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Abstract—Nowadays, in conventional agriculture, alternative
solutions to pesticides, antimicrobials and other pest control
products are desired. The European Green Deal is one of the
most important actions Europe is taking in order to overcome
the challenges of climate change and environmental degra-
dation, sometimes caused by the usage of pesticides. In the
scientific literature and local knowledge, there is a plethora of
descriptions of active plant-based products used as bio-pesticides.
The Knomana (KNOwledge MANAgement on pesticide plants
in Africa) project’s goal is to gather data about these bio-
pesticides and implement methods to support the exploration of
knowledge by the potential users (farmers, researchers, retailers,
etc.). Considering the needs expressed by the domain experts,
information retrieval is needed to obtain relevant insight on the
matter. In addition, data clustering into similar groups is helpful
when it comes to understanding key differences (or similarities)
of objects in general. Formal Concept Analysis (FCA) appears as
a suitable approach, due to its inherent qualities for structuring
and classifying data through conceptual structures that provide a
relevant support for data exploration. The Knomana data model
is an entity-relationship model, including both binary and ternary
relationships between entities of different categories. This hints
us to explore the use of Relational Concept Analysis (RCA), an
extension of FCA, on these data. In this work, we explore an
extended RCA method to be able to consider ternary relations,
and study a way to efficiently represent the extracted data.

Index Terms—Knowledge representation, Formal Concept
Analysis, Relational Concept Analysis, ternary relations, pesticide
plants.

I. INTRODUCTION

Agriculture 4.0 [1], [2], [3] is a term that stands for the
next big trends facing the industry, including a greater focus
on precision agriculture, the internet of things (IoT) and the
use of big data to drive greater business efficiencies in the
face of rising populations and climate change. One of the
trends present in Agriculture 4.0 is the need of reducing
the dependency on applying water, fertilizers, and pesticides
across entire fields, so that the efficiency is increased in
terms of resource utilization. Instead, farmers should use the
minimum quantities, or, when it is possible, even completely
remove them from the supply chain. Additionally, The Green
Revolution of the 20th century was characterized by a blind
use of pesticides and chemical fertilizers, resulting in a loss of
soil biodiversity and a rise in resistance against pathogens and
pests [4]. Furthermore, the Green Deal in the EU encourages
the search for solutions to go towards a sustainable usage
of pesticides. In this regard, Knomana [5] is a work that
gathered knowledge in many fields, including the protection of

agricultural individuals by the usage of vegetal species instead
of pesticides.

In order to provide good usage of the information in
Knomana to the experts, it is important to retrieve insightful
information from it [6]. Formal Concept Analysis (FCA) [7]
appears to be a good fit for this task, due to its inherent qual-
ities for structuring and classifying data through conceptual
structures that provide a relevant support for data exploration.
On the other hand, in the Knomana dataset, there is a part
that links plants through a ternary relation consisting of an
agricultural individual, a pest that attacks it, and a defense
against the pest. For extracting knowledge from linked data,
one of the most used approaches is to apply multi-relational
data mining (MRDM) methods [8], [9]. One option is the
MRDM FCA extension, called Relational Context Analysis
(RCA), presented in [10], which, in short, aims to link the
concepts extracted by FCA by using binary relations between
potentially different types of objects. Transforming data rep-
resented with ternary relations into a traditional relational
context family is not a trivial task, and it generally does not
scale in the amount of data as it is shown in [11]. Instead of
modelling the data onto a traditional relational context family,
we can extend the algorithm so that it accepts ternary relations
(i.e., relations represented by three objects that might be from
different contexts), and with that create a new knowledge
graph structure that can be efficiently searched through. In
this paper, we explore such extension, and apply it to the
Knomana dataset as an example of its usage. Moreover, the
method is general, and it’s not particularly bounded to the
specific context of this dataset.

II. RELATED WORK

Some FCA extensions already covered the lack of ternary
relations in traditional RCA.

Firstly, Graph-FCA (G-FCA) is presented in [12], as a
way to extend FCA to knowledge graphs. In the extension,
graph entities are FCA objects, and graph relationships are
FCA attributes. Consequently, the incidence relation consists
of tuples of objects (with various arities) related to attributes,
rather than single objects to attributes. Since an extensional
representation is not a set of objects, but a set of tuples of
objects, we can consider it a n-ary relation.

Secondly, the Triadic Concept Analysis (TCA) [13] which
considers the case in which an object x has the attribute y
under the condition z. In TCA, a triadic concept is a 4-tuple



K = (O,A,B, I), where O is the set of objects, A the set of
attributes, B the set of conditions and I ⊆ O×A×B relating
an object with an attribute under a certain condition.

Lastly, traditional Relational Concept Analysis can be also
used as it is, but applying certain transformations and encod-
ings to the source data [14]. Particularly, to represent the same
information as in a ternary relation “an organism is protected
by a plant against a certain aggressor”, it is needed to have
three object-attribute contexts (one for each type), and two
object-object contexts being protectedBy and treats.

The extended RCA method we present in this paper aims
to provide the ability to extract knowledge from data related
with ternary relations, in a more obvious way e.g., maintaining
all the previous concepts of traditional RCA, and without any
pre-computation needed.

III. PRELIMINARIES

A. Formal concept analysis

Formal concept analysis (FCA), defined in [15] - [16], is a
method for extracting knowledge from a dataset called Formal
Context, i.e., a table consisting of objects, attributes, and
relations between objects and attributes. Formally, a formal
context K is a triple (G,M, I), where G is a set of objects,
M is a set of attributes, and I is an incidence matrix where
if Ii,j is 1, we say that the object oi has the attribute aj ,
otherwise oi does not. Let ′ be the derivation operation on a
set of objects (dually, on a set of attributes) given by

X ′ = {a ∈ A | ∀o ∈ X : Io,a}
Y ′ = {o ∈ O | ∀a ∈ Y : Io,a}

A formal concept is a pair C = (X,Y ) where X ⊆ O, Y ⊆ A,
X ′ = Y , and Y ′ = X . X is called the extent and Y the intent.
For readability purposes, we note C.E to the extent, and C.I to
the intent. The set of all the formal concepts and the relation of
inclusion of extents form the so-called concept lattice, which
is a partially ordered set, and is usually noted with the letter
L.

B. Relational concept analysis

While FCA aims to extract formal concepts from a formal
context, and then extract association rules [17], one of its ex-
tensions, called Relational Concept Analysis (RCA), presented
in [18], and [19], is used for a similar purpose but considering
that data can be composed of several objects with different
attributes each, and be related between them. This extension
mainly provides a way of extracting relations between formal
concepts (in the form of attributes), even if they are from
different contexts (e.g., concepts might be related by some
particular semantic such as “there exists an object of concept
A related with an object of concept B”).

The input of RCA is named Relational Context Family
(RCF) and consists of a tuple (K,R) where K is a set of
formal contexts and R is a set of binary relations between
objects of the contexts, i.e., (o1, o2) ∈ r iff o1 is related to o2
for r ∈ R. Let Kj ∈ K be a formal context, we say that Lj is

the concept lattice calculated from Kj , whereas Cj
i is the i-th

concept of the lattice Lj . Given two contexts Ki,Kj ∈ K and
a relation r ∈ R such that r ⊆ Oi × Oj where Ox is the set
of objects in the context Kx, the scaling process between Ki

and Kj is defined by the algorithm 1, in which objects remain
constant, for each concept C ∈ Lj an attribute with the name
ρ r.name : C is added. Finally, for each object and for each
new attribute added, the incidence between them is included
according to the semantics of the relational scaling operator
ρ, which is briefly explained in the Relational scaling section,
and more broadly in [20].

Algorithm 1: Context scaling algorithm
Input: Ki,Lj , r, ρ, a context, a lattice, a relation and a

relational scaling operator respectively
Output: Scaled Ki

1 O,A, I ← Ki

2 A+ ← A ∪ {ρ r.name : C | C ∈ Lj}
3 I+ ← I ∪ {(o, ρ r.name : C) | o ∈ O,C ∈
Lj , ρ(o, r, C)}

4 return O,A+, I+

C. Relational scaling

Typically, the RCA main algorithm extends contexts within
the relations, using a relational scaling operator. The most
commonly used operators are ∃, ∀, and ∀∃ to name a few.
In this work, we will focus only in the ∃ operator, whose
semantic is ∃(o, r, C) = r(o) ∩ C.E ̸= ∅ where r(o) = {x |
(o, x) ∈ r}.

IV. THE KNOMANA DATASET

Knomana [5], coming from the composition of knowledge
and management, is the name of a dataset initiated in 2015
by Pierre Martin, computer scientist in Cirad, and Pierre
Silvie, entomologist in the Agricultural Research Institute
for Development (IRAD). The method utilized for obtaining
the data consisted in choosing a theme of interest, e.g., the
protection of an agricultural crop using an extract of a plant
species. Then, to identify a statement model of the targeted
knowledge, formalized in the form of an ontology, to finally
identify, in the literature, all the knowledge regarding the
chosen model.

In Knomana, sub-datasets are stored in tables, in which each
of them represent the knowledge base related to a specific
interest theme. Chronologically, the first set of knowledge,
called RAP (for Pests of Poaceae or Ravageurs de Poaceae
in French), brought together the trophic chains of Lepidoptera
species with stems or spikes (i.e., bio-aggressors) of African
plants belonging to the families Poaceae, Cyperaceae and
Typhaceae. The ontology associated with this set of knowledge
connects the host plant, the pest of the host plant, the natural
enemy of the pest, the territory where this trophic relationship
was observed, and finally the bibliographic reference.

With RAP, the objective was to identify, for example, in a
rice-growing lowland in Benin, the local non-cultivated plants



(e.g., weeds) likely to harbour the pests of agricultural crops
when a crop (e.g., rice, sorghum, maize) was absent. The
intention was then to manage these non-cultivated areas, for
example by cutting the plants, in order to limit the develop-
ment of these bio-aggressors instead of spraying pesticides
on the agricultural crop. In 2017, the knowledge base PPAf
(for African Pesticide Plants) was started. It brings together
knowledge on the uses of plants used in agriculture as an
alternative to synthetic chemical pesticides. In 2018, the initial
objective of this set was broadened within the framework
of a project involving the collaboration of various entities:
Joseph Ki-Zerbo University (Burkina Faso), the IRAD from
Cameroon, UMR ISEM and LIRMM (https://ur-aida.cirad.
fr/nos-recherches/projets-et-expertises/knomana). In doing so,
the uses of plants with a pesticide or antibiotic effect, whether
they concern humans (human health and public health) or
animal agricultural crops (animal health) and plants, have
been identified. The health of the environment was approached
through knowledge related to the unintended effects possibly
reported on the natural enemies of pests.

A. PPAf Model

The part of the PPAf dataset in which we will focus
describes a ternary relation between a protected plant, a bio-
aggressor, and a biopesticide, see Figure 1. Although each of
the three parts of the relation could be considered as different
types (and hence, have their own contexts), in this case, we
will consider them as the same, all compressed in the same
context.

Protection System

Protected System

N

Bio-aggressor
N

Biopesticide

N

Fig. 1: Partial representation of the PPAf data model, showing
the ternary relation

B. Extracting knowledge from PPAf

Using RCA in data represented with ternary relations re-
quires some treatment, since the framework only accepts
binary relations. It is important to state that ternary relations
cannot be simply separated into three binary relations between
their parts, i.e., (α, β) ∧ (α, γ) ∧ (β, γ) ≠⇒ (α, β, γ).

For example, imagine four plants x, y, w, z, and two ternary
relations (x, y, w), and (w, y, z), meaning that w protects x
from the bio-aggressor y, and similarly that z protects w from
the bio-aggressor y. If we had the binary relations (x, y),
(w, y) to describe that y attacks both w and x, (y, w), (y, z) to
describe that w and z protects against y, and (x,w), (x, z) to
describe that w and z protect x, we would have to wonder for
instance: w protects x against whom? (remember that x could
be related with other plants different from y in the “attacked
by” relation). Having this in mind, there are essentially two
ways to approach the usage of RCA within this context,
the first one is to model the data into a relational context
family, using certain transformations that ensure that there is
no semantic loss in the relations [11]. The other one is to
extend the input and the algorithm so that it allows the direct
representation of these type of relations. In our case, we will
go for the second one.

V. ternary RCA

As a general notation, we will call the traditional RCA,
binary RCA, in the sense that its input is a relational context
family with binary relationships between objects. Intuitively,
the ternary RCA extension takes a ternary relational context
family, explained below.

A. ternary-Relational context family

Similar to our notation with binary RCA, we call traditional
relational context families binary-RCF. In contrast, a ternary-
RCF is a pair (K,R) where K is a set of formal contexts, and
R is a set of binary or ternary relations between objects and
at least one of them is ternary. A possible instance could be a
(K,R) where K = {K1}, R = {r}, and r ⊆ K1×K1×K1.
For this paper, we will consider a ternary relationship between
objects of the same table, presented in Table II using the row
number of the formal context in Table I.

B. ternary-Relational attributes

In the binary RCA algorithm, for the scaling of each
context with a relation r, we add an attribute ρ r : Cj

i for
each concept in the target lattice Lj , for a given relational
scaling operator ρ. When scaling a context K1 with a relation
r ∈ K1 × K2 × K3, we add an attribute ρ r1 : C2

i1
, C3

i2
for

each combination of concepts in their respective lattices. The
subindex in r1 is to specify the position of the object in the
relation, which in the case K1 ̸= K2 ̸= K3 is unnecessary,
but in the case the relation repeats contexts, the object could
appear in different positions related with the same objects,
e.g., (o, x, y) and (x, o, y). Having that said, the attributes
ρ r1 : C2

i1
, C3

i2
, ρ r2 : C2

i1
, C3

i2
, and ρ r1 : C3

i2
, C2

i1
are all

different. Considering this, one scaling step on some context
Ku ∈ K, and a ternary relation r adds t|C1||C2| new
attributes to the context Ku, where t is the amount of times
the formal context being scaled is repeated in r.

https://ur-aida.cirad.fr/nos-recherches/projets-et-expertises/knomana
https://ur-aida.cirad.fr/nos-recherches/projets-et-expertises/knomana


TABLE I: Plants, crops and bio-aggressors formal context

K Food Medical
1 Abies sibirica/

Abies/
Pinaceae

2 Acanthospermum
hispidum/
Acanthos-
permum/
Asteraceae

X

3 Anticarsia
gemmatalis/
Anticarsia/
Noctuidae

4 Allium
sativum/
Allium/
Amarylli-
daceae

X X

5 Spodoptera
frugiperda/
Spodoptera/
Noctuidae

6 Spodoptera
littoralis/
Spodoptera/
Noctuidae

7 Spodoptera
litura/
Spodoptera/
Noctuidae

8 CropS/ CropG/
CropF

X X

9 CropFabaS/
CropFabaG/
Fabaceae

X

10 Zanthoxylum
rhetsa/
Zanthoxylum/
Rutaceae

X

11 Zingiber offici-
nale/ Zingiber/
Zingiberaceae

X X

Protection Pest Crop
1 6 8
2 5 8
4 3 9

10 7 8
11 5 8
11 6 8

TABLE II: Ternary relationships

C. ternary-Relational attributes in PPAf

In this work, we will work with a tiny ternary-relational
context family of the PPAf dataset. Particularly, it will consist
of only one context Ke (where e stands for example), repre-
senting all the possible organisms, plants, or aggressors, and
their attributes, which in this simple example will only be if
they’re used for food or for medical purposes. Additionally,
there is a ternary relationship rps ⊆ Ke × Ke × Ke (ps
stands for protection system). With this input, in the scaling
step, for each concept we add an attribute ∃3 rps,i : Cj , Cu

where 1 ≤ l ≤ 3 is the position of the object in the relation
(because each object could appear in the three positions of

the relation), for each combination of concepts in the lattice
Le. The ternary scaling algorithm 2 describes how we extend
a context according to the ternary version of the operator
∃3(o, r, C1, C2, i) = Relations(o, r, i) ∩ C1.E × C2.E ̸= ∅
where the Relations function is defined in 1.

Algorithm 2: Ternary scaling algorithm
Input: Ki,Lj , r, a context, a lattice, and a ternary

relation respectively
Output: Scaled Ki

1 O,A, I ← Ki

2 A+ ← A ∪ {∃ ri.name : C1, C2 | 1 ≤ i ≤ 3,
(C1, C2) ∈ Lj × Lj}

3 I+ ← I ∪ {(o,∃3 ri.name : C1, C2) | o ∈
O, (C1, C2) ∈ Lj × Lj , 1 ≤ i ≤ 3,∃3(o, r, C1, C2, i)}

4 return O,A+, I+

Relations(o, r, i) =


{(x, y) | (o, x, y) ∈ r} i = 1

{(x, y) | (x, o, y) ∈ r} i = 2

{(x, y) | (x, y, o) ∈ r} i = 3

(1)

D. Useful properties

In this subsection, we will state and prove some useful
properties of the ∃3 attributes.

Proposition V.1 (Conservation of position). Let C = (X,Y )
be a formal concept. If Y contains a ternary attribute ∃3 rl :
Ci, Cj , then all objects in X appear in at least one triple in
the position l with at least one object oi ∈ Ci.E and one
object oj ∈ Cj .E.

Proof. Since Y has a ternary attribute of the form ∃3 rl :
Ci, Cj , we know by definitions of formal concept and the
Scaling Algorithm 2 (line 3) that all o ∈ X attain the condition
∃3(o, r, Ci, Cj , l). This means that Relations(o, r, l)∩Ci.E ×
Cj .E ̸= ∅, or in other words, that all objects in X have at
least one pair (x, y) in which they are related to them being
in the position l. Thus, all objects in X appear in at least one
triple in the position l with at least one object oi ∈ Ci.E and
one object oj ∈ Cj .E.

Proposition V.2 (Conservation of order). Let C = (X,Y ) be
a formal concept. If Y contains a ternary attribute ∃3 rl :
Ci, Cj , then there exists at least one relation in which an
object oi ∈ Ci.E is at the left of the object oj ∈ Cj .E, while
o ∈ X is in position l.

Proof. Since Relations(o, r, l) ∩ Ci.E × Cj .E ̸= ∅, let p ∈
Relations(o, r, l)∩Ci.E×Cj .E. Given the fact that p = (x, y)
is an element of Ci.E × Cj .E, x is always at the left of y
regardless of the value of l.

Proposition V.3 (Ternary attributes non redundancy). Let C =
(X,Y ), C2, and C3 be formal concepts. ∃3 rps,1 : C2, C3 ∈ Y
does not imply ∃3 rps,2 : C1, C3 ∈ C2.I or ∃3rps,3 : C1, C2 ∈
C3.I .



Proof. Let C = ({1, 2}, Y ), C2 = ({3, 4}, Y2), C3 =
({5, 6}, Y3) be three particular formal concepts, if r =
{(1, 3, 5), (2, 3, 5)}, ∃3 r1 : C2, C3 ∈ Y , but neither ∃3 r2 :
C1, C3 /∈ Y2 nor ∃3 r3 : C1, C2 /∈ Y3 since not all the objects
in C2.E nor in C3.E are related with some object in the
respective concepts extents.

E. Interpretation of the resultant graph

On the one hand, after scaling the context, the final lattice
will have ternary edges between the concepts that are part of
the protection system. Moreover, thanks to the index in each
attribute, the graph maintains the semantic of the relation in
the sense that it is possible to tell whether the objects in the
context we are studying are aggressors, protected systems, or
biopesticides (knowing its index in the relation is enough V.1).
On the other hand, we can notice that, even if there seem to be
redundancy in the graph, all the 3|Co|2 ternary attributes with
their indexes are needed to not lose information V.3, where
Co stands for the set of concepts in the lattice of the formal
context I.

Given this situation, the temporal and spacial complexity
of the scaling part would be O(|Co|2). Since, in order to
maintain the semantics of the input relations, it is necessary
to ensure that at least we check the incidence of each object
in each of the attributes, this algorithm with this input (i.e.,
only one formal context and one relation) would at least have
a temporal complexity of Ω(|Co|2)). It is possible, though,
to improve in some cases the lower bound of the space
complexity by maintaining only the ternary attributes with
at least one incidence in I . The ternary attributes with no
incidence should be marked and removed, since they add no
value to the lattice (they will only be a part of the ⊥ formal
concept extent).

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an extension of the widely used
RCA framework, or, as we would call it with our notation,
binary RCA. We added the possibility of specifying different
types of relations, so that no transformation of the input is
needed in case it is modelled with ternary relations, unlike in
[14] and [21]. On top of that, we presented an initial study
about the worst case time complexity bound of the algorithm in
terms of the amount of attributes it adds, which is 3|C1||C2|
attributes. This leads us to the questions, “is this approach
scalable in the ternary case?”, “which optimizations could
be applied to the algorithm so that it performs better in the
average case?”.

To tackle these matters, it would be necessary to benchmark
the algorithm in different scenarios and understand where are
the points that could be improved. In addition, after the RCA
algorithm converges, it is possible that a very dense graph is
generated, thus, it is needed for fast algorithms to query it in
order to extract information about the relations and also the
content of the nodes (formal concepts).
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