
HAL Id: hal-04131483
https://hal.science/hal-04131483

Submitted on 16 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FABLE : Fabric Anomaly Detection Automation Process
Simon Thomine, Hichem Snoussi, Mahmoud Soua

To cite this version:
Simon Thomine, Hichem Snoussi, Mahmoud Soua. FABLE : Fabric Anomaly Detection Automation
Process. 2023 International Conference on Control, Automation and Diagnosis (ICCAD 23’), May
2023, Rome, Italy. �hal-04131483�

https://hal.science/hal-04131483
https://hal.archives-ouvertes.fr


FABLE : Fabric Anomaly Detection Automation
Process

Simon Thomine
University of technology of Troyes

AQUILAE
Troyes, France

simon.thomine@utt.fr

Hichem Snoussi
University of technology of Troyes

Troyes, France
hichem.snoussi@utt.fr

Mahmoud Soua
AQUILAE

Troyes, France
m.soua@aquilae.tech

Abstract—Unsupervised anomaly in industry has been a con-
cerning topic and a stepping stone for high performance indus-
trial automation process. The vast majority of industry-oriented
methods focus on learning from good samples to detect anomaly
notwithstanding some specific industrial scenario requiring even
less specific training and therefore a generalization for anomaly
detection. The obvious use case is the fabric anomaly detection,
where we have to deal with a really wide range of colors
and types of textile and a stoppage of the production line for
training could not be considered. In this paper, we propose an
automation process for industrial fabric texture defect detection
with a specificity-learning process during the domain-generalized
anomaly detection. Combining the ability to generalize and the
learning process offer a fast and precise anomaly detection and
segmentation. The main contributions of this paper are the
following: A domain-generalization texture anomaly detection
method achieving the state-of-the-art performances, a fast specific
training on good samples extracted by the proposed method, a
self-evaluation method based on custom defect creation and an
automatic detection of already seen fabric to prevent re-training.

Index Terms—Domain-Generalization, unsupervised, anomaly,
unseen, knowledge distillation, student-teacher, memory banks,
fabric, automation.

I. INTRODUCTION

Unsupervised anomaly detection in industry is a vast topic,
since there are a lot of possible applications. In this paper,
we focus on fabric anomaly, which is a concerning topic
for industry. The specificity of fabric is the pattern in the
structure and if we manage to understand that pattern we
can extract anomalies. Several methods have been introduced
for industry anomaly detection using MVTEC AD [1] the
dataset that gathers textures (carpet, leather, grid, wood, and
tile) and objects (bottle, cable, capsule, hazelnut, metal nut,
pill, screw, toothbrush, transistor and zipper). These methods
could achieve high performance. However, they rely on ob-
ject/texture specific unsupervised learning without generaliza-
tion capacity. Recently, knowledge-distillation based methods
have been introduced for the unsupervised anomaly detection
task [2]. It consists of a student-teacher model focusing on the
bottom layers of the network as they represent the edges, color
and shapes information. We used the same approach to design
a domain-generalized texture anomaly detection method with
the ability to detect defects on unseen textures and to select

good samples for a texture-specific unsupervised anomaly
detection model. In fabric industry, many types and colors
of fabric are analyzed, and it would be impossible to rely on
a specific training on good samples for each type of fabric
without slowing the industrial process.
Therefore, we propose a complete data processing chain for
a robust, fast and adaptive texture specific anomaly detection
and localization. Our method is based on four main modules:
a domain-generalized texture anomaly detector, a fast texture
specific training/inference, an auto-evaluation process of our
specific model and an automatic already-seen fabric detection
to avoid retraining an existing model.
The paper is organized as follows. In section II, we review
the related work especially on MVTEC dataset and present
the different approaches proposed in literature for domain-
generalized and classic unsupervised anomaly detection. In
section III, we present an enhanced domain-generalized texture
defect detection method. In section IV, we present the specific
learning method, the auto-evaluation process and the already
seen texture recognition. Section V is dedicated to the analysis
of the results. Section VI concludes the paper.

II. RELATED WORKS

As our proposed methods address two specific tasks, we
first present the state of the art on domain-generalized texture
anomaly detection and then the state of the art on unsupervised
defect detection of known objects.

A. Domain-generalized texture anomaly detection

Domain-generalized anomaly detection is an important topic
for optimal industrial process, since in specific industrial fields,
the type of textures often changes. The most obvious example
is certainly fabric anomaly detection where fabric can have
different colors (red, blue, striped) and types (cotton, polyester,
silk, etc). The main objective is to detect defects on any type
of fabric without resorting to a time-consuming training. The
feature extraction from a pretrained classifier offers the most
promising results with different types of networks such as an
episodic training [3], the use of extrinsic and intrinsic aspects
[4] and multiscale feature extractor with co-attention modules
[5].



B. Unsupervised anomaly detection on known objects

More commonly, unsupervised anomaly detection deals
with the problem of detecting defects on an object or texture
based on only good samples. In industry or security scenarios,
we often have a low rate of defects with a vast number of
different defect types which would lead to a time-consuming
annotation and a possibly non-pertinent classification if all the
anomaly types are not considered[6]. To tackle this question,
several methods emerged proposing different types of algo-
rithms such as autoencoders [7] and variational autoencoder
variants [8] [9]. Another common way of detecting anomalies
is Generative Adversarial Networks (GAN) introduced by
[10] adapted to unsupervised anomaly detection such as Ano-
GAN [11], G2D [12] and OCR-GAN [13]. More recently,
approaches using a pretrained classifier has been at the heart
of the research in industrial anomaly detection and offers out-
standing performance. There are three main feature extraction-
based approaches: normalizing flow, knowledge distillation
and memory banks. The normalizing flow approach consists
of a flow training based on relevant features of good samples
from a pretrained network such as AlexNet [14], Resnet [15]
or efficient-net [16] trained on imageNet. Different strategies
were used to enhance performance, such as a 2D flow [17]
or a cross-scale flow [18]. Another interesting approach is
the use of a memory bank to extract relevant information
from different good samples and to use this memory bank
to compare and detect if there is an anomaly [19]. Finally,
the concept of knowledge distillation was adapted for unsu-
pervised anomaly detection and localization [2]. The idea is
to train a student network based on the output features of a
teacher (already pretrained for a classification purpose) and on
good samples. The student will be able to reproduce teacher
features on a good sample, but will not be as precise for a
defective sample. Several methods used this principle with
different strategies such as a multi-layer feature selection [2],
an asymmetric student teacher [20], a coupled-hypersphere-
based feature adaptation [21] and a mixed-teacher approach
[22].

III. KNOWLEDGE DISTILLATION GENERALIZATION

The proposed model is based on the knowledge distillation
framework, where a pretrained network is used as a teacher
and a student network is trained to reproduce the teacher
output on good samples. The student network is then expected
to not be able to reproduce teacher features on defective
samples, a property which is used to detect abnormal samples.
For domain generalization, we propose to train the student
on different types of textures and using many teachers to
guarantee generalization. In order to achieve this objective,
we first constitute a new dataset based on fabric datasets [23]
which regroups different categories of textures with different
quality and homogeneity.

Then, to tackle the problem of texture domain
generalization, we used a specific student teacher architecture
with different branches based on the paradigm that each pre-
trained classifier have a different bias towards classification.

Fig. 1: Samples employed for the custom fabric dataset
(extracted from the fabrics dataset [23])

In terms of layer selection, the deeper a layer, the more the
information relates to the context and conversely, the shallower
a layer, the more information it contains on contours, edges,
and colors. Based on different layer configurations, we
show that for the purpose of texture domain generalization,
mid-level features would be the best choice to combine
texture specific information such as contours and edges and
a general vision of what a texture is.
At least two classifiers are needed to attenuate each bias. We
have used Resnet18 and EfficientNet-b0 for computation time
speed and meaningful features.
To fully exploit each classifier information, we used a parallel
architecture which can be seen as a multiple teachers/multiple
students architecture where the training happen independently
for each classifier, only the anomaly score is calculated with
the two networks outputs. Our framework is an adaptation of
MixedTeacher [22] with a different layer selection strategy.
The first Resnet layer is not used as its output features are
too specific to training dataset textures. We used the features
of the three first residual blocks of Resnet18 and the last 2
convolutional blocks of efficientNet-b0. As in [22], we used
a reduced version of the Resnet18 model with a reduction of
the block size and a reduction of the dimension of each layer
with an adaptive average pooling, while we keep the same
architecture for the EfficientNet part.

Given a training dataset of images without anomaly
D = [I1, I2, ..., In], our goal is to extract the information
of L mid-level layers. For an image Ik ∈ Rw∗h∗c where
w is the width, h the height, and c the number of chan-
nel, the teacher outputs features F l

t (Ik) ∈ Rwl∗hl∗cl and
F l
s(Ik) ∈ Rwl/2∗hl/2∗cl/2 with l > 1 and F l

s(Ik) ∈ Rwl∗hl∗cl

if l = 1. The loss is obtained by applying the l2 distance of
normalized feature vectors for each pixel of the feature map
and summing them. For the Resnet student part, we used an
adaptive average pooling layer on teacher features. The used
layers are l = {1, 2, 3} for the Resnet part and l = {5, 6} for
the EfficientNet part.
Pixel loss for the resnet part is defined in the following Eq.1:

lossl(Ik)ij =
1

2
∥norm(AAP (F l

Resnet18(Ik))ij)−norm(F l
s(Ik)ij)∥

(1)
where AAP refers to Adaptive Average Pooling. For the
EfficientNet part, pixel loss is defined in the following Eq.2:



lossl(Ik)ij =
1

2
∥norm(F l

EffNetb0(Ik)ij)−norm(F l
s(Ik)ij)∥

(2)
For the layer l, the loss is defined as:

lossl(Ik) =
1

wlhl

wl∑
i=1

hl∑
j=1

lossl(Ik)ij (3)

and finally, for the total loss is written as:

loss(Ik) =

l∑
lossl(Ik) (4)

IV. AUTO-LEARNING PROCESS FOR INDUSTRIAL
DEPLOYMENT

The previous part was presented in the context of industrial
efficiency, where it was not allowed to retrain for every new
type/color of texture/fabric. The objective of this section is to
propose a general classifier for handling the anomaly detection
role while we gather enough images and train a specific model
for increased efficiency.
This section is divided in 3 parts: training and self-evaluation,
recognition of an already trained type of fabric, and a typical
industrial use-case in fabric industry.

A. Training and self-evaluation

Given the deployment constraints, we considered different
criteria for the choice of the student-teacher network architec-
ture: (i) the inference and training time, (ii) the performance
and (iii) the robustness to defective samples in the training
set. We also considered the possibility of running the process
on several asynchronous defect detectors. The model Reduced
Student proposed in [22] is a good candidate. Thanks to
its reduced architecture, we can train a specific model in
an acceptable time. To minimize the number of potential
defective samples in the training, we gathered the samples
with acceptable anomaly score from the domain-generalized
model, i.e samples classified as good samples. Based on a test-
error approach, we determined the optimal number of epochs
(during specific training) where the specific model becomes
better than the domain-generalized one so that we can start
using the best model even if the complete training is not
finished.
The self-evaluation part is based on two types of data: (i)
the first type is defective samples detected by the domain-
generalized anomaly detector and (ii) the second type is
generated data with a procedure inspired by DRAEM [9]:
Perin noise and the texture database dtd [24]. We used the
same approach to generate non-absurd defects to self-evaluate
our model.

B. Already seen fabric recognition

To guarantee an automated anomaly detector without the
help of an operator for selecting an already-trained model,
we propose an algorithm to precisely recognize a fabric type
already considered previously. For each trained model, we save
x extracted features from the specific model on good samples
reduced using coreset subsampling introduced in PatchCore
[19] to guarantee fast computation. Each specific model is
also saved in a model bank of N models and linked to its
features in a feature bank. When we have to decide if the fabric
was already seen, we calculate the sample/model proximity by
extracting features from all trained specific models from the
model bank, applying the coreset subsampling and comparing
these features to the x features from the feature bank of each
specific model with cosine similarity distance as described
in equation 6. We then compute the intra-class proximity by
calculating the cosine similarity between the x features of the
same model as reported in equation 7. The proximity score
is defined as the absolute value of the difference between
the sample/model proximity and the intra-class proximity.
We finally make the decision by comparing the maximum
proximity score with a similarityThreshold. The threshold
is chosen based on what is known about the similarity between
the fabric.

Even though it may seem laborious if the model bank
is consistent, it is still real-time deployable thanks to the
inference speed of the reduced student architecture proposed
in the previous subsection and the coreset subsampling, as we
show in the experiment part. This is by far the most accurate
method for comparing a new piece of fabric with a previously
seen one and, we believe, it is still usable even in a specific
case of thousands of specific models.
The cosine similarity formula is:

sim(featA, featB) =
featA.featB

∥featA∥ ∥featB∥
(5)

with featA and featB the extracted features. The sam-
ple/model proximity is defined as:

proxsm(S,Model) =
1

x

x∑
i=1

sim(featS , feati) (6)

The intra-class proximity is defined as:

proxic(Model) =
1

x(x− 1)

x∑
i=1

x∑
j=1,i̸=j

sim(feati, featj)

(7)
The proximity score is :

proxScore(S,Model) = abs(proxsm(S,Model)−proxic(Model))
(8)

And the already-seen decision is described as :

max
i∈N

(proxScore(S,Modeli)) > similarityThreshold (9)



Fig. 2: Architecture of Resnet student teacher (left) and EfficientNet student teacher (right)

Fig. 3: Custom defective samples generated with Perin noise

C. Typical use-case : fabric industry

To demonstrate the effectiveness of our method, we describe
a typical real defect analysis use case. In a vast majority
of mid-range clothing industry, the fabric is analyzed several
times during the whole fabrication process by operators that
scroll the fabric and look for defects. This is a laborious
job and often distraction occurs resulting in a globally low
detection percentage of defects, not to mention the difficulty
for the eyes to look at certain fabric categories such as striped
fabrics. Our automated process aims at assisting the operator
for the classification task and to speed up the scrolling of the
fabric. The operator is still needed since he has to install the
fabric roll on the machine and to verify the defect classification
done by the domain generalized model since the accuracy is
still low for a full automation process.
For every fabric roll, the process start with an identification
of the fabric to control. Two different cases may happen:
- If this type of fabric has never been seen, a specific
training is started while still doing the anomaly detection
with the domain-generalized model, we may have to slow the
scrolling of the fabric during the training depending on the
computational power. When the trained model becomes better
than the domain-generalized model, we used it instead, even
if the training is not completely finished. When the training is
finished, we used the completely trained model for anomaly
detection while keeping some features of defective samples
for the recognition part.
- If this type of fabric is already-seen, the specific trained
model is used for anomaly detection.
The process is fully automated and does not require any help
from the operator except for the activation or deactivation,

which could be done also by connecting the visiting machine
with the central unit to send an activation signal.

V. EXPERIMENTS

This section is divided into 3 parts: the analysis of the
domain-generalization model compared with state of the
art for different training configurations, the analysis of the
training speed and inference speed of our model and finally
the estimation of the number of required epochs on a specific
training to outperform the domain-generalization algorithm.

A. State-of-the-art comparison

For the evaluation of our model, we used two different
databases for training. For the “MVTEC” one, we trained
the DG model on all good samples of MVTEC AD textures
except the one we are testing on to reproduce the evaluation
protocol of the other state-of-the-art papers. The “cotton” one
is trained on the custom fabric dataset presented in section III
and was created for fabric anomaly which explain the SOTA
performances on carpet and leather. The results are presented
in table I.
For the training, we used stochastic gradient descent with a
learning rate of 0.4 for 200 epochs with a batch size of 16.
Both networks are pretrained on ImageNet. We resized all the
images to 256x256, keeping 80% for training and 20% for
validation. We kept the checkpoint with the lowest validation
loss.

TABLE I: AUC comparison between our method and
existing ones on MVTEC AD

textures Epi-FRC+[3] EISNet+[4] DGTSAD[5] Ours(MVTEC) Ours(Coton)
carpet 0.916 0.982 0.943 0.985 0.996
leather 1.000 1.000 1.000 0.991 0.996
wood 0.941 0.979 0.962 0.999 0.948
tile 0.951 0.851 0.994 0.965 0.964
grid 0.725 0.728 0.730 0.937 0.944

mean 0.907 0.909 0.918 0.975 0.969

As seen in table I, the 2 types of training offers approx-
imately the same mean AUC but the dataset “cotton” only
contains one hundred images and is supposed to be effective
for fabric defects detection whereas it shows the best results



Fig. 4: Fabric Recognition process : The extraction of anomaly-free images features in the testing phase stops when the x
number of elements is reached, the model bank is the bank of all previously trained specific models

Fig. 5: Outputs of detected anomaly with our
domain-generalization model

on both carpet, leather and grid which contains patterns [25]
and are the most fabric-like textures of the dataset MVTEC
AD.
Comparing to the state-of-the-art methods, our approach ob-
tains 0.057 AUC more than the previous best model, which
is an excellent improvement and is in the way for closing
the gap between domain generalization and classical anomaly
detection for textures.

B. Inference speed

For the inference speed, all the following tests were done
with a RTX 2080Ti. The training parameters are the same
as the previous part except for the number of epochs where
we limited it to 100. To perform these experiments, we used
an optimal algorithm for fast processing in batch of 8 which
outperforms the classic anomalib [26] in terms of inference
speed on knowledge distillation methods for anomaly detection
(see table II). For the training time, with 100 epochs and 100
images, we report 4 minutes and 20 seconds.

TABLE II: Inference speed

Category Ours(Domain-Generalized) Ours(Specific)
FPS 333 1111

Latency (ms) 3 0.9

C. Necessary training epochs before model replacement

The main purpose of the whole method is to detect defects
as precisely as possible during the whole process. We need

to estimate at which point the specific model surpasses the
DG model in terms of AUC. In order to find this number, we
tested our specific model at different epochs, and we compared
results to the DG model performance.

TABLE III: Epoch performance
textures 10 epochs 20 epochs 30 epochs 100 epochs DG model
carpet 0.915 0.920 0.963 1.0 0.996
leather 0.949 0.974 0.990 0.997 0.996
wood 0.988 0.989 0.995 0.996 0.948
tile 0.986 0.987 0.991 0.987 0.964

mean 0.959 0.967 0.984 0.995 0.969

Based on the mean results, we could consider using the
specific model after 30 epochs of training i.e one minute
and 30 seconds, but considering the scores of carpet and
leather which are the most fabric-like textures, it may be a
counter performance to switch to the specific model before
the end of the training if the DG model is close enough to
real distribution.

VI. CONCLUSION AND FUTURE WORK

We proposed an industry-ready automation process for in-
dustrial defect detection, especially deployable for fabric with
fast inference results for both domain-generalized and specific
model. The outstanding capability of our architecture to mutual
aid between humans and artificial intelligence makes it a great
and reliable tool for visual inspection. Nevertheless, several
improvements could be considered. According to [6], semi-
supervised can easily surpass unsupervised anomaly detection
even with a few annotated anomalies and this could be
applied to our method by using the DG detected anomalies
to train a semi supervised specific model to increase the
detection performances. Some automation improvement could
be considered in terms of potential use of the method, such
as a direct software included in the fabric visiting machine to
monitor speed, stop and dysfunction mode more precisely.



REFERENCES

[1] P. Bergmann, M. Fauser, D. Sattlegger, and C. Ste-
ger. “MVTec AD — A Comprehensive Real-World
Dataset for Unsupervised Anomaly Detection”. In: 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).
Long Beach, CA, USA: IEEE, June 2019, pp. 9584–
9592.

[2] G. Wang, S. Han, E. Ding, and D. Huang. “Student-
Teacher Feature Pyramid Matching for Anomaly De-
tection”. In: arXiv:2103.04257 [cs] (Oct. 28, 2021).

[3] D. Li, J. Zhang, Y. Yang, C. Liu, Y.-Z. Song, and T.
Hospedales. “Episodic Training for Domain Generaliza-
tion”. In: 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). Seoul, Korea
(South): IEEE, Oct. 2019, pp. 1446–1455.

[4] S. Wang, L. Yu, C. Li, C.-W. Fu, and P.-A. Heng.
Learning from Extrinsic and Intrinsic Supervisions for
Domain Generalization. July 17, 2020.

[5] S.-F. Chen, Y.-M. Liu, C.-C. Lin, T. P.-C. Chen, and
Y.-C. F. Wang. Domain-Generalized Textured Surface
Anomaly Detection. Mar. 23, 2022.

[6] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao.
ADBench: Anomaly Detection Benchmark. Sept. 16,
2022.

[7] S. Mei, Y. Wang, and G. Wen. “Automatic Fabric Defect
Detection with a Multi-Scale Convolutional Denoising
Autoencoder Network Model”. In: Sensors 18.4 (Apr.
2018), p. 1064.

[8] Q. P. Nguyen, K. W. Lim, D. M. Divakaran, K. H. Low,
and M. C. Chan. “GEE: A Gradient-based Explainable
Variational Autoencoder for Network Anomaly Detec-
tion”. In: arXiv:1903.06661 [cs, stat] (Mar. 15, 2019).

[9] V. Zavrtanik, M. Kristan, and D. Skočaj. DRAEM – A
discriminatively trained reconstruction embedding for
surface anomaly detection. Sept. 27, 2021.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B.
Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. “Generative Adversarial Networks”. In:
arXiv:1406.2661 [cs, stat] (June 10, 2014).

[11] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs,
and U. Schmidt-Erfurth. “f-AnoGAN: Fast unsuper-
vised anomaly detection with generative adversarial
networks”. In: Medical Image Analysis 54 (May 2019),
pp. 30–44.

[12] M. Pourreza, B. Mohammadi, M. Khaki, S. Bouindour,
H. Snoussi, and M. Sabokrou. “G2D: Generate to
Detect Anomaly”. In: 2021 IEEE Winter Conference on
Applications of Computer Vision (WACV). 2021 IEEE
Winter Conference on Applications of Computer Vision
(WACV). event-place: Waikoloa, HI, USA. IEEE, Jan.
2021, pp. 2002–2011.

[13] Y. Liang, J. Zhang, S. Zhao, R. Wu, Y. Liu, and
S. Pan. “Omni-frequency Channel-selection Repre-
sentations for Unsupervised Anomaly Detection”. In:
arXiv:2203.00259 [cs] (Mar. 1, 2022).

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. Dec. 10, 2015.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Ima-
geNet classification with deep convolutional neural net-
works”. In: Communications of the ACM 60.6 (May 24,
2017), pp. 84–90.

[16] M. Tan and Q. V. Le. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. Sept. 11,
2020.

[17] J. Yu, Y. Zheng, X. Wang, W. Li, Y. Wu, R. Zhao,
and L. Wu. “FastFlow: Unsupervised Anomaly Detec-
tion and Localization via 2D Normalizing Flows”. In:
arXiv:2111.07677 [cs] (Nov. 16, 2021).

[18] M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt.
“Fully Convolutional Cross-Scale-Flows for Image-
based Defect Detection”. In: arXiv:2110.02855 [cs]
(Oct. 6, 2021).

[19] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T.
Brox, and P. Gehler. “Towards Total Recall in Indus-
trial Anomaly Detection”. In: arXiv:2106.08265 [cs]
(June 15, 2021).

[20] M. Rudolph, T. Wehrbein, B. Rosenhahn, and B. Wandt.
Asymmetric Student-Teacher Networks for Industrial
Anomaly Detection. Oct. 18, 2022.

[21] S. Lee, S. Lee, and B. C. Song. CFA: Coupled-
hypersphere-based Feature Adaptation for Target-
Oriented Anomaly Localization. June 9, 2022.

[22] S. Thomine, H. Snoussi, and M. Soua. “MixedTeacher
: Knowledge Distillation for fast inference textural
anomaly detection”. In: VISAPP international con-
ference on computer vision theory and applications.
Feb. 19, 2023.

[23] C. Kampouris, S. Zafeiriou, A. Ghosh, and S. Malassio-
tis. “Fine-Grained Material Classification Using Micro-
geometry and Reflectance”. In: Computer Vision –
ECCV 2016. Ed. by B. Leibe, J. Matas, N. Sebe, and
M. Welling. Vol. 9909. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Pub-
lishing, 2016, pp. 778–792.

[24] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and
A. Vedaldi. “Describing Textures in the Wild”. In:
2014 IEEE Conference on Computer Vision and Pattern
Recognition. 2014 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Columbus, OH,
USA: IEEE, June 2014, pp. 3606–3613.

[25] H. Y. T. Ngan, G. K. H. Pang, and N. H. C. Yung. “Au-
tomated fabric defect detection—A review”. In: Image
and Vision Computing 29.7 (June 1, 2011), pp. 442–458.

[26] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N.
Ahuja, and U. Genc. Anomalib: A Deep Learning
Library for Anomaly Detection. Feb. 16, 2022.


	Introduction
	Related works
	Domain-generalized texture anomaly detection
	Unsupervised anomaly detection on known objects

	Knowledge distillation generalization
	Auto-learning process for industrial deployment
	Training and self-evaluation
	Already seen fabric recognition
	Typical use-case : fabric industry

	Experiments
	State-of-the-art comparison
	Inference speed
	Necessary training epochs before model replacement

	Conclusion and future work

