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Behavioral/Cognitive

The Differential Weights of Motivational and Task
Performance Measures on Medial and Lateral Frontal Neural
Activity

Clément Goussi-Denjean,1 Vincent Fontanier,1 Frederic M. Stoll,2 and Emmanuel Procyk1

1Inserm, Stem Cell and Brain Research Institute U1208, Université Lyon 1, Bron, 69500, France and 2Nash Family Department of Neuroscience and
Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029

Behavioral adaptations are triggered by different constraints given by rules, and are informed by outcomes, or motivational
changes. Neural activity in multiple frontal areas is modulated during behavioral adaptations, but the source of these modula-
tions and the nature of the mechanisms involved are unclear. Here we tested how different variables related to changes in
task performance and to behavioral adaptation impact the amplitude of event-related local field potentials (LFPs) in the lat-
eral prefrontal and midcingulate cortex of male rhesus macaques. We found that the behavioral task used induced consis-
tently different types of performance modulation: in relation to task difficulty (imposed by the experimental setup), to
successes and errors, and to the time spent in the task. Difficulty had a significant effect on monkeys’ accuracy and reaction
times. Interestingly, there is also a strong interaction between difficulty and trial success on the reaction times variation.
However, LFP modulations were mostly related to reaction times, touch position, feedback valence and time-in-session, with
little, if any, effect of difficulty. Hence, difficulty modulated performance but not LFP activity. This suggests that, in our ex-
perimental design, execution, regulation, and motivation-related factors are the main factors influencing medial and lateral
frontal activity.
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Significance Statement

Adapting decisions might be determined by several mechanisms and might be driven by motivational factors and/or factors
inherent to the task at hand. Multiple frontal areas contribute to behavioral adaptations. One current challenge is to under-
stand which information they process contributes to behavioral changes. Diverging views have emerged on whether task
demands, like the decision difficulty, or factors linked to incentives to adapt, are driving frontal activity. Here we show that
task difficulty had a strong effect on performance (accuracy and reaction times) but little effect on LFP recorded in monkey
lateral prefrontal and midcingulate cortex. However, information related to actions, outcome valence, and time-in-session
had major influences. Thus, task difficulty modulated performance but not LFP activity in frontal areas.

Introduction
Animals adapt dynamically to external events and internal stim-
uli to reactively or proactively improve their own state. The
underlying adaptive mechanisms are investigated in experimen-
tal conditions by varying, for instance, the multiplicity of options
to choose from, their order, the complexity of sensory informa-
tion relevant to the task, the temporal scale over which informa-
tion should be integrated for optimal response, or the nature of
rewards associated to options (Chen et al., 2008; Quilodran et al.,
2008; Kawai et al., 2015; Stoll et al., 2016a). In experimental as
well as in natural settings, other factors also influence behavior:
intrinsic motivation, satiety, fatigue, boredom, etc. (Stoll et al.,
2016b). All those factors can be reflected in performance (i.e., the
accuracy or the speed with which task trials are solved) (Procyk
and Goldman-Rakic, 2006; Martinez-Garcia et al., 2015).
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Multiple facets of behavioral adapta-
tion, through exploration, learning, valua-
tion, and planning, have been theorized or
modeled in different ways together with
their objective markers, usually by incorpo-
rating some interplay between mechanisms
devoted to cognitive control and planning
on one side, and to performance monitor-
ing on the other (Behrens et al., 2007). Such
interplay is an important feature as it forms
the core of adaptive regulation and the
modulations of accuracy. Another point of
interest is the putative anatomo-functional
dissociations of performance monitoring
and/or motivational processes compared
with control or selection mechanisms. The
medial frontal cortex, in particular the ros-
tral subdivision of the midcingulate cortex
(MCC), is activated during adaptive explor-
atory behaviors, with activity shown to neg-
atively correlate with fatigue, and seems to
be causally involved in integrating informa-
tion to regulate decision-making (Müller and Apps, 2019; Procyk
et al., 2021). Activity in the lateral prefrontal cortex (LPFC) is of-
ten correlated with the implementation of behavioral regulation
through action or task set selection (Crowe et al., 2013; Donahue
and Lee, 2015). Both MCC and LPFC are coactivated during ex-
ploratory and adaptive responses (Stoll et al., 2016a). One prop-
osition is that active performance monitoring and evaluative
functions performed by the MCC impact LPFC processes, and
thus cognitive control, inducing the regulation in control
(Shenhav et al., 2013). In this Expected Value of Control theory,
signals of multiple sources processed in MCC contribute to an
evaluative and selection function that leads to an optimum signal
specifying the identity and intensity of control to be imple-
mented (e.g., by the LPFC). One factor proposed to impact
MCC activity is task difficulty (Paus et al., 1998; Botvinick et
al., 2001; Shenhav et al., 2014; Sarafyazd and Jazayeri, 2019).
However, often because of a lack of operational definition of
difficulty and to potential confounds, the nature and role of pa-
rameters influencing MCC activity have been highly debated
(Kolling et al., 2016).

Here we analyzed LFP from MCC and LPFC recordings in a
task where difficulty (i.e., a task parameter inducing changes in
accuracy and speed) was manipulated. Accuracy was defined in
terms of percent of correct responses, and this incidentally corre-
lated with a change in reaction times (RTs). In a past study using
the same datasets, we could not find single-unit activity covary-
ing with difficulty (Stoll et al., 2016a). However, because many
studies addressing those questions relied on fMRI data, we seek
for difficulty related variations in LFP, a signal supposed to be
more correlated with BOLD signal variations observed with
fMRI (Logothetis et al., 2001). The behavioral task and context
also induced different other adaptive phenomena, in reaction to
outcomes and depending on the time-in-session. In these analy-
ses, we thus have sought to answer the question: do frontal areas
represent difficulty levels in a visual discrimination task, or do
they signal other motivational and value parameters? We ana-
lyzed the effect of difficulty on monkey’s behavior and brain ac-
tivity. In addition, we tested other motivational parameters that
were previously studied (Donahue and Lee, 2015; Stoll et al.,
2016a,b) and that could have an influence on frontal activity
variation.

LFP amplitude from both MCC and LPFC revealed little, if
any, significant correlation with difficulty. In contrast, signals in
both frontal areas presented frequent correlation with other
behaviorally relevant variables: time-in-session, current and pre-
vious feedback valence, RTs, and touch position. We conclude
that neural activity in those regions, rather than reflecting diffi-
culty, is involved in monitoring motivational and value signals
relevant to behavioral adaptation.

Materials and Methods
Subjects and ethics
We report data obtained from 4 male rhesus monkeys (Macaca mulatta).
All animals were used for behavioral analyses (A, D, H, and O) and two
for electrophysiological recordings (H and A). Monkeys A, D, H, and O
were, respectively, 16, 8, 11, and 8 years old at the time of the experi-
ment. Each monkey was paired in a home cage with another monkey.
All procedures followed the European Community Council Directive
(2010) (Ministère de l’Agriculture et de la Forêt, Commission nationale de
l’expérimentation animale) and were approved by the local ethical commit-
tee (Comité d’Ethique Lyonnais pour les Neurosciences Expérimentales,
C2EA #42). Hydric control protocols were used to train monkeys to per-
form tasks and to regulate their motivation level, following protocols similar
to those described previously (Gray et al., 2016).

Behavioral context and task difficulty
The behavioral protocol used in this experiment has been published
(Stoll et al., 2016a). The protocol combines a so-called work option, a
categorization task involving decisions based on visual cues, and a check-
ing option allowing to gather information on a gauge indicating an
upcoming bonus reward (Stoll et al., 2016a). The animal could select at
will any of these two options at the start of each trial. In the current pa-
per, we focus on the work option, where we could assess specific aspects
of behavioral adaptation and task difficulty (see definition below).

During the recording sessions, monkeys were sitting in a primate
chair (Crist Instrument) and interacted with a touch screen monitor
(Microtouch System). They used their “preferred” hand, as determined
from the initial training period, to interact with the screen (Monkeys A,
D, and O left-handed; Monkey H right-handed). For Monkeys A, D, and
H, visual presentation and touches were recorded using the CORTEX
software (NIMH Laboratory of Neuropsychology). For Monkey O, we
used Event IDE (EventIDE, www.okazolab.com). Eye position on the
screen was recorded using an infrared video system (Iscan).

The work option (Fig. 1) was a visual categorization task where a de-
cision to select one of two targets was based on the orientation of a visual

Figure 1. Schematic of the categorization task. A cue (white smoothed bar with upper tip tilted toward the left or the
right relative to the vertical) was presented shortly. After a delay, two stimuli (targets) were presented, each being at645°
from vertical. For 3 of 4 monkeys, the relative position of the rightward and leftward oriented cues was randomly selected
(on the left or right of the screen). To be rewarded, the animal had to touch the target oriented in the same direction as the
cue. The difficulty of the trial depended on cues’ angles. For precisions on timings, see Materials and Methods.
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stimulus: the animal had to select a target tilted 45 degrees rightward or
leftward depending on whether the visual cue was tilted rightward or
leftward. The task could be accessed at will by touching and holding a
target lever for 700ms (triangle presented on the lower central part of
the screen). During the 700ms delay, a central white dot was presented,
but eye fixation was not necessary. After validating the work lever, mon-
keys were shown a central smoothed tilted bar (cue display time;
Monkey H: 350ms, Monkey A/D: 600ms, and Monkey O: 800ms), fol-
lowed by a delay (Monkey H: 650ms, Monkey A/D: 400ms, and
Monkey O: 800ms). Two targets were then presented, consisting of two
oriented bars (45° and�45° from the vertical line) shown on the left and
right side of the screen. The animals had 2000 ms to touch one of the tar-
gets and were rewarded for touching the one tilted in the same direction
as the cue. The left or right placement of the targets, respectively, tilted
rightward or leftward was randomized from trial to trial for Monkeys H,
O, and D, but not for Monkey A for whom the rightward tilted target was
always shown on the right side of the screen. After the touch and a random
delay interval of 200-600ms (step of 200ms), a central dot was presented
for 500ms and the outcome was delivered (reward or no reward). Cued
decisions in the categorization task were rewarded (50% water, 50% apple
juice, 0.5 ml; 600ms) for correct responses or penalized with a timeout
(1500ms) for an incorrect choice; 1500-2000ms after the outcome onset, a
visual stimulus (red circle on for 800ms, end of trial signal) signaled that a
new check versus work choice would be presented after a fixed delay (700
or 1000ms for Monkey A and H/D/O, respectively). If the animal did not
start the trial (no start) for 10 s, or broke timings by releasing the lever too
early (break), then the trial was aborted and another trial was initiated.

The difficulty of categorization trials varied depending on three possi-
ble absolute angles of orientation (relative to the vertical axis) of the cue,
which were pseudo-randomly selected for each trial. Cue stimuli orienta-
tions were not fixed across sessions but were defined on each session
based on the animal’s accuracy in the 5-10 preceding sessions. Two cue
orientations (leftward and rightward) for each difficulty level (one combi-
nation example for each Monkey D:620°, 15°, 10° for easy, medium, and
hard trials, respectively, Monkey H: 620°, 10°, 5°, Monkey A: 640°, 25°,
10°; Monkey O:635°, 25°, 15°) were picked to get, respectively, 90%, 80%,
and 70% of correct responses on average. Hard refers to trials using cue
stimuli with a small angle relative to the vertical and inducing the lowest
level of accuracy. These angle adaptations were used to preserve the same
level of uncertainty during this task (in terms of probability of correct
response) and counteract potential changes in accuracy across sessions.

Surgery and signal acquisition
Monkeys A and H were implanted with a head-restraining device in a
first surgery. Next, in a second surgery, a craniotomy was performed to
expose an aperture over the PFC where a recording chamber was
implanted (Gray Matter Research). Analgesics and antibiotics were
administered before, throughout, and after surgery. The chamber was
kept sterile with regular cleaning and sealed with sterile caps.

Electrophysiological data were recorded using an Alpha-Omega multi-
channel system (AlphaOmega Engineering). Recording chambers were
centered at anteroposterior coordinates 34.4 and 33.6 relative to ear bars
(for Monkeys A and H, respectively). Electrophysiological activity was
recorded using epoxy-coated tungsten single electrodes (1-2MO at 1 kHz;
FHC) independently lowered using Microdrive guidance (AlphaOmega
Engineering). Neuronal activity was sampled at 22 kHz resolution. LFPs
were obtained using the signal filtered from 0.5 to 250Hz (see below).
Recordings were referenced on the guide tubes in contact with the dura.
Two to six electrodes were used simultaneously to record neuronal activity
in MCC and LPFC. Recording sites were reached through a 1 mm spaced
recording grid (for details, see Stoll et al., 2016a).

Recording sites in MCC were in the dorsal bank and fundus of the
cingulate sulcus at rostro-caudal levels equal or anterior to the level of
the genu of the arcuate sulcus. Recording sites in LPFC were located
between the posterior end of the principal sulcus and around the arcuate
sulcus (areas 6DR, 8B, 8A, and 9/46) and at,3 mm from cortical surface.
Frontal areas were targeted preoperatively using Brainsight neuronavigation
(Rogue Research) using each animal’s anatomic MRI (T1, 1.5 T and voxel
0.6 mm iso). Recording chambers were implanted contralateral to the arm

used using online targeting with neuronavigation. Reconstructions of cort-
ical surface, of MRI sections perpendicular to recording grids, and of
microelectrode tracks were performed using the same reference frames.
Maps and recording locations in the 2 monkeys were combined by align-
ing grids on the level of the genu of the arcuate sulcus, taken from coronal
sections on the MRI and then relocated using views perpendicular to the
recording chamber axis.

Analysis of task performance
All analyses were performed using R (version 3.6.3) with the RStudio
environment (R core team, 2014; RStudio Team, 2016).

We analyzed all sessions in which the average accuracy in the catego-
rization task was �60%, which left 28, 63, 81, and 101 sessions, respec-
tively, for Monkeys D, H, O, and A. Using the statistical models detailed
below, we assessed the following fixed effects that might describe behav-
ioral adaptations on a trial-by-trial basis:

• Difficulty [1, 2, 3]: continuous variable representing the level of dif-
ficulty of a trial (easy, medium, or hard) corresponding to one of
the three cue angles.

• Time-in-session: the time of the trial in the session normalized
between 0 and 1 (Eq. 1 below).

• RT: the time duration between target onset and lever release meas-
ured in the trial. RT values were centered (mean RT across sessions
for each animal was subtracted) and log-transformed.

• Touch position [left, right]: the target position selected by the ani-
mal in the trial.

• Previous feedback [positive, negative]: the feedback obtained by the
animal in the previous trial.

• Previous trial [correct, incorrect, no start, break]: nature of the pre-
vious trial.

• Accuracy [correct, incorrect]: the performance of the animal in the
current trial. Dependent variable used to estimate effects influenc-
ing performance.

• Session: day of acquisition of data.

As in our single unit study (Stoll et al., 2016a), we selected multiple
factors to assess LFP variations during performance of the categorization
task. We included factors only on the basis that they were relevant to the
time window of interest (e.g., feedback valence after feedback delivery to
assess feedback encoding, but not before).

Behavioral accuracy variation
During the experiment, difficulty levels were regularly adjusted according to
monkeys’ accuracy. This putatively allowed to maintain the same amount of
cognitive demand all along the experiment. Accuracy is here defined by the
ability to correctly categorize the orientation of the cue. We used mixed-
effects binomial generalized linear models (glmm, glmer in R) on repeated
measures to assess the effect of difficulty and of other major factors, such as
time-in-session, on accuracy. Because the difficulty level was experimentally
controlled based on accuracy, testing the difficulty effect on accuracy served
as a data sanity check.

Where indicated, we used data transformation to normalize values
between 0 and 1 using the following formula:

x normð Þ ¼ x �minðxÞ
maxðxÞ � minðxÞ (1)

The statistical models assessing accuracy variation were logistic
regressions of the following form:

LogitðE½Accuracy�Þ ¼ ðb 0 þ b0;SÞ þ b 1Difficulty þ b 2Time-in

-session þ b 3Previous feedback þ ðb Ts þ b1;SÞTime-in-session

þ «ðtÞ
(2)

where Logit(p) = loge(p/1 – p)
and E(Accuracy) is the expected value of Accuracy and Accuracy is

the vector of performance in trials (0 if incorrect, 1 if correct), b 0 and b0
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are the intercepts for, respectively, the fixed and the random factors,
Difficulty is the level of the current trial, Previous feedback, Time-in-ses-
sion, and « corresponding to the residuals.

We also included session (S) and time-in-session as random factors.
Random factors allowed the model to fit a linear trend for each session
accounting for potential intersession variability in time-in-session effect.
Models were tested on each monkey individually.

RT modulations
RTs, which corresponds to the delay between the appearance of the two
targets and the release of the lever, were measured, centered to the mean
and log-transformed. To assess RT variation during the categorization
task, we used a linear mixed model (lmer) on repeated measures, with
session and time-in-session as random factors:

RT ¼ ðb 0 þ b0;SÞ þ b 1Accuracy x b 2Difficulty þ b 3Time-in

-session þ b 4Previous trial þ ðb Ts þ b1;SÞTime-in-sessionþ «

(3)

where Accuracy is the nature of the monkey choice (0 if incorrect, 1 if
correct), b 0 and b0 are the intercepts for, respectively, the fixed and the
random effects. Difficulty, previous trial, time-in-session, are fixed
effects, and « (t) corresponds to the residuals. Subscripts are coded as fol-
lows: Ts, time-in-session; S, session. The random-effects capture varia-
tion across the multiple sessions and the influence of on the intercept
and the slope of the RT change as a function of time-in-session.

The interaction effect of difficulty (three levels) and accuracy on the
RT variation was tested in this analysis. We also tested the effects of
time-in-session and nature of the previous trial (correct, incorrect, break,
and no start) on the RT variations.

To verify statistically whether time periods impacted difficulty and
accuracy effects, we divided trials of each session into terciles (beginning,
middle, end) with equal number of trials, and applied glmm (Eq. 3).

Relationship between RTs, and accuracy
Analysis of RT and accuracy (percent of correct response) can be per-
formed both across behavioral sessions and session by session. To assess
behavioral variability, we tested the relationship between RT and accu-
racy within each session. A x 2 homogeneity test was used to assess the
relationship distribution of RT and accuracy for each monkey.

Analyses of LFP variations
Signal preprocessing. We analyzed variations of LFP in MCC and

LPFC around cue onset, lever release, and feedback. Based on the behav-
ioral results showing trial-to-trial regulation and within-session regula-
tion of accuracy and RT, we tested whether those effects and difficulty
correlated with LFP measures. Our dataset contained 288 LFP recording
sites in MCC (Monkey H: 106; Monkey A: 182) and 173 in LPFC
(Monkey H: 66; Monkey A: 107).

Artifacts corresponding to large disruptions of the signal were
detected on the segmented raw data and removed manually from epochs
of interest using the MATLAB FieldTrip toolbox (Oostenveld et al.,
2011). The raw signal was bandpass-filtered between 0 and 100Hz, and
the line noise was removed by applying a bandstop filter at 50 and
100Hz frequencies using the FieldTrip toolbox. We extracted the signal
recorded within the 2000 ms around the three events of interest. We
downsampled the data at 100Hz for event-related analyses.

Three time epochs were analyzed: the 2000 ms following the cue
onset (appearance of the tilted bar on screen), the 1000 ms before and af-
ter the lever release, and 2000 ms following the feedback delivery (juice
or nothing).

Depending on the focus of the analyses (assessing within-trial effects
or between-trial effects), we applied or not a pre-event baseline. This
consisted in removing for each trial, amplitude values of the LFP before
the onset (0-100ms) of the given event (baseline) to the LFP values on
the time window of interest. For instance, no baselining was used to test
previous feedback or time-in-session (across trials) effects that are poten-
tially evolving between trials. Inversely, a within-trial baseline was

applied to assess touch position, difficulty, or RT. For cue onset and lever
release, the baseline time window encompassed 0-100ms before the cue
onset; for the feedback, 0-100ms before the feedback delivery.

Statistics. To assess which factors significantly influenced the ampli-
tude of the LFP, we used a linear regression model coupled with a Type
II ANOVA. For cue onset and lever release events, we regressed five fac-
tors in linear models: RT, difficulty, time-in-session, previous feedback,
and touch position to assess their effect on the LFP signal variation in
individual sessions.

We used the simplest additive model without interaction to test fac-
tors’ effects:

LFPðtÞ ¼ b 0ðtÞ þ b 1ðtÞRT þ b 2ðtÞDifficulty þ b 3ðtÞTime-in

-session þ b 4ðtÞPrevious feedback þ b 5ðtÞTouch Position þ «ðtÞ
(4)

For the feedback event, we included a “feedback” fixed effect (posi-
tive or negative) to the other five factors. We assessed fixed effects on
individual sessions because recording positions were different across ses-
sions. We also assessed the effect of the previous feedback valence on the
LFPs in the current trial.

To estimate the likelihood of finding significant effects by chance, we
ran the different linear models on permuted data. Permutations were
done by running the same models, for each time window of interest, 100
times with shuffled factors levels. The permutation data were used to
compute the probability of finding each proportion of significant sites
per time bin for each fixed effect. The proportion found was finally
thresholded at p, 0.01.

In particular, for time-in-session statistics, we investigated whether
effects were mostly going in one direction (e.g., LFP amplitude mostly
increasing with time-in-session). To evaluate such biases, we extracted
the distribution of z values from glm analyses for each time bin for a par-
ticular fixed effect and computed the skewness of the distribution of z
values. Skewness is a measure of symmetry and is based on the second
and third central moments of a distribution. Positive values of skewness
indicate a distribution skewed on the right. As a rule of thumb, absolute
values of skewness .1 indicate highly skewed data, between 0.5 and 1
moderately skewed, and,0.5 approximately symmetric.

We wanted to assess whether the relationship between RT and LFP
was stable over time. To answer this, we split data from each session in
two equivalent periods that contained the same number of correct trials
(beginning and end periods). For each of these periods, we separated tri-
als into quartiles of RT and calculated, 1 s around the release, the mean
LFP for each period and each RT group, and depending on the sign
(positive or negative) of the correlation between RT and normalized LFP
(Eq. 1). Finally, we subtracted, session by session, the z value of the sec-
ond and first periods to index the change in the RT to LFP relationship
over time. We tested changes with one sample t test difference from
mean(m) = 0.

Aside from linear model analyses, we also tested all fixed effects with
nonparametric Kruskal–Wallis tests. Results were similar and hence not
reported in the paper.

Time frequency analyses
Finally, we performed time-frequency analyses on signals recorded
between the cue onset and the time of lever release. The ft_freq_analysis
function from the FieldTrip toolbox was used to perform a wavelet time-
frequency transformation (convolution with complex Gaussian Morlet’s
wavelets with a ratio f/d f of 7). This analysis was done on the range 2-
100Hz in 2Hz steps and in 100ms windows. Statistical models identical
to those used for LFP amplitude were applied to test whether oscillatory
power in various frequency bands varied with fixed effects (difficulty,
touch position, RT). As for LFP amplitude, we assessed the frequency
of factors effects across all sites. We then computed the average per-
cent of sites with significant factor effects within four 500ms time
windows after cue onset (0-2 s) and around lever release (�1 to 1 s)
for the 2 monkeys and the two brain regions (LPFC and MCC). We
measured the average percentage of sites for which the power in the
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theta (4-8 Hz) and beta (12-30 Hz) bands was significantly modulated
for each factor.

Results
Regulations of performance
First, we assessed the factors influencing accuracy in the task,
whether related to specific properties of the task (e.g., difficulty
to categorize the visual stimulus) or inherent to the adaptation of
behavior, after outcomes (e.g., post-error adaptation) and/or
within-sessions following motivational changes.

Our task included three levels of difficulty, designed exper-
imentally (see Materials and Methods) to elicit different levels
of performance. Effectively, accuracy (proportion of correct
responses) decreased with increased level of difficulty, that is,
for stimuli bars oriented closer to the vertical (;90°) (Fig. 2a;
Eq. 2, logistic regression; p, 0.05 for all monkeys; z = �30.8,
�40.7, �35.6, and �21.0 for Monkeys H, A, O, and D, respec-
tively), confirming the efficiency of the procedure. More
importantly, RT not only varied with difficulty but were also
influenced by the accuracy of the trial. This was revealed by a
significant interaction between difficulty and accuracy (cor-
rect or incorrect) on RT (Fig. 2b; Eq. 3; p , 0.05 for all mon-
keys; z = �5.9, 16.7, 8.7, and 5.7 for Monkeys H, A, O, and D,
respectively). Average RT increased with difficulty when mon-
keys performed correctly, while average RT decreased with

difficulty when monkeys failed the categorization. This pat-
tern was very stable and observed throughout sessions (Fig.
3a; Eq. 3; significant interaction between difficulty and accu-
racy for the three time periods for all monkeys, p , 0.05). In
correct trials, the positive correlation between RT and diffi-
culty was expected and might be explained by increased cogni-
tive demand and engagement of control for difficult angles,
leading to increased time spent in computing and resolving
the uncertainty associated with the cue. The inverse effect for
incorrect trials was unexpected but could relate to a different
phenomenon. Incorrect responses were more numerous for
hard than easy trials, and errors in those trials might have dif-
ferent origins. One possibility is that the majority of errors in
easy trials were because of lapses of attention and/or motiva-
tion, hence leading to increased time to react and respond.

Interestingly, all 4 monkeys showed a time-in-session effect
characterized by a within-session increase in average RT (Fig.
2c; Eq. 3; p, 0.05 for all monkeys; z = 5.7, 15.2, 5.7, and 6.1 for
Monkeys H, A, O, and D, respectively). The accuracy remained
stable for 2 monkeys (H and D) and decreased (Acc–) for the
other two (Fig. 3b; Eq. 2; p , 0.05 for Monkeys A and O,
respectively; z = �8.7 and �9.8, respectively). We defined a ses-
sion to be RT1 versus RT– and Acc1 versus Acc– depending on
the positive or negative relationships between RT, or accuracy,
with time-in-session. The positive correlation between RT and
time (RT1) was, in many cases, associated with a decreasing

Figure 2. Accuracy and behavioral adjustments: data from 4 monkeys. a, Proportion of correct responses depending on difficulty levels (3 absolute angles of the cue). Difficulty has been con-
trolled based on accuracy for each animal independently. b, Average of normalized RT (1/� SEM) in correct (green, dashed lines) and incorrect trials (gray, plain lines) for the different diffi-
culty trials. Note the opposite relationship (interaction) between RT and difficulty for correct and incorrect trials. c, Time-in-session effect observed in RT changes across sessions. Average RT
(1/� SEM) were measured for deciles of each session duration and averaged across sessions. d, Adaptive reaction to previous trial types. The figure presents average RT (1/� SEM) for
responses in trials following incorrect nonrewarded (INC), correct rewarded (COR), nonrewarded break in timing (Brk), and nonengaged trials (Ns). Note, in particular, the post-error slowing
(compared with post-correct response).
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accuracy within the session (in 77%, 56%, 49%, and 35% of ses-
sions for Monkeys A, O, H, and D, respectively) (Fig. 3c). The
proportion of sessions with such a trend (RT1/Acc–) was sig-
nificantly different from the proportion of sessions with the
three other possibilities (RT–/Acc1; RT1/Acc1; RT–/Acc–) for
Monkeys A and O (x 2 homogeneity test; p , 0.05; x 2 = 23.9
and 12.9 for Monkeys A and O, respectively, and not significant,
x 2 = 5.6 and 4.6 for Monkeys H and D, respectively). Such time-
in-session effects have been previously observed in humans and
animals and correlate in some conditions with changes in frontal
neural signals, suggesting relationships with variations in motiva-
tional or cognitive control (e.g., Stoll et al., 2016b).

Post-error adaptation was also observed for 3 monkeys. RTs
were higher in trials following erroneous responses compared
with correct ones (Fig. 2d; Eq. 3; p, 0.05 for Monkeys H, O, and
D; p =0.414 for Monkey A; z = �7.6, �0.8, �30.9, and �3.8 for
Monkeys H, A, O, and D, respectively). Such slowing of RT was
also observed after execution errors (Fig. 2d; Eq. 3; trials in which
monkeys responded too late or too early, and were thus nonre-
warded [Brk]; p , 0.05 for all monkeys; z =9.3, 2.9, 2.6, and 2.4
for Monkeys H, A, O, and D, respectively) compared with post-

correct response. Such effects have been described in past studies,
including in monkeys, and have been correlated with changes in
frontal neural activity (e.g., Quilodran et al., 2008). Accuracy was
also affected by the previous trial correctness, where monkeys
were more likely to be correct following a correct compared with
incorrect trials (Fig. 3d; Eq. 2; p, 0.05 for Monkeys O and D,
p=0.07 for Monkey H, p=0.873 for Monkey A, z=1.81, �0.16,
3.31, and�2.82 for Monkeys H, A, O, and D, respectively).

Frontal LFP are modulated by behavioral adaptation and
motivation, not by difficulty
Models of cognitive control regulation suggest that multiple
incentives or driving variables are monitored and integrated to
derive a value of exerting control (Shenhav et al., 2013). Such
variables (e.g., expected value of outcomes, motivational incen-
tive, uncertainty, or difficulty of the task) might be integrated in
MCC and used as a modulatory factor in LPFC, but evidence for
such integrations is scarce.

We assessed LFP variations in MCC and LPFC around three
task periods, respectively, associated with information collection,
decision, and feedback monitoring. Averaged of all LFP traces,

Figure 3. Performance within sessions. a, Average RT (1/� SEM) in correct (green, dashed lines) and incorrect trials (gray, plain lines) for the different difficulty trials and for three succes-
sive periods covering sessions (beginning, middle, and end periods) for each monkey. The opposite relationship between RT and difficulty for correct and incorrect trials was stable across the
three periods for all monkeys. b, Accuracy for each difficulty level averaged for the three time periods of sessions. c, Relationships between within-session changes in RT and within-session
changes in accuracy (Acc.) for each monkey. Box plots represent the global populations of correlation coefficients for RT versus time-in-session and Acc. versus time-in-session. Each thin line
links the values associated with each session. d, Average accuracy for each monkey depending on the previous feedback at the beginning, middle, and end stages of sessions.
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for each monkey and each area aligned on the cue onset, are rep-
resented in Figure 4a. Individual session details are represented
alongside showing intersession variability (Fig. 4b). Signals dy-
namics show a reproductive pattern across recordings, sessions,
and between frontal areas.

We first measured the influence of both within-trial (diffi-
culty, touch position, RT) and between-trial variables (previous
feedback [post-error reaction] and time-in-session) on LFP. We
report the main outcomes (Eq. 4, proportion of significant ses-
sions with p , 0.05) from time-resolved analyses using linear
models containing the relevant fixed effects: touch position, pre-
vious feedback, difficulty, time-in-session, and RT (Fig. 5).

Modulations with touch position and RT
The amplitude of LFP was significantly modulated by the posi-
tion of the chosen target in more than half of MCC and LPFC
recordings (Fig. 5a). The latency of the rise in the number of sig-
nificantly modulated sites reflected the respective versions of the
task performed by the 2 monkeys. Indeed, the effect of touch
position started earlier for Monkey A (after 750ms for the MCC
and the LPFC) who could anticipate response locations as left-
ward and rightward targets were always in the same position (see
Materials and Methods), but later for Monkey H who had to
wait for the target onset (after 1000ms). Interestingly, touch
position was an influential factor after feedback onset in both
MCC and LPFC.

MCC and LPFC LFP variations were also influenced by RT
around lever release. As for touch position, the main effect
appeared earlier for Monkey A than Monkey H (Fig. 5b).

Modulations with time-in-session
For both monkeys, time-in-session had a sustained effect on LFP
amplitude as observed for the two epochs of interest (after cue
onset and around lever release) (Fig. 5c). This was one of the main
factors of influence, being significant in 30%-40% of sessions in

both areas. We observed a systematic bias for positive effects of
time-in-session (i.e., increased LFP amplitude with time-in-ses-
sion), especially strong for MCC recordings (skewness of z values
distributions, 1 value per bin, for post-feedback intervals: 1.20 and
1.78 for MCC, and 0.55 and 0.61 for LPFC, in Monkeys A and H,
respectively). Because RTs also evolved over time and RTs were
influencing LFP amplitude, one could wonder whether RT effects
were confounding time-in-session effects. First, the statistics for
RTs were weaker than for time-in-session and did not reveal any
bias along sessions (skewness of z values distributions for post-
feedback intervals:�0.05 and 0.18 for MCC, and 0.17 and 0.10 for
LPFC, in Monkeys A and H, respectively). Second, effects for RT
and time-in-session were negatively correlated, with RT effects
slightly increasing when time-in-session effects were lower
(Spearman correlation on z values for post-feedback intervals,
p, 0.001, r = �0.11 (n=36,582) and �0.28 (n=21,306) for
MCC, and�0.08 (n=21,507) and�0.17 (n=13,266) for LPFC, in
Monkeys A and H, respectively). Together, this suggests that the
influence of time-in-session and RT on LFP amplitudes were not
confounded.

LFP modulation with time-in-session could relate to compen-
satory mechanisms taking place along sessions to maintain per-
formance in the task. In such a case, one could expect correct
trials with similar RT toward the end of sessions to be associated
with stronger fluctuations in LFP than their counterparts at the
beginning of sessions. We looked for such an effect and found
that the relationships between RT and LFP changed over time
(Fig. 6). A majority of sites showed a positive correlation between
RT and LFP amplitude, while only a few showed a negative cor-
relation (for LPFC: 78% and 70% of positive sites, respectively,
for Monkeys A and H; for MCC: 72% and 55% of positive sites,
respectively, for Monkeys A and H). Positive correlations
between RT and LFP amplitude increased in late compared with
early part of the session (see Materials and Methods) for both MCC
and LPFC. No difference was observed for negative correlations

Figure 4. Normalized LFP signal presented from cue to target onset. a, All recordings from MCC (black) and LPFC (blue) were baselined and averaged. Each panel corresponds to data from
Monkey A (left) and Monkey H (right). The LFP signal was baselined to the 100 ms preceding the cue onset. b, Averaged normalized LFP represented for all recording sites (y axis) for each
area (left, MCC; right, LPFC) and monkey (top, Monkey A; bottom, Monkey H).
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(Fig. 6; one-sample t test; p, 0.05 for positive z values and p. 0.05
for negatives ones).

LFP changes in relation to outcomes
As expected, when aligned on feedback onset (time of reward or
no reward), the feedback valence had a major influence on LFP
amplitude, reflecting the onset (Fig. 7a) of feedback-related
potentials and during the intertrial period (Fig. 7b). The effect of
feedback valence also appeared earlier in MCC than in LPFC
(Fig. 7a). This is in line with several past studies showing prece-
dence of MCC over LPFC feedback-related activity in single-unit
activity or high g oscillations (Rothe et al., 2011; Stoll et al.,
2016a).

The influence of the outcome was observed throughout the
intertrial interval (Fig. 7a) and in the following trial until the
next response (at ;1.5 s after cue; Fig. 7b), although with higher
impact for 1 of the 2 animals. This could be tentatively associated
with the differential effect of the previous feedback on RT (Fig.
2d; Eq. 3; p , 0.05 for Monkey H; p =0.414 for Monkey A) and
on accuracy in these 2 animals (Fig. 3c; Eq. 2; p=0.07 for
Monkey H, p=0.873 for Monkey A). Such sustained effect of

feedback valence indicates that a trace from the previous feed-
back was maintained until and during the next trial.

LFP and difficulty
Critically, difficulty was the least influential parameter, being
found in,10% of sites across the considered time windows, and
with little to no change in proportion across the window of inter-
est (Fig. 5d). Permutation tests revealed only sporadic signifi-
cance in MCC and mostly for Monkey A. Because RT revealed a
significant interaction between difficulty and accuracy (correct
or incorrect), we also tested the effect of difficulty on LFP for
correct trials only, but this did not change the overall results.
Interestingly, LFP varied with RT, and RT differed with diffi-
culty, but we found little LFP variation with difficulty (Fig. 2b).
In our design, difficulty has only three levels, which might have
limited the range of effects. We verified that the LFP modulation
with RT remained for each difficulty level: we split trials and
tested LFP variations with RT independently for each difficulty
level. The effects of RT on LFP remained similar whatever the
difficulty level, and were observed for less than 10% of sites. We
finally analyzed the effect of difficulty on each tercile of the RT

Figure 5. Fixed effects on LFP modulation after cue onset, around lever release, and after feedback onset. Each plot represents the proportion of sites that presented a significant modulation
for the respective fixed effects, that is, touch position in a, RT in b, time-in-session in c, and difficulty in d, and at each time bin. Data are shown for MCC (black) and LPFC (blue). a, b, d, The
signal was referenced to baseline (pre-cue). c, Time-in-session fixed effect across trials was estimated on nonreferenced signals. Significance at p, 0.01 against permutations is shown on top
of each graph. Orange line above the abscissa indicates the display of the cue. d, Difficulty shows an effect on,10% of sessions in MCC and for very limited time periods.
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distributions of each difficulty level (i.e., on RT from the first ter-
ciles of easy, medium, and hard trials, from the second terciles,
etc.), to evaluate whether a difficulty effect could be found only
for subgroups of trials with either short or long RT. We observed
no such effects, and the analyses revealed only;5% of sites with
significant LFP modulation by difficulty. In conclusion, this con-
firmed further the dissociation between RT and difficulty as fac-
tors of influence on LFP, the former having significant impact on
LFP amplitude but not the later.

We further controlled whether parameters used in the analy-
ses could have influenced these results, in particular the weakness
of difficulty effects. Specifically, we checked whether the time-
bin size used for analyses (10ms) influenced the outcome of the
analyses and potentially masked effects that would require longer
durations to be detectable, especially for the difficulty effect. For
instance, one could think that difficulty would be detectable over
longer time bins. To verify that the bin size did not influence the
outcome of the analyses, we tested the same models (Eq. 4) on
data binned in 10, 100, or 500ms. Longer bins were not tested
because of the shorter time between events. The analyses showed
that results were qualitatively comparable regardless of the bin
size, showing in all cases that the LFP variation was mostly de-
pendent on the factors studied but little with difficulty. We used
proportion tests to compare the relative proportions of signifi-
cant sites for the three factors, to evaluate the relative weight of
each factor for each bin size. These revealed that, by increasing
bin size, the effect of difficulty decreased, while the effect of
touch position increased and the effect of RT remained stable.
To evaluated these effects, we tested the relative proportion of
sites with significant effect for each factor tested for the three bin
sizes. The proportion tests revealed no significant proportion dif-
ferences between time bins analyses for RT for each area and
each monkey, at p , 0.05. Regarding the fixed effect of touch
position, most (3 of 4) comparisons showed significant propor-
tion differences, at p , 0.05, and the data revealed an increasing
number of significant sites for larger bin sizes. The difference
was nonsignificant (p =0.094) for LPFC in Monkey H. Finally,
regarding difficulty, 2 of 4 comparisons revealed significant
proportion differences between time bins, at p , 0.05, with a

decreasing number of significant sites
for larger bin sizes (not significant for
Monkey H/LPFC, p = 0.257, and for
Monkey A/LPFC, p = 0.050).

We also assessed whether the dif-
ferent tasks and trial factors, including
difficulty, modulated specific oscilla-
tory activity, using time-frequency
decomposition. We found significant
changes in lower frequency (theta and
beta bands) associated with touch
position and RT, but no consistent
significant change for difficulty.
Across a total of 8 considered time
windows, after cue onset and around
lever release (see Materials and
Methods), the fraction of sites for
which LFP power was modulated by
difficulty fluctuated at ;5%: between
4% and 8.2% for the theta and beta
band. In contrast, modulations with
RTs were observed in 3.9%-14.3% of
sites for the theta band and from 5.3%
to 27.0% for the beta band. Finally, a
modulation of power with touch posi-

tion was observed in 4.2%-19% sites for the theta band and from
4.6% to 18.6% for the beta band.

Discussion
We trained 4 monkeys to a task inducing various levels of behav-
ioral adaptations, on the short (to task difficulty and outcomes)
and long terms (to time on task). We found that neural activity
in frontal areas correlated little, if any, with difficulty, but
strongly reflected time-in-session, RT, touch position, and feed-
back in the previous and current trial. Thus, the main measures
correlating with LFP amplitude were linked to response- and
motivational-related factors, corroborating and extending previ-
ous research performed on the two frontal areas (e.g., Funahashi
et al., 1989; Procyk et al., 2000; Kennerley et al., 2009; Hunt et al.,
2018). Here we mainly emphasize the contrast in weights
between these factors and difficulty in explaining neural activity
variations. The proportion of sites coding for the different varia-
bles differed little between MCC and LPFC, apart from feedback
valence and touch position.

Modulation of performance during the categorization task
We defined difficulty a priori as the level of accuracy in trials
grouped by the nature of the stimulus (angle of cue) used for
response. The experimental manipulation of the stimulus to
obtain different levels of correct response induced changes in
RTs in the 4 monkeys. This is consistent with the literature
where, in humans and monkeys, accuracy and RTs (or move-
ment times) covary with difficulty levels (Boudreau et al., 2006;
Chen et al., 2008; Pardo-Vazquez et al., 2008; Teichert et al.,
2014; Martinez-Garcia et al., 2015; Brechmann and Angenstein,
2019; Habak et al., 2019).

The difficulty-RT correlation differed for correct and incor-
rect trials, suggesting that changes in RTs might not be solely
related to changes in difficulty but also to other factors related to
the state of the animal in these different trial types. Specifically,
RTs increased with difficulty levels for correct trials, but
decreased for incorrect trials. Such effect has been shown

Figure 6. LFP variation depending on RT variation and time period. a, Boxplots of LFP averaged value for 4 RT range values
(quartiles) and for two periods of time (early and late in session). Data were split depending on the relationship between RT and
LFP. Left, The negative b values group. Right, The positive b values group. b, z value differences between the two time periods.
A positive value indicates that the influence of RTs on the LFP was stronger early in the session than late in the session. The differ-
ence is higher when the LFP amplitude increases with RT value (positive relationship).
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previously on movement times (Martinez-Garcia et al., 2015).
We assume that for the incorrect easiest trials, the increase of
RTs was due mostly to attentional issues and not to a question of
increased processing time. The fact that the proportion of incor-
rect easy trials is small compared with incorrect hard ones goes
in that direction.

In addition, 3 of 4 monkeys displayed a slight change in per-
formance after negative versus positive outcomes. This suggests
that the outcome in one trial induced sustained changes carried
over to the next trial. LFP analyses indeed showed that feedback
valence was detectable, for the 2 recorded monkeys, throughout
the intertrial interval and even during the next trial. The compu-
tation and maintenance of the history of outcomes are consid-
ered one important property of the frontal cortex and especially
of the MCC (Kennerley et al., 2006; Seo and Lee, 2007; Procyk et
al., 2021). Interestingly, in the categorization task, the outcome
has no informational relevance for the accuracy in the next trial.
And indeed, behavioral data show that a negative outcome
tended to be detrimental compared with a positive outcome.
This might suggest that also noninformational, emotional, or
motivational factors were also carried over and interfered with
processing in the next trial.

Definitions of difficulty
The concept of difficulty is used in many experimental contexts
where performance varies with task demand, which could be a
problem in itself. The operational definition of difficulty is often
weak, and the term has been rather vague in some studies (for
discussions, see Paus et al., 1998; Botvinick et al., 2001). A “more
difficult task” has been defined as one with a longer latency of
response and/or a higher error rate (Paus et al., 1998). In the
meta-analysis from Paus et al. (1998), a ranking of tasks by diffi-
culty was equivalent to a ranking of working memory demands.
Difficulty can be defined in relation to accuracy, efficiency, per-
formance linked to reaction and response times, and it thus often
reflects a consequence on behavior and not a mechanism or a
specific property (Li et al., 2018). A high level of difficulty is usu-
ally associated with low accuracy and long reaction or response

time, suggesting that the cognitive or attentional effort required
in more difficult tasks is higher. Thus, in experimental sciences,
difficulty is defined by, and must lead to, distinct performance lev-
els. In cognitive neurosciences, the notion of difficulty can also be
associated, or confounded, with concepts, such as incongruence,
uncertainty, conflict, cognitive effort, and/or task demand. “Task
difficulty” is supposed to impact the amount of usable information
extracted within a task (Bootsma et al., 2018). “Task conflict” has
been defined as any change in task performance induced by dis-
tractors (Ebitz and Platt, 2015). Such varied or open definitions
make formal interpretations of correlations with neural activity
quite hazardous. Finally, “difficulty” can be associated with a
potential metacognitive evaluation of the current state of the task
at hand (e.g., “I find this difficult”). In this case, difficulty relates to
an internal representation of a quality of the current task and not
to processes or mechanisms triggered to cope with the current
task. In summary, difficulty is not a thing in itself, but a measure
of the behavioral expression of task performance. Whenever “diffi-
culty” is used in an experimental design a concrete a priori defini-
tion based on clear behavioral criteria (e.g., accuracy) should be
used to allow comparisons between experiments.

Our study revealed that LFP in MCC and LPFC showed lit-
tle, if any, relationship with difficulty measured by accuracy lev-
els. The effects found for a minority of recordings in one
animal were quite unstable in time. This contrasts with what
would be expected given some of the fMRI literature (Shenhav
et al., 2014), but is in phase with other data showing strong cor-
relation of frontal BOLD and neural activity with RTs (Nachev,
2011; Kolling et al., 2016). Indeed, RTs correlated with LFP in
our experiment. Nevertheless, in monkeys, the effect of diffi-
culty was previously studied with single-unit activity (e.g., in
frontal eye field, visual areas V1 and V4, ventral premotor cor-
tex, and locus coeruleus) (Rajkowski et al., 2004; Boudreau et
al., 2006; Chen et al., 2008; Pardo-Vazquez et al., 2008; Teichert
et al., 2014). Recordings in V1 revealed different unit types with
response enhancements and suppressions for different levels of
discriminability (and performance) revealing modulations of
attentional mechanisms with performance (Chen et al., 2008).

Figure 7. Feedback valence and LFP modulations. Graphs represent the proportion of sites with a significant effect of feedback valence (positive/reward or negative/no reward). a, Analyses
performed on signals referenced to pre-feedback time and aligned at feedback onset. b, Effect of previous feedback (positive or negative) on the current trial LFP amplitude aligned on cue
onset (left) and next feedback (right) (nonreferenced signal). Significance at p, 0.01 against permutations are shown on top of each graph. Orange line above the abscissa indicates the dis-
play of the cue. Feedback valence is encoded from;200 ms after onset with a peak of influence (in a), followed by a sustained encoding observable in the next trial (in b).
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Locus coeruleus activity did not vary in amplitude with diffi-
culty (correlated with increased proportion of errors) but in la-
tency, and changes in amplitude were mostly related to RTs
(Rajkowski et al., 2004). In frontal eye field, 23% of units were
modulated by task difficulty, where difficulty was related to dif-
ferent levels of accuracy in a visual categorization task (Teichert
et al., 2014). However, as discussed by the authors, there was no
clear and unambiguous interpretation for such a modulation.
In summary, “difficulty” can relate to different phenomena,
and ill-defined criteria for difficulty might be at the origin of
discrepancies in the literature.

Time on task
Time on task can be defined as a change in vigilance and/or task
performance observed during sustained engagement in a task
(Boksem et al., 2006; Esterman et al., 2013). Time on task is often
associated with changes in RTs, decrement of accuracy, or
increase in execution errors (Boksem et al., 2006; Lorist et al.,
2009). Neural correlates of time on task have been observed in
event-related potentials, BOLD signals, electroencephalography
or electrocorticography oscillation power, and single-unit activity
(Boksem et al., 2006; Borghini et al., 2014; Stoll et al., 2016b; San-
Galli et al., 2018; Müller and Apps, 2019). Single-unit recordings
in the ventral mPFC have revealed changes related to motivational
and/or control processes (San-Galli et al., 2018). Whether such
changes reflect symptoms of fatigue, motivational decrements, or
on the contrary compensatory mechanisms remains to be discov-
ered (Sarter et al., 2006; Stoll et al., 2016b). We found that, while
RTs increased and accuracy sometimes decreased with time-in-
session, LFP in two areas known to contribute to aspects of
performance monitoring and cognitive control revealed mostly
increased amplitude with time-in-session.

Neural activity changes with time on task can be attributed to
several mechanisms that covary during extended task perform-
ance: vigilance decrement, increased attentional effort and cogni-
tive control, changes in mood or motivation, satiety in case of
food rewarded protocols, etc. Boredom, satiety, and drop in
motivation are somewhat difficult to reconcile with increased ac-
tivity in frontal areas in particular in MCC. Previous analyses of
frontal beta oscillation changes (mostly increases) with time-in-
session could be better explained by increased compensatory
mechanisms, such as increased attentional effort engaged to keep
performing the task while fatigue is building (Stoll et al., 2016b).
The increased correlations between RT and LFP from the begin-
ning to the end of sessions support this interpretation. However,
without dedicated protocols, the basic mechanisms involved are
difficult to identify.

Interpretational issues
Behavioral changes along a session are also reflected in changes
in RTs that themselves correlate with changes in frontal neural
activity. Changes in neural activity along a session could thus
potentially be explained by changes in accuracy and RTs. We
included previous feedback and time-in-session in the same
models and still found separated effects. We observed that up to
40% of LFP sites presented a significant correlation at some point
in trials with time-in-session. LFP amplitudes were not baselined
to conserve intertrial changes in signals. However, such an
approach seeks a linear change in LFP from beginning to the end
of sessions. Yet, previous experiments have shown adaptive reset
of time on task effects on frontal neural signals when animals
make pauses in work, leading to nonlinear changes within ses-
sions (Stoll et al., 2016b). Other studies have found oscillating

performance correlated with changes in frontal oscillation power
(Gaillard et al., 2020). Thus, the purely linear descriptor in glm
might not have been adequate to fully describe these phenomena,
and further in-depth analyses are required. Finally, acute micro-
electrode recordings (as described here) are often impacted by
very slow drifts in microelectrode depth because of neural tissue
movement relative to the electrode. Such drifts are detectable in
single-unit recordings, but their impact on LFP are potential
confounds for time on task effects. Yet it is unlikely that such an
artifact could explain that the majority of observed changes with
time-in-session were positive (i.e., increased amplitude of LFP
with time-in-session).

MCC and LPFC functional differences
MCC and LPFC LFP modulations were very similar in this study.
The two main functional differences observed between the two
regions seemed to be the response to feedback and the predomi-
nance of touch position. MCC recordings revealed an earlier and
more frequent response to the outcome than in LPFC (Fig. 7),
and showed in proportion more frequent modulations by touch
position than in LPFC. This differentiation concurs with previ-
ous studies, and supports the predominant role of MCC in feed-
back processing as well as its functional link with the motor
system, the recorded MCC region encompassing the rostral cin-
gulate motor area (Procyk et al., 2016). Yet overall regional dif-
ferences observed with event related LFPs were not as clear as
with single units (Stoll et al., 2016a). This was predictable because
of the nature of information one can extract from ERP compared
with single units. Moreover, the protocol we used favored the
functional coordination of the two regions and did not allow to
clearly dissociate them as both contribute to adaptive behavior
(Rothe et al., 2011; Stoll et al., 2016a). Previous experiments in
monkeys but also fMRI experiments in humans have repeatedly
shown coactivation of the two regions in the same conditions
(Duncan and Owen, 2000).
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Habak C, Seghier ML, Brûlé J, Fahim MA, Monchi O (2019) Age affects how
task difficulty and complexity modulate perceptual decision-making.
Front Aging Neurosci 11:28.

Hunt LT, Malalasekera WM, de Berker AO, Miranda B, Farmer SF, Behrens
TE, Kennerley SW (2018) Triple dissociation of attention and decision
computations across prefrontal cortex. Nat Neurosci 21:1471–1481.

Kawai T, Yamada H, Sato N, Takada M, Matsumoto M (2015) Roles of the
lateral habenula and anterior cingulate cortex in negative outcome moni-
toring and behavioral adjustment in nonhuman primates. Neuron
88:792–804.

Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF (2006)
Optimal decision making and the anterior cingulate cortex. Nat Neurosci
9:940–947.

Kennerley SW, Dahmubed AF, Lara AH, Wallis JD (2009) Neurons in the
frontal lobe encode the value of multiple decision variables. J Cogn
Neurosci 21:1162–1178.

Kolling N, Wittmann MK, Behrens TE, Boorman ED, Mars RB, Rushworth
MF (2016) Value, search, persistence and model updating in anterior cin-
gulate cortex. Nat Neurosci 19:1280–1285.

Li AS, Miao CG, Han Y, He X, Zhang Y (2018) Electrophysiological corre-
lates of the effect of task difficulty on inhibition of return. Front Psychol
9:2403.

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001)
Neurophysiological investigation of the basis of the fMRI signal. Nature
412:150–157.

Lorist MM, Bezdan E, ten Caat M, Span MM, Roerdink JB, Maurits NM
(2009) The influence of mental fatigue and motivation on neural network
dynamics; an EEG coherence study. Brain Res 1270:95–106.

Martinez-Garcia M, Insabato A, Pannunzi M, Pardo-Vazquez JL, Acuña C,
Deco G (2015) The encoding of decision difficulty and movement time
in the primate premotor cortex. PLoS Comput Biol 11:e1004502.

Müller T, Apps MA (2019) Motivational fatigue: a neurocognitive frame-
work for the impact of effortful exertion on subsequent motivation.
Neuropsychologia 123:141–151.

Nachev P (2011) The blind executive. Neuroimage 57:312–313.

Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive electrophysio-
logical data. Comput Intell Neurosci 2011:156869.

Pardo-Vazquez JL, Leboran V, Acuña C (2008) Neural correlates of decisions
and their outcomes in the ventral premotor cortex. J Neurosci 28:12396–
12408.

Paus T, Koski L, Caramanos Z, Westbury C (1998) Regional differences in
the effects of task difficulty and motor output on blood flow response in
the human anterior cingulate cortex: a review of 107 PET activation stud-
ies. Neuroreport 9:R37–R47.

Procyk E, Goldman-Rakic PS (2006) Modulation of dorsolateral prefrontal
delay activity during self-organized behavior. J Neurosci 26:11313–11323.

Procyk E, Wilson CR, Stoll FM, Faraut MC, Petrides M, Amiez C (2016)
Midcingulate motor map and feedback detection: converging data from
humans and monkeys. Cereb Cortex 26:467–476.

Procyk E, Tanaka YL, Joseph JP (2000) Anterior cingulate activity during
routine and non-routine sequential behaviors in macaques. Nat Neurosci
3:502–508.

Procyk E, Fontanier V, Sarazin M, Delord B, Goussi C, Wilson CR (2021)
The midcingulate cortex and temporal integration. Int Rev Neurobiol
158:395–419.

Quilodran R, Rothé M, Procyk E (2008) Behavioral shifts and action valua-
tion in the anterior cingulate cortex. Neuron 57:314–325.

Rajkowski J, Majczynski H, Clayton E, Aston-Jones G (2004) Activation of
monkey locus coeruleus neurons varies with difficulty and performance
in a target detection task. J Neurophysiol 92:361–371.

R core team (2014) R: a language and environment for statistical computing.
R Foundation for Statistical Computing. http://www.R-project.org/.

Rothe M, Quilodran R, Sallet J, Procyk E (2011) Coordination of high gamma
activity in anterior cingulate and lateral prefrontal cortical areas during
adaptation. J Neurosci 31:11110–11117.

RStudio Team (2016) RStudio: integrated Development for R. http://www.
rstudio.com/.

San-Galli A, Varazzani C, Abitbol R, Pessiglione M, Bouret S (2018) Primate
ventromedial prefrontal cortex neurons continuously encode the willing-
ness to engage in reward-directed behavior. Cereb Cortex 28:73–89.

Sarafyazd M, Jazayeri M (2019) Hierarchical reasoning by neural circuits in
the frontal cortex. Science 364:eaav8911.

Sarter M, GehringWJ, Kozak R (2006) More attention must be paid: the neu-
robiology of attentional effort. Brain Res Brain Res Rev 51:145–160.

Seo H, Lee D (2007) Temporal filtering of reward signals in the dorsal ante-
rior cingulate cortex during a mixed-strategy game. J Neurosci 27:8366–
8377.

Shenhav A, Botvinick MM, Cohen JD (2013) The expected value of control:
an integrative theory of anterior cingulate cortex function. Neuron
79:217–240.

Shenhav A, Straccia MA, Cohen JD, Botvinick MM (2014) Anterior cingulate
engagement in a foraging context reflects choice difficulty, not foraging
value. Nat Neurosci 17:1249–1254.

Stoll FM, Fontanier V, Procyk E (2016a) Specific frontal neural dynamics
contribute to decisions to check. Nat Commun 7:11990.

Stoll FM, Wilson CR, Faraut MC, Vezoli J, Knoblauch K, Procyk E (2016b)
The effects of cognitive control and time on frontal beta oscillations.
Cereb Cortex 26:1715–1732.

Teichert T, Yu D, Ferrera VP (2014) Performance monitoring in monkey
frontal eye field. J Neurosci 34:1657–1671.

4340 • J. Neurosci., June 7, 2023 • 43(23):4329–4340 Goussi-Denjean et al. · Frontal Cortex and Behavioral Adaptations

https://www.ncbi.nlm.nih.gov/pubmed/25581364
https://www.ncbi.nlm.nih.gov/pubmed/11006464
https://www.ncbi.nlm.nih.gov/pubmed/25654259
https://www.ncbi.nlm.nih.gov/pubmed/22941724
https://www.ncbi.nlm.nih.gov/pubmed/2918358
https://www.ncbi.nlm.nih.gov/pubmed/32066740
https://www.ncbi.nlm.nih.gov/pubmed/30881300
https://www.ncbi.nlm.nih.gov/pubmed/30258238
https://www.ncbi.nlm.nih.gov/pubmed/26481035
https://www.ncbi.nlm.nih.gov/pubmed/16783368
https://www.ncbi.nlm.nih.gov/pubmed/18752411
https://www.ncbi.nlm.nih.gov/pubmed/27669988
https://www.ncbi.nlm.nih.gov/pubmed/30564172
https://www.ncbi.nlm.nih.gov/pubmed/11449264
https://www.ncbi.nlm.nih.gov/pubmed/19306850
https://www.ncbi.nlm.nih.gov/pubmed/26556807
https://www.ncbi.nlm.nih.gov/pubmed/21540115
https://www.ncbi.nlm.nih.gov/pubmed/21253357
https://www.ncbi.nlm.nih.gov/pubmed/19020032
https://www.ncbi.nlm.nih.gov/pubmed/9674567
https://www.ncbi.nlm.nih.gov/pubmed/17079659
https://www.ncbi.nlm.nih.gov/pubmed/10769392
https://www.ncbi.nlm.nih.gov/pubmed/18215627
https://www.ncbi.nlm.nih.gov/pubmed/15028743
http://www.R-project.org/
https://www.ncbi.nlm.nih.gov/pubmed/21813672
http://www.rstudio.com/
http://www.rstudio.com/
https://www.ncbi.nlm.nih.gov/pubmed/29253251
https://www.ncbi.nlm.nih.gov/pubmed/16530842
https://www.ncbi.nlm.nih.gov/pubmed/17670983
https://www.ncbi.nlm.nih.gov/pubmed/23889930
https://www.ncbi.nlm.nih.gov/pubmed/25064851
https://www.ncbi.nlm.nih.gov/pubmed/27319361
https://www.ncbi.nlm.nih.gov/pubmed/25638168
https://www.ncbi.nlm.nih.gov/pubmed/24478349

	The Differential Weights of Motivational and Task Performance Measures on Medial and Lateral Frontal Neural Activity
	Introduction
	Materials and Methods
	Results
	Discussion


