
HAL Id: hal-04131264
https://hal.science/hal-04131264

Submitted on 16 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Fast Instruction Cache Simulation is Trickier than You
Think

Marie Badaroux, Julie Dumas, Frédéric Pétrot

To cite this version:
Marie Badaroux, Julie Dumas, Frédéric Pétrot. Fast Instruction Cache Simulation is Trickier than
You Think. DroneSE and RAPIDO: System Engineering for constrained embedded systems (RAPIDO
2023), Jan 2023, Toulouse, France. pp.48-53, �10.1145/3579170.3579261�. �hal-04131264�

https://hal.science/hal-04131264
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Fast Instruction Cache Simulation is Trickier than You Think
Marie Badaroux

Univ. Grenoble Alpes, CNRS,
Grenoble INP†, TIMA

38000 Grenoble, France
marie.badaroux@univ-grenoble-

alpes.fr

Julie Dumas
Univ. Grenoble Alpes, CNRS,

Grenoble INP†, TIMA
38000 Grenoble, France

julie.dumas@univ-grenoble-alpes.fr

Frédéric Pétrot
Univ. Grenoble Alpes, CNRS,

Grenoble INP†, TIMA
38000 Grenoble, France

frederic.petrot@univ-grenoble-
alpes.fr

ABSTRACT

Given the performances it achieves, dynamic binary translation is
the most compelling simulation approach for cross-emulation of
software centric systems. This speed comes at a cost: simulation is
purely functional. Modeling instruction caches by instrumenting
each target instruction is feasible, but severely degrades perfor-
mances. As the translation occurs per target instruction block, we
propose to model instruction caches at that granularity. This raises
a few issues that we detail and mitigate. We implement this solution
in the QEMU dynamic binary translation engine, which brings up
an interesting problem inherent to this simulation strategy. Using
as test vehicle a multicore RISC-V based platform, we show that a
proper model can be nearly as accurate as an instruction accurate
model. On the PolyBench/C and PARSEC benchmarks, our model
slows down simulation by a factor of 2 to 10 compared to vanilla
QEMU. Although not negligible, this is to be balanced with the
factor of 20 to 60 for the instruction accurate approach.
ACM Reference Format:

Marie Badaroux, Julie Dumas, and Frédéric Pétrot. 2023. Fast Instruction
Cache Simulation is Trickier than You Think. In 15th Workshop on Rapid
Simulation and Performance Evaluation for Design Optimization: Methods
and Tools, January 16-18, 2023, Toulouse, France. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3579170.3579261

1 INTRODUCTION

Hardware/Software co-simulation is a technology that is very use-
ful during the design, implementation and even actual use of pro-
cessor centric systems. It can be implemented in many different
ways [14, 22], as does the simulator responsible for the execution
of the software parts of the system. For this latter task, Dynamic
Binary Translation (DBT) has proven to be very efficient and scal-
able. Its simulation strategy is based on the following consideration:
a sequence of non-branch instructions ended by a branch can be
executed atomically. Therefore, by translating a sequence once and
reusing it for its many executions, the translation time is amor-
tized, and the speed of simulation dictated mainly by the speed of
execution of the translated code.

When it comes to evaluating performances, DBT is challenging.
Speed is due to the execution of a lot of translated instructions out
†Institute of Engineering Univ. Grenoble Alpes.

ACM acknowledges that this contributionwas authored or co-authored by an employee,
contractor or affiliate of a national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only.
RAPIDO’23, January 16-18, 2023, Toulouse, France
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0045-3/16/01. . . $15.00
https://doi.org/10.1145/3579170.3579261

of the control of the simulation environment, and adding instru-
mentation will rapidly incur large slowdowns.

In this work, we take benefit from the block per block translation
nature of the DBT to propose a fast yet accurate instruction cache
model. We study the sources of inaccuracy of our model and detail
the choices we made to mitigate them.

We assess simulation performance in terms of accuracy and
simulation speed using the QEMU [4] dynamic binary translator
emulating the RISC-V instruction set architecture (ISA) running the
PolyBench/C [23] programs as bare-metal, and the multi-threaded
PARSEC benchmark [5] in user-mode. We use as baseline for com-
parison the current instruction level instrumentation available in
vanilla QEMU. We show that performing a fair comparison is not
simple, and propose a way to circumvent this issue.

The paper is organized as follows. We first outline in Section 2
the DBT process. Section 3 gives an overview of the most relevant
related works on instruction cache simulation and instrumentation.
Section 4 details the modeling approach we propose and its limita-
tions and Section 5 details the implementation in QEMU. Section 6
presents the environment we put to work to run our experiments,
and the results we obtained. Finally, we conclude in Section 7.

2 DYNAMIC BINARY TRANSLATION PRIMER

Figure 1 outlines the DBT process. In the frontend, the target in-
structions are fetched one at a time, decoded, translated into micro-
operations (µops), and sequentially added into a buffer. If the current
instruction is a branch, we enter the backend in which the µops in
the buffer are translated into optimized host instructions, and put
in a Translation Block (or Tb). A prologue is added in front of the
instructions for housekeeping, as is an epilogue to give back control
to the simulation environment. The identifier of the sequence of
code is the value of the program counter (pc) of the first instruction
of the sequence. The Tb is then stored into a translation cache, and
immediately executed. Once Tb execution finished, the control is
returned to the simulator that seeks the next Tb to execute, identi-
fied by the address of the instruction that is the target of the branch
ending the previous Tb.

The notion of translation block is very similar to the notion of
basic-block coined by [1] in the static compilation context, but still,
it has some differences. Indeed, the dynamic nature of the compi-
lation makes it possible to have several Tb representing the exact
same sequence of target instructions, if the sequence is the target
of a goto that jumps into a larger sequence. Also, translation occurs
within a known processor environment, including in particular the
machine state, e.g. kernel or user-mode, page-table settings, etc.
This means in particular that the addresses of the target instruc-
tions, be they physical or virtual, are statically known during Tb

https://doi.org/10.1145/3579170.3579261
https://doi.org/10.1145/3579170.3579261

RAPIDO’23, January 16-18, 2023, Toulouse, France Marie Badaroux, Julie Dumas, and Frédéric Pétrot

Frontend

Backend

Target
code

Known
pc?

Translation Decoding

Branch
instruction?

Execution

`op Generation Transla-
tion
cache

No

No

Yes

Yes

Figure 1: Outline of the dynamic binary translation process.

generation. Additionally, Tbs need to be deleted and retranslated
under certain circumstances, such as when dynamically changing
an instruction (when adding a breakpoint, patching a dynamically
called function address, etc), or when the translation cache is full.
Last, but not least, it might happen that a Tb is only partially ex-
ecuted, when an exception is raised upon execution of an inner
target instruction. For instance, a memory access might trigger a
page-fault that will immediately end the current Tb to fetch the
exception handler.

3 RELATEDWORKS

A recent survey on cache simulators is available in [6]. As explained
in this necessarily non-exhaustive survey, about 30 years ago cache
simulators were mainly studied for research purposes and were the
alternative for when the corresponding hardware was not available.
The tool representative of this period is Dinero, whose version
IV [10] is the latest. Nowadays, these simulators are also used to
help optimize software stacks, including parallel ones.

Instrumentation is in important mechanism to analyse software
but it can be challenging to implement. This topic has been ad-
dressed by [17, 18] that achieve good performance. The Dynamic
Binary Instrumentation framework Valgrind [21] proposes a more
complete instrumentation for heavyweight Dynamic Binary Analy-
sis. With the module Cachegrind, the analysis tool Valgrind is able
to simulate classical cache hierarchies [25]. Cross-instrumentation,
although based on the same principles, is less common [9, 13].

Adding representation of new structures in simulators can be
challenging as it can lead to a non negligible execution time over-
head. More than 20 years ago, an extension to the instruction set
simulator SimICS was proposed by [19] to accurately simulate an in-
struction cache. Even if the resulting simulation was slowed down,
it was deemed acceptable given the accuracy gained. In 2010, [8]
presented a high-level instruction cache model. Their approach ap-
plied to co-simulation did not degrade simulation speed too much.

Thanks to its execution speed, DBT stands as one of the most
used solution for functional high level simulation. However, it lacks
microarchitectural details. Works like [3] produce a DBT-based
simulation with addition of architectural details and report a good
trade-off between speed and precision.

Works to include cache simulation in QEMU have already been
initiated long ago [12, 24], but were quite intrusive and architecture
dependent. [7] also extended the dynamic binary translator QEMU
and claim time-accurate multiprocessor simulation. With the recent
introduction of plugins into QEMU, cache simulation can be done
non-intrusively. It is already available upstream [20] with a simple
cache model per virtual CPU (i.e. emulated target CPU or vCPU in
short). Our goal is to propose an instruction cache model specific
to the DBT mechanism and to show that the overhead it incurs can
be significantly reduced.

4 INSTRUCTION CACHE MODELING

A high-level instruction cache model generally implements only
the directory holding the tags and a bit indicating if the tag at
a given index is valid or not. The index of the line1 at which an
address is stored in the directory, indistinctive of the exact cache
geometry, is computed as a combination of the upper address bits
(tag) and/or middle address bit (index). The lower bits of the address
indicate the exact instruction to fetch within the line, but they are
not relevant since the line is either valid as a whole, or invalid as
a whole. Given the fact that Tb translation occurs with a known
virtual to physical address translation context, virtually addressed,
physically addressed, or virtually indexed physically tagged caches
can be simulated.

4.1 Initial Intuition

Given the Tb per Tb execution principle at work in DBT, we have
the warranty that once we have entered a Tb, all subsequent in-
structions of the Tb are at consecutive (either 2 or 4 bytes away in
the RISC-V case) addresses. So, we need to check when entering
the Tb whether or not the first instruction misses, as we have no
prior knowledge. But from then on, we are sure that all following
instructions that share the same index will hit. Then, when the
index changes, we might have a miss, but again, for the instructions
that follow, we are sure they will hit. So, because addresses are
consecutive inside a Tb, we can a priori know which instructions
will hit, and which might miss. So we know at Tb creation time that
it is sufficient to check for this subset of instructions dynamically.
Figure 2 illustrates this principle as an example.

0x800fa7bc: 1141 addi sp,sp,-16 ← possible miss

0x800fa7be: e022 sd s0,0(sp) ← hit!

0x800fa7c0: e406 sd ra,8(sp) ← possible miss

0x800fa7c2: 0800 addi s0,sp,16 ← hit!

0x800fa7c4: 00dbc797 auipc a5,14401536 ← hit!

0x800fa7c8: 2347a783 lw a5,564(a5) ← hit!

0x800fa7cc: eb95 bnez a5,52 ← hit!

Figure 2: Example of static hit/miss decision within a Tb.

Without loss of generality, we assume a 16-byte cache line, which
means that the line base addresses have their 4 least significant
bits zeroed, and the RISC-V ISA. We jump into this Tb at address
0x800fa7bc, which lays in the middle of a line. We have to check if
1To avoid ambiguity, we consistently use line for consecutive cache elements (a.k.a
block) and block for what refers to translated target instructions.

Fast Instruction Cache Simulation is Trickier than You Think RAPIDO’23, January 16-18, 2023, Toulouse, France

reading the instruction at this address misses, but we know ahead of
time that the next address, 0x800fa7be, will hit. The next instruction
is at 0x800fa7c0, which might be a miss as it stands on a new line,
so we must check it. However, the 4 following instructions will for
sure hit, since they belong to the same line. Overall, on this Tb, we
have to run the cache simulator for 2 addresses, while 7 instructions
are executed. As a result, we considerably reduce the overhead of
doing cache simulation.

4.2 Error in Counting Instructions and How to

Mitigate it

Unfortunately, the occurrence of exceptions is like a grain of sand
seizing up this well oiled mechanism.When we enter a Tb, we make
the assumption that all instructions it contains will be executed
atomically, and therefore run our model on all addresses that might
miss it contains. Alas, when an exception occurs, what is left of
the Tb beyond the faulty instruction is not executed, and control is
handed over to the simulation environment to fetch the instructions
of the exception handler. Then on return from the handler, since the
pc of the instruction that was following the access was not known,
what was left of the Tb is retranslated into a new smaller Tb, and
accounted for by our model. Figure 3 illustrates this with actual
page-faults taking place during Linux boot, once the kernel page
table has been set-up. We see that there are three re-translations,
as the first two Tbs have only been partially executed, and that
the two last Tbs are subsets of the first one. In that situation, we
ran our cache simulator on 6 non actually executed instructions
in the first Tb, and on 3 on the second Tb. Note that the faulty
instruction is considered twice, once in the original Tb, and once
in the retranslated Tb, but this is expected as the cache might have
been trashed by the exception handler. Instructions such as wfi

(that sleeps waiting for an interrupt) or pause (that yields back the
processor) induce the same behavior, but they are easy to handle.
Indeed, they occur so rarely that forcing them to end a Tb induces
an insignificant slowdown.

On the contrary, memory accesses occur very often and might
represent from 30% to 50% of the instruction mix in some actual
workloads [11, 15]. Using the same strategy as previously might
incur too much of a slowdown for a negligible accuracy gain, but
this needs to be checked, and it will be in Section 6.

4.3 Dependency on Simulator Runtime

Another, deeply annoying, unexpected behavior is the dependencies
of the flow of executed target instructions on the time it takes to
perform cache simulation for programs running on top of Linux2.
We discovered this seemingly odd behavior while testing several
cache implementations: to our amazement, the faster the simulator,
the lower the number of executed instructions for a given program.
To the best of our knowledge, that effect has not yet been reported
in the literature. This makes the evaluations obtained in previous
works (we specifically refer here to the ones using QEMU, but we
see no reason why similar tools would behave differently), e.g. [12,
16, 24], questionable, although no wrong per se, since the executed
instructions produce a valid behavior.

2Bare metal programs do not suffer from this.

Insns in translation block

0x7f1ffbe5692c : auipc a5,237568

0x7f1ffbe56930 : ld a5,-612(a5)

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

Executed insns until page fault

0x7f1ffbe5692c : auipc a5,237568

0x7f1ffbe56930 : ld a5,-612(a5)

0x7f1ffbe56934 : sb s0,0(a5) ←− first page-fault
New translation block after return from handler

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

Executed insns until new page fault

0x7f1ffbe56934 : sb s0,0(a5)

0x7f1ffbe56938 : ld ra,8(sp)

0x7f1ffbe5693a : auipc a5,270336

0x7f1ffbe5693e : sb s0,1470(a5) ←− second page-fault
Again, new translation block after return from handler

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

Executed insns until branch, no page-fault on ld

0x7f1ffbe5693e : sb s0,1470(a5)

0x7f1ffbe56942 : ld s0,0(sp)

0x7f1ffbe56944 : addi sp,sp,16

0x7f1ffbe56946 : ret

6 instructions

3 instructions

Figure 3: Stopped Tb execution due to a page-fault.

We investigated to understand the reasons behind this behav-
ior, and we discovered they are due to repeated occurrences of
timer interrupts because the simulator uses the host real-time
clock (obtained, e.g. using rdtsc on x86 hosts) to trigger alarms. In
this situation, the timer interruption is raised when a given wall-
clock Δ𝑡 has elapsed, which finally ends up calling the target Linux
update_cfs_group scheduling function over and over. To exemplify
the behavior, we have added in the cache model a delay using a
for loop iterating 𝑛 times, which leads to the results given Figure 4.
This can be mitigated by forcing QEMU to use a clock of its own3 in
which case only 1830 irqs are raised, for any added delay. However,
in that case it cannot run vCPUs in parallel, which greatly hinders
performance. As we are aiming to show that our cache model be-
haves as expected and compare its execution speed to an existing
3Using the -icount shift=2,sleep=on option.

RAPIDO’23, January 16-18, 2023, Toulouse, France Marie Badaroux, Julie Dumas, and Frédéric Pétrot

0 50 100 150 200

20,000

40,000

60,000

80,000

Δ𝑡 in arbitrary unit

N
um

be
ro

ft
im

er
in
te
rr
up

ts

Figure 4: Number of raised timer interrupts as a function of

an arbitrary cache model simulation delay.

model or to vanilla QEMU, we must have the exact same instruc-
tions executed to be fair. To that end, we will use either bare metal
software that does not program alarms or QEMU user-mode, both
taking benefit of the host parallelism while having no dependency
on simulation duration.

5 IMPLEMENTATION

5.1 QEMU TCG Plugins

The Tiny Code Generator (TCG) plugin is a feature introduced in
QEMU version 4.2 [9]. It provides an API to write plugins in order
to facilitate code instrumentation. Information is given through the
plugin API at translation and execution times. It can be retrieved
each time a block is translated or/and executed, or for every in-
struction and memory access that is executed. By instrumenting all
instructions and memory accesses executed by the target through
the TCG plugins, we have access to all the information we need to
simulate a cache.

2/ Detect events
− enter Tb
− fetch instruction
− access memory

QEMU main loop

4/ Run caches

Cache plugin
1/ Subscribe to events

3/ Callbacks
Data
Cache

Insns
Cache

Figure 5: Simplified representation of the QEMU TCG plug-

ins mechanism.

Figure 5 shows the simplified plugin mechanism of QEMU’s TCG.
First, we have to indicate to which events proposed by the TCG plu-
gin API we want to subscribe. It can be an instruction or a memory
access execution or a translation block translation/execution. Then,
during QEMU execution, each time the event occurs the main loop
will send information to the plugin thanks to callback functions.
Finally, inside the plugin, we can add our own code to do what
we want. For this work, we do not consider the data-cache and
solely focus on the instruction cache. TCG plugins are independent
from the simulated architecture and thus can be used with all the
different targets QEMU supports. In our case, we decided to work
only with RISC-V but the approach we propose can be applied to
all the other architectures as well.

5.2 Cache Simulation at Tb Granularity

The TCG plugin API is limited but offers the possibility to retrieve
the target instructions belonging to a Tb during translation. During
that stage, we have two options.
The first one, implemented by the existing instruction cache plugin
since 2021 [20], is to register a callback function for every instruc-
tion of the Tb. The function will be called right before instruction
execution, once all its operand values known. Being at instruction
granularity, the cache model is invoked each time an instruction is
executed, which results in an important simulation time overhead.
The second one is to register a callback each time a Tb is executed,
which fits well the DBT principles, this is the option that we chose
as introduced in Section 4. During the translation stage, thanks to
the API of the TCG Plugins, we can parse the Tb and have access
to the instructions it contains. Our plugin records in an array the
addresses of the instructions that might produce a miss, and this
array is given as argument to the function of the API that registers a
callback for the Tbs. Then, just before a Tb is executed, the callback
traverses the array and performs cache simulation on the sequence
of addresses at once.

Using an array to store a subset of instructions requires dynamic
memory allocation. However, thanks to the DBT mechanism, the
Tbs are put in a cache to be reused. Even if it is application de-
pendant, the percentage of Tb reuse is really high, so the per Tb
memory allocation is negligible.

6 EXPERIMENTS

To evaluate our solution, we use two benchmarking suites: Poly-
Bench/C for uniprocessor, and PARSEC for multiprocessors. The
PolyBench/C suite is run with the MEDIUM inputs and the PARSEC
suite with the LARGE inputs. We decided to work with the RISC-V
target. We used QEMU in two different modes: user-mode, in which
system calls and signals are handled by the host OS, and full-system,
which is a Linux-capable target.

1 2 4 8 16 32 64 128
nb of vcpus

0

5000

10000

15000

20000

25000

In
st

ru
ct

io
n

m
iss

es

cache
cacheTB

Figure 6: Number of instruction misses for lu_cb (log scale

on 𝑥-axis).

QEMU, Linux and the machine we run on are not time deter-
ministic. We therefore run our experiments 20 times to measure
performances, which, by the virtue of the central limit theorem and
given the standard deviation we obtain, gives a high confidence in
the computed execution time mean.

In the following figures, cache refers to QEMU existing cache
plugin, cacheTB refers to QEMU with a plugin that implements our
solution and vanilla refers to QEMU without any plugin.

Fast Instruction Cache Simulation is Trickier than You Think RAPIDO’23, January 16-18, 2023, Toulouse, France

2mm3mm adi atax bicg
cholesky

correlation
covariance

deriche
doitgen

fdtd-2d
gemm

gemver
gesummv

gramschmidt
heat-3d

jacobi-1d
jacobi-2d lu

ludcmp
nussinov

seidel-2d
symmsyr2k syrk

triso
lvtrmm

10 1

100

101

102
Si

m
ul

at
io

n
Ti

m
e

(s
)

cache
cacheTB
vanilla

Figure 7: Simulation time of the PolyBench/C programs (log scale on 𝑦-axis).

6.1 Error due to exceptions in Tbs

Because early internal Tbs exits can occur, we need to make sure
the error it incurs is negligible. To that aim, we choose 2 programs
that we run on a single vCPU: a boot of Linux that finishes just
before printing the login prompt, and the LU decomposition of a
2048 × 2048 matrix from the parsec. We measure the total number
of executed Tbs, the number of internal Tbs exits, the total number
of instructions and the number of instructions that have been ac-
counted for while they shouldn’t. This is reported in Table 1. The
average number of target instructions per Tb is 5.51 for Linux boot,
and 16.61 for LU, which outlines the differences between both work-
loads. Although the error in number of instructions is negligible,
we made a change in QEMU in which each memory access ends a
Tb. For Linux boot, the number of executed Tbs almost quadruples,
to 124,097,849, while the total simulation time increases by 50%.
This is not a surprise, as in that workload, 44% of the instructions
are memory accesses.

Table 1: Measure of the error due to early Tb exits.

Nb of Tbs Nb of early Nb of executed Wrongly
executed Tbs exits insns counted insns

Boot 35,704,017 254 196,831,388 669
LU 989,522,360 10,447 16,439,546,310 6098

In conclusion, our approach to consider all instructions that
belong to a Tb as executed makes sense. It is not useful to mitigate
it, since it costs a lot in simulation time while having zero impact
on the cache statistics.

6.2 Statistics validation using QEMU existing

cache plugin

We report in this section how we validated the statistics produced
by our plugin. Although we thoroughly tested the behavior of our
cache model against QEMU’s current one, all the experiments were
done with the following arbitrary instruction cache configuration:
8-way, 32-set, 64 bytes per line and LRU.

6.2.1 Unicore: PolyBench/C Suite. We used the PolyBench/C suite
on bare-metal to compare the statistics of our cacheTB plugin with

1 2 4 8 16 32 64 128
nb of vcpus

101

102

Si
m

ul
at

io
n

Ti
m

e
(s

)

cache
cacheTB
vanilla

Figure 8: Simulation time of lu_cb (log-log scale).

the existing cache plugin. We obtained the exact same number of
instructions and instruction misses with both plugins for the whole
benchmark. Thus we have been able to confirm the good behavior
of our model in monoprocessor.

6.2.2 Multicore: PARSEC Suite. In order to validate our cache
model without the issues raised in Section 4 when using Linux,
we run the PARSEC suite in QEMU user-mode. Figure 6 shows the
number of instruction misses for the number of virtual CPUs from 1
to 128 by integer power of 2 steps for the lu_cb PARSEC benchmark.
The vertical black lines on the figure represent the range of statistics
we did for 20 executions. We obtained for each of the vCPUs a mean
of the statistics (number of instructions and number of instruction
misses) that are really close from the ones of the cache plugin and
the values are stable across the 20 executions. For all the PARSEC
benchmarks that we used, we observed similar histograms than the
one of lu_cb.

6.3 Simulation time: vanilla vs cache vs cacheTB

In this section, we compare the simulation time of QEMU cache

plugin and our own cacheTB plugin. Figure 7 compares the simula-
tion time of the benchmarks of the PolyBench/C suite in bare metal.
Figure 8 compares the simulation time of the PARSEC program
lu_cb run in user-mode with 1 to 128 virtual CPUs. Instead of show-
ing the simulation time histograms for all PARSEC programs that
we used and because they have all the same shape, we represent
Figure 9 the simulation time using 128 virtual CPUs only for all

RAPIDO’23, January 16-18, 2023, Toulouse, France Marie Badaroux, Julie Dumas, and Frédéric Pétrot

Table 2: Mean simulation time ratios.

PolyBench/C PARSEC
Speedup cache to cacheTB 10.87 7.18
Overhead cache to vanilla 23.67 59.85
Overhead cacheTB to vanilla 2.07 10.16

programs (on a 2 GHz 64-core AMD EPYC 7702P PowerEdge R6515
server), outlining the scalability of our approach, QEMU in itself
being fairly scalable [2].

cholesky fft lu_cb
lu_ncb

ocean_cp radix
freqmine

barnes

water_nsquared

water_spatial

100

101

102

Si
m

ul
at

io
n

Ti
m

e
(s

)

cache
cacheTB
vanilla

Figure 9: Simulation time of the PARSEC programs on 128

vCPUs (log scale on 𝑦-axis).

Table 2 summarizes all the different mean speedup/overhead
ratios. According to the different types of experiments, our plugin
is 7 to 10 times faster than the cache plugin. Regarding the overhead
of using a plugin compared to QEMU vanilla, the cache plugin
degrades much more the simulation time than our plugin (up to 60
times slower than QEMU vanilla with the PARSEC Suite compared
to only 10 times slower with our model).

7 CONCLUSION

Although adding instrumentation in functional simulation will for
sure degrade simulation time, taking benefit of the per block nature
of the translation in DBT allows to define a strategy suited for
instructions caches that minimizes the performance overhead. We
raised two issues, one due to the DBT itself that we could mitigate,
the other linked to time handling that we circumvent, but didn’t
solve per se. We implemented our approach in QEMU and validated
against its existing instruction accurate cache model. For all the
experiments we did, we obtained identical statistics, but at far better
performances. Overall, fast instruction cache simulation isn’t that
easy, and even though doing it at scale for full-system is possible,
asserting the validity of the metrics that are produced is still a work
in progress.

ACKNOWLEDGMENTS

We would like to thank the partners of the ANR Rakes project and
acknowledge the financial support of the French Agence Nationale
de la Recherche (ANR-18-CE25-0017, https://anr.fr/Project-ANR-
18-CE25-0017).

REFERENCES

[1] John W. Backus, Robert J. Beeber, Sheldon Best, Richard Goldberg, Lois M. Haibt,
Harlan L. Herrick, Robert A. Nelson, David Sayre, Peter B. Sheridan, Harold Stern,

Irving Ziller, R. A. Hughes, and R. Nutt. 1957. The FORTRAN automatic coding
system. In Proceedings of the Western joint computer conference: Techniques for
reliability. 188–198.

[2] Marie Badaroux, Saverio Miroddi, and Frédéric Pétrot. 2021. To Pin or Not to Pin:
Asserting the Scalability of QEMU Parallel Implementation. In 24th Euromicro
Conference on Digital System Design. IEEE, 238–245.

[3] Igor Böhm, Björn Franke, and Nigel Topham. 2010. Cycle-accurate performance
modelling in an ultra-fast just-in-time dynamic binary translation instruction
set simulator. In 2010 International Conference on Embedded Computer Systems:
Architectures, Modeling and Simulation. IEEE, 1–10.

[4] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator. In USENIX
Annual Technical Conference, FREENIX Track. USENIX, 41–46.

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. IEEE, 72–81.

[6] Hadi Brais, Rajshekar Kalayappan, and Preeti Panda. 2020. A Survey of Cache
Simulators. ACM Computing Surveys (CSUR) 53 (02 2020), 1–32.

[7] Humberto Carvalho, Geoffrey Nelissen, and Pavel Zaykov. 2020. mcQEMU: Time-
Accurate Simulation of Multi-core platforms using QEMU. In 2020 23rd Euromicro
Conference on Digital System Design (DSD). IEEE, 81–88.

[8] Juan Castillo, Hector Posadas, Eugenio Villar, and Marcos Martinez. 2010. Fast
Instruction Cache Modeling for Approximate Timed HW/SW Co-Simulation.
In Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI. IEEE,
191–196.

[9] Emilio Cota and Luca Carloni. 2019. Cross-ISA machine instrumentation using
fast and scalable dynamic binary translation. In Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
ACM, 74–87.

[10] Jan Edler and Mark D Hill. 1998. Dinero IV Trace-Driven Uniprocessor Cache
Simulator. https://pages.cs.wisc.edu/~markhill/DineroIV/.

[11] Antoine Faravelon, Olivier Gruber, and Frédéric Pétrot. 2021. Removing Load/Store
Helpers in Dynamic Binary Translation. John Wiley & Sons, Ltd, Chapter 7, 133–
160.

[12] Marius Gligor, Nicolas Fournel, and Frédéric Pétrot. 2009. Using Binary Trans-
lation in Event Driven Simulation for Fast and Flexible MPSoC Simulation. In
Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis. ACM, 71–80.

[13] Christophe Guillon. 2011. Program instrumentation with qemu. In 1st Interna-
tional QEMU Users’ Forum, W. Mueller and F. Pétrot (Eds.), Vol. 1. 15–18.

[14] Fatma Jebali, Oumaima Matoussi, Arief Wicaksana, Amir Charif, and Lilia Za-
ourar. 2022. Decoupling Processor andMemoryHierarchy Simulators for Efficient
Design Space Exploration. In 15th Workshop on Rapid Simulation and Performance
Evaluation for Design Optimization: Methods and Tools. ACM, 47–52.

[15] Lizy Kurian John, Vinod Reddy, Paul T. Hulina, and Lee D. Coraor. 1995. Program
balance and its impact on high performance RISC architectures. In First IEEE
Symposium on High-Performance Computer Architecture. IEEE, 370–379.

[16] Shin-haeng Kang, Donghoon Yoo, and Soonhoi Ha. 2016. TQSIM: A fast cycle-
approximate processor simulator based on QEMU. Journal of Systems Architecture
66 (2016), 33–47.

[17] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[18] Yi-Hong Lyu, Ding-Yong Hong, Tai-Yi Wu, Jan-Jan Wu, Wei-Chung Hsu,
Pangfeng Liu, and Pen-Chung Yew. 2014. Dbill: An efficient and retargetable
dynamic binary instrumentation framework using llvm backend. Acm Sigplan
Notices 49, 7 (2014), 141–152.

[19] Peter S. Magnusson. 1997. Efficient instruction cache simulation and execution
profiling with a threaded-code interpreter. In Proceedings of the 29th conference
on Winter simulation. IEEE, 1093–1100.

[20] Mahmoud Mandour. 2021. Cache Modelling TCG Plugin. https://www.qemu.
org/2021/08/19/tcg-cache-modelling-plugin/.

[21] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices 42, 6 (2007), 89–100.

[22] Frédéric Pétrot, Nicolas Fournel, Patrice Gerin, Marius Gligor, Mian Muhammad
Hamayun, and Hao Shen. 2010. OnMPSoC Software Execution at the Transaction
Level. IEEE Design & Test of Computers 28, 3 (2010), 2–11.

[23] Louis-Noël Pouchet and Tomofumi Yuki. 2015. Polybench/C 4.1. http://polybench.
sourceforge.net.

[24] Tran Van Dung, Ittetsu Taniguchi, and Hiroyuki Tomiyama. 2014. Cache simula-
tion for instruction set simulator QEMU. In 2014 IEEE 12th International Conference
on Dependable, Autonomic and Secure Computing. IEEE, 441–446.

[25] Josef Weidendorfer. 2008. Sequential performance analysis with callgrind and
kcachegrind. In Tools for High Performance Computing. Springer, 93–113.

https://anr.fr/Project-ANR-18-CE25-0017
https://anr.fr/Project-ANR-18-CE25-0017
https://pages.cs.wisc.edu/~markhill/DineroIV/
https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
https://www.qemu.org/2021/08/19/tcg-cache-modelling-plugin/
http://polybench.sourceforge.net
http://polybench.sourceforge.net

	Abstract
	1 Introduction
	2 Dynamic Binary Translation Primer
	3 Related works
	4 Instruction Cache Modeling
	4.1 Initial Intuition
	4.2 Error in Counting Instructions and How to Mitigate it
	4.3 Dependency on Simulator Runtime

	5 Implementation
	5.1 QEMU TCG Plugins
	5.2 Cache Simulation at Tb Granularity

	6 Experiments
	6.1 Error due to exceptions in Tbs
	6.2 Statistics validation using QEMU existing cache plugin
	6.3 Simulation time: shvanilla vs shcache vs shcacheTB

	7 Conclusion
	Acknowledgments
	References

