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Abstract

The main goal of the AIPlan4EU project is to give easy and
unified access to a large and diversified number of planning
technologies and approaches. Yet, to make beneficial use of
the produced plans, the project also develops and deploys
Technology Specific Bridges (TSB) to connect and close the
loop with real-world applications. In this paper we present
one of these bridges which specifically targets robotic appli-
cations and more generally embedded systems. In these sys-
tems, planning and plan execution lead to commands on ef-
fectors in the real world, while sensors, intrinsic and extrin-
sic, report on the state of the world, which is then fed back
to monitor the plan execution, with replanning or plan repair
when needed. To this effect, we have developed a Python li-
brary that simplifies the creation of planning domains for ex-
isting applications and allows to execute and monitor result-
ing plans. Despite being developed for robotic applications,
the library is not dependent on a specific robot framework,
nor any middleware, and can also be used for non-robotic
domains. We demonstrate this TSB on two robotic experi-
ments: a ROS (Quigley et al. 2009) based service robot and a
GenoM (Dal Zilio et al. 2023) based multi drones application.

1 Introduction
Planning technologies can be useful for applications in
many different areas, and a broad range of mature domain-
independent planners and formalisms are now available.
However, it often takes a big effort to use those planning sys-
tems in actual applications. The AIPlan4EU1 project aims
to increase the use of planning technologies in various real-
world applications ranging from agriculture and manufactur-
ing to robotics by facilitating access to a broad range of plan-
ning technologies. As one step in this direction, AIPlan4EU
is developing the Unified Planning2 library (abbreviated as
UP). UP is a Python3 library that gives access to multiple
planning approaches and engines. Not only can planning
domains and problems be created using existing languages
such as PDDL (Ghallab et al. 1998), ANML (Smith, Frank,
and Cushing 2008) or HDDL (Höller et al. 2020), but one

*These authors contributed equally.
1https://www.aiplan4eu-project.eu/
2https://github.com/aiplan4eu/unified-planning

can also write domains and problems directly in Python and
have access to planners as well as to additional functionali-
ties like grounding or converting plans.

Despite UP’s expressive planner interface, the problem of
connecting it or building a bridge to the actual applications
can still be complex. In some applications it can be straight-
forward: the planning domain and problem are passed to the
planner which solves it and produces a plan or a schedule
to be executed, e.g., by a human. But in other domains, the
bridge may contain glue code that is specific to a particular
application. This includes for instance collecting and trans-
forming the relevant application data for generating the plan-
ning problem by connecting to an external knowledge base
or computing the state of individual fluents based on non-
symbolic data. For example, for a mobile robot we might
need to discretise the robot’s arm pose into a symbolic pose.
Furthermore, to use the resulting plans in the applications,
the plan’s action instances need to be mapped back to their
executable counterparts on the application side. Another im-
portant aspect to address is the plan’s execution itself. Ac-
tions need to be dispatched at the appropriate time, their ex-
ecution monitored, and appropriate measures taken for deal-
ing with errors or failures during execution. To facilitate
these more complex connections, the AIPlan4EU project de-
velops and proposes several Technology Specific Bridges
(TSB) between application domains and Unified Planning.

In this paper we present one such TSB, named Embedded
Systems Bridge (ESB), a Python3 library, aimed at robotic
applications. The choice of Python as the programming lan-
guage is mostly motivated by the fact that the UP is written
in Python (even if most planning engines are not) and we do
not envision the need for some CPU intensive computation.
It is available on GitHub3 as open-source under the Apache-
2.0 license. It contains generic functionalities for connecting
applications to the UP library and for executing the plan ac-
tions on physical systems.

2 Related Work
One of the first AI planning systems, STRIPS (Fikes and
Nilsson 1972), when running on the Shakey robot, was de-

3https://github.com/aiplan4eu/embedded-systems-bridge



ployed along a plan execution component: Planex (Fikes
1971). Thus, Shakey was able to navigate in various rooms,
push boxes and take pictures. Yet, plans produced by
STRIPS were executed without any action refinement, as
Planex directly mapped plan steps into robot commands. For
robotic systems, and more generally for embedded systems,
planning only makes sense when jointly deployed with a
plan execution component.

Yet, plan execution covers many problems that need to
be addressed: action refinement, action monitoring, tempo-
ral monitoring, temporal dispatching, non-nominal execu-
tion and failure handling, command and sensing interfaces,
and more. In this rich field, we focus on systems and ap-
proaches that have made a point in bridging generic planning
systems to robotic systems.

ROS4 is a de facto standard in the robotic community, and
as such is an ideal framework to bridge planning systems to
robotic systems. The most recent version, ROS 2, has some
design advantages over ROS 1, yet it will take years to tran-
sition the large volume of legacy ROS 1 packages to ROS 2.
Nevertheless, two ROS-based generic bridges must be pre-
sented:

The ROSPlan framework. ROSPlan (Cashmore et al.
2015) offers a bridge between various task planning ap-
proaches and robotics via ROS 1. While its main support is
for temporal PDDL 2.1 with the popf planner (Coles et al.
2010), it also offers experimental support for probabilistic
planning (Canal et al. 2019) and time-constrained hierar-
chical task networks with resources via the CHIMP planner
(Stock et al. 2015). ROSPlan splits up the different elements
of planning and plan execution into multiple components in
the form of ROS nodes, e.g., for domain and problem repre-
sentation, plan generation, post-processing, execution. The
communication between those components is handled via
ROS’s topic publish/subscribe mechanism (string message
in this case).

At the core of ROSPlan’s execution component is the
Esterel plan dispatch algorithm, which relaxes a temporal
PDDL 2.1 planner output to re-assemble it into an execution
graph, whose edges represent ordering constraints of three
types: start-end of an action, interference edges and causal
links. Once the graph is formed, the execution is similar to a
Petri net in the sense that only after all edges are activated,
the node is activated, which means that the action is ready
to be executed. This allows a flexible execution under time
constraints, where we don’t care that any hard deadlines im-
posed by the planner are exactly met, but rather dispatch the
actions as soon as all appropriate conditions are met.

One of the caveats of ROSPlan is that it is tightly coupled
to ROS 1, which is scheduled to lose support in 2025 in favor
of the new ROS 2 release.

PlanSys2: ROS 2 Planning System Inspired by ROS-
Plan, PlanSys2 (Martı́n et al. 2021) is a ROS 2-compatible
planning and execution system optimized for Behavior
Tree (BT) execution of parallel actions. Currently, temporal

4https://www.ros.org/

PDDL planners popf (Coles et al. 2010) and Fast Downward
(Helmert 2006) are supported.

At the core of PlanSys2, an algorithm is used to convert
the output of a temporal PDDL planner into a behavior tree
(Martı́n Rico et al. 2021) from an execution graph previously
created using causal links.

For each action, the generated BT steps are wait for ac-
tion, wait at start request, apply at start effect, check overall
preconditions, execute action, check at end preconditions,
and apply at end effects.

PlanSys2 comes with developer tools such as a terminal
that allows users to set instances, facts, goals and get do-
main, problem, and plans. ROSPlan does a similar job in
this regard with its GUI interface, allowing an easier way to
set instances, facts, and goals.

Compared to ROSPlan, PlanSys2 is a priori better suited
for multi-robot systems, as ROS 2 runs without a roscore,
which is a potential single point of failure on distributed
ROS 1 experiments. Note that PlanSys2 is one of the TSB
ports funded within the AIPlan4EU open calls. As such it
will be among the bridges available on the platform.

Beyond (and before) ROS-based systems, other architec-
tures and approaches have been proposed to bridge plan-
ning and execution in robotics. They often propose a soft-
ware organization along a few layers (Bonasso et al. 1997)
with different temporal requirements and abstraction lev-
els. We often find a so-called functional layer containing
the low-level sensors–effectors–processing modules, as well
as a decisional layer containing some of the deliberation
functions (e.g., planning, execution, monitoring, etc). Some
rely on specific tools to implement the various components
along the different layers. For example, the LAAS architec-
ture (Ingrand et al. 2007) proposes GenoM to implement
all the modules of its functional level, OpenPRS, and Ix-
TeT for the deliberative level. (Doherty, Kvarnström, and
Heintz 2009) proposes a temporal planner (TAL Planner)
and a stream-based architecture (DyKnow) for perception,
anchoring, and plan recognition. Similarly, CLARATy (Nes-
nas et al. 2003) provides C++ classes for the basic func-
tional components and TDL or ASPEN/Casper for planning
and acting. PLEXIL, a language for the execution of plans,
illustrates a representation where the user specifies nodes
as computational abstractions (Verma et al. 2005). A node
can monitor events, execute commands, or assign values to
variables; it may refer hierarchically to a list of lower-level
nodes. PLEXIL has been developed for space applications
and used with several planners such as CASPER. RMPL (for
Reactive Model-based Programming Language) (Ingham,
Ragno, and Williams 2001) proposes a common representa-
tion for planning, acting and monitoring. It combines a sys-
tem model with a control model. The former uses hierarchi-
cal constraint-based automata to specify nominal as well as
failure state transitions, together with their constraints. The
latter uses reactive programming constructs (including prim-
itives to address constraint-based monitoring, e.g., as in Es-
terel (Coste-Maniere, Espiau, and Rutten 1992)). Moreover,
RMPL programs are transformed into Temporal Plan Net-
works (TPN) (Kim, Williams, and Abramson 2001), an ex-



tension of STN (Simple Temporal Network) with symbolic
constraints and decision nodes. The result of each RMPL
program is a partial temporal plan which is analyzed by re-
moving flaws and transformed for execution taking into ac-
count online temporal flexibility. Within the RoboCup Lo-
gistics League, some teams deployed OpenPRS as an act-
ing language but also the CLIPS Executive (CX) (Hofmann
et al. 2021) based on the CLISP rule-based production sys-
tem. CX is an integrated goal reasoning system that provides
an explicit goal representation, implements a goal lifecycle,
and structures goals in trees.

Teleo-reactive architectures (Finzi, Ingrand, and Muscet-
tola 2004) are more recent. They propose an integrated
planning–acting paradigm, which is implemented at dif-
ferent levels from deliberative down to pure reactive, us-
ing different planning–acting horizons and time quantum.
Each planner–actor is responsible for ensuring the consis-
tency of a constraint network on temporal and state vari-
ables. Each shares a subset of these variables with other
planners–actors to provide communication between them.
Interestingly, this approach was developed and proposed by
Willow Garage (McGann et al. 2008) as part of the origi-
nal ROS environment to plan and execute missions for PR2
robots. Yet, the performance of these systems is often a prob-
lem when it comes to planner–actors that need to solve large
CSPs, in a time quantum below one second.

Our proposed approach, which is still work in progress,
has the following specificities:

• It is strongly linked to the UP and as such, it will try to
support:

– the various plan formats produced by UP,
– the various repair/replan mechanisms proposed by UP.

• It is middleware agnostic and will try to support ROS and
non-ROS robotic frameworks.

Some of these features are already partially supported in
the current implementation, which will evolve as the project
moves on.

3 ESB: A bridge between embedded systems
and UP

The standard approach to apply task planning is to describe
the planning problem in a planning domain language, then
run a solver to retrieve a plan. In the domain description lan-
guage, representations of objects, states, and goals are de-
clared. The ESB aims at facilitating this declaration step by
providing an interface to which existing application domain
declarations in Python can be provided. By using the refer-
enced objects which are provided in the calls to the bridge’s
interface, it creates most of the problem description in the
UP domain automatically.

Figure 1 presents the ESB architecture that combines the
UP and the application. The architecture consists of three
components: application definition, Unified Planning and
the bridge itself. The application definition must be a Python
interface wrapped around the application to be used with the
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Figure 1: Architecture of the Embedded Systems Bridge.

bridge. Unified Planning (UP) is a planning framework de-
veloped in Python that is compiled of various planning tech-
nologies. The user can choose the desired planning engine
for their application or let UP handle on its own based on
the provided problem definition. ESB attempts to extend the
UP to the application domain by connecting the gap with
orchestration. At the core of the bridge are the dependency
graphs which are used for the orchestration process. The use
of dependency graphs in task execution promotes better han-
dling of task dependencies between each action, better error
handling and recovery, and better monitoring. The bridge au-
tomatically maps executable functions from the application
definition to the action instances returned by the planner.
This makes executing a resulting plan straightforward and
will be demonstrated in the following section about plan ex-
ecution and monitoring in more detail.

The ESB interface supports many application domain for-
mats, as long as they use Python with type annotations. A
short example shall demonstrate its ease of use. See List-
ing 5 for the full example code. (The line numbers refer to
the ones in that listing.)

With the given class declarations of Pose and Robot, the
user can create UP type representations for them using the



instruction:

33 bridge.create_types ([Robot , Pose])

After that, whenever these classes are referred to at the
bridge interface, it will automatically use the corresponding
UP representations when needed.

With the classes being declared, object instances are de-
clared similarly by, e.g.,

34 up_robot = bridge.create_object("robot",
robot)

Since robot is an instance of Robot, the bridge knows
that its UP representation up robot must be an instance of
the UP type corresponding to Robot.

Now one can pass a function representing a fluent or an
action to the ESB using

36 bridge.create_fluent_from_function(
robot_at)

or

37 bridge.create_action_from_function(Robot
.move)

respectively. The latter instruction automatically creates a
UP representation of a move action with its parameters,
which will be automatically included in subsequent UP
problem descriptions unless specified otherwise. The former
instruction provides a so-called fluent function, which calcu-
lates the current value of the fluent for concrete parameters.
The bridge calls this fluent function whenever it is required
to initialize the fluent values of the planning problem. The
user typically will not need to call this fluent function her-
self anymore but instead execute

44 bridge.set_initial_values(problem)

to initialize all fluents of a problem using their fluent func-
tions. Once the goals are defined for the problem, one can
request a valid plan from UP either using a specific planning
engine or through the problem kind. In the code example,
UP decides the planning engine based on the type of prob-
lem provided, which is a functionality provided by UP itself.

46 plan = bridge.solve(problem)

The UP library can generate sequential, partial-order and
time-triggered plans. Sequential plans consist of a list of ac-
tion instances that need to be executed one after another. An
action instance contains the action definition itself as well
as a list of actual parameters. A partial-order plan is repre-
sented by UP as a directed acyclic graph in the form of an
adjacency list. Time-triggered plans are represented by UP
as lists of tuples where each action instance also has an as-
signed start time and an optional duration. An example of
a time-triggered plan is presented in Listing 4 in Section 5.
UP also has a representation of plans in the form of a Simple
Temporal Network (STN) (Dechter, Meiri, and Pearl 1991).
STNs are currently not supported by the ESB, but we aim to

do so in the future. In section 5, we will show more detailed
uses of the bridge in our applications.

In section 5, we present exchangeable application blocks
for two robotic systems using a mobile robot (Fig. 4) and a
drone (Fig. 6). The Unified Planning block could be consid-
ered the core component of planning which provides differ-
ent planning engines. Finally, the ESB component contains
the bridge definition, plan execution and monitoring.

4 Plan Execution and Monitoring
Plan execution is a critical part of many applications, and
it includes multiple aspects and issues that need to be taken
into account. While the requirements and results of plan gen-
eration are relatively well defined, the overall execution of
the plan is more dependent on the application domain and
its constraints. Therefore, the ESB aims to make plan ex-
ecution flexible and adaptable to the needs of the specific
application. Many planning approaches, especially classical
planning, make simplifying assumptions that may not hold
true in real application environments, leading to discrepan-
cies between plan and reality that we have to deal with at ex-
ecution time. Therefore, in addition to dispatching the plan’s
actions, plan execution also needs to provide means for mon-
itoring the execution and for resolving deviations from the
plan or action failures. The ESB aims at providing function-
alities for all of those three aspects.

UP can provide plans in different formats. It has repre-
sentations for sequential plans (sequence of actions), time-
triggered plans (a list of time-stamped durative/instanta-
neous actions), partial-order plans in the form of Directed
Acyclic Graphs (DAG), hierarchical plans that additionally
provide the used decompositions, plans in form of a Sim-
ple Temporal Network (STN) as well as contingent plans.
The generated plan format depends on the problem descrip-
tion and the internally used planner. UP can also transform
sequential plans into partial-order plans by considering the
causal links which enable parallel execution.

The way in which actions are dispatched in order depends
on the kind of plan that is to be executed. Currently, the
ESB can execute sequential, partial-order and time-triggered
plans. Hierarchical plans can be dispatched by using its in-
ternal flat plan representation, but the hierarchy is not con-
sidered, yet. We aim to add support for the execution of
STNs in the future.

For dispatching UP plans, the ESB converts the plans into
dependency graphs. The semantics of dependency graphs
are directly related to different plan types produced by UP.
The execution of dependency graphs with sequential plan
type only needs to iterate through a plan and dispatch the
next action once the previous action is finished; partial-order
plans can allow the parallel execution of multiple actions and
time-triggered plans will check for actions being performed
within the duration specified in the plan in a flexible way.

The contents of the graph nodes are based on the type of
action event from the UP plan. The common event types that
are currently supported in the ESB are Instantaneous Action
Event and Durative Action Event. A graph node holds its
information based on its type with an Instantaneous Action



holding the node name, node ID, executable action represen-
tation and action parameters, while a Durative Action addi-
tionally contains the start time and duration of the action.

Once the plan is acquired from UP, we translate the map-
ping between the UP representation of fluents or actions and
parameters and its equivalent functions into such a depen-
dency graph by

52 graph = bridge.get_executable_graph(
53 plan)

In our example, the action move with the two parameters
from pose and to pose are mapped to a graph node with
concrete poses in the application.

The created dependency graph is given to the plan dis-
patcher which executes the actions and monitors the states.
As the graph represents the causal links between actions
with directed edges the dispatcher only executes an action
if all predecessor actions are finished. The execution can be
started by using the provided PlanDispatcher by

53 dispatcher = PlanDispatcher ()
54 dispatcher.execute_plan(graph)

This steps through the dependency graph and dispatches
an action once it’s predecessor actions are successfully com-
pleted. For dispatching it uses a callback that can either be
provided to the dispatcher, or a default dispatching function
is used that calls the respective execution function that cor-
responds to the action.

The described way of dispatching the actions automati-
cally in a while-loop inside the dispatcher reflects the cur-
rent implementation of the bridge. But we also consider to
change this in the future, such that alternatively, the user has
to actively query the dispatcher for new actions that can be
dispatched. This would give the user more control of the ex-
ecution process which could have advantages for some ap-
plication domains.

Dealing with execution failures
In many real-world applications, unexpected events and exe-
cution failures may occur, which makes it important to mon-
itor the plan. If an execution error occurs, the system should
be able to detect this and take appropriate measures that al-
low continuing to pursue its goal. Execution failures can be
dealt with in different ways, depending on the type of failure
and the type of action. One category of failure results from a
failure in the execution of the action itself. A robot might fail
to grasp an object, for example, because the motion planner
does not find a valid trajectory for the arm that lets it grasp
the object. In this case, one could try to execute the action
again. For some actions, it could even help to try them multi-
ple times. For other execution failures, retrying might not be
suitable, for example, if the action is consuming resources or
has to adhere to some time constraints. Furthermore, it can
be useful to consider the cause of the failure if available.

Another option for dealing with failures is to replan from
the current situation or to try to repair the plan. Replanning
has the advantage that it only requires updating the prob-
lem based on the new state and is possible with all planners.

Plan-repair, on the other hand, also provides the planner with
additional information about the executed actions and the
initial plan. This feature is not provided by all planners, but
it could result in a lower run-time that is needed to repair the
plan. Furthermore, it is often more likely that the repaired
plan is similar to the original one than if it was created from
scratch. In the current implementation, the dispatcher deals
with failed actions by replanning one time based on the up-
dated state. If this does not lead to a plan or the same action
fails again, it aborts the execution. We aim to include plan-
repair that is partly available in UP in future work.

A second type of execution failure manifests itself in un-
fulfilled preconditions of the action to be executed. These
failures often result from unexpected changes in the envi-
ronment, e.g., as a result of the actions of other actors, lead-
ing to unfulfilled preconditions of an action. For example,
for the grasp-action the object might not be at the position
where it was expected. In this case, there is no point in car-
rying out the action. Such a kind of failure could be dealt
with by replanning or plan-repair as well. The ESB currently
provides means for checking preconditions and effects of ac-
tions. This is done currently in the previously mentioned dis-
patching function that is used by default in the dispatcher.
We aim to extend this in the future to also monitor the full
plan, e.g., requirements and time constraints of later actions.

The appropriate way to deal with such execution failures
heavily depends on the use-case and application. Thus, the
bridge has been developed to make this setting flexible and
configurable. Currently, the bridge provides an interface to
handle execution failures due to failed preconditions which
can trigger replanning. For redefining the problem based on
the new state of the system or any unachieved goals by the
agent, the concept of rules-based problem redefinition is in-
troduced. The rules primarily depend on condition-checking
functions which in our case can be the functions created in
the application as a fluent definition or any external func-
tion which can read the state of the system. These condition-
checking functions are used for evaluating the current state
thereby allowing the planning problem to be updated in ac-
cordance with user-defined constraints.

Listing 1: Replan rule for locating the object if the grasp-
action fails

0 def replan_rule(pb):
1 # pb: UP Problem
2 # is_obj_located: UP Fluent
3 # checked_location: UP Object
4 # search_obj: UP Action
5 # check_obj_location: condition -

checking function
6 if not check_obj_location:
7 pb.initial_states -= [

is_obj_located (1)] # 1: True
8 pb.objects += [checked_location]
9 pb.goals += [is_obj_located (1)]

10 pb.actions += [search_obj]
11 return pb

For example, for the grasp-action mentioned previously,
if the desired object is not at the position, a simple rule can
be defined to modify the planning problem to search for



the object in the possible locations and remove the already
searched locations. A pseudo-code of the mentioned rule can
be represented as in listing 1. The rules can also be defined
for unachieved goals allowing the system to retry until the
desired goal is achieved. Thus, the problem can be redefined
to achieve the goals when certain expected actions fail in the
system by applying the specific rule(s) for the action.

5 Applications
Our library is independent of specific robotic frameworks
and could be used for non-robotic applications as well. Nev-
ertheless, it was designed with robotics as the main use-case.
Although the library has no direct dependencies on robotics
frameworks, it can be easily integrated into robotic applica-
tions. We demonstrate this for two different kinds of robots
and frameworks to emphasize that the ESB is usable for a
broad range of applications, as long as they shall make use
of task planning and can access the ESB’s Python interfaces.

Mobile Robot using ROS

Figure 2: The mobile robot example scenario.

The first experiment involves a mobile robot called Mo-
bipick, which is shown in Figure 2. It consists of a MiR base,
a UR5 arm and a Robotiq gripper attached to the arm. Mo-
bipick runs ROS as its middleware and its capabilities and
actions are implemented in ROS or use the ROS ecosys-
tem. The mobile robot can sense, navigate, and manipulate
its environment, to pick up and bring objects to specified
locations. It can navigate the mapped world autonomously
avoiding dynamic obstacles using the laser scanners of the
mobile base. Additionally, it is able to classify objects and
estimate their 3D poses using a camera attached to the
robot’s end effector, to then pick them up and bring and place
them at a given location. The objects that the robot can iden-
tify and grasp are inspired by a workshop environment, they
include multimeters, screwdrivers, relays, power drills and
boxes, as presented in Figure 3. Boxes can be used to trans-
port multiple objects at once by inserting them, with the ex-
ception of the too heavy power drill, which is too heavy.

Figure 3: The objects the robot can detect and manipulate,
left to right: multimeter, screwdriver, relay, power drill, box.

Figure 2 shows the testing environment that we use. It
consists of three tables on which objects of the previously
mentioned types are positioned. For test and experiment pur-
poses, we also have a Gazebo simulation with the same en-
vironment layout. While it will be difficult for the reader to
reproduce our real setup, we do provide this simulation en-
vironment along with the entire software stack based on our
real robot as an open source repository called mobipick labs
5 as a testbed for AI planning and acting algorithms.

We show our approach in two demonstration scenarios in
the given environment layout. The robot has to achieve two
kinds of goals in different runs. The goal of the first exam-
ple involves collecting a power drill and handing it over to a
human worker. The goal of the second example is to collect
specified objects, insert them into a box and transport the
box onto a specified target table. The objects are scattered
on the tables around the robot, and initially the robot does
not know the locations of the objects it needs to collect. To
accomplish the goal, the robot searches the tables for the de-
sired objects, interrupts the search if it finds one and replans
to pick it up and to bring it to the target table.

The Mobpick-specific part of our architecture is shown
in Figure 4. The upper part of the architecture is similar to
the general architecture in Figure 1. The bridge connects the
ROS- or robot-specific actions and representations with the
planners and representations provided through the Unified
Planning library.

The robot’s actions are implemented in ROS. Besides the
well-known actions for robot base movement (move base)
and robot arm movement (moveit), we implemented sens-
ing actions like perceiving the objects on the table next
to the robot, and action sequences for, e.g., picking up
an object. The search action is also realized as a com-
posite action and requests a sub-plan for moving to and
looking at individual tables not recently seen. All these
higher-level actions can be interfaced through Python scripts
and are bundled in the Robot API. More details about
Mobpick’s action implementations and the Robot API are
presented in (Lima et al. 2023). The Python interface to
the robot’s capabilities was already available for easily ac-
cessing the robot when we started to connect the Mobipick
to Unified Planning via the ESB to formulate and solve
the planning problem. We use the aforementioned function
create action from function from the ESB to create UP
representations from those robot capabilities provided in the
Robot API and enrich those UP action representations after-
wards with preconditions and effects.

5https://github.com/DFKI-NI/mobipick labs
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For describing the fluents of the planning problem, we
implemented simple functions that return what the robot re-
members from its environment. When the robot places the
box onto the target table, it will remember this until a contra-
dicting observation is made. If, for example, a person would
move the box away to another table, Mobipick could de-
tect it there later (objects are unique in this scenario) or
observe the target table without the box, thus updating the
box’s location to unknown. New information that the robot
perceives via object detection or comes from its localization
module are transformed into symbolic facts through a sym-
bolic fact generation module. For example, object detection
can perceive the type of object and its pose if the object is in
the camera’s view. Together with prior knowledge about the
static placement and size of tables the symbolic fact gener-
ator creates the information of the object being On a certain
table. We employ the ESB to use those functions for repre-
senting the robot’s and the environment’s state in the plan-
ning problem as fluents and objects.

We solve the problem via UP using its OneshotPlanner
interface and providing the additional requirement to find an
optimal plan in terms of number of actions. For our current
configuration UP uses the planner Fast Downward (Helmert
2006) for our problems. An example plan for the goal of
handing-over a powerdrill to a worker is shown in Listing 2.
Here, Mobipick first moves its arm into a pose that is suitable
for driving without the risk of collision with obstacles. The
arm configuration is discretized by the symbolic fact gener-
ator into a set of symbolic poses. If that pose does not match
any of those poses, the value unknown is used to represent
the arm’s position. Mobipick then drives to a pose near the
table and picks up the powerdrill. Afterwards, it again moves

Listing 2: Plan for getting and handing-over a powerdrill.
move_arm(mobipick , unknown , home)
move_base(mobipick , base_table_3_pose ,

base_table_2_pose)
pick_power_drill(mobipick)
move_arm(mobipick , unknown , transport)
move_base_with_item(mobipick ,

power_drill , base_table_2_pose ,
base_handover_pose)

hand_over(mobipick)
move_arm(mobipick , handover , home)
move_base(mobipick , base_handover_pose ,

base_home_pose)

Listing 3: Initial plan for placing a multimeter into a box and
transporting the box onto table2. The locations of the box
and multimeter are unkown at the beginning.

search_tool(mobipick , multimeter)
pick_item(mobipick , tool_search_pose ,

tool_search_location , multimeter)
search_box(mobipick)
store_item(mobipick , box_search_pose ,

box_search_location , multimeter)
pick_item(mobipick , box_search_pose ,

box_search_location , box)
move_base_with_item(mobipick , box ,

box_search_pose , base_table_2_pose)
place_item(mobipick , base_table_2_pose ,

table_2 , box)

its arm to a safe pose and drives to the worker where it hands
over the object before finally driving to a goal home pose.

On the real robot the handover action reacts to a slight
pressure on the gripper given by the user. When testing this
scenario in Gazebo, the successful execution of the hand-
over is done via a ROS service.

After receiving the resulting sequential plan from UP
we execute it by dispatching the actions one after the
other via the ESB. In the current state we monitor the
plan by checking the actions preconditions directly be-
fore dispatching them. At the moment this is done by the
SequentialPlanMonitor in the ESB which internally uses
a plan simulator provided by UP. However, we aim to re-
structure this approach for monitoring in the future.

In the second scenario, the robot must collect specified
objects, insert them into a box and transport the box onto a
specified target table. Listing 3 shows an example of an ini-
tial plan for this goal. Note that the positions of the objects
are initially unknown to the robot. Therefore, the plan con-
tains placeholder actions, e.g., search tool, and symbols,
e.g., tool search location to search for those items first.
Those search actions are handled differently in the execu-
tion loop in the sense that they are not directly executed on
the robot. Instead, they create a sub-planning problem that
is again solved with UP and executed in its own loop before
returning to the initial plan. Those sub-plans consist of driv-



ing to the tables one after another and looking at them. If the
object is found during that subplan, the internal execution
loop stops and returns to the original plan. Furthermore, if
an action fails, we abort the plan and replan once. We imple-
mented sensing and replanning this way to explicitly allow
user interference that causes planned actions to fail. Proper
error handling and adaptation to the new situation are ex-
pected from the robot in such cases. However, as mentioned
previously, we aim to generalize such means for dealing with
errors inside the ESB in future work.

Drones using GenoM
The second experiment involves one or more drones, each
with a camera, deployed to survey an area. First, the UP
produces a plan for one drone to quickly survey the area
for objects of interest (the onboard camera is used to locate
blobs of a specified color in our example) and makes a list
of the approximate locations. Then the UP extends the plan
to visit each location and identify each object (reading and
decoding an ARUCO tag). According to the identification,
various actions can be taken to properly handle the objects.
While each drone performs its part of the plan, unexpected
events such as critically low battery levels, or communica-
tion problems may lead to plan failure (requiring to abort the
current mission) and plan repair (amending the plan to con-
sider new goals such as charging or changing the battery).
The produced plans by the UP (the ARIES planning engine)
are hierarchical, for example, the Survey action is broken
down into several move actions, while in parallel, the cam-
era looks for the objects of interest and localize them (using
the drone position/attitude and the camera parameters). The
plan includes parallel action execution and temporal infor-
mation (start time and action duration).

The drones we fly in this experiment are developed at
LAAS. Figure 5 shows the software components running on-
board each of them. All these components are specified and
deployed using GenoM and can be synthesized for the ROS-
Com middleware or the PocoLibs middleware (we favor the
latter for its shared memory communication model and its
overall memory footprint). The reader can check (Dal Zilio
et al. 2023) for a more detailed description of the GenoM
framework; the drone software components and how they
work together. Note that the exact same GenoM components
run on the real drones (indoor using motion capture for lo-
calisation, or outdoor with GPS RTK) but also in a Gazebo
simulation. GenoM offers a TCL (tcl-genomix) or a Python
(py-genomix) interface to supervise the GenoM components
of the experiment. As a result, the ESB can act on and per-
ceive the environment via this asynchronous interface. E.g.,
the goto(x,y,z) service of the MANEUVER component flies
the drone to the specified location, and reading the state
port of the POM component gives the position of the drone.

In simulation, the experiment uses Gazebo. Upon starting
the experiment, we spawn a given number of colored plates
with ARUCO markers (Figure 5) in random locations. The
drones’ goal is to find all the plates in the environment and
inspect each of them. The functional components of GenoM
provide the basic actions through py-genomix. For example,
the survey action is a combination of multiple GenoM asyn-
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Listing 4: Time-triggered plan example for the drones.
# r*, area , station*, charging_dock*, l*

- objects
# survey , send_info ,

acquire_plates_order , inspect_plates
- actions

# Action instance is of format ‘start ,
action ,duration ‘

0.0, survey(r1, area , station1) ,100.0
100.1, send_info(r2) ,1.0
101.1, acquire_plates_order ,1.0
102.1, move(r2, station2 , l2) ,20.0
102.1, move(r1, station1 , l4) ,20.0
122.2, inspect_plate(r1, l4) ,2.0
122.2, inspect_plate(r2, l2) ,2.0
124.3, move(r2, l2, l3) ,20.0
124.4, move(r1, l4, charging_dock1) ,20.0
144.4, inspect_plate(r2, l3) ,2.0
146.5, move(r2, l3, l1) ,20.0
166.6, inspect_plate(r2, l1) ,2.0
168.7, move(r2, l1, charging_dock2) ,20.0

chronous services like waypoint of the MANEUVER com-
ponent, and FindTarget of the CT DRONE component al-
lowing the drone to survey the area and look for colored
plates. Likewise, the move action is translated in goto(x,y,z)
from MANEUVER and the inspect plate action also uses
goto(x,y,z) and detect of the ARUCOTAG component. Sim-
ilarly, the GenoM functional components access the robot
and environment states which are automatically updating a
database. Thus, to retrieve planning fluents, some Python
functions query information from this database to evaluate
the current state of the experiment and set the fluents value.
The architecture of the drone experiment is presented in Fig-
ure 6 (with respect to the generic architecture Figure 1).

Listing 4 presents a plan for the case when the planning
system already knows the expected number of plates to be
found within a certain area for inspection. In this case, the
planning problem is set up to let the drones find the plates
location, i.e. to survey the environment by looking for them.
The corresponding dependency graph for this plan is pre-
sented Figure 7. In another case, only the number of plates
to be found is available but the region of interest for survey
is not completely known. Here the drones plan starts with
a default region to survey and until the proper number of
colored plates is found the surveyed region is enlarged. This
means the plan may need to be redefined for one drone to
keep surveying new areas to find the missing plates, while
the another drone inspect the already found plates.

To allow different cases to be handled for the exper-
iment, we introduce some rules for redefining the prob-
lem. For the above-mentioned cases, we can introduce
three rules. If the drone is able to gather information on
all the plates in the first attempt, a simple rule can be
applied to remove the achieved goals like is surveyed
and gathered all plates info and add goals to inspect
all plates like is plate inspected(plate). Suppose the
drone cannot find the information for all plates, in addition to

survey(r1, area1, station1) 
start=0.0, dur=100.0

send_info(r2) 
start=100.1, dur=1.0

acquire_plates_order 
start=101.1, dur=1.0

move(r2, station2, l2) 
start=102.1, dur=20.0

move(r1, station1, l4) 
start=102.1, dur=20.0

inspect_plate(r2, l2) 
start=122.1, dur=2.0

inspect_plate(r1, l4) 
start=122.1, dur=2.0

move(r2, l2, l3) 
start=124.3, dur=20.0

move(r1, l4,
charging_dock1) 

start=124.4, dur=20.0

inspect_plate(r2, l3) 
start=144.4, dur=2.0

move(r2, l3, l1) 
start=146.5, dur=20.0

inspect_plate(r2, l1) 
start=166.7, dur=2.0

move(r2, l1,
charging_dock2) 

start=168.7, dur=20.0

END

START

Figure 7: Dependency graph representation of the temporal
plan from Listing 4.

the previously applied rule to the detected plates, the survey
area can be extended by updating parameters for the area if
the region of interest is known and large. If the region of in-
terest is unknown, the altitude parameter set for the survey
action can be altered to approximate the coloured plates and
further refine the inspect plate(robot, location) ac-
tion to survey the sub-regions before inspecting the plate
closer. This way, the drones can attempt to find the plates
until the battery runs out. These rules allow replanning to be
performed when it is not able to succeed the experiment in
the first run.

The entire project including Gazebo, UP, used UP Engine
(ARIES), ESB and GenoM components is available in an
open source repository6 and can be installed and tested in
simulation (preferably on a computer with Ubuntu 20.04.).

6https://github.com/franklinselva/genom3-experiment



6 Conclusion and Outlook
The AIPlan4EU Unified Planning library, as part of the AI
On Demand platform7, is a suitable candidate to become a
one-stop solution where students, academics, industry peo-
ple can learn and experiment with various planning tech-
niques and approaches. Yet, providing Technology Specific
Bridges (TSB) to connect this platform to real world ap-
plications is paramount and required to ensure its success.
In this paper we propose a TSB to embed planning within
robotics systems: ESB. ESB remains middleware agnostic
and tries to provide execution for several types of plans
(sequential, action graph, STN, etc.), with parallelism and
asynchronously. We propose a unified action representation
which can be both used as part of the planning domain de-
scription, but also link plan actions to robot commands on
effectors; while sensors percepts are mapped in planning flu-
ents. Although the development of the UP and the ESB is
still ongoing, we can demonstrate it in two robotic experi-
ments using various planning engines and different robotic
middleware. In fact, the bridge we propose is not necessarily
limited to robotic applications and can be deployed within
other embedded systems. Currently, the ESB provides a very
simple API to perform plan repair and replan when needed.
We intend to further develop these capabilities as they be-
come available with more engines in the UP. There are many
other functionalities pertaining to action execution which are
not yet available in the current version of the bridge, still,
we believe that the modular development should ease their
integration in future versions. Such functionalities could in-
clude, but are not limited to, support for temporal condition
evaluations, actions refinement, different strategies for re-
planning (such as the replanning rules mentioned above),
local failures handling, skills model, etc.
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A Code Examples

Listing 5: Small example of using the bridge interfaces.
1 #!/usr/bin/env python3
2 from up_esb.bridge import Bridge
3 from up_esb.plexmo import PlanDispatcher
4

5

6 # Application domain definitions
7 class Pose:
8 def __init__(self , position: list):
9 self.pose = position

10

7https://www.ai4europe.eu/

11 def __repr__(self):
12 return f"Pose({self.pose})"
13

14 class Robot:
15 def __init__(self , pose: Pose) ->

None:
16 self.pose = pose
17

18 def move(self , from_pose: Pose ,
to_pose: Pose) -> bool:

19 """ Move from from_pose to
to_pose."""

20 if self.pose != from_pose:
21 return False
22 self.pose = to_pose
23 return True
24

25 def robot_at(pose: Pose) -> bool:
26 return robot.pose == pose
27

28 pose1 , pose2 = Pose(position =[1, 0, 0]),
Pose(position =[2, 0, 0])

29 robot = Robot(pose1)
30

31 # Pass application representations to
bridge to get UP representations.

32 bridge = Bridge ()
33 bridge.create_types ([Robot , Pose])
34 up_robot = bridge.create_object("robot",

robot)
35 up_pose1 , up_pose2 = bridge.

create_objects ({"pose1": pose1 , "
pose2": pose2})

36 up_robot_at = bridge.
create_fluent_from_function(robot_at)

37 up_move , (robot_param , from_pose ,
to_pose) = bridge.
create_action_from_function(Robot.
move)

38 up_move.add_precondition(up_robot_at(
from_pose))

39 up_move.add_effect(up_robot_at(from_pose
), False)

40 up_move.add_effect(up_robot_at(to_pose),
True)

41

42 # Define and solve planning problem.
43 problem = bridge.define_problem ()
44 bridge.set_initial_values(problem)
45 problem.add_goal(up_robot_at(up_pose2))
46 plan = bridge.solve(problem)
47

48 # Initial Pose
49 print(robot.pose)
50

51 # Execute actions.
52 graph = bridge.get_executable_graph(plan

)
53 dispatcher = PlanDispatcher ()
54 dispatcher.execute_plan(graph)
55

56 # Final Pose
57 print(robot.pose)
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