Data-driven Reconstruction of Partially Observed Dynamical Systems

Pierre Tandeo, Pierre Ailliot, Florian Sévellec

To cite this version:

Pierre Tandeo, Pierre Ailliot, Florian Sévellec. Data-driven Reconstruction of Partially Observed Dynamical Systems. 2022. hal-04131312v1

HAL Id: hal-04131312
https://hal.science/hal-04131312v1
Preprint submitted on 29 Nov 2022 (v1), last revised 16 Jun 2023 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Data-driven Reconstruction of Partially Observed Dynamical Systems

Pierre Tandeo ${ }^{1,2,3}$, Pierre Ailliot ${ }^{4}$, and Florian Sévellec ${ }^{5}$
${ }^{1}$ IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, France
${ }^{2}$ Odyssey, Inria/IMT, France
${ }^{3}$ RIKEN Center for Computational Science, Kobe, 650-0047, Japan
${ }^{4}$ Univ Brest, UMR CNRS 6205, Laboratoire de Mathematiques de Bretagne Atlantique, France
${ }^{5}$ Laboratoire d'Océanographie Physique et Spatiale, Univ Brest CNRS IRD Ifremer, Brest, France
Correspondence: Pierre Tandeo (pierre.tandeo@imt-atlantique.fr)

Abstract

The state of the atmosphere, or of the ocean, cannot be exhaustively observed. Crucial parts might remain out of reach of proper monitoring. Also, defining the exact set of equations driving the atmosphere and ocean is virtually impossible because of their complexity. Hence, the goal of this paper is to obtain predictions of a partially observed dynamical system, without knowing the model equations. In this data-driven context, the article focuses on the Lorenz-63 system, where only the second and third components are observed, and access to the equations is not allowed. To account to those strong constraints, a combination of machine learning and data assimilation techniques is proposed. The key aspects are the following: the introduction of latent variables, a linear approximation of the dynamics, and a database that is updated iteratively, maximising the innovation likelihood. We find that the latent variables inferred by the procedure are related to the successive derivatives of the observed components of the dynamical system. The method is also able to reconstruct accurately the local dynamics of the partially observed system. Overall, the proposed methodology is simple, easy to code, and gives promising results, even in the case of small amounts of observations.

1 Introduction

In geophysics, dynamical systems are hard to predict and governing differential equations are not necessarily known. An alternative to process-based models is to use available observations of the system and statistical approaches to discover equations, and then make predictions. This has been introduced in several papers, using combinations and polynoms of observed variables, as well as sparse regressions or model selection strategies (Brunton et al., 2016; Rudy et al., 2017; Mangiarotti and Huc, 2019). Those methods have then been extended to the case of noisy and irregular observation sampling, using Bayesian framework as in data assimilation (Bocquet et al., 2019; North et al., 2022). Alternatively, some authors used data assimilation and local linear regressions based on analogs (Tandeo et al., 2015; Lguensat et al., 2017), or iterative data assimilation coupled with neural networks (Brajard et al., 2020; Fablet et al., 2021), to make data-driven predictions without discovering equations.

All the approaches cited above are assuming that the full state of the system is observed, which is a strong assumption. Indeed, in a lot of applications in geophysics, important components of the system are never or only partially observed such
as the deep ocean (see e.g., Jayne et al., 2017), and data-driven methods fail to make good predictions. To deal with those strong constraints, i.e., when the model is unknown and when the state is partially observed, an option is to use time-delay embedding of the available components of the system (Takens, 1981; Brunton et al., 2017), whereas another option is to find latent representations of the dynamical system (see e.g., Talmon et al., 2015; Ouala et al., 2020). In this study, we will show that they are strong relationships between those two approaches.

Here, we propose a simple algorithm using linear and Gaussian assumptions, based on a state-space formulation. This classic Bayesian framework, used in data assimilation, is able to deal with a dynamical model (model- or data-driven) and observations (partial and noisy). Three main ideas are used: (i) augmented state formulation (Kitagawa, 1998), (ii) global linear approximation of the dynamical system (Korda and Mezić, 2018), and (iii) estimation of the parameters using an iterative algorithm combined with Kalman recursions (Shumway and Stoffer, 1982). The proposed framework is probabilistic, where the state of the system is approximated using a Gaussian distribution (with a mean vector and a covariance matrix). The algorithm is iterative, where a catalog is updated at each iteration and used to learn a linear dynamical model. The final estimate of this catalog corresponds to a new system of variables.

The paper is organized as follows. Firstly, the methodology is explained in section 2. Secondly, section 3 describes the experiment using the Lorenz-63 system. Thirdly, the results are reported in section 4 . The conclusions and perspectives are drawn in section 5.

2 Methods

The methodology proposed in this paper is borrowed from data assimilation, machine learning, and theory of dynamical systems. It is summarized in Fig. 1 and explained below.

In data assimilation, the goal is to estimate, from partial observations \mathbf{y}, the full state of a system \mathbf{x}. When the dynamical model used to propagate x in time is available (i.e., when model equations are given), classic data assimilation techniques are used to retrieve unobserved components of the system. For instance, in the Lorenz-63 system (Lorenz, 1963), if only 2 variables (x_{2} and x_{3} in the example defined below) are observed, knowing the Lorenz equations (system of three ordinary differential equations), it is possible to retrieve the unobserved one (x_{1} in our example below).

Now, if the model equations are not known and observations of the system are available over a sufficient period of time, it is possible to use data-driven methods to mathematically approximate the dynamic of the system. In this paper, a linear approximation is used to model the relationship of the state vector \mathbf{x} between two time steps. It is parameterized with the matrix M, which dimension is equal to the square of the state-space. Moreover, a linear observation operator is introduced to relate the partial observations \mathbf{y} and the state \mathbf{x}. It is written using a matrix \mathbf{H}, with its dimension equal to the observation-space times the state-space dimensions.

Figure 1. Schematic of the proposed methodology, illustrated using the Lorenz-63 system. The algorithm is initialized with a Gaussian random noise for the hidden component (i.e., z_{1}) and with partial observations of the system (i.e., y_{2} and y_{3}). Then, an iterative procedure is applied with a linear regression, a covariance computation, the Kalman recursions, and a random sampling. This algorithm is iteratively maximizing the likelihood of the observations noted \mathcal{L}. After convergence of the algorithm, a hidden component z_{1} is stabilized and represented by a Gaussian distribution represented by the mean x_{1}^{s} and variance P_{1}^{s}.

Mathematically, matrices (\mathbf{M}, \mathbf{H}) and vectors (\mathbf{x}, \mathbf{y}) are linked using a Gaussian and linear state-space model such that
$\mathbf{x}_{t}=\mathbf{M} \mathbf{x}_{t-1}+\boldsymbol{\eta}_{t}$,
$\mathbf{y}_{t}=\mathbf{H x}_{t}+\boldsymbol{\epsilon}_{t}$,
where t is the time index and $\boldsymbol{\eta}_{t}$ and ϵ_{t} are unbiased Gaussian vectors, representing the model and observation errors, respectively. Their error covariance matrices are noted \mathbf{Q} and \mathbf{R}, respectively. Those matrices indirectly control the respective weight given to the model and to the observations. It constitutes an important tuning part of the state-space models (see Tandeo et al., 2020, for a more in depth discussion).

In such a data-driven problem where only a part of the system is observed, a first natural step is to consider that the state \mathbf{x} is directly related to the observations \mathbf{y}. For instance, in the example of the Lorenz- 63 previously introduced, observations correspond to the second and third components of the system (i.e., x_{2} and x_{3}, formally defined later).

In this paper, we propose to introduce a hidden vector noted \mathbf{z}, corresponding to one or more hidden components that are not observed. To this purpose, the state is augmented using this hidden component \mathbf{z}, the observation vector \mathbf{y} does not change, and the operator \mathbf{H} is a truncated identity matrix. The use of augmented state-space is classic in data assimilation and mostly refer to the estimation of unknown parameters of the dynamical model (see Ruiz et al., 2013, for further details).

The hidden vector \mathbf{z} is now accounted in the linear model \mathbf{M}, given in Eq. (1a), whose dimension has increased. The hidden components are completely unknown and thus randomly initialized using Gaussian white noises, parameterized by σ^{2}, their
level of variance. The next step is to infer \mathbf{z} using a statistical estimation method. Starting from the random initialization, an iterative procedure is proposed, based on the maximization of the likelihood.

The proposed approach is based on a linear and Gaussian state-space model given in Eqs. (1) and thus uses the classic Kalman filter and smoother equations. It is inspired by the Expectation-Maximization algorithm (noted EM, see Shumway and Stoffer, 1982) and is able to iteratively estimate the matrices \mathbf{M} and \mathbf{Q}. In this paper, \mathbf{R} is assumed known and negligible. The criterion used to update those matrices is based on the innovations, defined by the difference between the observations y and the forecast of the model \mathbf{M}, noted \mathbf{x}^{f}. The likelihood of the innovations, noted \mathcal{L}, is written as:
$\mathcal{L} \propto \prod_{t=1}^{T} \exp \left(-\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{x}_{t}^{f}\right)^{\top} \boldsymbol{\Sigma}_{t}^{-1}\left(\mathbf{y}_{t}-\mathbf{H} \mathbf{x}_{t}^{f}\right)\right)$,
where $\boldsymbol{\Sigma}_{t}=\mathbf{H} \mathbf{P}_{t}^{f} \mathbf{H}^{\top}+\mathbf{R}$, with $\mathbf{P}_{t}^{f}=\mathbf{M} \mathbf{P}_{t-1}^{a} \mathbf{M}^{\top}+\mathbf{Q}$ and \mathbf{P}_{t-1}^{a} corresponds to the state covariance estimated by the Kalman filter at time $t-1$. The innovation likelihood given in Eq. (2) is interesting because it corresponds to the squared distance between the observations and the forecast normalized by their uncertainties, represented by the covariance Σ_{t}.

At each iteration of the augmented Kalman procedure, the estimate of the matrix \mathbf{M} is given by the least square estimator, using a linear regression such that:
$\mathbf{M}^{(i)}=\sum_{t=2}^{T} \frac{\left(\mathbf{x}_{t-1}^{(i-1)}\left(\mathbf{x}_{t-1}^{(i-1)}\right)^{\top}\right)^{-1} \mathbf{x}_{t}^{(i-1)}\left(\mathbf{x}_{t-1}^{(i-1)}\right)^{\top}}{T-1}$,
where $\mathbf{x}^{(i-1)}$ corresponds to the output catalog of the previous iteration (result of a Kalman smoothing and a Gaussian sampling, explained more in details below). Following Eq. (1a), the covariance \mathbf{Q} is estimated empirically using the estimate of \mathbf{M} given in Eq. (3), such that:
$\mathbf{Q}^{(i)}=\sum_{t=2}^{T} \frac{\left(\mathbf{x}_{t}^{(i-1)}-\mathbf{M}^{(i)} \mathbf{x}_{t-1}^{(i-1)}\right)\left(\mathbf{x}_{t}^{(i-1)}-\mathbf{M}^{(i)} \mathbf{x}_{t-1}^{(i-1)}\right)^{\top}}{T-1}$.
Then, a Kalman smoother is applied using the $\mathbf{M}^{(i)}$ and $\mathbf{Q}^{(i)}$ matrices estimated in Eq. (3) and Eq. (4). At each time t, it results to a Gaussian mean vector \mathbf{x}_{t}^{s} and a covariance matrix \mathbf{P}_{t}^{s}. As input of the next iteration of the algorithm, the catalog $\mathbf{x}^{(i)}$ is updated using a Gaussian random sampling using \mathbf{x}_{t}^{s} and \mathbf{P}_{t}^{s} at each time t. This random sampling is used to exploit the correlations between the components of the state vector and also to avoid being trapped in a local maximum, as in stochastic EM procedures (Delyon et al., 1999).

The likelihood calculated at each iteration of the procedure increases until convergence. The algorithm is stopped when the likelihood difference between two iterations becomes small. The solution of the proposed method is the last Gaussian mean vectors \mathbf{x}_{t}^{s} and covariance matrices \mathbf{P}_{t}^{s} calculated at each time t. The component corresponding to the latent component \mathbf{z} is finally retrieved, with an information about its uncertainty.

3 Experiment

The methodology is tested on the Lorenz-63 system (Lorenz, 1963). This 3-dimensional dynamical system models the evolution of the convection $\left(x_{1}\right)$ as a function of horizontal $\left(x_{2}\right)$ and vertical temperature gradients $\left(x_{3}\right)$. The evolution of the system is governed by three ordinary differential equations such as:
$\dot{x_{1}}=10\left(x_{2}-x_{1}\right)$,
$\dot{x_{2}}=x_{1}\left(28-x_{3}\right)-x_{2}$,
$\dot{x_{3}}=x_{1} x_{2}-\frac{8}{3} x_{3}$.

In this paper, it is assumed that x_{1} is never observed, only x_{2} and x_{3} are observed on a small period of time (10 loops of the Lorenz-63 system) every $d t=0.001$ time steps (top of Fig. 2). The observation vector is thus $\mathbf{y}=\left[y_{2}, y_{3}\right]$. In what follows, only those data are available, not the set of Eqs. (5).

The methodology is applied to the Lorenz-63 system, adding sequentially a new hidden component in the state of the system as follow. At the beginning, the state is augmented such that $\mathbf{x}=\left[x_{2}, x_{3}, z_{1}\right]$, where z_{1} is randomly initialized with a white noise, with variance $\sigma^{2}=5$. The observations are stored in the vector $\mathbf{y}=\left[y_{2}, y_{3}\right]$. The observation operator is thus the 2×3 matrix $\mathbf{H}=[1,0,0 \mid 0,1,0]$. After 30 iterations of the algorithm presented in section 2 , the hidden component z_{1} is stabilized. After that, a new white noise z_{2} is used to augment the state such that $\mathbf{x}=\left[x_{2}, x_{3}, z_{1}, z_{2}\right]$, the vector $\mathbf{y}=\left[y_{2}, y_{3}\right]$ remains the same, and the iterative algorithm is applied until stabilization of z_{2}. As long as the stabilized likelihood continues to increase with the addition of a hidden component, this augmented state procedure is repeated.

4 Results

Using the experiment presented in section 3 , three hidden components z_{1}, z_{2}, and z_{3} were sequentially added. They are reported in Fig. 2, as well as the true Lorenz components x_{1}, x_{2}, and x_{3}. Although they do not fit the hidden variable x_{1} of the Lorenz-system, the two first hidden components z_{1} and z_{2} show time variations. On the contrary, z_{3} is very flat with a large confidence interval. This suggests that our method has identified that 2 hidden variables are enough to retrieve the dynamics of the 2 observed variables.

This is confirmed by the evaluation of the likelihood of the observations y_{2} and y_{3} with different linear models, obtained with or without the use of hidden components \mathbf{z} (Fig. 3). As the proposed method is stochastic, 50 independent realizations of the likelihood are shown for each experiment. The 50 realizations vary from the random values given to the added hidden variable at the beginning of the iterative procedure. In the naive case where the state of the system is $\left[x_{2}, x_{3}\right]$ (black dashed line), the likelihood is small. Then, adding successively z_{1} (green lines) and z_{2} (red lines), after 30 iterations of the proposed algorithm, the likelihood significantly increases. Finally, the inclusion of z_{3} reduces the likelihood (purple lines). Those results indicate

Figure 2. True components of the Lorenz-63 model (top) and hidden components estimated using the iterative and augmented Kalman procedure (bottom). The shaded colors corresponds to the 95% Gaussian confidence intervals.
that the best linear model to predict the variations of the observations y_{2} and y_{3} is the one using two hidden components. Thus, for the rest of the paper, the focus is thus done on the model with the following augmented state $\mathbf{x}=\left[x_{2}, x_{3}, z_{1}, z_{2}\right]$.

To compare more precisely the performance of the naive linear model \mathbf{M} with $\left[x_{2}, x_{3}\right]$ and the one with $\left[x_{2}, x_{3}, z_{1}, z_{2}\right]$, their forecasts are evaluated. The distance between the forecasts and the truth (i.e., the error) is computed at each time t in the $\left(x_{2}, x_{3}\right)$ space (using the observation operator \mathbf{H}), such that
$\operatorname{dist}(\mathbf{M})=\left\|\mathbf{H} \mathbf{x}_{t}-\mathbf{H M} \mathbf{x}_{t-1}\right\|$,
where $\|$.$\| represents the Euclidean norm. The errors from model using \left[x_{2}, x_{3}\right]$ to model using $\left[x_{2}, x_{3}, z_{1}, z_{2}\right]$ reduce significantly (by half in average, not shown). However, this error reduction is not homogeneous in the attractor. Figure 4 indicates when the two models are similar (values close to 0) and when model including z_{1} and z_{2} is better (values close to 1). The improvement is moderate in the outside of the wings of the attractor, important in the wing-transition, and almost not changed in inside of the wings (e.g., for x_{2} close to 10). The question is now: what is the significance of those hidden components z_{1} and z_{2} estimated using the proposed methodology? Are they correlated with the unobserved component x_{1} or with the observed one x_{2} and x_{3} ? Are they somehow proxies of the unobserved component?

Figure 3. Likelihoods as a function of the iteration of the augmented Kalman procedure. Different dynamical models are considered, from none to three hidden components in \mathbf{z}, whereas only x_{2} and x_{3} are observed in the Lorenz-63 model. The likelihood of 50 independent realizations of the iterative and augmented Kalman procedure are shown.

It has been found that the hidden components \mathbf{z} correspond to linear combinations of the derivatives of the observations such that:
$z_{1}=a_{2} \dot{x_{2}}+a_{3} \dot{x_{3}}$,
$z_{2}=b_{1} \dot{z_{1}}+b_{2} \dot{x_{2}}+b_{3} \dot{x_{3}}$.

When developing Eq. (7b) using Eq. (7a), the second hidden component writes $z_{2}=b_{2} \dot{x_{2}}+b_{3} \dot{x_{3}}+b_{1} a_{2} \ddot{x_{2}}+b_{1} a_{3} \ddot{x_{3}}$. It shows that z_{1} uses the first derivative of x_{2} and x_{3}, whereas z_{2} uses the second derivatives. This result makes the link with Taylor's and Takens' theorem, which shows that an unobserved component (i.e., x_{1}), can be replaced by the observed components (i.e., x_{2} and x_{3}) at different time lags. Note that due to the stochastic behaviour of the algorithm, the a and b coefficients are not fixed and several combination of them can reach to the same performance in term of likelihood. This is illustrated in Fig. (3), with 50 independent realizations of the proposed algorithm. When considering only z_{1} (green lines), the algorithm converges to various solutions, mainly restricted around two solutions (corresponding to a minimum and a maximum of likelihood). Those minimum and maximum likelihoods correspond to $a_{3} \approx 0$ and to $a_{2} \approx 0$, respectively. This suggests that \dot{x}_{3} is more important than \dot{x}_{2} to explain the variations of the Lorenz system (this is consistent with investigation of Sévellec and Fedorov, 2014, in a modified version of Lorenz-63 model). Then, when considering z_{1} and z_{2} (red lines), the 50 independent realizations reach the same likelihood after 30 iterations. It means that if the algorithm focuses on the estimation of a_{2} when considering only z_{1}, it will then focuses on b_{3} when introducing z_{2}; in terms of forecast performance, this is similar to firstly focus on a_{3} and then b_{2}, because the final likelihood values are similar.

Figure 4. 1 minus the ratio between the distance calculated in Eq. (6) for the linear model \mathbf{M} using $\left[x_{2}, x_{3}, z_{1}, z_{2}\right]$ and the distance calculated using $\left[x_{2}, x_{3}\right]$.

5 Conclusions

In this article, the goal is to retrieve hidden components of a dynamical system that is partially observed. The proposed methodology is purely data-driven, not model-driven (i.e., without the use of any equations of the dynamical model). It is based on the combination of data assimilation and machine learning techniques. Three main ideas are used in the methodology: an augmented state strategy, a linear approximation of a dynamical system, and an iterative procedure. The methodology is easy to implement, using simple strategies and well established algorithms: Kalman filter and smoother, linear regression using least squares, iterative procedure inspired from the EM recursions, and Gaussian random sampling for the stochastic aspect.

The methodology is tested on the Lorenz-63 system, where only two components of the system are observed on a short period of time. Several hidden components are introduced sequentially in the system. Although the hidden components are initialized randomly, only a few iterations of the proposed algorithm is necessary to retrieve a relevant information. The recovered components are expressed with Gaussian distributions. The new components correspond to linear combinations of successive derivatives of the observed variables. This result is consistent with the theorems of Taylor and Takens which show that time delay embedding is useful to improve the forecasts of the system. In our case, this is evaluated using the likelihood: a metric to evaluate the innovation (i.e., the difference between Gaussian forecasts and Gaussian observations).

Competing interests. No competing interests are present.

Acknowledgements. This paper is the result of a project proposed in a course on "Data Assimilation" in the master program "Ocean Data Science" at Univ. Brest, ENSTA Bretagne, and IMT Atlantique, France. Authors would like to thanks the students for their implications in the project: Dimitri Vlahopoulos, Yanis Grit, and Joséphine Schmutz. The authors would like to thank Noémie Le Carrer for her proofreading of the paper, as well as Paul Platzer, Said Ouala, Lucas Drumetz, Juan Ruiz, Manuel Pulido, and Takemasa Miyoshi for their valuable comments. This work was supported by ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015) and co-funded by a grant from the French government under the program "Investissements d'Avenir" embedded in France 2030. This work was also supported by LEFE program (LEFE IMAGO projects ARVOR).

References

Bocquet, M., Brajard, J., Carrassi, A., and Bertino, L.: Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models, Nonlinear Processes in Geophysics, 26, 143-162, 2019.

Brajard, J., Carrassi, A., Bocquet, M., and Bertino, L.: Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model, Journal of Computational Science, 44, 101 171, 2020.

Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the national academy of sciences, 113, 3932-3937, 2016.
Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., and Kutz, J. N.: Chaos as an intermittently forced linear system, Nature communications, 8, 1-9, 2017.

Chen, R., Flierl, G. R., and Wunsch, C.: A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate, Journal of Physical Oceanography, 44, 2336-2352, 2014.

Delyon, B., Lavielle, M., and Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm, Annals of statistics, pp. 94-128, 1999.
Fablet, R., Chapron, B., Drumetz, L., Mémin, E., Pannekoucke, O., and Rousseau, F.: Learning variational data assimilation models and solvers, Journal of Advances in Modeling Earth Systems, 13, e2021MS002 572, 2021.

Jayne, S. R., Roemmich, D., Zilberman, N., Riser, S. C., Johnson, K. S., Johnson, G. C., and Piotrowicz, S. R.: The Argo program: present and future, Oceanography, 30, 18-28, 2017.

Kitagawa, G.: A self-organizing state-space model, Journal of the American Statistical Association, pp. 1203-1215, 1998.
Korda, M. and Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica, 93, 149-160, 2018.

Lguensat, R., Tandeo, P., Ailliot, P., Pulido, M., and Fablet, R.: The analog data assimilation, Monthly Weather Review, 145, 4093-4107, 2017.

Lorenz, E. N.: Deterministic nonperiodic flow, Journal of atmospheric sciences, 20, 130-141, 1963.
Mangiarotti, S. and Huc, M.: Can the original equations of a dynamical system be retrieved from observational time series?, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29, 023 133, 2019.
North, J. S., Wikle, C. K., and Schliep, E. M.: A Bayesian Approach for Data-Driven Dynamic Equation Discovery, Journal of Agricultural, Biological and Environmental Statistics, pp. 1-20, 2022.

Ouala, S., Nguyen, D., Drumetz, L., Chapron, B., Pascual, A., Collard, F., Gaultier, L., and Fablet, R.: Learning latent dynamics for partially observed chaotic systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30, 103 121, 2020.
Platzer, P., Yiou, P., Naveau, P., Tandeo, P., Filipot, J.-F., Ailliot, P., and Zhen, Y.: Using local dynamics to explain analog forecasting of chaotic systems, Journal of the Atmospheric Sciences, 78, 2117-2133, 2021.

Rudy, S. H., Brunton, S. L., Proctor, J. L., and Kutz, J. N.: Data-driven discovery of partial differential equations, Science advances, 3, e1602614, 2017.

Ruiz, J. J., Pulido, M., and Miyoshi, T.: Estimating model parameters with ensemble-based data assimilation: A review, Journal of the Meteorological Society of Japan. Ser. II, 91, 79-99, 2013.

Sévellec, F. and Fedorov, A. V.: Millennial variability in an idealized ocean model: predicting the AMOC regime shifts, Journal of Climate, 27, 3551-3564, 2014.

Shumway, R. H. and Stoffer, D. S.: An approach to time series smoothing and forecasting using the EM algorithm, Journal of time series analysis, 3, 253-264, 1982.
Takens, F.: Detecting strange attractors in turbulence, in: Dynamical systems and turbulence, Warwick 1980, pp. 366-381, Springer, 1981.
Talmon, R., Mallat, S., Zaveri, H., and Coifman, R. R.: Manifold learning for latent variable inference in dynamical systems, IEEE Transactions on Signal Processing, 63, 3843-3856, 2015.

Tandeo, P., Ailliot, P., Ruiz, J., Hannart, A., Chapron, B., Cuzol, A., Monbet, V., Easton, R., and Fablet, R.: Combining analog method and ensemble data assimilation: application to the Lorenz-63 chaotic system, in: Machine learning and data mining approaches to climate science, pp. 3-12, Springer, 2015.

Tandeo, P., Ailliot, P., Bocquet, M., Carrassi, A., Miyoshi, T., Pulido, M., and Zhen, Y.: A review of innovation-based methods to jointly estimate model and observation error covariance matrices in ensemble data assimilation, Monthly Weather Review, 148, 3973-3994, 2020.

Zanna, L. and Bolton, T.: Data-driven equation discovery of ocean mesoscale closures, Geophysical Research Letters, 47, e2020GL088 376, 2020.

