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Abstract — In this paper, we propose a cognitive Massive
MIMO integrated sensing and communication (ISAC) system
that integrates both functionalities, enabling efficient use of the
congested spectrum. To achieve this, we introduce a reinforcement
learning (RL) approach that involves adaptability and that is able
to optimize a joint waveform for the aforementioned system to
achieve multiple objectives. We demonstrate that cognitive RL
can improve state-of-the-art techniques that aims at designing
the joint waveform from the ground-up achieving sensing and
communication trade-off. Our results show that cognitive RL
can greatly enhance sensing performance without compromising
the communication performance. In contrast to previous works,
we assume no prior information on the sensed scene such as the
number of targets or the statistics of the disturbance.

Keywords — Integrated communication and sensing,
6Generation, Reinforcement Learning, Massive MIMO

I. INTRODUCTION

The integration of sensing capabilities is rapidly
becoming a critical component of 6G networks. Meanwhile,
communication and sensing typically require different
waveform specifications and metrics. The relevant literature
has studied three different approaches for designing the
ISAC waveform. One approach is a communication-centric
design that aims to utilize traditional communication
waveforms such as OFDM either directly or after performing
some modifications to enable sensing [1]. However, this
approach might restrict the sensing performance due to poor
auto-correlation properties and its susceptibility to clutter. The
second approach considered is a sensing-centric design which
involves adding a communication message to an existing
sensing waveform [2]. Unfortunately, such approaches might
suffer from low information rates and spectral efficiency [3].
The third approach is a joint design that aims at creating a
totally new waveform from the ground-up to achieve both
radar and communication metrics simultaneously [4], [5]. This
approach shows a great potential to achieve a balance between
both systems to meet 6G demands. It must be noted however
that, most of those approaches assumed prior information on
the target locations in the sensing scene, which is not realistic.
Other approaches as [6] addressed this problem but using
a sensing-centric waveform. In [4], the authors presented a
weighted optimization approach to achieve a flexible balance
between the performance of radar and communications.
The main objective of this optimization was to minimize

multi-user interference (MUI) while simultaneously generating
a radar beampattern towards pre-known angle locations. The
authors demonstrated that their proposed design led to
notable improvements in communication performance, but at
the expense of some impact on radar performance. In this
paper, we aim to tackle the joint waveform design, where no
prior knowledge exists about the target or the surrounding
environment. To achieve this, we incorporate cognitive
probing of the environment, thus taking better-informed
decisions. Building upon the trade-off design proposed by the
authors in [4], we enhance the sensing performance using RL.
Our approach could significantly enhance the detection of
multiple targets within complex and unknown environments
compared to the literature. Thus, we prove that by combining
the cognitive probing approach with the trade-off design, we
can develop a more robust and adaptable ISAC system that is
better equipped to handle real-world scenarios.

II. SYSTEM MODEL

Consider a MIMO ISAC system, which transmits
communication symbols to K single antenna downlink users
and simultaneously serves as monostatic cognitive radar. This
joint system is capable of transmitting the same waveform to
detect multiple targets and serve those users at the same time.

A. Radar Signal Model
We assume a colocated MIMO radar, with Nt transmit and

Nr receive antennas. Both the transmit and receive arrays are
uniformly linear arrays (ULA), with steering vectors: at(θ)
and ar(θ), respectively, where θ is the target direction. Hence,
ar(θ) = [1, e−jν , . . . , e−jr(N−1)ν ]T where ν = sin(θ),
r = 2πd

λc
, d is the spacing between the antennas and λc is

the operating frequency. Let xl ∈ CNt be the narrow band
transmitted signal, where l = 1, . . . , L, where L being the
code length [7]. Thus the radar received signal at time instant
l is expressed as

yl = αar(θ)at(θ)
Txl + cl (1)

where yl ∈ CNr . α ∈ C is a deterministic unknown variable
that accounts for the target radar cross section (RCS) and the
two-way path loss, cl ∈ CNr is the random disturbance vector.
Thus, stacking the L instants in a vector form yields:

y = αar(θ)at(θ)
HX+ c (2)



where y, c ∈ Nr×L and X = [x1, . . . ,xL] ∈ CNt×L. After
correlating the received signal with the transmitted waveform
and vectorizing the output, then (2) is rewritten as a function
of the transmit covariance matrix R as [8]

Yr = αar(θ)⊗ at(θ)
HR+Cr, (3)

where Yr and Cr ∈ N , where N=NrNt. Thus, the beam
pattern produced by the transmitted waveforms in direction
θ can be expressed as B(θ) = aHt (θ)Rat(θ). It is further
assumed that Yr is processed by a bank of B spatial filters,
each tuned to a certain angle cell b. Afterward, hypothesis
testing is performed in each angle cell. Let h = ar(θ) ⊗
at(θ)

HR, then the hypothesis testing problem can be written
as

H0 : Yp
b = Cp

b p = 1, . . . , P (4)
H1 : Yp

b = αp
bhp,b + Cp

b p = 1, . . . , P.

The decision statistic is chosen as robust Wald-type detection
which ensures CFAR property as N →∞ [9] as

Λp,b =
2|hH

p,bYp
b |2

hH
p,bΓ̂p,bhp,b

(5)

where Γ̂p,b is the estimated covariance matrix of Cp
b , defined in

[10, eq.(38)]. To distinguish between H0 and H1, the detector
evaluates (5) against a threshold λ = −2 ln(PFA) in each
angle bin, where PFA = 10−4 is the false alarm rate.

B. Communication Signal Model

The downlink received signal at the users can be expressed
as [4]:

Yc = HX+N, (6)

where H ∈ CK×Nt , N ∈ CK×L. Here X is the dual waveform
transmitted for both radar and communication purposes, thus
while L previously denoted the number of snapshots within
a radar pulse p, in (6), L denotes the number of symbols in
the communication frame. Here we assume that channel H is a
flat fading Rayleigh channel that remains unchanged within the
communication frame or radar pulse. Therefore, if the desired
constellation matrix for the K users is given as S ∈ CK×L.
Then (6) can be rewritten as

Yc = S+ (HX− S)︸ ︷︷ ︸
MUI

+N, (7)

where the underlined term denotes the MUI. It is worth noting
that minimizing the MUI power is directly linked to increasing
the achievable sum-rate for all users [4].

III. JOINT COMMUNICATION AND RADAR WAVEFORM
DESIGN

The metrics used to evaluate the communication and
sensing performance are distinct due to the nature of both
systems. The purpose of communication is to convey as much
information as possible to a certain receiver accurately, while
the radar objective is to extract specific information from the

returned echoes. Unlike communication, the useful information
here is in the received signal, not the transmitted waveform.
From the previously discussed system models of both systems,
it can be depicted that one way to design the waveform is to
formulate an optimization problem that aims at minimizing
the MUI power, while at the same time ensuring a specific
beampattern for detecting the radar targets. Therefore, we
consider the trade-off design model proposed in [4] to optimize
the transmitted waveform to fulfill both objectives as follows:

P0 : min
X

ρ ∥HX− S∥2F + (1− ρ) ∥X−X0∥2F

s.t.
1

L
∥X∥2F = PT ,

(8)

where 0 ≤ ρ ≤ 1 is a weighing factor that allows one to favor
one system over the others in the ISAC framework. While the
first term in P0 minimizes the MUI, the second term aims at
finding find X that matches X0, which can be obtained by
solving the following optimization problem

P1 : min
X0

∥HX0 − S∥2F

s.t.
1

L
XX0

H = Rd. (9)

The optimization problem P1 solves for X0 through
minimizing the MUI while achieving a certain desired
covariance matrix Rd that corresponds to a certain desired
beampattern B(θ). The authors in [4] proposed a solution
to P1, however they assumed that the covariance matrix Rd

is given. Such an assumption is not practical from the radar
perspective, since in a sensing scenario, the number of targets
and their possible directions is usually unknown. In addition,
they used a generalized likelihood ratio test (GLRT) to detect
the targets within independent and identically distributed (i.i.d)
Gaussian noise. This assumption might not be valid due
to the dynamic and complex nature of the disturbance in
radar environments. Thus, we propose an RL-based detection
algorithm that cognitively probes the environment using the
ISAC waveform in P0 under the following assumptions 1) no
prior information is assumed on the targets locations or number
2) no statistical characterization of the clutter is assumed.

A. RL-based Cognitive Waveform design

RL is a machine learning technique that facilitates an
agent’s ability to achieve a designated goal by interacting with
and learning from the surrounding environment through trial
and error. In our case, the ISAC system is the agent, which
receives continuous feedback from the environment. Based, on
those, the agent determines its next action ap. Here, we use
SARSA algorithm, where the agent learns to select its next
action ap based on the current state of the environment sp, then
receives a reward rp after each action taken. The algorithm
keeps updating the estimate of the optimal policy based on the
state-action-reward-state-action (SARSA) transitions during
its interaction with the environment. Such policy is determined
based on the Q-value of the current state-action transition. The
Q-value represents the expected, discounted, and cumulative



reward that the agent receives by taking action ap, in particular
state sp following certain policy π, which is defined as

Q (sp, ap)←Q (sp, ap)+ (10)
α (rp+1 + γQ (sp+1, ap+1)−Q (sp, ap)) .

The learning rate α ∈ [0, 1] determines the extent to which new
experiences should overwrite old ones. The discounted factor
γ on the other hand controls the influence of future rewards
in the decision-making process. Hence, SARSA is used to
navigate through the unknown environment of ISAC system,
while updating the state-action matrix Q ∈ R(M+1)×(M+1),
where M is the maximum number of detectable targets.
Consequently, the joint waveform is continuously adapted
based on (10). Next, the SARSA parameters are further
explained.

1) The set of states
A state sp represents the current situation of the unknown

environment. Here, the state is defined in terms of the detection
statistic for each angle cell b, defined in (5) , thus, we define
the state after having sent a pulse at the time p as the number
of detections using the Wald test such that

sp =

B∑
b=1

Λ̄p
b , (11)

where

Λ̄p
b =

{
1 Λp

b > λΛ

0 otherwise.
(12)

Thus, the state space can be defined as S ≜ {0, . . . ,M} [10].

2) The set of actions
The action is defined as transmuting joint ISAC waveform

based on certain communication channel H and Rd. Without
the loss of generality, we assume perfectly known H, thus
we focus on designing Rd in P1 according to the following
problem [11]:

P2 : max
Rd

tr(RdB̂)

subject to tr(Rd) = PT

Rd ≥ 0. (13)

where B̂ =
∑b̂

b=1 a(θb)a
∗(θb). Thus, P2 namely maximizes

the total power at the estimated angle bins’s locations. Hence,
the role of SARSA is to define Θb̂ = {θ̂1, . . . , θ̂b̂} and θ̂ is the
estimated angle bin of the target. Furthermore, Θp is calculated
based on the highest b̂ values of Λp,b in (5). Accordingly, we
can define the action as ap ∈ A = {Θi|i ∈ {1, 2, . . . ,M}}.
After finding Θb̂, P2 will have a closed form solution defined
in [ [11], eq. (14)]. In order to evaluate how good those actions
are, a reward is given to the agent. Thus the agent’s goal
is continuously maximize the cumulative reward [12]. It is
defined as

rp+1 =

sp∑
b=1

P̂ p
Db
−

B−sk∑
j=1

P̂ p
Dj
, (14)

where P̂ p
Db

is the estimated probability of detection, which
can be defined in closed form expression as N → ∞
in [9]. The policy πp(sp) used to maximize the reward is
quasi ϵ greedy [13] where the algorithm chooses a

(greedy)
p

∆
=

argmaxa∈A Q (sp+1, a) with a probability (w.p) of 1 − ϵ.
Meanwhile, another random action arnd (excluding a

(greedy)
p )

is chosen from the set 1 A′(sjp) ≜ {Θi, i = j, . . . ,M} w.p ϵ.
Such definition of the policy would allow the exploration of
random actions based on ϵ.

Algorithm 1 SARSA

Input: H, S, ρ, and PT

Initialize s0 = 1, a0 = 1, P = 50, Q = 0 and Xp = I
repeat for each pulse p:

Take action ap by transmitting waveform Xp

Acquire the received signal Yb
p, ∀ b

Solve for the decision statistic in (5)
Calculate sp+1 from (11) and rp+1 as in (14)
Choose action ap+1 with quasi ϵ greedy, identify Θb̂
Solve for Rd in P2

Solve X0 in P1, X in P0 as [4] then transmit
Update Q(sp, ap) as in (10), sk ← sp+1;ap ← ap+1

until Observation time ends

IV. RESULTS

In our simulations, we consider a massive MIMO base
station (BS), which communicates messages of length L = 10
to K = 4 users whose channel entries Hi,j ∈ CN (0, 1).
Similar to [4], H is assumed to be perfectly estimated.
Furthermore, the constellation is chosen to be QPSK alphabet
of unit power. The BS simultaneously tries to detect 4
targets using P = 50 pulses. The sensing scene is divided
into total of B = 20 angle bins, where the angle grid
is defined as ν = [−0.5 : 0.45]. The four targets are at
locations ν = {−0.2, 0, 0.2, 0.3} ⊂ ν, with SNR =
[−30,−20,−10,−20]dB respectively. We further assumed
that the targets are masked within unknown disturbance
modeled as AR(6) with t-distributed i.i.d innovations defined
as in [10]. In Fig 1, the probability of detection is averaged
across the 50 pulses and calculated across the number of spatial
channels N for the targets with the least SNR at ν = −0.2 and
ν = 0. Here, ρ = 0.8, which according to (8) gives the main
weight to the communication part of the design. We compare
our algorithm to the directional and omnidirectional trade-off
approaches proposed in [4]. To ensure a fair comparison, we
adapted those approaches to a cognitive design, where the BS
adaptively modifies X based on the same detection statistic
in (5) without the RL component. Despite this adaptation,
our RL algorithm still demonstrated superior performance for
the target at ν = 0.2, while the other algorithms failed
to detect it altogether, even as N increased asymptotically.

1Please note that si with superscript denotes the value of the state, while
sp with subscript denotes the state at pulse p (i.e.,s0 = s0 means the state at
p = 0 has the value of s0)
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Notably, both approaches perform better for ν = 0 due to
its higher SNR, reaching the same performance at N=104,
however our RL approach still outperformed both approaches
in this scenario as well. We further explore this performance
in Fig. 2 using Nt = Nr = 100, we compare the Pd as
function of the number of pulses. We only chose to compare
against the omnidirectional approach, since it performs similar
to the directional one symptomatically. It can be noticed for
the first target, the Pd increases over time, due to the nature
of RL which learns from the environment using trial and
error. In this scenario, the effect of increasing L is explored.
Similar observations can be drawn for both targets, however
it can be noticed that as L increases to 30 the Pd also
increases, leading to full detection for the target with the
lower SNR, since more snapshots are considered in this case.
The proposed algorithm focuses on improving the sensing

performance only while keeping the communication aspect
unchanged. We further simulated the symbol error rate (SER)
of the RL and directional approaches at Nt = 100, it can
be noticed from Fig.3 that both approaches yield the same
performance, which aligns with the zero MUI case as well,
since the communication component in (8) is weighted by 0.8.
Notably, RL only improved the detection performance leaving
room for further enhancements in communication performance
as future work.

V. CONCLUSION

In this work, we proposed a cognitive waveform design for
ISAC system, that is capable of serving communication users
while detecting multiple targets in an unknown environment.
The approach improves the trade-off design proposed in
the literature, by employing cognitive RL, to achieve the
balance between sensing and communications. We prove that
our approach significantly enhances the system’s sensing
performance, where it could detect fading targets of very low
SNR, without trading the communication performance.
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