: Constituency and dependency are two different syntactic formalisms using different structural primitives (dependency relations and phrases). There has been some discussion in the field of theoretical linguistics with regard to whether they capture the same information or to what degree the structures they sanction are equivalent [START_REF] David | Dependency theory: A formalism and some observations[END_REF][START_REF] Jung | Syntaktische Relationen im Rahmen der Dependenzgrammatik[END_REF]. Discussing the linguistic information the two parsers capture, [START_REF] Rambow | The simple truth about dependency and phrase structure representations: An opinion piece[END_REF] states from a theoretical linguistic point of view that they describe distinct syntactic entities; thus, they are not strictly equivalent. Dependencies capture direct relations between words, identical to the-
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such that at each level, each grouping acts as a syntactic unit [START_REF] Schneider | A linguistic comparison of constituency, dependency and link grammar[END_REF]. Moreover, according to [START_REF] Jung | Syntaktische Relationen im Rahmen der Dependenzgrammatik[END_REF] only dependencies can express the syntactic word-to-word relations of a sentence, whereas constituency expresses the linear order of a sentence. On the other hand, incremental top-down parser processes input words from left to right, producing the possible parses in a top-down manner as future words are read. Therefore, [START_REF] Jung | Syntaktische Relationen im Rahmen der Dependenzgrammatik[END_REF] sees the two grammars as complementary but not equivalent. Following these last observations, we consider dependency and constituent structures as distinct and the type of information that they capture as nonequivalent. The question we address in this study is whether different brain regions are associated with building different kinds of syntactic structure. We compare the predictive power of syntactic structural measures derived from these parsers with regard to modeling the brain activity in language processing areas recorded during naturalistic story listening.

Stimulus types for studying syntactic processing:

Earlier psycholinguistic studies explored syntactic processing while subjects were involved in activi-ties that required less versus more syntactic compre- matic functions such as subject, object, modifier, etc. Constituent syntactic structure, on the other hand, is not so much about functional relations between words but about the recursive grouping of sentence constituents (words and phrases), such that at each level, each grouping acts as a syntactic unit [START_REF] Schneider | A linguistic comparison of constituency, dependency and link grammar[END_REF]. Moreover, according to [START_REF] Jung | Syntaktische Relationen im Rahmen der Dependenzgrammatik[END_REF], only dependencies can express the syntactic word-to-word relations of a sentence, whereas constituency expresses the linear order of a sentence. On the other hand, an incremental topdown constituency parser processes input words from left to right, producing the possible parses in a top-down manner as future words are read. Therefore, [START_REF] Jung | Syntaktische Relationen im Rahmen der Dependenzgrammatik[END_REF] sees the two grammars as complementary but not equivalent. Following these last observations, we consider dependency and constituent structures as distinct and the type of information they capture as nonequivalent. The question we address in this study is whether different brain regions are associated with building different kinds of syntactic structures. We compare the predictive power of syntactic structural measures derived from these parsers with regard to modeling the brain activity in language processing areas recorded during naturalistic story listening.

Stimulus types for studying syntactic processing: Earlier psycholinguistic studies explored syntactic processing while subjects were involved in activities that required less versus more syntactic comprehension effort [START_REF] Friederici | The brain basis of language processing: from structure to function[END_REF] using carefully designed sentence/phrase stimuli. In the past decade, the study of syntactic processing has been extended to naturalistic settings that use narratives, such as reading (Reddy and Wehbe, 2021) or listening to stories (Bhattasali et al., 2018;[START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF] generally in a task-free setting. Due to the com-plexity of extracting syntactic word embeddings from sentence parsers, investigation of the predictive power of sentence parsers for brain encoding, especially for the neuroimaging data from naturalistic listening paradigms, is still under-explored.

Brain Regions of Interest (ROIs) for syntactic processing: Several classical studies report the involvement of a language network of mostly leftlateralised cortical regions, including the left inferior frontal gyrus (IFG) with sub-regions (BA 44 and BA 45), the left posterior superior temporal gyrus (pSTG), and the left anterior temporal pole (ATP) [START_REF] Caramazza | Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia[END_REF][START_REF] Friederici | Processing linguistic complexity and grammaticality in the left frontal cortex[END_REF][START_REF] Friederici | The brain basis of language processing: from structure to function[END_REF][START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF][START_REF] Zaccarella | Merge in the human brain: A sub-region based functional investigation in the left pars opercularis[END_REF]. However, several other studies did not report activity in left IFG and left pSTG [START_REF] Humphries | Syntactic and semantic modulation of neural activity during auditory sentence comprehension[END_REF][START_REF] Rogalsky | Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex[END_REF][START_REF] Douglas | Simple composition: A magnetoencephalography investigation into the comprehension of minimal linguistic phrases[END_REF], despite using paradigms similar to the studies mentioned above. A series of recent studies have used functional magnetic resonance imaging (fMRI) brain activity to find that those brain regions spanning both the left and right hemispheres are involved in language processing [START_REF] Fedorenko | Reworking the language network[END_REF]Caucheteux et al., 2021a;[START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF]Oota et al., 2022b,a;[START_REF] Toneva | Combining computational controls with natural text reveals aspects of meaning composition[END_REF][START_REF] Loong | Training language models to summarize narratives improves brain alignment[END_REF]Oota et al., 2022c;[START_REF] Merlin | Language models and brain alignment: beyond wordlevel semantics and prediction[END_REF]. Further, these works conclude that syntax is distributed throughout the language system [START_REF] Blank | Syntactic processing is distributed across the language system[END_REF][START_REF] Fedorenko | Lexical and syntactic representations in the brain: an fmri investigation with multivoxel pattern analyses[END_REF][START_REF] Fedorenko | Lack of selectivity for syntax relative to word meanings throughout the language network[END_REF]Caucheteux et al., 2021a;[START_REF] Wang | Probing brain activation patterns by dissociating semantics and syntax in sentences[END_REF][START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF]Oota et al.). However, whether different brain regions are sensitive to distinct sentence-parsing strategies remains unclear. Moreover, in a listening task, it is unclear how syntactic features are represented in the brain and whether the neural correlates of different syntactic parsing signals overlap or dissociate from one another.

Word stimulus representations for brain encoding: Several studies have used basic syntactic features such as part-of-speech, dependency relations, complexity metrics (Caucheteux et al., 2021a;[START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF], and semantic word embeddings [START_REF] Reddy Oota | fMRI Semantic Category Decoding Using Linguistic Encoding of Word Embeddings[END_REF][START_REF] Jain | Incorporating context into language encoding models for fmri[END_REF][START_REF] Hollenstein | Cognival: A framework for cognitive word embedding evaluation[END_REF] to represent words for brain encoding with text stimulus. In this paper, to understand how the brain processes linguistic structure in sentences, we leverage three different text representations using syntax parsers, as shown in Fig. 1. We aim to understand the relative importance of these syntax parser embeddings and also their additional importance when compared with basic syntactic features or semantic embeddings like BERT. Overall, our main contributions are as follows.

Limitations

(1) We explore (a) basic syntactic features such as complexity metrics, part-of-speech (POS) tags, and dependency role (DT) tags, (b) embeddings obtained from three parse tree representations, and (c) semantic BERT embeddings for brain encoding. (2) Constituency and dependency tree-based embeddings are effective across different language regions for brain activity prediction, even after controlling for basic syntactic signals.

(3) We find that prediction of the activation in regions such as the bilateral temporal areas (ATL, PTL) and middlefrontal gyrus (MFG) is significantly related to constituency parse representations. At the same time, brain activity in other language regions, such as the angular gyrus (AG) and posterior cingulate cortex (PCC) is significantly associated with dependency parse embeddings. (4) Lastly, in the inferior frontal gyrus (IFG), we identify that dependency parse embeddings encode syntactic information better in the sub-regions such as 44, 45, IFJa, and IFSp of the left hemisphere, whereas constituency parse tree and incremental top-down parse tree based embeddings are better aligned in the right hemisphere.

Feature Representations

We used four different features computed per word to simultaneously test different syntactic and semantic representations.

(1) Constituency Tree-based Embeddings: Similar to Reddy and Wehbe (2021), we build three types of constituency tree-based graph embeddings (ConTreGE): (i) ConTreGE Complete vectors (CC), (ii) ConTreGE Incomplete vectors (CI) and (iii) Incremental Top-Down Parser Embeddings (INC). A CC vector is generated for every word using the largest subtree completed by that word. A subtree is considered complete when all of its leaves are terminals. The largest subtree completed by a given word refers to the subtree with the largest height. A CI vector is generated for every word using the incomplete subtree that contains all of the Phrase Structure Grammar productions needed to derive the words seen till then, starting from the root of the sentence's tree. Some examples for CC and CI are added in the Appendix (Figs. 6 and7). Like (Reddy and Wehbe, 2021), we use Berkeley Neural Parser2 for constituency parsing (i.e., for both CI and CC).

In ConTreGE Complete tree (CC), the largest subtree completed by a given word refers to the subtree with the largest height that also satisfies the following conditions -the given word must be one of its leaves and all of its leaves must only contain words that have been seen till then.

In ConTreGE Incomplete tree (CI), the embeddings are constructed using incomplete subtrees that are constructed by retaining all the phrase structure grammar productions that are required to derive the words seen till then, starting from the root of the sentence's tree. If incomplete subtrees are more representative of the brain's processes, it would mean that the brain correctly predicts certain phrase structures even before the entire phrase or sentence is read.

The incremental top-down parser is a statistical syntactic parser that processes input strings from left to right, producing partial derivations in a top-down manner, using beam search as detailed in [START_REF] Roark | Probabilistic top-down parsing and language modeling[END_REF]. Specifically, we use the implementation as described here 3 . The INC embeddings are obtained using exactly the same methods as described in Section 3 of (Reddy and Wehbe, 2021). The brain could be computing several possible top-down partial parses that can derive the words seen so far and modifying the list of possible parses as future words are read. The INC feature space is constructed to encode the different possible parse trees that can derive the words seen so far. When considering parse tree based representations, the embeddings may contain information about what is yet to be seen by the subject. However, this is not a problem since it mimics the human capability of guessing what is to come next. With this embedding space, we attempt to measure the ability of the brain to predict future constituents correctly.

(2) Dependency Tree-based Embeddings (DEP): Graph Convolutional Networks (GCNs) have been widely used to encode syntactic information from dependency parse trees [START_REF] Vashishth | Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[END_REF]. Rather than using pretrained syntactic GCN word embeddings generated from Wikipedia [START_REF] Vashishth | Incorporating syntactic and semantic information in word embeddings using graph convolutional networks[END_REF], we create DEP embeddings using GCNs on the "Narrative stories" dataset as follows. To generate syntactic word embeddings using GCN, we first extract the dependency parse tree G s =(V s , ϵ s ) for every sentence in our dataset s = (w 1 , w 2 ,. . . , w n ), using the Stanford CoreNLP parser (Manning et al., 2014). Here, V s = {w 1 , w 2 ,. . . , w n } and ϵ s denotes the labeled directed dependency edges of the form (w i , w j , l ij ), where l ij is the dependency relation of w i to w j . GCN computations iteratively utilize the context defined by a word's neighbors in the graph to compute embedding for every word w i . Further, we also perform edge-wise gating to give importance to relevant edges and suppress noisy ones. We follow the architecture defined in (Vashishth et al., 3 https://github.com/roarkbr/ incremental-top-down-parser 2019) for training a GCN on our dataset leading to syntactically-rich DEP embeddings. Overall, GCN utilizes syntactic context to learn rich DEP embeddings.

(3) Basic Syntactic Features: Similar to [START_REF] Wang | Probing brain activation patterns by dissociating semantics and syntax in sentences[END_REF][START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF], we use various multi-dimensional syntactic features such as Punctuation (PU), Complexity Metrics (CM), and Part-of-speech and dependency tags (PD), described briefly below.

Punctuation (PU)

The role of punctuation is to resolve syntactic and semantic ambiguity in the lexical grammar and encode relational discourse links between text units in sentences [START_REF] Briscoe | The syntax and semantics of punctuation and its use in interpretation[END_REF].

Punctuation-based features are encoded using a one-hot vector where the type of punctuation is presented along with a word (e.g. . or ,).

Complexity Metrics (CM) We use three features in the complexity metrics: Node Count (NC), Word Length (WL), and Word Frequency (WF). The node count for each word is the number of subtrees that are completed by incorporating each word into its sentence. Word length is the number of characters present in the word. Word frequency reports log base-10 of the number of occurrences per billion of a given word in a large text corpus.

Part-of-speech and Dependency tags (PD) We use the Spacy English dependency parser (Honnibal and Montani, 2017) to extract the Part-ofspeech (POS) and dependency tags. Unlike DEP embeddings (which use GCNs), in PD, we generate a one-hot vector for each word and dependency tag. The final vector is called PD, a concatenation of both the POS tag and dependency vector. Note that DEP and PD features use different methods for dependency analysis -PD features are just one-hot encoded representations while DEP features are learned syntactic embeddings using GCNs.

(4) BERT Features Given an input sentence, the pretrained BERT [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF] outputs token representations at each layer. Since BERT embeds a rich hierarchy of linguistic signals: surface information at the bottom, syntactic information in the middle, semantic information at the top [START_REF] Jawahar | What does bert learn about the structure of language?[END_REF]; hence, we use the #tokens × 768D vector from the last hidden layer to obtain the semantic embeddings. For uniformity of feature dimensions, we used PCA to bring down the dimensions to 250.

Brain Imaging Dataset

The "Narratives" collection aggregates a variety of fMRI datasets collected while human subjects listened to real spoken stories [START_REF] Samuel A Nastase | The "narratives" fmri dataset for evaluating models of naturalistic language comprehension[END_REF]. We analyze data from 82 subjects listening to the story titled 'PieMan' with 282 TRs (repetition time -fMRI recorded every 1.5 sec.). We chose this story since it contains maximum number of subjects in the "Narratives" collection. The dataset is in English and contains 957 words across 67 sentences. The story duration is 07m:02s. We use the multi-modal parcellation of the human cerebral cortex (Glasser Atlas: consists of 180 ROIs in each hemisphere) to display the brain maps [START_REF] Matthew F Glasser | A multimodal parcellation of human cerebral cortex[END_REF] since the Narratives dataset contains annotations tied to this atlas. The data covers eight language brain ROIs with the following subdivisions: (i) angular gyrus (AG: PFm, PGs, PGi, TPOJ2, and TPOJ3); (ii) anterior temporal lobe (ATL: STSda, STSva, STGa, TE1a, TE2a, TGv, and TGd); (iii) posterior temporal lobe (PTL: A5, STSdp, STSvp, PSL, STV, TPOJ1); (iv) inferior frontal gyrus (IFG: 44, 45, IFJa, IFSp); (v) middle frontal gyrus (MFG: 55b); (vi) inferior frontal gyrus orbital (IFGOrb: a47r, p47r, a9-46v), (vii) posterior cingulate cortex (PCC: 31pv, 31pd, PCV, 7m, 23, RSC); and (viii) dorsal medial prefrontal cortex (dmPFC: 9m, 10d, d32) [START_REF] Cordell | A connectomic atlas of the human cerebrum-chapter 7: the lateral parietal lobe[END_REF][START_REF] Camille K Milton | Parcellationbased anatomic model of the semantic network[END_REF][START_REF] Rutvik | Proper and common names in the semantic system[END_REF]. The dataset has been made available freely without restrictions by [START_REF] Samuel A Nastase | The "narratives" fmri dataset for evaluating models of naturalistic language comprehension[END_REF]. Downsampling Since the rate of fMRI data acquisition (TR = 1.5sec) was lower than the rate at which the text stimulus was presented to the subjects, several words fall under the same TR in a single acquisition. Hence, we match the stimulus acquisition rate to fMRI data recording by downsampling the stimulus features using a 3-lobed Lanczos filter [START_REF] Lebel | Voxelwise encoding models show that cerebellar language representations are highly conceptual[END_REF]. After downsampling, we obtain chunk-embedding corresponding to each TR. TR Alignment To account for the slowness of the hemodynamic response, we model the hemodynamic response function using finite response filter (FIR) per voxel and for each subject separately with 8 temporal delays corresponding to 12 seconds.

Methodology

Encoding Model To explore how and where syntactic and semantic specific features are represented in the brain when listening to stories, we extract dif-ferent features describing each stimulus sentence and use them in an encoding model to predict brain responses. If a feature is a good predictor of a specific brain region, information about that feature is likely encoded in that region.

The main goal of each fMRI encoder model is to predict brain responses associated with each brain voxel when given stimuli. We train a model per subject separately. Following the literature on brain encoding [START_REF] Wehbe | Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses[END_REF][START_REF] Toneva | Modeling task effects on meaning representation in the brain via zero-shot meg prediction[END_REF]Caucheteux et al., 2021b;[START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Toneva | Same cause; different effects in the brain[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF]Oota et al., 2022b[START_REF] Reddy Oota | Neural architecture of speech[END_REF], we choose to use a ridge regression model instead of more complicated models. We plan to explore more such models as part of future work. The ridge regression objective function for the

i th example is f (X i ) = min W ∥Y i -X i W ∥ 2 F + λ∥W ∥ 2 F .
Here, W are the learnable weight parameters, ∥.∥ F denotes the Frobenius norm, and λ > 0 is a tunable hyperparameter representing the regularization weight. λ was tuned on a small disjoint validation set obtained from the training set. Cross-Validation We follow 4-fold (K=4) crossvalidation. All the data samples from K-1 folds were used for training, and the model was tested on samples of the left-out fold. Evaluation Metric We evaluate our models using the popular brain encoding evaluation metric, R 2 . Let TR be the number of time repetitions. Let Y = {Y i } T R i=1 and Ŷ = { Ŷi } T R i=1 denote the actual and predicted value vectors for a single voxel. Thus, Y ∈ R T R and also Ŷ ∈ R T R . We use R 2 (Y, Ŷ ) metric to measure the coefficient of determination for every voxel. We average R 2 score over all voxels in a region to get region-level aggregated metric. Finally, they are further averaged across all subjects to obtain final region-level metrics, which are reported with mean and standard deviation. Statistical Significance We run a permutation test to check if R 2 scores are significantly higher than chance. We permute blocks of contiguous fMRI TRs, instead of individual TRs, to account for the slowness of the underlying hemodynamic response. We choose a standard value of 10 TRs. The predictions are permuted within fold 5000 times, and the resulting R 2 scores are used as an empirical distribution of chance performance, from which the p-value of the unpermuted performance is estimated. We also run a bootstrap test, to test if a model has a higher R 2 score than another. In each iteration, we sample with replacement the predictions of both models for a block of TRs, compute the difference of their R 2 , and use the resulting distribution to estimate the p-value of the unpermuted difference. Finally, the Benjamni-Hochberg False Discovery Rate (FDR) correction [START_REF] Benjamini | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF] is used for all tests (appropriate because fMRI data is considered to have positive dependence [START_REF] Christopher R Genovese | A bayesian time-course model for functional magnetic resonance imaging data[END_REF]). The correction is performed by grouping all the voxel-level p-values (i.e., across all subjects and feature groups) and choosing one threshold for all of our results. The correction is done this way as we test multiple prediction models across multiple voxels and subjects.

Experiments and Results

We discuss detailed hyper-parameter settings in Appendix A. Which word representations are semantic versus syntactic? We first empirically show that syntactic embeddings do not encode a significant amount of semantic information. In particular, we train the RidgeCV regression model in a 10-fold cross-validation setting to predict the semantic GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] features (300 dimensions) using syntactic embeddings for all the representations, similar to earlier works (Caucheteux et al., 2021a;[START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF].

Average R 2 scores are as follows: BERT (0.560), CC (0.052), CI (0.020), DEP (0.170), INC (0.040), PD (0.183), CM (0.027), and PU (0.005). These R 2 scores indicate that (a) overall, BERT has high semantic information compared to other embeddings, and (b) constituency parsers have low semantic information compared to DEP. Overall, all the syntactic embeddings consist of very low semantic information. Hence, it is reasonable to infer that any additional variance predicted by the syntactic parsing methods compared to the semantic feature space (BERT) is mainly due to their syntactic information.

Performance of individual embedding methods:

In order to assess the performance of the fMRI encoder models learned using the individual syntactic and semantic representations, we computed the R 2 scores between the predicted and true responses across various ROIs of the language network. Fig. 2 reports the % of ROI voxels with significant R 2 scores (based on a hypothesis test where the R 2 score for each voxel is greater than 0) across differ-ent representations for different language regions in the left and right hemispheres. We make the following observations from Fig. 2: (1) Among basic syntactic features, PD features perform best across most of the language regions, whereas CM yields the second-best result. (2) Among the syntactic embedding methods, CC encodes syntactic information better in the language regions such as temporal lobes (ATL and PTL) and MFG. (3) Among the syntactic embedding methods, DEP embeddings predict brain activity better in the language regions (PCC and IFG of left hemisphere, and AG, IFGorb, and PCC of right hemisphere). (4) Semantic embeddings using BERT are the best across all regions in the right hemisphere, but the effectiveness of BERT is rather mixed in the left hemisphere.

Further, we report the avg R 2 scores across all different language ROIs in the Appendix (Fig. 8). We further demonstrate the performance of embedding methods for various sub-regions of each language ROI in the Appendix Figs. 9 to 15. We observe the following from these figures: (1) In the ATL region (Fig. 10), CC better encodes in the superior temporal sulcus with dorsal attention (STSda). For STS in ventral attention (STSva), CC encodes better in the left hemisphere while DEP is better in the right. (2) In the PTL region (Fig. 11), CC is best for STSdp sub-region. (3) In the IFG region (Fig. 12), DEP is better aligned with 44 region whereas CC is better aligned with IFJa region. These results are in line with observations made in [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF]. Overall, a higher percentage of voxels with all the frontal and temporal regions, demonstrates that language comprehension may be associated more with both frontal and temporal regions [START_REF] Cohen | How does inattention affect written and spoken language processing?[END_REF].

We also report brain maps with avg R 2 for all the representations in Fig. 3. From Figs. 2 and3, we can infer that the different word representations, including all syntactic and semantic methods, are highly distributed across ROIs of language network. In particular, PTL and MFG have high overlap for both syntactic (CC, CI, DEP, INC), and semantic (BERT) features. Also, ROIs such as PTL, IFGOrb and PCC have higher overlap with PD. Most of these observations agree with previous findings on the brain networks of language processing [START_REF] Friederici | The brain basis of language processing: from structure to function[END_REF][START_REF] Fedorenko | Reworking the language network[END_REF]Caucheteux et al., 2021a;[START_REF] Aniketh | Can fmri reveal the representation of syntactic structure in the brain?[END_REF][START_REF] Zhang | Probing word syntactic representations in the brain by a feature elimination method[END_REF], support- ing that both syntax and semantics are distributed across language ROIs. Lastly, similar to an earlier study [START_REF] Blank | Syntactic processing is distributed across the language system[END_REF], basic syntactic features are much less associated with voxels in AG region.

Additional predictive power of various representations Many feature spaces have overlapping information, e.g., PD (part-of-speech and depen-dency) tags include punctuation, BERT vectors have been shown to encode syntax [START_REF] Jawahar | What does bert learn about the structure of language?[END_REF][START_REF] Luoma | Exploring cross-sentence contexts for named entity recognition with bert[END_REF], and DEP embeddings built from GCNs encode some POS tags information. Are various representations capturing very similar signals, i.e., redundant or capturing new information, which is additionally useful to predict brain activations? To answer this question, we first organize the feature groups in the increasing order of syntactic information. We build hierarchical feature groups in increasing order of syntactic information and test for significant differences in prediction performance between two consecutive groups. We start with the simple feature -punctuation (PU) and then add more complex features in this order: the complexity metrics (CM), POS and dependency tags (PD), {CC, CI, INC, DEP}, and lastly, BERT. Fig. 4 reports the % of ROI voxels with significant R 2 scores (hypothesis test where the difference in R 2 scores between the two feature groups is larger than 0) across feature groups for different ROIs in the left and right hemispheres, respectively.

We make the following observations from Fig. 4. (i) Unlike (Reddy and Wehbe, 2021), we find that punctuation features yield a lower predictive performance across language regions for listening in both the left and right hemispheres. This is intuitive since punctuation marks are not "visible" when listening. (ii) Amongst CC, CI, INC, and DEP, after controlling for basic syntactic features {PD, CM, PU}, CC displays a large % of significant voxels across multiple language sub-regions, largest in ATL, PTL, and MFG in left and in IFGOrb, PCC and dmPFC in the right hemispheres. This means there are voxels in these language sub-regions that capture hierarchical English grammar syntax beyond simple syntax signals captured by PD, CM, and PU. (iii) DEP parser explains addition variance after controlling for basic syntactic features for the AG region which is mainly a knowledge store of thematic relations between entities. Also, DEP yields a large % of significant voxels for the IFG region in the left hemisphere whereas PCC region in the right hemisphere. Although INC does not show any additional variance in the left hemisphere, it performs well for IFG and MFG in the right hemisphere. (iv) On top of these representations, BERT adds to the variance the most in the context of CC, CI, INC, and DEP features in both hemispheres.

Pairwise predictive power comparison for syntactic parse methods and BERT

To compare relative extra syntactic information in various parsebased representations, we compute the difference in R 2 between every pair of representations from {CC, CI, DEP}. For this analysis, we ignore INC since it performed worst, as shown in Fig. 2. Thus, we plot % of significant ROI voxels for {CC, DEP}-{CC} and other such feature-pairwise combinations in Fig. 5 for both hemispheres. We make the following observations from Fig. 5. (i) CC and CI show greater variance in brain predictivity (ATL and PTL for both hemispheres, MFG, IFGOrb and dmPFC of left hemisphere) even after controlling for either DEP. Also, CC and DEP show greater variance after controlling for CI. However, DEP or CI have negligible % of ROI voxels after controlling for CC, specifically for temporal lobe (ATL and PTL) and frontal regions (IFG and MFG). Thus, we can conclude that constituency trees, specifically CC, encode similar syntactic information as DEP in temporal lobe (ATL and PTL) and frontal regions (IFG and MFG). Also, DEP based on dependency trees does not have additional syntactic information compared to constituency trees, except for AG, IF-GOrb, PCC and dmPFC regions. (ii) While BERT provides improvement over CC, CI and DEP in most brain areas (especially in MFG and dMPFC), surprisingly in AG and IFG, BERT does not provide much additive value.

Discussion

In this section, we correlate our empirical findings about syntactic parsing methods with previously proposed neuroscience theories.

From Fig. 4, we observe that activity in the left temporal lobe (ATL and PTL) seems to be predicted well using either CC or basic syntactic (PD) representations. These results are supported by theory of [START_REF] Matchin | The cortical organization of syntax[END_REF], who concluded that parts of the PTL are involved in hierarchical lexical-syntactic structure building, while the ATL is a knowledge store of entities. While activity in the left IFGOrb, left PCC, and left AG seems to be better modeled by basic syntactic feature (PD) representations, that in MFG seems to be related to CC representations. DEP embeddings seem to perform better for activity in the left AG, left ATL and left IFG. This supports the theory of [START_REF] Matchin | The cortical organization of syntax[END_REF], which reports that ATL is a knowledge store of entities and AG is a store of thematic relations between entities.

A sub-ROI in the left AG, namely parietal area G inferior (PGi) has significantly more number of voxels sensitive to dependency features when we control for all other syntactic features. On the other hand sub-ROIs in the right temporo-parietooccipital junction (TPOJ) are more sensitive to incremental top-down syntactic features (Appendix Fig. 16). While it is known that AG is sensitive to stimuli that are connected through a narrative rather than unconnected words [START_REF] Cordell | A connectomic atlas of the human cerebrum-chapter 7: the lateral parietal lobe[END_REF], the current findings suggest that distinct sub-ROIs within AG are related to different syntactic features.

Further sub-regions in the prefrontal cortex such as Brodmann area (BA) 44 and the inferior frontal junction area (IFJa) also seem to be related to representations of dependency parser (Appendix Fig. 19). The results in the prefrontal cortex seem to concur with the observations of [START_REF] Grodzinsky | Neuroimaging of syntax and syntactic processing[END_REF] and [START_REF] Kaan | The brain circuitry of syntactic comprehension[END_REF] who have shown that Broca's area (Brodmann areas 44 and 45) has higher brain activation while processing complex sentences. Since narrative listening also involves processing highly complex sentences, consistent activation found in Left Brodmann areas 44 and 45 may relate to parsing of sentences or to see if they had distinct meanings. The right hemisphere activation in the language network (AG, ATL, PTL, IFG, MFG, IFGOrb, PCC, and dMPFC) on the whole seems to be associated with basic syntactic features such as word length, word frequency, word count as embodied in CM representations. In linguistic studies, INC has been shown to be effective in checking if sentences with different syntax, have the same or different meaning. This in line with our observation that representations from INC parser seem to be more related to language regions (inferior frontal gyrus, IFG) in the right hemisphere as shown in Fig. 19.

Overall, [START_REF] Grodzinsky | Neuroimaging of syntax and syntactic processing[END_REF] concluded that syntax processing is not limited to specific regions (left IFG or Broca's area). Along with IFG, other regions such as PTL, ATL, MFG, and IF-GOrb are also involved in different stages of syntax processing (Oota et al., 2022c). Our results (Fig. 2) also seem to support distributed representation of syntax across the language network. Moreover, our results clearly show the kind of syntax encoded by these individual ROIs.

Conclusion

We studied the relative importance of multiple constituency and dependency syntax parsing methods for fMRI prediction for the listening task. We find that (1) both CC and DEP are effective; CC is more important than CI, (2) CC is better in temporal cortex and MFG, while DEP is better in AG and PCC, (3) while BERT embeddings seem to be the most effective, syntactic embedding methods also explain additional variance for a few ROIs. In line with previous works, we find that syntax and semantic processing is spread across multiple brain areas.

Limitations

Although these experiments were performed on only one dataset, it is indeed large with data from 82 participants. That said, it will be nice to perform experiments with more listening datasets.

We experiment with a linear encoder -Ridge regression. We plan to experiment with more complex encoders as part of future work.

This work was done on data related to English stories only. Several other languages belong to the same language family as English [START_REF] Malik-Moraleda | An investigation across 45 languages and 12 language families reveals a universal language network[END_REF]. While we can expect the insights and learnings to hold across languages in the same language family as English, empirical validation needs to be done. For languages in other language families, syntactic structure may be very different from English. Hence, more work needs to be done to check which of these insights hold for datasets in other language families. This work was conducted on a dataset where the participants were involved in the listening task. However, the stimuli was represented in the text form. We believe that an audio form of the stimuli can lead to improved insights. Thus, more work needs to be done to design representations (like prosodic features) for auditory stimuli.

Ethical Statement

We did not create any new fMRI data as part of this work.

We used Narratives-Pieman dataset which is publicly available without any restrictions.

Narratives dataset can be dowloaded from https://datasets.datalad. org/?dir=/labs/hasson/narratives. Please read their terms of use 4 for more details.

We do not foresee any harmful uses of this technology.

A Hyper-parameter Settings

All experiments were conducted on a machine with 1 NVIDIA GEFORCE-GTX GPU with 16GB GPU RAM. We used banded ridge-regression with following parameters: MSE loss function, and L2decay (λ) varied from 10 -1 to 10 -3 ; best λ was chosen by tuning on validation data; number of cross-validation runs was 4.

B Constituency Complete Trees

We now present the largest subtrees completed by a few of the words in the sentence: "I began my illustrious career as a hard-boiled reporter in the Bronx where I toiled for the Ram, uh, Fordham University's student newspaper". 
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 1 Figure 1: Four steps of our proposed approach: (1) fMRI acquisition, (2) Syntactic parsing, (3) Regression model training, and (4) Predictive power analysis of the three embeddings methods. guistic information the three parsers capture, Rambow (2010) states from a theoretical linguistic point of view that they describe distinct syntactic entities, and thus are not strictly equivalent. Dependencies capture direct relations between words, identical
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 1511 Figure 1: Four steps of our proposed approach: (1) fMRI acquisition, (2) Syntactic parsing, (3) Regression model training, and (4) Predictive power analysis of the three embeddings methods.
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 2 Figure 2: Performance of Individual Embedding Methods: ROI-wise analysis of the prediction performance of various feature sets. We show the % of ROI voxels with a significant increase in prediction performance. Each bar shows avg %; error bars show standard error across 82 subjects. Left hemisphere (Top); Right hemisphere (Bottom).
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 34 Figure 3: R 2 score per voxel for the whole brain. (a) PU (b) CM (c) PD (d) CC (e) CI (f) INC (g) DEP (h) BERT.
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 5 Figure 5: Pairwise Predictive Power Comparison for Syntactic Parse Methods and BERT: For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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 6 Figure 6: Complete trees for the words: I, began, and Bronx, for the sentence "I began my illustrious career as a hard-boiled reporter in the Bronx where I toiled for the Ram, uh, Fordham University's student newspaper."
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 18 Figure18: Additional Predictive Power of various Representations for various sub-regions of Posterior Temporal Lobe (PTL) region. For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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 19 Figure19: Additional Predictive Power of various Representations for various sub-regions of Inferior Frontal Gyrus (IFG) region. For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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 20 Figure20: Additional Predictive Power of various Representations for various sub-regions of Inferior Frontal Gyrus Orbital (IFGOrb) region. For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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 21 Figure 21: Additional Predictive Power of various Representations for various sub-regions of Posterior Cingulate Cortex (PCC) region.For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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 22 Figure22: Additional Predictive Power of various Representations for various sub-regions of Dorsal Medial Prefrontal Cortex (dmPFC) region. For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).

  Performance of Individual Embedding Methods: Region of Interest (ROI) analysis of the prediction performance of various feature sets. For each model, we show R 2 score. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom) Performance of Individual Embedding Methods for AG region: Region of Interest (ROI) analysis of the prediction performance of various feature sets for various sub-regions. For each model, we show the % of ROI voxels with a significant increase in prediction performance. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom) Performance of Individual Embedding Methods for ATL region: Region of Interest (ROI) analysis of the prediction performance of various feature sets for various sub-regions. For each model, we show the % of ROI voxels with a significant increase in prediction performance. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom) Performance of Individual Embedding Methods for PCC region: Region of Interest (ROI) analysis of the prediction performance of various feature sets for various sub-regions of PCC region. For each model, we show the % of ROI voxels with a significant increase in prediction performance. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom). Additional Predictive Power of various Representations for various sub-regions of Angular Gyrus (AG) region. For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).

			{PU} {PU}	{PU} {PU} {PU}	{CM} {CM} {CM}	{PD} {PD} {PD} {CM,PU}-{PU} {CC} {CC} {CC} {CM,PU}-{PU}	{CI} {CI} {CI}	{INC} {INC} {INC} {PD,CM,PU}-{CM,PU} {DEP} {DEP} {DEP} {PD,CM,PU}-{CM,PU}	{BERT} {BERT} {BERT}
			{CC,PD,CM,PU}-{PD,CM,PU} {CC,PD,CM,PU}-{PD,CM,PU} 0.1 {DEP,PD,CM,PU}-{PD,CM,PU} {DEP,PD,CM,PU}-{PD,CM,PU}		{CI,PD,CM,PU}-{PD,CM,PU} {CI,PD,CM,PU}-{PD,CM,PU} {BERT,CC,PD,CM,PU}-{CC,PD,CM,PU} {BERT,CC,PD,CM,PU}-{CC,PD,CM,PU}	{INC,PD,CM,PU}-{PD,CM,PU} {INC,PD,CM,PU}-{PD,CM,PU} {BERT,CI,PD,CM,PU}-{CI,PD,CM,PU} {BERT,CI,PD,CM,PU}-{CI,PD,CM,PU}
			{BERT,INC,PD,CM,PU}-{INC,PD,CM,PU} {BERT,INC,PD,CM,PU}-{INC,PD,CM,PU}	{BERT,DEP,PD,CM,PU}-{DEP,PD,CM,PU} {BERT,DEP,PD,CM,PU}-{DEP,PD,CM,PU}	
	% of Significant Voxels % of Significant Voxels % of Significant Voxels % of Significant Voxels	Avg R Score	0 0.02 0.04 0.06 0.08						
		5		AG	ATL		PTL	IFG	MFG	IFGOrb	PCC	dMPFC
	AG {PU} Figure 8: PFm 0 0.02 0.04 0.06 0.08 0.1 Avg R Score 0 {PU} % of Significant Voxels PFm 0 % of Significant Voxels STGa 0 80 Figure 10: STSdp {PU} % of Significant Voxels STSdp % of Significant Voxels 31 Figure 14: 9m {CM} ATL {CM} TGd TGd {CM} {PU} {CM} % of Significant Voxels 9m % of Significant Voxels PFm 0 PFm Figure 16: STGa TGd {PU} {CC,PD,CM,PU}-{PD,CM,PU} {DEP,PD,CM,PU}-{PD,CM,PU} {BERT,INC,PD,CM,PU}-{INC,PD,CM,PU} {PD} {PD} PTL PGs PGs TE1a {CC} {CC} TE1a A5 TPOJ1 IFG {CI} {CI} PGi PGi TE2a TE2a {PD} {CC} {CI} A5 TPOJ1 PCV 7m PCV 7m 10d {PD} {CC} {CI} 10d PGs PGi PGs PGi TE1a TE2a {CM,PU}-{PU} {CI,PD,CM,PU}-{PD,CM,PU} {BERT,CC,PD,CM,PU}-{CC,PD,CM,PU} {BERT,DEP,PD,CM,PU}-{DEP,PD,CM,PU} % of Significant Voxels STGa TGd TE1a TE2a % of Significant Voxels STSdp A5 TPOJ1 PSL STSdp A5 TPOJ1 PSL 0 Figure 9: STGa 10 20 30 40 50 60 70 % of Significant Voxels 5 % of Significant Voxels % of Significant Voxels % of Significant Voxels	MFG {INC} {INC} PSL {INC} PSL {INC} {PD,CM,PU}-{CM,PU} IFGOrb {DEP} TPOJ2 {DEP} TPOJ2 TGv TGv STV {BERT} PCC {BERT} STSda STSda {DEP} {BERT} STV 23 23 d32 {DEP} {BERT} d32 TPOJ2 TPOJ2 TGv STSda {INC,PD,CM,PU}-{PD,CM,PU} {BERT,CI,PD,CM,PU}-{CI,PD,CM,PU} TGv STSda STV A4 STV A4	dMPFC TPOJ3 TPOJ3 STSva STSva STSvp STSvp RSC RSC TPOJ3 TPOJ3 STSva STSva STSvp STSvp

Figure 11: Performance of Individual Embedding Methods for PTL region: Region of Interest (ROI) analysis of the prediction performance of various feature sets for various sub-regions of PTL region. For each model, we show the % of ROI voxels with a significant increase in prediction performance. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom) Figure 15: Performance of Individual Embedding Methods for dmPFC region: Region of Interest (ROI) analysis of the prediction performance of various feature sets for various sub-regions of dmPFC region. For each model, we show the % of ROI voxels with a significant increase in prediction performance. Each bar represents the average score and error bars show standard error across 82 subjects. Left hemisphere (Top) and Right hemisphere (Bottom).

Figure 17: Additional Predictive Power of various Representations for various sub-regions of Anterior Temporal Lobe (ATL) region.

For each model, we show the percentage of ROI voxels in which we see a significant increase in prediction performance. Each bar represents the average percentage across 82 subjects, and the error bars show the standard error across subjects. '-' indicates a hypothesis test for the difference in R 2 scores between the two feature groups being larger than 0. Left hemisphere (Top) and Right hemisphere (Bottom).
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https://spacy.io/universe/project/ self-attentive-parser